1 // SPDX-License-Identifier: GPL-2.0-or-later
3 * Copyright (C) 2013 Imagination Technologies
4 * Author: Paul Burton <paul.burton@mips.com>
7 #include <linux/errno.h>
8 #include <linux/percpu.h>
9 #include <linux/spinlock.h>
11 #include <asm/mips-cps.h>
12 #include <asm/mipsregs.h>
14 void __iomem
*mips_gcr_base
;
15 void __iomem
*mips_cm_l2sync_base
;
18 static char *cm2_tr
[8] = {
19 "mem", "gcr", "gic", "mmio",
20 "0x04", "cpc", "0x06", "0x07"
23 /* CM3 Tag ECC transaction type */
24 static char *cm3_tr
[16] = {
31 [0x6] = "IReqNoRespDat",
32 [0x7] = "IReqWRespDat",
34 [0x9] = "RespDataFol",
36 [0xb] = "RespDataOnly",
37 [0xc] = "IRespNoData",
38 [0xd] = "IRespDataFol",
40 [0xf] = "IRespDataOnly"
43 static char *cm2_cmd
[32] = {
45 [0x01] = "Legacy Write",
46 [0x02] = "Legacy Read",
52 [0x08] = "Coherent Read Own",
53 [0x09] = "Coherent Read Share",
54 [0x0a] = "Coherent Read Discard",
55 [0x0b] = "Coherent Ready Share Always",
56 [0x0c] = "Coherent Upgrade",
57 [0x0d] = "Coherent Writeback",
60 [0x10] = "Coherent Copyback",
61 [0x11] = "Coherent Copyback Invalidate",
62 [0x12] = "Coherent Invalidate",
63 [0x13] = "Coherent Write Invalidate",
64 [0x14] = "Coherent Completion Sync",
78 /* CM3 Tag ECC command type */
79 static char *cm3_cmd
[16] = {
80 [0x0] = "Legacy Read",
81 [0x1] = "Legacy Write",
82 [0x2] = "Coherent Read Own",
83 [0x3] = "Coherent Read Share",
84 [0x4] = "Coherent Read Discard",
85 [0x5] = "Coherent Evicted",
86 [0x6] = "Coherent Upgrade",
87 [0x7] = "Coherent Upgrade for Store Conditional",
88 [0x8] = "Coherent Writeback",
89 [0x9] = "Coherent Write Invalidate",
98 /* CM3 Tag ECC command group */
99 static char *cm3_cmd_group
[8] = {
110 static char *cm2_core
[8] = {
111 "Invalid/OK", "Invalid/Data",
112 "Shared/OK", "Shared/Data",
113 "Modified/OK", "Modified/Data",
114 "Exclusive/OK", "Exclusive/Data"
117 static char *cm2_causes
[32] = {
118 "None", "GC_WR_ERR", "GC_RD_ERR", "COH_WR_ERR",
119 "COH_RD_ERR", "MMIO_WR_ERR", "MMIO_RD_ERR", "0x07",
120 "0x08", "0x09", "0x0a", "0x0b",
121 "0x0c", "0x0d", "0x0e", "0x0f",
122 "0x10", "0x11", "0x12", "0x13",
123 "0x14", "0x15", "0x16", "INTVN_WR_ERR",
124 "INTVN_RD_ERR", "0x19", "0x1a", "0x1b",
125 "0x1c", "0x1d", "0x1e", "0x1f"
128 static char *cm3_causes
[32] = {
129 "0x0", "MP_CORRECTABLE_ECC_ERR", "MP_REQUEST_DECODE_ERR",
130 "MP_UNCORRECTABLE_ECC_ERR", "MP_PARITY_ERR", "MP_COHERENCE_ERR",
131 "CMBIU_REQUEST_DECODE_ERR", "CMBIU_PARITY_ERR", "CMBIU_AXI_RESP_ERR",
132 "0x9", "RBI_BUS_ERR", "0xb", "0xc", "0xd", "0xe", "0xf", "0x10",
133 "0x11", "0x12", "0x13", "0x14", "0x15", "0x16", "0x17", "0x18",
134 "0x19", "0x1a", "0x1b", "0x1c", "0x1d", "0x1e", "0x1f"
137 static DEFINE_PER_CPU_ALIGNED(spinlock_t
, cm_core_lock
);
138 static DEFINE_PER_CPU_ALIGNED(unsigned long, cm_core_lock_flags
);
140 phys_addr_t
__mips_cm_phys_base(void)
142 u32 config3
= read_c0_config3();
145 /* Check the CMGCRBase register is implemented */
146 if (!(config3
& MIPS_CONF3_CMGCR
))
149 /* Read the address from CMGCRBase */
150 cmgcr
= read_c0_cmgcrbase();
151 return (cmgcr
& MIPS_CMGCRF_BASE
) << (36 - 32);
154 phys_addr_t
mips_cm_phys_base(void)
155 __attribute__((weak
, alias("__mips_cm_phys_base")));
157 phys_addr_t
__mips_cm_l2sync_phys_base(void)
162 * If the L2-only sync region is already enabled then leave it at it's
165 base_reg
= read_gcr_l2_only_sync_base();
166 if (base_reg
& CM_GCR_L2_ONLY_SYNC_BASE_SYNCEN
)
167 return base_reg
& CM_GCR_L2_ONLY_SYNC_BASE_SYNCBASE
;
169 /* Default to following the CM */
170 return mips_cm_phys_base() + MIPS_CM_GCR_SIZE
;
173 phys_addr_t
mips_cm_l2sync_phys_base(void)
174 __attribute__((weak
, alias("__mips_cm_l2sync_phys_base")));
176 static void mips_cm_probe_l2sync(void)
181 /* L2-only sync was introduced with CM major revision 6 */
182 major_rev
= (read_gcr_rev() & CM_GCR_REV_MAJOR
) >>
183 __ffs(CM_GCR_REV_MAJOR
);
187 /* Find a location for the L2 sync region */
188 addr
= mips_cm_l2sync_phys_base();
189 BUG_ON((addr
& CM_GCR_L2_ONLY_SYNC_BASE_SYNCBASE
) != addr
);
193 /* Set the region base address & enable it */
194 write_gcr_l2_only_sync_base(addr
| CM_GCR_L2_ONLY_SYNC_BASE_SYNCEN
);
197 mips_cm_l2sync_base
= ioremap(addr
, MIPS_CM_L2SYNC_SIZE
);
200 int mips_cm_probe(void)
207 * No need to probe again if we have already been
213 addr
= mips_cm_phys_base();
214 BUG_ON((addr
& CM_GCR_BASE_GCRBASE
) != addr
);
218 mips_gcr_base
= ioremap(addr
, MIPS_CM_GCR_SIZE
);
222 /* sanity check that we're looking at a CM */
223 base_reg
= read_gcr_base();
224 if ((base_reg
& CM_GCR_BASE_GCRBASE
) != addr
) {
225 pr_err("GCRs appear to have been moved (expected them at 0x%08lx)!\n",
226 (unsigned long)addr
);
227 mips_gcr_base
= NULL
;
231 /* set default target to memory */
232 change_gcr_base(CM_GCR_BASE_CMDEFTGT
, CM_GCR_BASE_CMDEFTGT_MEM
);
234 /* disable CM regions */
235 write_gcr_reg0_base(CM_GCR_REGn_BASE_BASEADDR
);
236 write_gcr_reg0_mask(CM_GCR_REGn_MASK_ADDRMASK
);
237 write_gcr_reg1_base(CM_GCR_REGn_BASE_BASEADDR
);
238 write_gcr_reg1_mask(CM_GCR_REGn_MASK_ADDRMASK
);
239 write_gcr_reg2_base(CM_GCR_REGn_BASE_BASEADDR
);
240 write_gcr_reg2_mask(CM_GCR_REGn_MASK_ADDRMASK
);
241 write_gcr_reg3_base(CM_GCR_REGn_BASE_BASEADDR
);
242 write_gcr_reg3_mask(CM_GCR_REGn_MASK_ADDRMASK
);
244 /* probe for an L2-only sync region */
245 mips_cm_probe_l2sync();
247 /* determine register width for this CM */
248 mips_cm_is64
= IS_ENABLED(CONFIG_64BIT
) && (mips_cm_revision() >= CM_REV_CM3
);
250 for_each_possible_cpu(cpu
)
251 spin_lock_init(&per_cpu(cm_core_lock
, cpu
));
256 void mips_cm_lock_other(unsigned int cluster
, unsigned int core
,
257 unsigned int vp
, unsigned int block
)
259 unsigned int curr_core
, cm_rev
;
262 cm_rev
= mips_cm_revision();
265 if (cm_rev
>= CM_REV_CM3
) {
266 val
= core
<< __ffs(CM3_GCR_Cx_OTHER_CORE
);
267 val
|= vp
<< __ffs(CM3_GCR_Cx_OTHER_VP
);
269 if (cm_rev
>= CM_REV_CM3_5
) {
270 val
|= CM_GCR_Cx_OTHER_CLUSTER_EN
;
271 val
|= cluster
<< __ffs(CM_GCR_Cx_OTHER_CLUSTER
);
272 val
|= block
<< __ffs(CM_GCR_Cx_OTHER_BLOCK
);
274 WARN_ON(cluster
!= 0);
275 WARN_ON(block
!= CM_GCR_Cx_OTHER_BLOCK_LOCAL
);
279 * We need to disable interrupts in SMP systems in order to
280 * ensure that we don't interrupt the caller with code which
281 * may modify the redirect register. We do so here in a
282 * slightly obscure way by using a spin lock, since this has
283 * the neat property of also catching any nested uses of
284 * mips_cm_lock_other() leading to a deadlock or a nice warning
285 * with lockdep enabled.
287 spin_lock_irqsave(this_cpu_ptr(&cm_core_lock
),
288 *this_cpu_ptr(&cm_core_lock_flags
));
290 WARN_ON(cluster
!= 0);
291 WARN_ON(block
!= CM_GCR_Cx_OTHER_BLOCK_LOCAL
);
294 * We only have a GCR_CL_OTHER per core in systems with
295 * CM 2.5 & older, so have to ensure other VP(E)s don't
298 curr_core
= cpu_core(¤t_cpu_data
);
299 spin_lock_irqsave(&per_cpu(cm_core_lock
, curr_core
),
300 per_cpu(cm_core_lock_flags
, curr_core
));
302 val
= core
<< __ffs(CM_GCR_Cx_OTHER_CORENUM
);
305 write_gcr_cl_other(val
);
308 * Ensure the core-other region reflects the appropriate core &
309 * VP before any accesses to it occur.
314 void mips_cm_unlock_other(void)
316 unsigned int curr_core
;
318 if (mips_cm_revision() < CM_REV_CM3
) {
319 curr_core
= cpu_core(¤t_cpu_data
);
320 spin_unlock_irqrestore(&per_cpu(cm_core_lock
, curr_core
),
321 per_cpu(cm_core_lock_flags
, curr_core
));
323 spin_unlock_irqrestore(this_cpu_ptr(&cm_core_lock
),
324 *this_cpu_ptr(&cm_core_lock_flags
));
330 void mips_cm_error_report(void)
332 u64 cm_error
, cm_addr
, cm_other
;
333 unsigned long revision
;
337 if (!mips_cm_present())
340 revision
= mips_cm_revision();
341 cm_error
= read_gcr_error_cause();
342 cm_addr
= read_gcr_error_addr();
343 cm_other
= read_gcr_error_mult();
345 if (revision
< CM_REV_CM3
) { /* CM2 */
346 cause
= cm_error
>> __ffs(CM_GCR_ERROR_CAUSE_ERRTYPE
);
347 ocause
= cm_other
>> __ffs(CM_GCR_ERROR_MULT_ERR2ND
);
353 unsigned long cca_bits
= (cm_error
>> 15) & 7;
354 unsigned long tr_bits
= (cm_error
>> 12) & 7;
355 unsigned long cmd_bits
= (cm_error
>> 7) & 0x1f;
356 unsigned long stag_bits
= (cm_error
>> 3) & 15;
357 unsigned long sport_bits
= (cm_error
>> 0) & 7;
359 snprintf(buf
, sizeof(buf
),
360 "CCA=%lu TR=%s MCmd=%s STag=%lu "
361 "SPort=%lu\n", cca_bits
, cm2_tr
[tr_bits
],
362 cm2_cmd
[cmd_bits
], stag_bits
, sport_bits
);
364 /* glob state & sresp together */
365 unsigned long c3_bits
= (cm_error
>> 18) & 7;
366 unsigned long c2_bits
= (cm_error
>> 15) & 7;
367 unsigned long c1_bits
= (cm_error
>> 12) & 7;
368 unsigned long c0_bits
= (cm_error
>> 9) & 7;
369 unsigned long sc_bit
= (cm_error
>> 8) & 1;
370 unsigned long cmd_bits
= (cm_error
>> 3) & 0x1f;
371 unsigned long sport_bits
= (cm_error
>> 0) & 7;
373 snprintf(buf
, sizeof(buf
),
374 "C3=%s C2=%s C1=%s C0=%s SC=%s "
375 "MCmd=%s SPort=%lu\n",
376 cm2_core
[c3_bits
], cm2_core
[c2_bits
],
377 cm2_core
[c1_bits
], cm2_core
[c0_bits
],
378 sc_bit
? "True" : "False",
379 cm2_cmd
[cmd_bits
], sport_bits
);
381 pr_err("CM_ERROR=%08llx %s <%s>\n", cm_error
,
382 cm2_causes
[cause
], buf
);
383 pr_err("CM_ADDR =%08llx\n", cm_addr
);
384 pr_err("CM_OTHER=%08llx %s\n", cm_other
, cm2_causes
[ocause
]);
386 ulong core_id_bits
, vp_id_bits
, cmd_bits
, cmd_group_bits
;
387 ulong cm3_cca_bits
, mcp_bits
, cm3_tr_bits
, sched_bit
;
389 cause
= cm_error
>> __ffs64(CM3_GCR_ERROR_CAUSE_ERRTYPE
);
390 ocause
= cm_other
>> __ffs(CM_GCR_ERROR_MULT_ERR2ND
);
395 /* Used by cause == {1,2,3} */
396 core_id_bits
= (cm_error
>> 22) & 0xf;
397 vp_id_bits
= (cm_error
>> 18) & 0xf;
398 cmd_bits
= (cm_error
>> 14) & 0xf;
399 cmd_group_bits
= (cm_error
>> 11) & 0xf;
400 cm3_cca_bits
= (cm_error
>> 8) & 7;
401 mcp_bits
= (cm_error
>> 5) & 0xf;
402 cm3_tr_bits
= (cm_error
>> 1) & 0xf;
403 sched_bit
= cm_error
& 0x1;
405 if (cause
== 1 || cause
== 3) { /* Tag ECC */
406 unsigned long tag_ecc
= (cm_error
>> 57) & 0x1;
407 unsigned long tag_way_bits
= (cm_error
>> 29) & 0xffff;
408 unsigned long dword_bits
= (cm_error
>> 49) & 0xff;
409 unsigned long data_way_bits
= (cm_error
>> 45) & 0xf;
410 unsigned long data_sets_bits
= (cm_error
>> 29) & 0xfff;
411 unsigned long bank_bit
= (cm_error
>> 28) & 0x1;
412 snprintf(buf
, sizeof(buf
),
413 "%s ECC Error: Way=%lu (DWORD=%lu, Sets=%lu)"
414 "Bank=%lu CoreID=%lu VPID=%lu Command=%s"
415 "Command Group=%s CCA=%lu MCP=%d"
416 "Transaction type=%s Scheduler=%lu\n",
417 tag_ecc
? "TAG" : "DATA",
418 tag_ecc
? (unsigned long)ffs(tag_way_bits
) - 1 :
419 data_way_bits
, bank_bit
, dword_bits
,
421 core_id_bits
, vp_id_bits
,
423 cm3_cmd_group
[cmd_group_bits
],
424 cm3_cca_bits
, 1 << mcp_bits
,
425 cm3_tr
[cm3_tr_bits
], sched_bit
);
426 } else if (cause
== 2) {
427 unsigned long data_error_type
= (cm_error
>> 41) & 0xfff;
428 unsigned long data_decode_cmd
= (cm_error
>> 37) & 0xf;
429 unsigned long data_decode_group
= (cm_error
>> 34) & 0x7;
430 unsigned long data_decode_destination_id
= (cm_error
>> 28) & 0x3f;
432 snprintf(buf
, sizeof(buf
),
433 "Decode Request Error: Type=%lu, Command=%lu"
434 "Command Group=%lu Destination ID=%lu"
435 "CoreID=%lu VPID=%lu Command=%s"
436 "Command Group=%s CCA=%lu MCP=%d"
437 "Transaction type=%s Scheduler=%lu\n",
438 data_error_type
, data_decode_cmd
,
439 data_decode_group
, data_decode_destination_id
,
440 core_id_bits
, vp_id_bits
,
442 cm3_cmd_group
[cmd_group_bits
],
443 cm3_cca_bits
, 1 << mcp_bits
,
444 cm3_tr
[cm3_tr_bits
], sched_bit
);
449 pr_err("CM_ERROR=%llx %s <%s>\n", cm_error
,
450 cm3_causes
[cause
], buf
);
451 pr_err("CM_ADDR =%llx\n", cm_addr
);
452 pr_err("CM_OTHER=%llx %s\n", cm_other
, cm3_causes
[ocause
]);
455 /* reprime cause register */
456 write_gcr_error_cause(cm_error
);