2 * This file is subject to the terms and conditions of the GNU General Public
3 * License. See the file "COPYING" in the main directory of this archive
6 * Copyright (C) 1994 - 1999, 2000, 01, 06 Ralf Baechle
7 * Copyright (C) 1995, 1996 Paul M. Antoine
8 * Copyright (C) 1998 Ulf Carlsson
9 * Copyright (C) 1999 Silicon Graphics, Inc.
10 * Kevin D. Kissell, kevink@mips.com and Carsten Langgaard, carstenl@mips.com
11 * Copyright (C) 2002, 2003, 2004, 2005, 2007 Maciej W. Rozycki
12 * Copyright (C) 2000, 2001, 2012 MIPS Technologies, Inc. All rights reserved.
13 * Copyright (C) 2014, Imagination Technologies Ltd.
15 #include <linux/bitops.h>
16 #include <linux/bug.h>
17 #include <linux/compiler.h>
18 #include <linux/context_tracking.h>
19 #include <linux/cpu_pm.h>
20 #include <linux/kexec.h>
21 #include <linux/init.h>
22 #include <linux/kernel.h>
23 #include <linux/module.h>
24 #include <linux/extable.h>
26 #include <linux/sched/mm.h>
27 #include <linux/sched/debug.h>
28 #include <linux/smp.h>
29 #include <linux/spinlock.h>
30 #include <linux/kallsyms.h>
31 #include <linux/memblock.h>
32 #include <linux/interrupt.h>
33 #include <linux/ptrace.h>
34 #include <linux/kgdb.h>
35 #include <linux/kdebug.h>
36 #include <linux/kprobes.h>
37 #include <linux/notifier.h>
38 #include <linux/kdb.h>
39 #include <linux/irq.h>
40 #include <linux/perf_event.h>
42 #include <asm/addrspace.h>
43 #include <asm/bootinfo.h>
44 #include <asm/branch.h>
45 #include <asm/break.h>
48 #include <asm/cpu-type.h>
51 #include <asm/fpu_emulator.h>
53 #include <asm/isa-rev.h>
54 #include <asm/mips-cps.h>
55 #include <asm/mips-r2-to-r6-emul.h>
56 #include <asm/mipsregs.h>
57 #include <asm/mipsmtregs.h>
58 #include <asm/module.h>
60 #include <asm/pgtable.h>
61 #include <asm/ptrace.h>
62 #include <asm/sections.h>
63 #include <asm/siginfo.h>
64 #include <asm/tlbdebug.h>
65 #include <asm/traps.h>
66 #include <linux/uaccess.h>
67 #include <asm/watch.h>
68 #include <asm/mmu_context.h>
69 #include <asm/types.h>
70 #include <asm/stacktrace.h>
71 #include <asm/tlbex.h>
74 extern void check_wait(void);
75 extern asmlinkage
void rollback_handle_int(void);
76 extern asmlinkage
void handle_int(void);
77 extern asmlinkage
void handle_adel(void);
78 extern asmlinkage
void handle_ades(void);
79 extern asmlinkage
void handle_ibe(void);
80 extern asmlinkage
void handle_dbe(void);
81 extern asmlinkage
void handle_sys(void);
82 extern asmlinkage
void handle_bp(void);
83 extern asmlinkage
void handle_ri(void);
84 extern asmlinkage
void handle_ri_rdhwr_tlbp(void);
85 extern asmlinkage
void handle_ri_rdhwr(void);
86 extern asmlinkage
void handle_cpu(void);
87 extern asmlinkage
void handle_ov(void);
88 extern asmlinkage
void handle_tr(void);
89 extern asmlinkage
void handle_msa_fpe(void);
90 extern asmlinkage
void handle_fpe(void);
91 extern asmlinkage
void handle_ftlb(void);
92 extern asmlinkage
void handle_msa(void);
93 extern asmlinkage
void handle_mdmx(void);
94 extern asmlinkage
void handle_watch(void);
95 extern asmlinkage
void handle_mt(void);
96 extern asmlinkage
void handle_dsp(void);
97 extern asmlinkage
void handle_mcheck(void);
98 extern asmlinkage
void handle_reserved(void);
99 extern void tlb_do_page_fault_0(void);
101 void (*board_be_init
)(void);
102 int (*board_be_handler
)(struct pt_regs
*regs
, int is_fixup
);
103 void (*board_nmi_handler_setup
)(void);
104 void (*board_ejtag_handler_setup
)(void);
105 void (*board_bind_eic_interrupt
)(int irq
, int regset
);
106 void (*board_ebase_setup
)(void);
107 void(*board_cache_error_setup
)(void);
109 static void show_raw_backtrace(unsigned long reg29
)
111 unsigned long *sp
= (unsigned long *)(reg29
& ~3);
114 printk("Call Trace:");
115 #ifdef CONFIG_KALLSYMS
118 while (!kstack_end(sp
)) {
119 unsigned long __user
*p
=
120 (unsigned long __user
*)(unsigned long)sp
++;
121 if (__get_user(addr
, p
)) {
122 printk(" (Bad stack address)");
125 if (__kernel_text_address(addr
))
131 #ifdef CONFIG_KALLSYMS
133 static int __init
set_raw_show_trace(char *str
)
138 __setup("raw_show_trace", set_raw_show_trace
);
141 static void show_backtrace(struct task_struct
*task
, const struct pt_regs
*regs
)
143 unsigned long sp
= regs
->regs
[29];
144 unsigned long ra
= regs
->regs
[31];
145 unsigned long pc
= regs
->cp0_epc
;
150 if (raw_show_trace
|| user_mode(regs
) || !__kernel_text_address(pc
)) {
151 show_raw_backtrace(sp
);
154 printk("Call Trace:\n");
157 pc
= unwind_stack(task
, &sp
, pc
, &ra
);
163 * This routine abuses get_user()/put_user() to reference pointers
164 * with at least a bit of error checking ...
166 static void show_stacktrace(struct task_struct
*task
,
167 const struct pt_regs
*regs
)
169 const int field
= 2 * sizeof(unsigned long);
172 unsigned long __user
*sp
= (unsigned long __user
*)regs
->regs
[29];
176 while ((unsigned long) sp
& (PAGE_SIZE
- 1)) {
177 if (i
&& ((i
% (64 / field
)) == 0)) {
186 if (__get_user(stackdata
, sp
++)) {
187 pr_cont(" (Bad stack address)");
191 pr_cont(" %0*lx", field
, stackdata
);
195 show_backtrace(task
, regs
);
198 void show_stack(struct task_struct
*task
, unsigned long *sp
)
201 mm_segment_t old_fs
= get_fs();
203 regs
.cp0_status
= KSU_KERNEL
;
205 regs
.regs
[29] = (unsigned long)sp
;
209 if (task
&& task
!= current
) {
210 regs
.regs
[29] = task
->thread
.reg29
;
212 regs
.cp0_epc
= task
->thread
.reg31
;
214 prepare_frametrace(®s
);
218 * show_stack() deals exclusively with kernel mode, so be sure to access
219 * the stack in the kernel (not user) address space.
222 show_stacktrace(task
, ®s
);
226 static void show_code(unsigned int __user
*pc
)
229 unsigned short __user
*pc16
= NULL
;
233 if ((unsigned long)pc
& 1)
234 pc16
= (unsigned short __user
*)((unsigned long)pc
& ~1);
235 for(i
= -3 ; i
< 6 ; i
++) {
237 if (pc16
? __get_user(insn
, pc16
+ i
) : __get_user(insn
, pc
+ i
)) {
238 pr_cont(" (Bad address in epc)\n");
241 pr_cont("%c%0*x%c", (i
?' ':'<'), pc16
? 4 : 8, insn
, (i
?' ':'>'));
246 static void __show_regs(const struct pt_regs
*regs
)
248 const int field
= 2 * sizeof(unsigned long);
249 unsigned int cause
= regs
->cp0_cause
;
250 unsigned int exccode
;
253 show_regs_print_info(KERN_DEFAULT
);
256 * Saved main processor registers
258 for (i
= 0; i
< 32; ) {
262 pr_cont(" %0*lx", field
, 0UL);
263 else if (i
== 26 || i
== 27)
264 pr_cont(" %*s", field
, "");
266 pr_cont(" %0*lx", field
, regs
->regs
[i
]);
273 #ifdef CONFIG_CPU_HAS_SMARTMIPS
274 printk("Acx : %0*lx\n", field
, regs
->acx
);
276 if (MIPS_ISA_REV
< 6) {
277 printk("Hi : %0*lx\n", field
, regs
->hi
);
278 printk("Lo : %0*lx\n", field
, regs
->lo
);
282 * Saved cp0 registers
284 printk("epc : %0*lx %pS\n", field
, regs
->cp0_epc
,
285 (void *) regs
->cp0_epc
);
286 printk("ra : %0*lx %pS\n", field
, regs
->regs
[31],
287 (void *) regs
->regs
[31]);
289 printk("Status: %08x ", (uint32_t) regs
->cp0_status
);
292 if (regs
->cp0_status
& ST0_KUO
)
294 if (regs
->cp0_status
& ST0_IEO
)
296 if (regs
->cp0_status
& ST0_KUP
)
298 if (regs
->cp0_status
& ST0_IEP
)
300 if (regs
->cp0_status
& ST0_KUC
)
302 if (regs
->cp0_status
& ST0_IEC
)
304 } else if (cpu_has_4kex
) {
305 if (regs
->cp0_status
& ST0_KX
)
307 if (regs
->cp0_status
& ST0_SX
)
309 if (regs
->cp0_status
& ST0_UX
)
311 switch (regs
->cp0_status
& ST0_KSU
) {
316 pr_cont("SUPERVISOR ");
322 pr_cont("BAD_MODE ");
325 if (regs
->cp0_status
& ST0_ERL
)
327 if (regs
->cp0_status
& ST0_EXL
)
329 if (regs
->cp0_status
& ST0_IE
)
334 exccode
= (cause
& CAUSEF_EXCCODE
) >> CAUSEB_EXCCODE
;
335 printk("Cause : %08x (ExcCode %02x)\n", cause
, exccode
);
337 if (1 <= exccode
&& exccode
<= 5)
338 printk("BadVA : %0*lx\n", field
, regs
->cp0_badvaddr
);
340 printk("PrId : %08x (%s)\n", read_c0_prid(),
345 * FIXME: really the generic show_regs should take a const pointer argument.
347 void show_regs(struct pt_regs
*regs
)
353 void show_registers(struct pt_regs
*regs
)
355 const int field
= 2 * sizeof(unsigned long);
356 mm_segment_t old_fs
= get_fs();
360 printk("Process %s (pid: %d, threadinfo=%p, task=%p, tls=%0*lx)\n",
361 current
->comm
, current
->pid
, current_thread_info(), current
,
362 field
, current_thread_info()->tp_value
);
363 if (cpu_has_userlocal
) {
366 tls
= read_c0_userlocal();
367 if (tls
!= current_thread_info()->tp_value
)
368 printk("*HwTLS: %0*lx\n", field
, tls
);
371 if (!user_mode(regs
))
372 /* Necessary for getting the correct stack content */
374 show_stacktrace(current
, regs
);
375 show_code((unsigned int __user
*) regs
->cp0_epc
);
380 static DEFINE_RAW_SPINLOCK(die_lock
);
382 void __noreturn
die(const char *str
, struct pt_regs
*regs
)
384 static int die_counter
;
389 if (notify_die(DIE_OOPS
, str
, regs
, 0, current
->thread
.trap_nr
,
390 SIGSEGV
) == NOTIFY_STOP
)
394 raw_spin_lock_irq(&die_lock
);
397 printk("%s[#%d]:\n", str
, ++die_counter
);
398 show_registers(regs
);
399 add_taint(TAINT_DIE
, LOCKDEP_NOW_UNRELIABLE
);
400 raw_spin_unlock_irq(&die_lock
);
405 panic("Fatal exception in interrupt");
408 panic("Fatal exception");
410 if (regs
&& kexec_should_crash(current
))
416 extern struct exception_table_entry __start___dbe_table
[];
417 extern struct exception_table_entry __stop___dbe_table
[];
420 " .section __dbe_table, \"a\"\n"
423 /* Given an address, look for it in the exception tables. */
424 static const struct exception_table_entry
*search_dbe_tables(unsigned long addr
)
426 const struct exception_table_entry
*e
;
428 e
= search_extable(__start___dbe_table
,
429 __stop___dbe_table
- __start___dbe_table
, addr
);
431 e
= search_module_dbetables(addr
);
435 asmlinkage
void do_be(struct pt_regs
*regs
)
437 const int field
= 2 * sizeof(unsigned long);
438 const struct exception_table_entry
*fixup
= NULL
;
439 int data
= regs
->cp0_cause
& 4;
440 int action
= MIPS_BE_FATAL
;
441 enum ctx_state prev_state
;
443 prev_state
= exception_enter();
444 /* XXX For now. Fixme, this searches the wrong table ... */
445 if (data
&& !user_mode(regs
))
446 fixup
= search_dbe_tables(exception_epc(regs
));
449 action
= MIPS_BE_FIXUP
;
451 if (board_be_handler
)
452 action
= board_be_handler(regs
, fixup
!= NULL
);
454 mips_cm_error_report();
457 case MIPS_BE_DISCARD
:
461 regs
->cp0_epc
= fixup
->nextinsn
;
470 * Assume it would be too dangerous to continue ...
472 printk(KERN_ALERT
"%s bus error, epc == %0*lx, ra == %0*lx\n",
473 data
? "Data" : "Instruction",
474 field
, regs
->cp0_epc
, field
, regs
->regs
[31]);
475 if (notify_die(DIE_OOPS
, "bus error", regs
, 0, current
->thread
.trap_nr
,
476 SIGBUS
) == NOTIFY_STOP
)
479 die_if_kernel("Oops", regs
);
483 exception_exit(prev_state
);
487 * ll/sc, rdhwr, sync emulation
490 #define OPCODE 0xfc000000
491 #define BASE 0x03e00000
492 #define RT 0x001f0000
493 #define OFFSET 0x0000ffff
494 #define LL 0xc0000000
495 #define SC 0xe0000000
496 #define SPEC0 0x00000000
497 #define SPEC3 0x7c000000
498 #define RD 0x0000f800
499 #define FUNC 0x0000003f
500 #define SYNC 0x0000000f
501 #define RDHWR 0x0000003b
503 /* microMIPS definitions */
504 #define MM_POOL32A_FUNC 0xfc00ffff
505 #define MM_RDHWR 0x00006b3c
506 #define MM_RS 0x001f0000
507 #define MM_RT 0x03e00000
510 * The ll_bit is cleared by r*_switch.S
514 struct task_struct
*ll_task
;
516 static inline int simulate_ll(struct pt_regs
*regs
, unsigned int opcode
)
518 unsigned long value
, __user
*vaddr
;
522 * analyse the ll instruction that just caused a ri exception
523 * and put the referenced address to addr.
526 /* sign extend offset */
527 offset
= opcode
& OFFSET
;
531 vaddr
= (unsigned long __user
*)
532 ((unsigned long)(regs
->regs
[(opcode
& BASE
) >> 21]) + offset
);
534 if ((unsigned long)vaddr
& 3)
536 if (get_user(value
, vaddr
))
541 if (ll_task
== NULL
|| ll_task
== current
) {
550 regs
->regs
[(opcode
& RT
) >> 16] = value
;
555 static inline int simulate_sc(struct pt_regs
*regs
, unsigned int opcode
)
557 unsigned long __user
*vaddr
;
562 * analyse the sc instruction that just caused a ri exception
563 * and put the referenced address to addr.
566 /* sign extend offset */
567 offset
= opcode
& OFFSET
;
571 vaddr
= (unsigned long __user
*)
572 ((unsigned long)(regs
->regs
[(opcode
& BASE
) >> 21]) + offset
);
573 reg
= (opcode
& RT
) >> 16;
575 if ((unsigned long)vaddr
& 3)
580 if (ll_bit
== 0 || ll_task
!= current
) {
588 if (put_user(regs
->regs
[reg
], vaddr
))
597 * ll uses the opcode of lwc0 and sc uses the opcode of swc0. That is both
598 * opcodes are supposed to result in coprocessor unusable exceptions if
599 * executed on ll/sc-less processors. That's the theory. In practice a
600 * few processors such as NEC's VR4100 throw reserved instruction exceptions
601 * instead, so we're doing the emulation thing in both exception handlers.
603 static int simulate_llsc(struct pt_regs
*regs
, unsigned int opcode
)
605 if ((opcode
& OPCODE
) == LL
) {
606 perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS
,
608 return simulate_ll(regs
, opcode
);
610 if ((opcode
& OPCODE
) == SC
) {
611 perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS
,
613 return simulate_sc(regs
, opcode
);
616 return -1; /* Must be something else ... */
620 * Simulate trapping 'rdhwr' instructions to provide user accessible
621 * registers not implemented in hardware.
623 static int simulate_rdhwr(struct pt_regs
*regs
, int rd
, int rt
)
625 struct thread_info
*ti
= task_thread_info(current
);
627 perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS
,
630 case MIPS_HWR_CPUNUM
: /* CPU number */
631 regs
->regs
[rt
] = smp_processor_id();
633 case MIPS_HWR_SYNCISTEP
: /* SYNCI length */
634 regs
->regs
[rt
] = min(current_cpu_data
.dcache
.linesz
,
635 current_cpu_data
.icache
.linesz
);
637 case MIPS_HWR_CC
: /* Read count register */
638 regs
->regs
[rt
] = read_c0_count();
640 case MIPS_HWR_CCRES
: /* Count register resolution */
641 switch (current_cpu_type()) {
650 case MIPS_HWR_ULR
: /* Read UserLocal register */
651 regs
->regs
[rt
] = ti
->tp_value
;
658 static int simulate_rdhwr_normal(struct pt_regs
*regs
, unsigned int opcode
)
660 if ((opcode
& OPCODE
) == SPEC3
&& (opcode
& FUNC
) == RDHWR
) {
661 int rd
= (opcode
& RD
) >> 11;
662 int rt
= (opcode
& RT
) >> 16;
664 simulate_rdhwr(regs
, rd
, rt
);
672 static int simulate_rdhwr_mm(struct pt_regs
*regs
, unsigned int opcode
)
674 if ((opcode
& MM_POOL32A_FUNC
) == MM_RDHWR
) {
675 int rd
= (opcode
& MM_RS
) >> 16;
676 int rt
= (opcode
& MM_RT
) >> 21;
677 simulate_rdhwr(regs
, rd
, rt
);
685 static int simulate_sync(struct pt_regs
*regs
, unsigned int opcode
)
687 if ((opcode
& OPCODE
) == SPEC0
&& (opcode
& FUNC
) == SYNC
) {
688 perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS
,
693 return -1; /* Must be something else ... */
696 asmlinkage
void do_ov(struct pt_regs
*regs
)
698 enum ctx_state prev_state
;
700 prev_state
= exception_enter();
701 die_if_kernel("Integer overflow", regs
);
703 force_sig_fault(SIGFPE
, FPE_INTOVF
, (void __user
*)regs
->cp0_epc
);
704 exception_exit(prev_state
);
707 #ifdef CONFIG_MIPS_FP_SUPPORT
710 * Send SIGFPE according to FCSR Cause bits, which must have already
711 * been masked against Enable bits. This is impotant as Inexact can
712 * happen together with Overflow or Underflow, and `ptrace' can set
715 void force_fcr31_sig(unsigned long fcr31
, void __user
*fault_addr
,
716 struct task_struct
*tsk
)
718 int si_code
= FPE_FLTUNK
;
720 if (fcr31
& FPU_CSR_INV_X
)
721 si_code
= FPE_FLTINV
;
722 else if (fcr31
& FPU_CSR_DIV_X
)
723 si_code
= FPE_FLTDIV
;
724 else if (fcr31
& FPU_CSR_OVF_X
)
725 si_code
= FPE_FLTOVF
;
726 else if (fcr31
& FPU_CSR_UDF_X
)
727 si_code
= FPE_FLTUND
;
728 else if (fcr31
& FPU_CSR_INE_X
)
729 si_code
= FPE_FLTRES
;
731 force_sig_fault_to_task(SIGFPE
, si_code
, fault_addr
, tsk
);
734 int process_fpemu_return(int sig
, void __user
*fault_addr
, unsigned long fcr31
)
737 struct vm_area_struct
*vma
;
744 force_fcr31_sig(fcr31
, fault_addr
, current
);
748 force_sig_fault(SIGBUS
, BUS_ADRERR
, fault_addr
);
752 down_read(¤t
->mm
->mmap_sem
);
753 vma
= find_vma(current
->mm
, (unsigned long)fault_addr
);
754 if (vma
&& (vma
->vm_start
<= (unsigned long)fault_addr
))
755 si_code
= SEGV_ACCERR
;
757 si_code
= SEGV_MAPERR
;
758 up_read(¤t
->mm
->mmap_sem
);
759 force_sig_fault(SIGSEGV
, si_code
, fault_addr
);
768 static int simulate_fp(struct pt_regs
*regs
, unsigned int opcode
,
769 unsigned long old_epc
, unsigned long old_ra
)
771 union mips_instruction inst
= { .word
= opcode
};
772 void __user
*fault_addr
;
776 /* If it's obviously not an FP instruction, skip it */
777 switch (inst
.i_format
.opcode
) {
791 * do_ri skipped over the instruction via compute_return_epc, undo
792 * that for the FPU emulator.
794 regs
->cp0_epc
= old_epc
;
795 regs
->regs
[31] = old_ra
;
797 /* Run the emulator */
798 sig
= fpu_emulator_cop1Handler(regs
, ¤t
->thread
.fpu
, 1,
802 * We can't allow the emulated instruction to leave any
803 * enabled Cause bits set in $fcr31.
805 fcr31
= mask_fcr31_x(current
->thread
.fpu
.fcr31
);
806 current
->thread
.fpu
.fcr31
&= ~fcr31
;
808 /* Restore the hardware register state */
811 /* Send a signal if required. */
812 process_fpemu_return(sig
, fault_addr
, fcr31
);
818 * XXX Delayed fp exceptions when doing a lazy ctx switch XXX
820 asmlinkage
void do_fpe(struct pt_regs
*regs
, unsigned long fcr31
)
822 enum ctx_state prev_state
;
823 void __user
*fault_addr
;
826 prev_state
= exception_enter();
827 if (notify_die(DIE_FP
, "FP exception", regs
, 0, current
->thread
.trap_nr
,
828 SIGFPE
) == NOTIFY_STOP
)
831 /* Clear FCSR.Cause before enabling interrupts */
832 write_32bit_cp1_register(CP1_STATUS
, fcr31
& ~mask_fcr31_x(fcr31
));
835 die_if_kernel("FP exception in kernel code", regs
);
837 if (fcr31
& FPU_CSR_UNI_X
) {
839 * Unimplemented operation exception. If we've got the full
840 * software emulator on-board, let's use it...
842 * Force FPU to dump state into task/thread context. We're
843 * moving a lot of data here for what is probably a single
844 * instruction, but the alternative is to pre-decode the FP
845 * register operands before invoking the emulator, which seems
846 * a bit extreme for what should be an infrequent event.
849 /* Run the emulator */
850 sig
= fpu_emulator_cop1Handler(regs
, ¤t
->thread
.fpu
, 1,
854 * We can't allow the emulated instruction to leave any
855 * enabled Cause bits set in $fcr31.
857 fcr31
= mask_fcr31_x(current
->thread
.fpu
.fcr31
);
858 current
->thread
.fpu
.fcr31
&= ~fcr31
;
860 /* Restore the hardware register state */
861 own_fpu(1); /* Using the FPU again. */
864 fault_addr
= (void __user
*) regs
->cp0_epc
;
867 /* Send a signal if required. */
868 process_fpemu_return(sig
, fault_addr
, fcr31
);
871 exception_exit(prev_state
);
875 * MIPS MT processors may have fewer FPU contexts than CPU threads. If we've
876 * emulated more than some threshold number of instructions, force migration to
877 * a "CPU" that has FP support.
879 static void mt_ase_fp_affinity(void)
881 #ifdef CONFIG_MIPS_MT_FPAFF
882 if (mt_fpemul_threshold
> 0 &&
883 ((current
->thread
.emulated_fp
++ > mt_fpemul_threshold
))) {
885 * If there's no FPU present, or if the application has already
886 * restricted the allowed set to exclude any CPUs with FPUs,
887 * we'll skip the procedure.
889 if (cpumask_intersects(¤t
->cpus_mask
, &mt_fpu_cpumask
)) {
892 current
->thread
.user_cpus_allowed
893 = current
->cpus_mask
;
894 cpumask_and(&tmask
, ¤t
->cpus_mask
,
896 set_cpus_allowed_ptr(current
, &tmask
);
897 set_thread_flag(TIF_FPUBOUND
);
900 #endif /* CONFIG_MIPS_MT_FPAFF */
903 #else /* !CONFIG_MIPS_FP_SUPPORT */
905 static int simulate_fp(struct pt_regs
*regs
, unsigned int opcode
,
906 unsigned long old_epc
, unsigned long old_ra
)
911 #endif /* !CONFIG_MIPS_FP_SUPPORT */
913 void do_trap_or_bp(struct pt_regs
*regs
, unsigned int code
, int si_code
,
918 #ifdef CONFIG_KGDB_LOW_LEVEL_TRAP
919 if (kgdb_ll_trap(DIE_TRAP
, str
, regs
, code
, current
->thread
.trap_nr
,
920 SIGTRAP
) == NOTIFY_STOP
)
922 #endif /* CONFIG_KGDB_LOW_LEVEL_TRAP */
924 if (notify_die(DIE_TRAP
, str
, regs
, code
, current
->thread
.trap_nr
,
925 SIGTRAP
) == NOTIFY_STOP
)
929 * A short test says that IRIX 5.3 sends SIGTRAP for all trap
930 * insns, even for trap and break codes that indicate arithmetic
931 * failures. Weird ...
932 * But should we continue the brokenness??? --macro
937 scnprintf(b
, sizeof(b
), "%s instruction in kernel code", str
);
938 die_if_kernel(b
, regs
);
939 force_sig_fault(SIGFPE
,
940 code
== BRK_DIVZERO
? FPE_INTDIV
: FPE_INTOVF
,
941 (void __user
*) regs
->cp0_epc
);
944 die_if_kernel("Kernel bug detected", regs
);
949 * This breakpoint code is used by the FPU emulator to retake
950 * control of the CPU after executing the instruction from the
951 * delay slot of an emulated branch.
953 * Terminate if exception was recognized as a delay slot return
954 * otherwise handle as normal.
956 if (do_dsemulret(regs
))
959 die_if_kernel("Math emu break/trap", regs
);
963 scnprintf(b
, sizeof(b
), "%s instruction in kernel code", str
);
964 die_if_kernel(b
, regs
);
966 force_sig_fault(SIGTRAP
, si_code
, NULL
);
973 asmlinkage
void do_bp(struct pt_regs
*regs
)
975 unsigned long epc
= msk_isa16_mode(exception_epc(regs
));
976 unsigned int opcode
, bcode
;
977 enum ctx_state prev_state
;
981 if (!user_mode(regs
))
984 prev_state
= exception_enter();
985 current
->thread
.trap_nr
= (regs
->cp0_cause
>> 2) & 0x1f;
986 if (get_isa16_mode(regs
->cp0_epc
)) {
989 if (__get_user(instr
[0], (u16 __user
*)epc
))
992 if (!cpu_has_mmips
) {
994 bcode
= (instr
[0] >> 5) & 0x3f;
995 } else if (mm_insn_16bit(instr
[0])) {
996 /* 16-bit microMIPS BREAK */
997 bcode
= instr
[0] & 0xf;
999 /* 32-bit microMIPS BREAK */
1000 if (__get_user(instr
[1], (u16 __user
*)(epc
+ 2)))
1002 opcode
= (instr
[0] << 16) | instr
[1];
1003 bcode
= (opcode
>> 6) & ((1 << 20) - 1);
1006 if (__get_user(opcode
, (unsigned int __user
*)epc
))
1008 bcode
= (opcode
>> 6) & ((1 << 20) - 1);
1012 * There is the ancient bug in the MIPS assemblers that the break
1013 * code starts left to bit 16 instead to bit 6 in the opcode.
1014 * Gas is bug-compatible, but not always, grrr...
1015 * We handle both cases with a simple heuristics. --macro
1017 if (bcode
>= (1 << 10))
1018 bcode
= ((bcode
& ((1 << 10) - 1)) << 10) | (bcode
>> 10);
1021 * notify the kprobe handlers, if instruction is likely to
1026 if (notify_die(DIE_UPROBE
, "uprobe", regs
, bcode
,
1027 current
->thread
.trap_nr
, SIGTRAP
) == NOTIFY_STOP
)
1031 case BRK_UPROBE_XOL
:
1032 if (notify_die(DIE_UPROBE_XOL
, "uprobe_xol", regs
, bcode
,
1033 current
->thread
.trap_nr
, SIGTRAP
) == NOTIFY_STOP
)
1038 if (notify_die(DIE_BREAK
, "debug", regs
, bcode
,
1039 current
->thread
.trap_nr
, SIGTRAP
) == NOTIFY_STOP
)
1043 case BRK_KPROBE_SSTEPBP
:
1044 if (notify_die(DIE_SSTEPBP
, "single_step", regs
, bcode
,
1045 current
->thread
.trap_nr
, SIGTRAP
) == NOTIFY_STOP
)
1053 do_trap_or_bp(regs
, bcode
, TRAP_BRKPT
, "Break");
1057 exception_exit(prev_state
);
1065 asmlinkage
void do_tr(struct pt_regs
*regs
)
1067 u32 opcode
, tcode
= 0;
1068 enum ctx_state prev_state
;
1071 unsigned long epc
= msk_isa16_mode(exception_epc(regs
));
1074 if (!user_mode(regs
))
1077 prev_state
= exception_enter();
1078 current
->thread
.trap_nr
= (regs
->cp0_cause
>> 2) & 0x1f;
1079 if (get_isa16_mode(regs
->cp0_epc
)) {
1080 if (__get_user(instr
[0], (u16 __user
*)(epc
+ 0)) ||
1081 __get_user(instr
[1], (u16 __user
*)(epc
+ 2)))
1083 opcode
= (instr
[0] << 16) | instr
[1];
1084 /* Immediate versions don't provide a code. */
1085 if (!(opcode
& OPCODE
))
1086 tcode
= (opcode
>> 12) & ((1 << 4) - 1);
1088 if (__get_user(opcode
, (u32 __user
*)epc
))
1090 /* Immediate versions don't provide a code. */
1091 if (!(opcode
& OPCODE
))
1092 tcode
= (opcode
>> 6) & ((1 << 10) - 1);
1095 do_trap_or_bp(regs
, tcode
, 0, "Trap");
1099 exception_exit(prev_state
);
1107 asmlinkage
void do_ri(struct pt_regs
*regs
)
1109 unsigned int __user
*epc
= (unsigned int __user
*)exception_epc(regs
);
1110 unsigned long old_epc
= regs
->cp0_epc
;
1111 unsigned long old31
= regs
->regs
[31];
1112 enum ctx_state prev_state
;
1113 unsigned int opcode
= 0;
1117 * Avoid any kernel code. Just emulate the R2 instruction
1118 * as quickly as possible.
1120 if (mipsr2_emulation
&& cpu_has_mips_r6
&&
1121 likely(user_mode(regs
)) &&
1122 likely(get_user(opcode
, epc
) >= 0)) {
1123 unsigned long fcr31
= 0;
1125 status
= mipsr2_decoder(regs
, opcode
, &fcr31
);
1133 process_fpemu_return(status
,
1134 ¤t
->thread
.cp0_baduaddr
,
1142 prev_state
= exception_enter();
1143 current
->thread
.trap_nr
= (regs
->cp0_cause
>> 2) & 0x1f;
1145 if (notify_die(DIE_RI
, "RI Fault", regs
, 0, current
->thread
.trap_nr
,
1146 SIGILL
) == NOTIFY_STOP
)
1149 die_if_kernel("Reserved instruction in kernel code", regs
);
1151 if (unlikely(compute_return_epc(regs
) < 0))
1154 if (!get_isa16_mode(regs
->cp0_epc
)) {
1155 if (unlikely(get_user(opcode
, epc
) < 0))
1158 if (!cpu_has_llsc
&& status
< 0)
1159 status
= simulate_llsc(regs
, opcode
);
1162 status
= simulate_rdhwr_normal(regs
, opcode
);
1165 status
= simulate_sync(regs
, opcode
);
1168 status
= simulate_fp(regs
, opcode
, old_epc
, old31
);
1169 } else if (cpu_has_mmips
) {
1170 unsigned short mmop
[2] = { 0 };
1172 if (unlikely(get_user(mmop
[0], (u16 __user
*)epc
+ 0) < 0))
1174 if (unlikely(get_user(mmop
[1], (u16 __user
*)epc
+ 1) < 0))
1177 opcode
= (opcode
<< 16) | mmop
[1];
1180 status
= simulate_rdhwr_mm(regs
, opcode
);
1186 if (unlikely(status
> 0)) {
1187 regs
->cp0_epc
= old_epc
; /* Undo skip-over. */
1188 regs
->regs
[31] = old31
;
1193 exception_exit(prev_state
);
1197 * No lock; only written during early bootup by CPU 0.
1199 static RAW_NOTIFIER_HEAD(cu2_chain
);
1201 int __ref
register_cu2_notifier(struct notifier_block
*nb
)
1203 return raw_notifier_chain_register(&cu2_chain
, nb
);
1206 int cu2_notifier_call_chain(unsigned long val
, void *v
)
1208 return raw_notifier_call_chain(&cu2_chain
, val
, v
);
1211 static int default_cu2_call(struct notifier_block
*nfb
, unsigned long action
,
1214 struct pt_regs
*regs
= data
;
1216 die_if_kernel("COP2: Unhandled kernel unaligned access or invalid "
1217 "instruction", regs
);
1223 #ifdef CONFIG_MIPS_FP_SUPPORT
1225 static int enable_restore_fp_context(int msa
)
1227 int err
, was_fpu_owner
, prior_msa
;
1230 /* Initialize context if it hasn't been used already */
1231 first_fp
= init_fp_ctx(current
);
1235 err
= own_fpu_inatomic(1);
1238 set_thread_flag(TIF_USEDMSA
);
1239 set_thread_flag(TIF_MSA_CTX_LIVE
);
1246 * This task has formerly used the FP context.
1248 * If this thread has no live MSA vector context then we can simply
1249 * restore the scalar FP context. If it has live MSA vector context
1250 * (that is, it has or may have used MSA since last performing a
1251 * function call) then we'll need to restore the vector context. This
1252 * applies even if we're currently only executing a scalar FP
1253 * instruction. This is because if we were to later execute an MSA
1254 * instruction then we'd either have to:
1256 * - Restore the vector context & clobber any registers modified by
1257 * scalar FP instructions between now & then.
1261 * - Not restore the vector context & lose the most significant bits
1262 * of all vector registers.
1264 * Neither of those options is acceptable. We cannot restore the least
1265 * significant bits of the registers now & only restore the most
1266 * significant bits later because the most significant bits of any
1267 * vector registers whose aliased FP register is modified now will have
1268 * been zeroed. We'd have no way to know that when restoring the vector
1269 * context & thus may load an outdated value for the most significant
1270 * bits of a vector register.
1272 if (!msa
&& !thread_msa_context_live())
1276 * This task is using or has previously used MSA. Thus we require
1277 * that Status.FR == 1.
1280 was_fpu_owner
= is_fpu_owner();
1281 err
= own_fpu_inatomic(0);
1286 write_msa_csr(current
->thread
.fpu
.msacsr
);
1287 set_thread_flag(TIF_USEDMSA
);
1290 * If this is the first time that the task is using MSA and it has
1291 * previously used scalar FP in this time slice then we already nave
1292 * FP context which we shouldn't clobber. We do however need to clear
1293 * the upper 64b of each vector register so that this task has no
1294 * opportunity to see data left behind by another.
1296 prior_msa
= test_and_set_thread_flag(TIF_MSA_CTX_LIVE
);
1297 if (!prior_msa
&& was_fpu_owner
) {
1305 * Restore the least significant 64b of each vector register
1306 * from the existing scalar FP context.
1308 _restore_fp(current
);
1311 * The task has not formerly used MSA, so clear the upper 64b
1312 * of each vector register such that it cannot see data left
1313 * behind by another task.
1317 /* We need to restore the vector context. */
1318 restore_msa(current
);
1320 /* Restore the scalar FP control & status register */
1322 write_32bit_cp1_register(CP1_STATUS
,
1323 current
->thread
.fpu
.fcr31
);
1332 #else /* !CONFIG_MIPS_FP_SUPPORT */
1334 static int enable_restore_fp_context(int msa
)
1339 #endif /* CONFIG_MIPS_FP_SUPPORT */
1341 asmlinkage
void do_cpu(struct pt_regs
*regs
)
1343 enum ctx_state prev_state
;
1344 unsigned int __user
*epc
;
1345 unsigned long old_epc
, old31
;
1346 unsigned int opcode
;
1350 prev_state
= exception_enter();
1351 cpid
= (regs
->cp0_cause
>> CAUSEB_CE
) & 3;
1354 die_if_kernel("do_cpu invoked from kernel context!", regs
);
1358 epc
= (unsigned int __user
*)exception_epc(regs
);
1359 old_epc
= regs
->cp0_epc
;
1360 old31
= regs
->regs
[31];
1364 if (unlikely(compute_return_epc(regs
) < 0))
1367 if (!get_isa16_mode(regs
->cp0_epc
)) {
1368 if (unlikely(get_user(opcode
, epc
) < 0))
1371 if (!cpu_has_llsc
&& status
< 0)
1372 status
= simulate_llsc(regs
, opcode
);
1378 if (unlikely(status
> 0)) {
1379 regs
->cp0_epc
= old_epc
; /* Undo skip-over. */
1380 regs
->regs
[31] = old31
;
1386 #ifdef CONFIG_MIPS_FP_SUPPORT
1389 * The COP3 opcode space and consequently the CP0.Status.CU3
1390 * bit and the CP0.Cause.CE=3 encoding have been removed as
1391 * of the MIPS III ISA. From the MIPS IV and MIPS32r2 ISAs
1392 * up the space has been reused for COP1X instructions, that
1393 * are enabled by the CP0.Status.CU1 bit and consequently
1394 * use the CP0.Cause.CE=1 encoding for Coprocessor Unusable
1395 * exceptions. Some FPU-less processors that implement one
1396 * of these ISAs however use this code erroneously for COP1X
1397 * instructions. Therefore we redirect this trap to the FP
1400 if (raw_cpu_has_fpu
|| !cpu_has_mips_4_5_64_r2_r6
) {
1407 void __user
*fault_addr
;
1408 unsigned long fcr31
;
1411 err
= enable_restore_fp_context(0);
1413 if (raw_cpu_has_fpu
&& !err
)
1416 sig
= fpu_emulator_cop1Handler(regs
, ¤t
->thread
.fpu
, 0,
1420 * We can't allow the emulated instruction to leave
1421 * any enabled Cause bits set in $fcr31.
1423 fcr31
= mask_fcr31_x(current
->thread
.fpu
.fcr31
);
1424 current
->thread
.fpu
.fcr31
&= ~fcr31
;
1426 /* Send a signal if required. */
1427 if (!process_fpemu_return(sig
, fault_addr
, fcr31
) && !err
)
1428 mt_ase_fp_affinity();
1432 #else /* CONFIG_MIPS_FP_SUPPORT */
1437 #endif /* CONFIG_MIPS_FP_SUPPORT */
1440 raw_notifier_call_chain(&cu2_chain
, CU2_EXCEPTION
, regs
);
1444 exception_exit(prev_state
);
1447 asmlinkage
void do_msa_fpe(struct pt_regs
*regs
, unsigned int msacsr
)
1449 enum ctx_state prev_state
;
1451 prev_state
= exception_enter();
1452 current
->thread
.trap_nr
= (regs
->cp0_cause
>> 2) & 0x1f;
1453 if (notify_die(DIE_MSAFP
, "MSA FP exception", regs
, 0,
1454 current
->thread
.trap_nr
, SIGFPE
) == NOTIFY_STOP
)
1457 /* Clear MSACSR.Cause before enabling interrupts */
1458 write_msa_csr(msacsr
& ~MSA_CSR_CAUSEF
);
1461 die_if_kernel("do_msa_fpe invoked from kernel context!", regs
);
1464 exception_exit(prev_state
);
1467 asmlinkage
void do_msa(struct pt_regs
*regs
)
1469 enum ctx_state prev_state
;
1472 prev_state
= exception_enter();
1474 if (!cpu_has_msa
|| test_thread_flag(TIF_32BIT_FPREGS
)) {
1479 die_if_kernel("do_msa invoked from kernel context!", regs
);
1481 err
= enable_restore_fp_context(1);
1485 exception_exit(prev_state
);
1488 asmlinkage
void do_mdmx(struct pt_regs
*regs
)
1490 enum ctx_state prev_state
;
1492 prev_state
= exception_enter();
1494 exception_exit(prev_state
);
1498 * Called with interrupts disabled.
1500 asmlinkage
void do_watch(struct pt_regs
*regs
)
1502 enum ctx_state prev_state
;
1504 prev_state
= exception_enter();
1506 * Clear WP (bit 22) bit of cause register so we don't loop
1509 clear_c0_cause(CAUSEF_WP
);
1512 * If the current thread has the watch registers loaded, save
1513 * their values and send SIGTRAP. Otherwise another thread
1514 * left the registers set, clear them and continue.
1516 if (test_tsk_thread_flag(current
, TIF_LOAD_WATCH
)) {
1517 mips_read_watch_registers();
1519 force_sig_fault(SIGTRAP
, TRAP_HWBKPT
, NULL
);
1521 mips_clear_watch_registers();
1524 exception_exit(prev_state
);
1527 asmlinkage
void do_mcheck(struct pt_regs
*regs
)
1529 int multi_match
= regs
->cp0_status
& ST0_TS
;
1530 enum ctx_state prev_state
;
1531 mm_segment_t old_fs
= get_fs();
1533 prev_state
= exception_enter();
1542 if (!user_mode(regs
))
1545 show_code((unsigned int __user
*) regs
->cp0_epc
);
1550 * Some chips may have other causes of machine check (e.g. SB1
1553 panic("Caught Machine Check exception - %scaused by multiple "
1554 "matching entries in the TLB.",
1555 (multi_match
) ? "" : "not ");
1558 asmlinkage
void do_mt(struct pt_regs
*regs
)
1562 subcode
= (read_vpe_c0_vpecontrol() & VPECONTROL_EXCPT
)
1563 >> VPECONTROL_EXCPT_SHIFT
;
1566 printk(KERN_DEBUG
"Thread Underflow\n");
1569 printk(KERN_DEBUG
"Thread Overflow\n");
1572 printk(KERN_DEBUG
"Invalid YIELD Qualifier\n");
1575 printk(KERN_DEBUG
"Gating Storage Exception\n");
1578 printk(KERN_DEBUG
"YIELD Scheduler Exception\n");
1581 printk(KERN_DEBUG
"Gating Storage Scheduler Exception\n");
1584 printk(KERN_DEBUG
"*** UNKNOWN THREAD EXCEPTION %d ***\n",
1588 die_if_kernel("MIPS MT Thread exception in kernel", regs
);
1594 asmlinkage
void do_dsp(struct pt_regs
*regs
)
1597 panic("Unexpected DSP exception");
1602 asmlinkage
void do_reserved(struct pt_regs
*regs
)
1605 * Game over - no way to handle this if it ever occurs. Most probably
1606 * caused by a new unknown cpu type or after another deadly
1607 * hard/software error.
1610 panic("Caught reserved exception %ld - should not happen.",
1611 (regs
->cp0_cause
& 0x7f) >> 2);
1614 static int __initdata l1parity
= 1;
1615 static int __init
nol1parity(char *s
)
1620 __setup("nol1par", nol1parity
);
1621 static int __initdata l2parity
= 1;
1622 static int __init
nol2parity(char *s
)
1627 __setup("nol2par", nol2parity
);
1630 * Some MIPS CPUs can enable/disable for cache parity detection, but do
1631 * it different ways.
1633 static inline void parity_protection_init(void)
1635 #define ERRCTL_PE 0x80000000
1636 #define ERRCTL_L2P 0x00800000
1638 if (mips_cm_revision() >= CM_REV_CM3
) {
1639 ulong gcr_ectl
, cp0_ectl
;
1642 * With CM3 systems we need to ensure that the L1 & L2
1643 * parity enables are set to the same value, since this
1644 * is presumed by the hardware engineers.
1646 * If the user disabled either of L1 or L2 ECC checking,
1649 l1parity
&= l2parity
;
1650 l2parity
&= l1parity
;
1652 /* Probe L1 ECC support */
1653 cp0_ectl
= read_c0_ecc();
1654 write_c0_ecc(cp0_ectl
| ERRCTL_PE
);
1655 back_to_back_c0_hazard();
1656 cp0_ectl
= read_c0_ecc();
1658 /* Probe L2 ECC support */
1659 gcr_ectl
= read_gcr_err_control();
1661 if (!(gcr_ectl
& CM_GCR_ERR_CONTROL_L2_ECC_SUPPORT
) ||
1662 !(cp0_ectl
& ERRCTL_PE
)) {
1664 * One of L1 or L2 ECC checking isn't supported,
1665 * so we cannot enable either.
1667 l1parity
= l2parity
= 0;
1670 /* Configure L1 ECC checking */
1672 cp0_ectl
|= ERRCTL_PE
;
1674 cp0_ectl
&= ~ERRCTL_PE
;
1675 write_c0_ecc(cp0_ectl
);
1676 back_to_back_c0_hazard();
1677 WARN_ON(!!(read_c0_ecc() & ERRCTL_PE
) != l1parity
);
1679 /* Configure L2 ECC checking */
1681 gcr_ectl
|= CM_GCR_ERR_CONTROL_L2_ECC_EN
;
1683 gcr_ectl
&= ~CM_GCR_ERR_CONTROL_L2_ECC_EN
;
1684 write_gcr_err_control(gcr_ectl
);
1685 gcr_ectl
= read_gcr_err_control();
1686 gcr_ectl
&= CM_GCR_ERR_CONTROL_L2_ECC_EN
;
1687 WARN_ON(!!gcr_ectl
!= l2parity
);
1689 pr_info("Cache parity protection %sabled\n",
1690 l1parity
? "en" : "dis");
1694 switch (current_cpu_type()) {
1700 case CPU_INTERAPTIV
:
1703 case CPU_QEMU_GENERIC
:
1706 unsigned long errctl
;
1707 unsigned int l1parity_present
, l2parity_present
;
1709 errctl
= read_c0_ecc();
1710 errctl
&= ~(ERRCTL_PE
|ERRCTL_L2P
);
1712 /* probe L1 parity support */
1713 write_c0_ecc(errctl
| ERRCTL_PE
);
1714 back_to_back_c0_hazard();
1715 l1parity_present
= (read_c0_ecc() & ERRCTL_PE
);
1717 /* probe L2 parity support */
1718 write_c0_ecc(errctl
|ERRCTL_L2P
);
1719 back_to_back_c0_hazard();
1720 l2parity_present
= (read_c0_ecc() & ERRCTL_L2P
);
1722 if (l1parity_present
&& l2parity_present
) {
1724 errctl
|= ERRCTL_PE
;
1725 if (l1parity
^ l2parity
)
1726 errctl
|= ERRCTL_L2P
;
1727 } else if (l1parity_present
) {
1729 errctl
|= ERRCTL_PE
;
1730 } else if (l2parity_present
) {
1732 errctl
|= ERRCTL_L2P
;
1734 /* No parity available */
1737 printk(KERN_INFO
"Writing ErrCtl register=%08lx\n", errctl
);
1739 write_c0_ecc(errctl
);
1740 back_to_back_c0_hazard();
1741 errctl
= read_c0_ecc();
1742 printk(KERN_INFO
"Readback ErrCtl register=%08lx\n", errctl
);
1744 if (l1parity_present
)
1745 printk(KERN_INFO
"Cache parity protection %sabled\n",
1746 (errctl
& ERRCTL_PE
) ? "en" : "dis");
1748 if (l2parity_present
) {
1749 if (l1parity_present
&& l1parity
)
1750 errctl
^= ERRCTL_L2P
;
1751 printk(KERN_INFO
"L2 cache parity protection %sabled\n",
1752 (errctl
& ERRCTL_L2P
) ? "en" : "dis");
1759 case CPU_LOONGSON32
:
1760 write_c0_ecc(0x80000000);
1761 back_to_back_c0_hazard();
1762 /* Set the PE bit (bit 31) in the c0_errctl register. */
1763 printk(KERN_INFO
"Cache parity protection %sabled\n",
1764 (read_c0_ecc() & 0x80000000) ? "en" : "dis");
1768 /* Clear the DE bit (bit 16) in the c0_status register. */
1769 printk(KERN_INFO
"Enable cache parity protection for "
1770 "MIPS 20KC/25KF CPUs.\n");
1771 clear_c0_status(ST0_DE
);
1778 asmlinkage
void cache_parity_error(void)
1780 const int field
= 2 * sizeof(unsigned long);
1781 unsigned int reg_val
;
1783 /* For the moment, report the problem and hang. */
1784 printk("Cache error exception:\n");
1785 printk("cp0_errorepc == %0*lx\n", field
, read_c0_errorepc());
1786 reg_val
= read_c0_cacheerr();
1787 printk("c0_cacheerr == %08x\n", reg_val
);
1789 printk("Decoded c0_cacheerr: %s cache fault in %s reference.\n",
1790 reg_val
& (1<<30) ? "secondary" : "primary",
1791 reg_val
& (1<<31) ? "data" : "insn");
1792 if ((cpu_has_mips_r2_r6
) &&
1793 ((current_cpu_data
.processor_id
& 0xff0000) == PRID_COMP_MIPS
)) {
1794 pr_err("Error bits: %s%s%s%s%s%s%s%s\n",
1795 reg_val
& (1<<29) ? "ED " : "",
1796 reg_val
& (1<<28) ? "ET " : "",
1797 reg_val
& (1<<27) ? "ES " : "",
1798 reg_val
& (1<<26) ? "EE " : "",
1799 reg_val
& (1<<25) ? "EB " : "",
1800 reg_val
& (1<<24) ? "EI " : "",
1801 reg_val
& (1<<23) ? "E1 " : "",
1802 reg_val
& (1<<22) ? "E0 " : "");
1804 pr_err("Error bits: %s%s%s%s%s%s%s\n",
1805 reg_val
& (1<<29) ? "ED " : "",
1806 reg_val
& (1<<28) ? "ET " : "",
1807 reg_val
& (1<<26) ? "EE " : "",
1808 reg_val
& (1<<25) ? "EB " : "",
1809 reg_val
& (1<<24) ? "EI " : "",
1810 reg_val
& (1<<23) ? "E1 " : "",
1811 reg_val
& (1<<22) ? "E0 " : "");
1813 printk("IDX: 0x%08x\n", reg_val
& ((1<<22)-1));
1815 #if defined(CONFIG_CPU_MIPS32) || defined(CONFIG_CPU_MIPS64)
1816 if (reg_val
& (1<<22))
1817 printk("DErrAddr0: 0x%0*lx\n", field
, read_c0_derraddr0());
1819 if (reg_val
& (1<<23))
1820 printk("DErrAddr1: 0x%0*lx\n", field
, read_c0_derraddr1());
1823 panic("Can't handle the cache error!");
1826 asmlinkage
void do_ftlb(void)
1828 const int field
= 2 * sizeof(unsigned long);
1829 unsigned int reg_val
;
1831 /* For the moment, report the problem and hang. */
1832 if ((cpu_has_mips_r2_r6
) &&
1833 (((current_cpu_data
.processor_id
& 0xff0000) == PRID_COMP_MIPS
) ||
1834 ((current_cpu_data
.processor_id
& 0xff0000) == PRID_COMP_LOONGSON
))) {
1835 pr_err("FTLB error exception, cp0_ecc=0x%08x:\n",
1837 pr_err("cp0_errorepc == %0*lx\n", field
, read_c0_errorepc());
1838 reg_val
= read_c0_cacheerr();
1839 pr_err("c0_cacheerr == %08x\n", reg_val
);
1841 if ((reg_val
& 0xc0000000) == 0xc0000000) {
1842 pr_err("Decoded c0_cacheerr: FTLB parity error\n");
1844 pr_err("Decoded c0_cacheerr: %s cache fault in %s reference.\n",
1845 reg_val
& (1<<30) ? "secondary" : "primary",
1846 reg_val
& (1<<31) ? "data" : "insn");
1849 pr_err("FTLB error exception\n");
1851 /* Just print the cacheerr bits for now */
1852 cache_parity_error();
1856 * SDBBP EJTAG debug exception handler.
1857 * We skip the instruction and return to the next instruction.
1859 void ejtag_exception_handler(struct pt_regs
*regs
)
1861 const int field
= 2 * sizeof(unsigned long);
1862 unsigned long depc
, old_epc
, old_ra
;
1865 printk(KERN_DEBUG
"SDBBP EJTAG debug exception - not handled yet, just ignored!\n");
1866 depc
= read_c0_depc();
1867 debug
= read_c0_debug();
1868 printk(KERN_DEBUG
"c0_depc = %0*lx, DEBUG = %08x\n", field
, depc
, debug
);
1869 if (debug
& 0x80000000) {
1871 * In branch delay slot.
1872 * We cheat a little bit here and use EPC to calculate the
1873 * debug return address (DEPC). EPC is restored after the
1876 old_epc
= regs
->cp0_epc
;
1877 old_ra
= regs
->regs
[31];
1878 regs
->cp0_epc
= depc
;
1879 compute_return_epc(regs
);
1880 depc
= regs
->cp0_epc
;
1881 regs
->cp0_epc
= old_epc
;
1882 regs
->regs
[31] = old_ra
;
1885 write_c0_depc(depc
);
1888 printk(KERN_DEBUG
"\n\n----- Enable EJTAG single stepping ----\n\n");
1889 write_c0_debug(debug
| 0x100);
1894 * NMI exception handler.
1895 * No lock; only written during early bootup by CPU 0.
1897 static RAW_NOTIFIER_HEAD(nmi_chain
);
1899 int register_nmi_notifier(struct notifier_block
*nb
)
1901 return raw_notifier_chain_register(&nmi_chain
, nb
);
1904 void __noreturn
nmi_exception_handler(struct pt_regs
*regs
)
1909 raw_notifier_call_chain(&nmi_chain
, 0, regs
);
1911 snprintf(str
, 100, "CPU%d NMI taken, CP0_EPC=%lx\n",
1912 smp_processor_id(), regs
->cp0_epc
);
1913 regs
->cp0_epc
= read_c0_errorepc();
1918 #define VECTORSPACING 0x100 /* for EI/VI mode */
1920 unsigned long ebase
;
1921 EXPORT_SYMBOL_GPL(ebase
);
1922 unsigned long exception_handlers
[32];
1923 unsigned long vi_handlers
[64];
1925 void __init
*set_except_vector(int n
, void *addr
)
1927 unsigned long handler
= (unsigned long) addr
;
1928 unsigned long old_handler
;
1930 #ifdef CONFIG_CPU_MICROMIPS
1932 * Only the TLB handlers are cache aligned with an even
1933 * address. All other handlers are on an odd address and
1934 * require no modification. Otherwise, MIPS32 mode will
1935 * be entered when handling any TLB exceptions. That
1936 * would be bad...since we must stay in microMIPS mode.
1938 if (!(handler
& 0x1))
1941 old_handler
= xchg(&exception_handlers
[n
], handler
);
1943 if (n
== 0 && cpu_has_divec
) {
1944 #ifdef CONFIG_CPU_MICROMIPS
1945 unsigned long jump_mask
= ~((1 << 27) - 1);
1947 unsigned long jump_mask
= ~((1 << 28) - 1);
1949 u32
*buf
= (u32
*)(ebase
+ 0x200);
1950 unsigned int k0
= 26;
1951 if ((handler
& jump_mask
) == ((ebase
+ 0x200) & jump_mask
)) {
1952 uasm_i_j(&buf
, handler
& ~jump_mask
);
1955 UASM_i_LA(&buf
, k0
, handler
);
1956 uasm_i_jr(&buf
, k0
);
1959 local_flush_icache_range(ebase
+ 0x200, (unsigned long)buf
);
1961 return (void *)old_handler
;
1964 static void do_default_vi(void)
1966 show_regs(get_irq_regs());
1967 panic("Caught unexpected vectored interrupt.");
1970 static void *set_vi_srs_handler(int n
, vi_handler_t addr
, int srs
)
1972 unsigned long handler
;
1973 unsigned long old_handler
= vi_handlers
[n
];
1974 int srssets
= current_cpu_data
.srsets
;
1978 BUG_ON(!cpu_has_veic
&& !cpu_has_vint
);
1981 handler
= (unsigned long) do_default_vi
;
1984 handler
= (unsigned long) addr
;
1985 vi_handlers
[n
] = handler
;
1987 b
= (unsigned char *)(ebase
+ 0x200 + n
*VECTORSPACING
);
1990 panic("Shadow register set %d not supported", srs
);
1993 if (board_bind_eic_interrupt
)
1994 board_bind_eic_interrupt(n
, srs
);
1995 } else if (cpu_has_vint
) {
1996 /* SRSMap is only defined if shadow sets are implemented */
1998 change_c0_srsmap(0xf << n
*4, srs
<< n
*4);
2003 * If no shadow set is selected then use the default handler
2004 * that does normal register saving and standard interrupt exit
2006 extern char except_vec_vi
, except_vec_vi_lui
;
2007 extern char except_vec_vi_ori
, except_vec_vi_end
;
2008 extern char rollback_except_vec_vi
;
2009 char *vec_start
= using_rollback_handler() ?
2010 &rollback_except_vec_vi
: &except_vec_vi
;
2011 #if defined(CONFIG_CPU_MICROMIPS) || defined(CONFIG_CPU_BIG_ENDIAN)
2012 const int lui_offset
= &except_vec_vi_lui
- vec_start
+ 2;
2013 const int ori_offset
= &except_vec_vi_ori
- vec_start
+ 2;
2015 const int lui_offset
= &except_vec_vi_lui
- vec_start
;
2016 const int ori_offset
= &except_vec_vi_ori
- vec_start
;
2018 const int handler_len
= &except_vec_vi_end
- vec_start
;
2020 if (handler_len
> VECTORSPACING
) {
2022 * Sigh... panicing won't help as the console
2023 * is probably not configured :(
2025 panic("VECTORSPACING too small");
2028 set_handler(((unsigned long)b
- ebase
), vec_start
,
2029 #ifdef CONFIG_CPU_MICROMIPS
2034 h
= (u16
*)(b
+ lui_offset
);
2035 *h
= (handler
>> 16) & 0xffff;
2036 h
= (u16
*)(b
+ ori_offset
);
2037 *h
= (handler
& 0xffff);
2038 local_flush_icache_range((unsigned long)b
,
2039 (unsigned long)(b
+handler_len
));
2043 * In other cases jump directly to the interrupt handler. It
2044 * is the handler's responsibility to save registers if required
2045 * (eg hi/lo) and return from the exception using "eret".
2051 #ifdef CONFIG_CPU_MICROMIPS
2052 insn
= 0xd4000000 | (((u32
)handler
& 0x07ffffff) >> 1);
2054 insn
= 0x08000000 | (((u32
)handler
& 0x0fffffff) >> 2);
2056 h
[0] = (insn
>> 16) & 0xffff;
2057 h
[1] = insn
& 0xffff;
2060 local_flush_icache_range((unsigned long)b
,
2061 (unsigned long)(b
+8));
2064 return (void *)old_handler
;
2067 void *set_vi_handler(int n
, vi_handler_t addr
)
2069 return set_vi_srs_handler(n
, addr
, 0);
2072 extern void tlb_init(void);
2077 int cp0_compare_irq
;
2078 EXPORT_SYMBOL_GPL(cp0_compare_irq
);
2079 int cp0_compare_irq_shift
;
2082 * Performance counter IRQ or -1 if shared with timer
2084 int cp0_perfcount_irq
;
2085 EXPORT_SYMBOL_GPL(cp0_perfcount_irq
);
2088 * Fast debug channel IRQ or -1 if not present
2091 EXPORT_SYMBOL_GPL(cp0_fdc_irq
);
2095 static int __init
ulri_disable(char *s
)
2097 pr_info("Disabling ulri\n");
2102 __setup("noulri", ulri_disable
);
2104 /* configure STATUS register */
2105 static void configure_status(void)
2108 * Disable coprocessors and select 32-bit or 64-bit addressing
2109 * and the 16/32 or 32/32 FPR register model. Reset the BEV
2110 * flag that some firmware may have left set and the TS bit (for
2111 * IP27). Set XX for ISA IV code to work.
2113 unsigned int status_set
= ST0_CU0
;
2115 status_set
|= ST0_FR
|ST0_KX
|ST0_SX
|ST0_UX
;
2117 if (current_cpu_data
.isa_level
& MIPS_CPU_ISA_IV
)
2118 status_set
|= ST0_XX
;
2120 status_set
|= ST0_MX
;
2122 change_c0_status(ST0_CU
|ST0_MX
|ST0_RE
|ST0_FR
|ST0_BEV
|ST0_TS
|ST0_KX
|ST0_SX
|ST0_UX
,
2126 unsigned int hwrena
;
2127 EXPORT_SYMBOL_GPL(hwrena
);
2129 /* configure HWRENA register */
2130 static void configure_hwrena(void)
2132 hwrena
= cpu_hwrena_impl_bits
;
2134 if (cpu_has_mips_r2_r6
)
2135 hwrena
|= MIPS_HWRENA_CPUNUM
|
2136 MIPS_HWRENA_SYNCISTEP
|
2140 if (!noulri
&& cpu_has_userlocal
)
2141 hwrena
|= MIPS_HWRENA_ULR
;
2144 write_c0_hwrena(hwrena
);
2147 static void configure_exception_vector(void)
2149 if (cpu_has_mips_r2_r6
) {
2150 unsigned long sr
= set_c0_status(ST0_BEV
);
2151 /* If available, use WG to set top bits of EBASE */
2152 if (cpu_has_ebase_wg
) {
2154 write_c0_ebase_64(ebase
| MIPS_EBASE_WG
);
2156 write_c0_ebase(ebase
| MIPS_EBASE_WG
);
2159 write_c0_ebase(ebase
);
2160 write_c0_status(sr
);
2162 if (cpu_has_veic
|| cpu_has_vint
) {
2163 /* Setting vector spacing enables EI/VI mode */
2164 change_c0_intctl(0x3e0, VECTORSPACING
);
2166 if (cpu_has_divec
) {
2167 if (cpu_has_mipsmt
) {
2168 unsigned int vpflags
= dvpe();
2169 set_c0_cause(CAUSEF_IV
);
2172 set_c0_cause(CAUSEF_IV
);
2176 void per_cpu_trap_init(bool is_boot_cpu
)
2178 unsigned int cpu
= smp_processor_id();
2183 configure_exception_vector();
2186 * Before R2 both interrupt numbers were fixed to 7, so on R2 only:
2188 * o read IntCtl.IPTI to determine the timer interrupt
2189 * o read IntCtl.IPPCI to determine the performance counter interrupt
2190 * o read IntCtl.IPFDC to determine the fast debug channel interrupt
2192 if (cpu_has_mips_r2_r6
) {
2193 cp0_compare_irq_shift
= CAUSEB_TI
- CAUSEB_IP
;
2194 cp0_compare_irq
= (read_c0_intctl() >> INTCTLB_IPTI
) & 7;
2195 cp0_perfcount_irq
= (read_c0_intctl() >> INTCTLB_IPPCI
) & 7;
2196 cp0_fdc_irq
= (read_c0_intctl() >> INTCTLB_IPFDC
) & 7;
2201 cp0_compare_irq
= CP0_LEGACY_COMPARE_IRQ
;
2202 cp0_compare_irq_shift
= CP0_LEGACY_PERFCNT_IRQ
;
2203 cp0_perfcount_irq
= -1;
2208 cpu_data
[cpu
].asid_cache
= 0;
2209 else if (!cpu_data
[cpu
].asid_cache
)
2210 cpu_data
[cpu
].asid_cache
= asid_first_version(cpu
);
2213 current
->active_mm
= &init_mm
;
2214 BUG_ON(current
->mm
);
2215 enter_lazy_tlb(&init_mm
, current
);
2217 /* Boot CPU's cache setup in setup_arch(). */
2221 TLBMISS_HANDLER_SETUP();
2224 /* Install CPU exception handler */
2225 void set_handler(unsigned long offset
, void *addr
, unsigned long size
)
2227 #ifdef CONFIG_CPU_MICROMIPS
2228 memcpy((void *)(ebase
+ offset
), ((unsigned char *)addr
- 1), size
);
2230 memcpy((void *)(ebase
+ offset
), addr
, size
);
2232 local_flush_icache_range(ebase
+ offset
, ebase
+ offset
+ size
);
2235 static const char panic_null_cerr
[] =
2236 "Trying to set NULL cache error exception handler\n";
2239 * Install uncached CPU exception handler.
2240 * This is suitable only for the cache error exception which is the only
2241 * exception handler that is being run uncached.
2243 void set_uncached_handler(unsigned long offset
, void *addr
,
2246 unsigned long uncached_ebase
= CKSEG1ADDR(ebase
);
2249 panic(panic_null_cerr
);
2251 memcpy((void *)(uncached_ebase
+ offset
), addr
, size
);
2254 static int __initdata rdhwr_noopt
;
2255 static int __init
set_rdhwr_noopt(char *str
)
2261 __setup("rdhwr_noopt", set_rdhwr_noopt
);
2263 void __init
trap_init(void)
2265 extern char except_vec3_generic
;
2266 extern char except_vec4
;
2267 extern char except_vec3_r4000
;
2268 unsigned long i
, vec_size
;
2269 phys_addr_t ebase_pa
;
2273 if (!cpu_has_mips_r2_r6
) {
2275 ebase_pa
= virt_to_phys((void *)ebase
);
2278 memblock_reserve(ebase_pa
, vec_size
);
2280 if (cpu_has_veic
|| cpu_has_vint
)
2281 vec_size
= 0x200 + VECTORSPACING
*64;
2283 vec_size
= PAGE_SIZE
;
2285 ebase_pa
= memblock_phys_alloc(vec_size
, 1 << fls(vec_size
));
2287 panic("%s: Failed to allocate %lu bytes align=0x%x\n",
2288 __func__
, vec_size
, 1 << fls(vec_size
));
2291 * Try to ensure ebase resides in KSeg0 if possible.
2293 * It shouldn't generally be in XKPhys on MIPS64 to avoid
2294 * hitting a poorly defined exception base for Cache Errors.
2295 * The allocation is likely to be in the low 512MB of physical,
2296 * in which case we should be able to convert to KSeg0.
2298 * EVA is special though as it allows segments to be rearranged
2299 * and to become uncached during cache error handling.
2301 if (!IS_ENABLED(CONFIG_EVA
) && !WARN_ON(ebase_pa
>= 0x20000000))
2302 ebase
= CKSEG0ADDR(ebase_pa
);
2304 ebase
= (unsigned long)phys_to_virt(ebase_pa
);
2307 if (cpu_has_mmips
) {
2308 unsigned int config3
= read_c0_config3();
2310 if (IS_ENABLED(CONFIG_CPU_MICROMIPS
))
2311 write_c0_config3(config3
| MIPS_CONF3_ISA_OE
);
2313 write_c0_config3(config3
& ~MIPS_CONF3_ISA_OE
);
2316 if (board_ebase_setup
)
2317 board_ebase_setup();
2318 per_cpu_trap_init(true);
2319 memblock_set_bottom_up(false);
2322 * Copy the generic exception handlers to their final destination.
2323 * This will be overridden later as suitable for a particular
2326 set_handler(0x180, &except_vec3_generic
, 0x80);
2329 * Setup default vectors
2331 for (i
= 0; i
<= 31; i
++)
2332 set_except_vector(i
, handle_reserved
);
2335 * Copy the EJTAG debug exception vector handler code to it's final
2338 if (cpu_has_ejtag
&& board_ejtag_handler_setup
)
2339 board_ejtag_handler_setup();
2342 * Only some CPUs have the watch exceptions.
2345 set_except_vector(EXCCODE_WATCH
, handle_watch
);
2348 * Initialise interrupt handlers
2350 if (cpu_has_veic
|| cpu_has_vint
) {
2351 int nvec
= cpu_has_veic
? 64 : 8;
2352 for (i
= 0; i
< nvec
; i
++)
2353 set_vi_handler(i
, NULL
);
2355 else if (cpu_has_divec
)
2356 set_handler(0x200, &except_vec4
, 0x8);
2359 * Some CPUs can enable/disable for cache parity detection, but does
2360 * it different ways.
2362 parity_protection_init();
2365 * The Data Bus Errors / Instruction Bus Errors are signaled
2366 * by external hardware. Therefore these two exceptions
2367 * may have board specific handlers.
2372 set_except_vector(EXCCODE_INT
, using_rollback_handler() ?
2373 rollback_handle_int
: handle_int
);
2374 set_except_vector(EXCCODE_MOD
, handle_tlbm
);
2375 set_except_vector(EXCCODE_TLBL
, handle_tlbl
);
2376 set_except_vector(EXCCODE_TLBS
, handle_tlbs
);
2378 set_except_vector(EXCCODE_ADEL
, handle_adel
);
2379 set_except_vector(EXCCODE_ADES
, handle_ades
);
2381 set_except_vector(EXCCODE_IBE
, handle_ibe
);
2382 set_except_vector(EXCCODE_DBE
, handle_dbe
);
2384 set_except_vector(EXCCODE_SYS
, handle_sys
);
2385 set_except_vector(EXCCODE_BP
, handle_bp
);
2388 set_except_vector(EXCCODE_RI
, handle_ri
);
2390 if (cpu_has_vtag_icache
)
2391 set_except_vector(EXCCODE_RI
, handle_ri_rdhwr_tlbp
);
2392 else if (current_cpu_type() == CPU_LOONGSON64
)
2393 set_except_vector(EXCCODE_RI
, handle_ri_rdhwr_tlbp
);
2395 set_except_vector(EXCCODE_RI
, handle_ri_rdhwr
);
2398 set_except_vector(EXCCODE_CPU
, handle_cpu
);
2399 set_except_vector(EXCCODE_OV
, handle_ov
);
2400 set_except_vector(EXCCODE_TR
, handle_tr
);
2401 set_except_vector(EXCCODE_MSAFPE
, handle_msa_fpe
);
2403 if (board_nmi_handler_setup
)
2404 board_nmi_handler_setup();
2406 if (cpu_has_fpu
&& !cpu_has_nofpuex
)
2407 set_except_vector(EXCCODE_FPE
, handle_fpe
);
2409 set_except_vector(MIPS_EXCCODE_TLBPAR
, handle_ftlb
);
2411 if (cpu_has_rixiex
) {
2412 set_except_vector(EXCCODE_TLBRI
, tlb_do_page_fault_0
);
2413 set_except_vector(EXCCODE_TLBXI
, tlb_do_page_fault_0
);
2416 set_except_vector(EXCCODE_MSADIS
, handle_msa
);
2417 set_except_vector(EXCCODE_MDMX
, handle_mdmx
);
2420 set_except_vector(EXCCODE_MCHECK
, handle_mcheck
);
2423 set_except_vector(EXCCODE_THREAD
, handle_mt
);
2425 set_except_vector(EXCCODE_DSPDIS
, handle_dsp
);
2427 if (board_cache_error_setup
)
2428 board_cache_error_setup();
2431 /* Special exception: R4[04]00 uses also the divec space. */
2432 set_handler(0x180, &except_vec3_r4000
, 0x100);
2433 else if (cpu_has_4kex
)
2434 set_handler(0x180, &except_vec3_generic
, 0x80);
2436 set_handler(0x080, &except_vec3_generic
, 0x80);
2438 local_flush_icache_range(ebase
, ebase
+ vec_size
);
2440 sort_extable(__start___dbe_table
, __stop___dbe_table
);
2442 cu2_notifier(default_cu2_call
, 0x80000000); /* Run last */
2445 static int trap_pm_notifier(struct notifier_block
*self
, unsigned long cmd
,
2449 case CPU_PM_ENTER_FAILED
:
2453 configure_exception_vector();
2455 /* Restore register with CPU number for TLB handlers */
2456 TLBMISS_HANDLER_RESTORE();
2464 static struct notifier_block trap_pm_notifier_block
= {
2465 .notifier_call
= trap_pm_notifier
,
2468 static int __init
trap_pm_init(void)
2470 return cpu_pm_register_notifier(&trap_pm_notifier_block
);
2472 arch_initcall(trap_pm_init
);