treewide: remove redundant IS_ERR() before error code check
[linux/fpc-iii.git] / arch / mips / kvm / mmu.c
blob7dad7a293eae93b851848d54511bbe1cb352e963
1 /*
2 * This file is subject to the terms and conditions of the GNU General Public
3 * License. See the file "COPYING" in the main directory of this archive
4 * for more details.
6 * KVM/MIPS MMU handling in the KVM module.
8 * Copyright (C) 2012 MIPS Technologies, Inc. All rights reserved.
9 * Authors: Sanjay Lal <sanjayl@kymasys.com>
12 #include <linux/highmem.h>
13 #include <linux/kvm_host.h>
14 #include <linux/uaccess.h>
15 #include <asm/mmu_context.h>
16 #include <asm/pgalloc.h>
19 * KVM_MMU_CACHE_MIN_PAGES is the number of GPA page table translation levels
20 * for which pages need to be cached.
22 #if defined(__PAGETABLE_PMD_FOLDED)
23 #define KVM_MMU_CACHE_MIN_PAGES 1
24 #else
25 #define KVM_MMU_CACHE_MIN_PAGES 2
26 #endif
28 static int mmu_topup_memory_cache(struct kvm_mmu_memory_cache *cache,
29 int min, int max)
31 void *page;
33 BUG_ON(max > KVM_NR_MEM_OBJS);
34 if (cache->nobjs >= min)
35 return 0;
36 while (cache->nobjs < max) {
37 page = (void *)__get_free_page(GFP_KERNEL);
38 if (!page)
39 return -ENOMEM;
40 cache->objects[cache->nobjs++] = page;
42 return 0;
45 static void mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc)
47 while (mc->nobjs)
48 free_page((unsigned long)mc->objects[--mc->nobjs]);
51 static void *mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc)
53 void *p;
55 BUG_ON(!mc || !mc->nobjs);
56 p = mc->objects[--mc->nobjs];
57 return p;
60 void kvm_mmu_free_memory_caches(struct kvm_vcpu *vcpu)
62 mmu_free_memory_cache(&vcpu->arch.mmu_page_cache);
65 /**
66 * kvm_pgd_init() - Initialise KVM GPA page directory.
67 * @page: Pointer to page directory (PGD) for KVM GPA.
69 * Initialise a KVM GPA page directory with pointers to the invalid table, i.e.
70 * representing no mappings. This is similar to pgd_init(), however it
71 * initialises all the page directory pointers, not just the ones corresponding
72 * to the userland address space (since it is for the guest physical address
73 * space rather than a virtual address space).
75 static void kvm_pgd_init(void *page)
77 unsigned long *p, *end;
78 unsigned long entry;
80 #ifdef __PAGETABLE_PMD_FOLDED
81 entry = (unsigned long)invalid_pte_table;
82 #else
83 entry = (unsigned long)invalid_pmd_table;
84 #endif
86 p = (unsigned long *)page;
87 end = p + PTRS_PER_PGD;
89 do {
90 p[0] = entry;
91 p[1] = entry;
92 p[2] = entry;
93 p[3] = entry;
94 p[4] = entry;
95 p += 8;
96 p[-3] = entry;
97 p[-2] = entry;
98 p[-1] = entry;
99 } while (p != end);
103 * kvm_pgd_alloc() - Allocate and initialise a KVM GPA page directory.
105 * Allocate a blank KVM GPA page directory (PGD) for representing guest physical
106 * to host physical page mappings.
108 * Returns: Pointer to new KVM GPA page directory.
109 * NULL on allocation failure.
111 pgd_t *kvm_pgd_alloc(void)
113 pgd_t *ret;
115 ret = (pgd_t *)__get_free_pages(GFP_KERNEL, PGD_ORDER);
116 if (ret)
117 kvm_pgd_init(ret);
119 return ret;
123 * kvm_mips_walk_pgd() - Walk page table with optional allocation.
124 * @pgd: Page directory pointer.
125 * @addr: Address to index page table using.
126 * @cache: MMU page cache to allocate new page tables from, or NULL.
128 * Walk the page tables pointed to by @pgd to find the PTE corresponding to the
129 * address @addr. If page tables don't exist for @addr, they will be created
130 * from the MMU cache if @cache is not NULL.
132 * Returns: Pointer to pte_t corresponding to @addr.
133 * NULL if a page table doesn't exist for @addr and !@cache.
134 * NULL if a page table allocation failed.
136 static pte_t *kvm_mips_walk_pgd(pgd_t *pgd, struct kvm_mmu_memory_cache *cache,
137 unsigned long addr)
139 p4d_t *p4d;
140 pud_t *pud;
141 pmd_t *pmd;
143 pgd += pgd_index(addr);
144 if (pgd_none(*pgd)) {
145 /* Not used on MIPS yet */
146 BUG();
147 return NULL;
149 p4d = p4d_offset(pgd, addr);
150 pud = pud_offset(p4d, addr);
151 if (pud_none(*pud)) {
152 pmd_t *new_pmd;
154 if (!cache)
155 return NULL;
156 new_pmd = mmu_memory_cache_alloc(cache);
157 pmd_init((unsigned long)new_pmd,
158 (unsigned long)invalid_pte_table);
159 pud_populate(NULL, pud, new_pmd);
161 pmd = pmd_offset(pud, addr);
162 if (pmd_none(*pmd)) {
163 pte_t *new_pte;
165 if (!cache)
166 return NULL;
167 new_pte = mmu_memory_cache_alloc(cache);
168 clear_page(new_pte);
169 pmd_populate_kernel(NULL, pmd, new_pte);
171 return pte_offset(pmd, addr);
174 /* Caller must hold kvm->mm_lock */
175 static pte_t *kvm_mips_pte_for_gpa(struct kvm *kvm,
176 struct kvm_mmu_memory_cache *cache,
177 unsigned long addr)
179 return kvm_mips_walk_pgd(kvm->arch.gpa_mm.pgd, cache, addr);
183 * kvm_mips_flush_gpa_{pte,pmd,pud,pgd,pt}.
184 * Flush a range of guest physical address space from the VM's GPA page tables.
187 static bool kvm_mips_flush_gpa_pte(pte_t *pte, unsigned long start_gpa,
188 unsigned long end_gpa)
190 int i_min = __pte_offset(start_gpa);
191 int i_max = __pte_offset(end_gpa);
192 bool safe_to_remove = (i_min == 0 && i_max == PTRS_PER_PTE - 1);
193 int i;
195 for (i = i_min; i <= i_max; ++i) {
196 if (!pte_present(pte[i]))
197 continue;
199 set_pte(pte + i, __pte(0));
201 return safe_to_remove;
204 static bool kvm_mips_flush_gpa_pmd(pmd_t *pmd, unsigned long start_gpa,
205 unsigned long end_gpa)
207 pte_t *pte;
208 unsigned long end = ~0ul;
209 int i_min = pmd_index(start_gpa);
210 int i_max = pmd_index(end_gpa);
211 bool safe_to_remove = (i_min == 0 && i_max == PTRS_PER_PMD - 1);
212 int i;
214 for (i = i_min; i <= i_max; ++i, start_gpa = 0) {
215 if (!pmd_present(pmd[i]))
216 continue;
218 pte = pte_offset(pmd + i, 0);
219 if (i == i_max)
220 end = end_gpa;
222 if (kvm_mips_flush_gpa_pte(pte, start_gpa, end)) {
223 pmd_clear(pmd + i);
224 pte_free_kernel(NULL, pte);
225 } else {
226 safe_to_remove = false;
229 return safe_to_remove;
232 static bool kvm_mips_flush_gpa_pud(pud_t *pud, unsigned long start_gpa,
233 unsigned long end_gpa)
235 pmd_t *pmd;
236 unsigned long end = ~0ul;
237 int i_min = pud_index(start_gpa);
238 int i_max = pud_index(end_gpa);
239 bool safe_to_remove = (i_min == 0 && i_max == PTRS_PER_PUD - 1);
240 int i;
242 for (i = i_min; i <= i_max; ++i, start_gpa = 0) {
243 if (!pud_present(pud[i]))
244 continue;
246 pmd = pmd_offset(pud + i, 0);
247 if (i == i_max)
248 end = end_gpa;
250 if (kvm_mips_flush_gpa_pmd(pmd, start_gpa, end)) {
251 pud_clear(pud + i);
252 pmd_free(NULL, pmd);
253 } else {
254 safe_to_remove = false;
257 return safe_to_remove;
260 static bool kvm_mips_flush_gpa_pgd(pgd_t *pgd, unsigned long start_gpa,
261 unsigned long end_gpa)
263 p4d_t *p4d;
264 pud_t *pud;
265 unsigned long end = ~0ul;
266 int i_min = pgd_index(start_gpa);
267 int i_max = pgd_index(end_gpa);
268 bool safe_to_remove = (i_min == 0 && i_max == PTRS_PER_PGD - 1);
269 int i;
271 for (i = i_min; i <= i_max; ++i, start_gpa = 0) {
272 if (!pgd_present(pgd[i]))
273 continue;
275 p4d = p4d_offset(pgd, 0);
276 pud = pud_offset(p4d + i, 0);
277 if (i == i_max)
278 end = end_gpa;
280 if (kvm_mips_flush_gpa_pud(pud, start_gpa, end)) {
281 pgd_clear(pgd + i);
282 pud_free(NULL, pud);
283 } else {
284 safe_to_remove = false;
287 return safe_to_remove;
291 * kvm_mips_flush_gpa_pt() - Flush a range of guest physical addresses.
292 * @kvm: KVM pointer.
293 * @start_gfn: Guest frame number of first page in GPA range to flush.
294 * @end_gfn: Guest frame number of last page in GPA range to flush.
296 * Flushes a range of GPA mappings from the GPA page tables.
298 * The caller must hold the @kvm->mmu_lock spinlock.
300 * Returns: Whether its safe to remove the top level page directory because
301 * all lower levels have been removed.
303 bool kvm_mips_flush_gpa_pt(struct kvm *kvm, gfn_t start_gfn, gfn_t end_gfn)
305 return kvm_mips_flush_gpa_pgd(kvm->arch.gpa_mm.pgd,
306 start_gfn << PAGE_SHIFT,
307 end_gfn << PAGE_SHIFT);
310 #define BUILD_PTE_RANGE_OP(name, op) \
311 static int kvm_mips_##name##_pte(pte_t *pte, unsigned long start, \
312 unsigned long end) \
314 int ret = 0; \
315 int i_min = __pte_offset(start); \
316 int i_max = __pte_offset(end); \
317 int i; \
318 pte_t old, new; \
320 for (i = i_min; i <= i_max; ++i) { \
321 if (!pte_present(pte[i])) \
322 continue; \
324 old = pte[i]; \
325 new = op(old); \
326 if (pte_val(new) == pte_val(old)) \
327 continue; \
328 set_pte(pte + i, new); \
329 ret = 1; \
331 return ret; \
334 /* returns true if anything was done */ \
335 static int kvm_mips_##name##_pmd(pmd_t *pmd, unsigned long start, \
336 unsigned long end) \
338 int ret = 0; \
339 pte_t *pte; \
340 unsigned long cur_end = ~0ul; \
341 int i_min = pmd_index(start); \
342 int i_max = pmd_index(end); \
343 int i; \
345 for (i = i_min; i <= i_max; ++i, start = 0) { \
346 if (!pmd_present(pmd[i])) \
347 continue; \
349 pte = pte_offset(pmd + i, 0); \
350 if (i == i_max) \
351 cur_end = end; \
353 ret |= kvm_mips_##name##_pte(pte, start, cur_end); \
355 return ret; \
358 static int kvm_mips_##name##_pud(pud_t *pud, unsigned long start, \
359 unsigned long end) \
361 int ret = 0; \
362 pmd_t *pmd; \
363 unsigned long cur_end = ~0ul; \
364 int i_min = pud_index(start); \
365 int i_max = pud_index(end); \
366 int i; \
368 for (i = i_min; i <= i_max; ++i, start = 0) { \
369 if (!pud_present(pud[i])) \
370 continue; \
372 pmd = pmd_offset(pud + i, 0); \
373 if (i == i_max) \
374 cur_end = end; \
376 ret |= kvm_mips_##name##_pmd(pmd, start, cur_end); \
378 return ret; \
381 static int kvm_mips_##name##_pgd(pgd_t *pgd, unsigned long start, \
382 unsigned long end) \
384 int ret = 0; \
385 p4d_t *p4d; \
386 pud_t *pud; \
387 unsigned long cur_end = ~0ul; \
388 int i_min = pgd_index(start); \
389 int i_max = pgd_index(end); \
390 int i; \
392 for (i = i_min; i <= i_max; ++i, start = 0) { \
393 if (!pgd_present(pgd[i])) \
394 continue; \
396 p4d = p4d_offset(pgd, 0); \
397 pud = pud_offset(p4d + i, 0); \
398 if (i == i_max) \
399 cur_end = end; \
401 ret |= kvm_mips_##name##_pud(pud, start, cur_end); \
403 return ret; \
407 * kvm_mips_mkclean_gpa_pt.
408 * Mark a range of guest physical address space clean (writes fault) in the VM's
409 * GPA page table to allow dirty page tracking.
412 BUILD_PTE_RANGE_OP(mkclean, pte_mkclean)
415 * kvm_mips_mkclean_gpa_pt() - Make a range of guest physical addresses clean.
416 * @kvm: KVM pointer.
417 * @start_gfn: Guest frame number of first page in GPA range to flush.
418 * @end_gfn: Guest frame number of last page in GPA range to flush.
420 * Make a range of GPA mappings clean so that guest writes will fault and
421 * trigger dirty page logging.
423 * The caller must hold the @kvm->mmu_lock spinlock.
425 * Returns: Whether any GPA mappings were modified, which would require
426 * derived mappings (GVA page tables & TLB enties) to be
427 * invalidated.
429 int kvm_mips_mkclean_gpa_pt(struct kvm *kvm, gfn_t start_gfn, gfn_t end_gfn)
431 return kvm_mips_mkclean_pgd(kvm->arch.gpa_mm.pgd,
432 start_gfn << PAGE_SHIFT,
433 end_gfn << PAGE_SHIFT);
437 * kvm_arch_mmu_enable_log_dirty_pt_masked() - write protect dirty pages
438 * @kvm: The KVM pointer
439 * @slot: The memory slot associated with mask
440 * @gfn_offset: The gfn offset in memory slot
441 * @mask: The mask of dirty pages at offset 'gfn_offset' in this memory
442 * slot to be write protected
444 * Walks bits set in mask write protects the associated pte's. Caller must
445 * acquire @kvm->mmu_lock.
447 void kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm *kvm,
448 struct kvm_memory_slot *slot,
449 gfn_t gfn_offset, unsigned long mask)
451 gfn_t base_gfn = slot->base_gfn + gfn_offset;
452 gfn_t start = base_gfn + __ffs(mask);
453 gfn_t end = base_gfn + __fls(mask);
455 kvm_mips_mkclean_gpa_pt(kvm, start, end);
459 * kvm_mips_mkold_gpa_pt.
460 * Mark a range of guest physical address space old (all accesses fault) in the
461 * VM's GPA page table to allow detection of commonly used pages.
464 BUILD_PTE_RANGE_OP(mkold, pte_mkold)
466 static int kvm_mips_mkold_gpa_pt(struct kvm *kvm, gfn_t start_gfn,
467 gfn_t end_gfn)
469 return kvm_mips_mkold_pgd(kvm->arch.gpa_mm.pgd,
470 start_gfn << PAGE_SHIFT,
471 end_gfn << PAGE_SHIFT);
474 static int handle_hva_to_gpa(struct kvm *kvm,
475 unsigned long start,
476 unsigned long end,
477 int (*handler)(struct kvm *kvm, gfn_t gfn,
478 gpa_t gfn_end,
479 struct kvm_memory_slot *memslot,
480 void *data),
481 void *data)
483 struct kvm_memslots *slots;
484 struct kvm_memory_slot *memslot;
485 int ret = 0;
487 slots = kvm_memslots(kvm);
489 /* we only care about the pages that the guest sees */
490 kvm_for_each_memslot(memslot, slots) {
491 unsigned long hva_start, hva_end;
492 gfn_t gfn, gfn_end;
494 hva_start = max(start, memslot->userspace_addr);
495 hva_end = min(end, memslot->userspace_addr +
496 (memslot->npages << PAGE_SHIFT));
497 if (hva_start >= hva_end)
498 continue;
501 * {gfn(page) | page intersects with [hva_start, hva_end)} =
502 * {gfn_start, gfn_start+1, ..., gfn_end-1}.
504 gfn = hva_to_gfn_memslot(hva_start, memslot);
505 gfn_end = hva_to_gfn_memslot(hva_end + PAGE_SIZE - 1, memslot);
507 ret |= handler(kvm, gfn, gfn_end, memslot, data);
510 return ret;
514 static int kvm_unmap_hva_handler(struct kvm *kvm, gfn_t gfn, gfn_t gfn_end,
515 struct kvm_memory_slot *memslot, void *data)
517 kvm_mips_flush_gpa_pt(kvm, gfn, gfn_end);
518 return 1;
521 int kvm_unmap_hva_range(struct kvm *kvm, unsigned long start, unsigned long end)
523 handle_hva_to_gpa(kvm, start, end, &kvm_unmap_hva_handler, NULL);
525 kvm_mips_callbacks->flush_shadow_all(kvm);
526 return 0;
529 static int kvm_set_spte_handler(struct kvm *kvm, gfn_t gfn, gfn_t gfn_end,
530 struct kvm_memory_slot *memslot, void *data)
532 gpa_t gpa = gfn << PAGE_SHIFT;
533 pte_t hva_pte = *(pte_t *)data;
534 pte_t *gpa_pte = kvm_mips_pte_for_gpa(kvm, NULL, gpa);
535 pte_t old_pte;
537 if (!gpa_pte)
538 return 0;
540 /* Mapping may need adjusting depending on memslot flags */
541 old_pte = *gpa_pte;
542 if (memslot->flags & KVM_MEM_LOG_DIRTY_PAGES && !pte_dirty(old_pte))
543 hva_pte = pte_mkclean(hva_pte);
544 else if (memslot->flags & KVM_MEM_READONLY)
545 hva_pte = pte_wrprotect(hva_pte);
547 set_pte(gpa_pte, hva_pte);
549 /* Replacing an absent or old page doesn't need flushes */
550 if (!pte_present(old_pte) || !pte_young(old_pte))
551 return 0;
553 /* Pages swapped, aged, moved, or cleaned require flushes */
554 return !pte_present(hva_pte) ||
555 !pte_young(hva_pte) ||
556 pte_pfn(old_pte) != pte_pfn(hva_pte) ||
557 (pte_dirty(old_pte) && !pte_dirty(hva_pte));
560 int kvm_set_spte_hva(struct kvm *kvm, unsigned long hva, pte_t pte)
562 unsigned long end = hva + PAGE_SIZE;
563 int ret;
565 ret = handle_hva_to_gpa(kvm, hva, end, &kvm_set_spte_handler, &pte);
566 if (ret)
567 kvm_mips_callbacks->flush_shadow_all(kvm);
568 return 0;
571 static int kvm_age_hva_handler(struct kvm *kvm, gfn_t gfn, gfn_t gfn_end,
572 struct kvm_memory_slot *memslot, void *data)
574 return kvm_mips_mkold_gpa_pt(kvm, gfn, gfn_end);
577 static int kvm_test_age_hva_handler(struct kvm *kvm, gfn_t gfn, gfn_t gfn_end,
578 struct kvm_memory_slot *memslot, void *data)
580 gpa_t gpa = gfn << PAGE_SHIFT;
581 pte_t *gpa_pte = kvm_mips_pte_for_gpa(kvm, NULL, gpa);
583 if (!gpa_pte)
584 return 0;
585 return pte_young(*gpa_pte);
588 int kvm_age_hva(struct kvm *kvm, unsigned long start, unsigned long end)
590 return handle_hva_to_gpa(kvm, start, end, kvm_age_hva_handler, NULL);
593 int kvm_test_age_hva(struct kvm *kvm, unsigned long hva)
595 return handle_hva_to_gpa(kvm, hva, hva, kvm_test_age_hva_handler, NULL);
599 * _kvm_mips_map_page_fast() - Fast path GPA fault handler.
600 * @vcpu: VCPU pointer.
601 * @gpa: Guest physical address of fault.
602 * @write_fault: Whether the fault was due to a write.
603 * @out_entry: New PTE for @gpa (written on success unless NULL).
604 * @out_buddy: New PTE for @gpa's buddy (written on success unless
605 * NULL).
607 * Perform fast path GPA fault handling, doing all that can be done without
608 * calling into KVM. This handles marking old pages young (for idle page
609 * tracking), and dirtying of clean pages (for dirty page logging).
611 * Returns: 0 on success, in which case we can update derived mappings and
612 * resume guest execution.
613 * -EFAULT on failure due to absent GPA mapping or write to
614 * read-only page, in which case KVM must be consulted.
616 static int _kvm_mips_map_page_fast(struct kvm_vcpu *vcpu, unsigned long gpa,
617 bool write_fault,
618 pte_t *out_entry, pte_t *out_buddy)
620 struct kvm *kvm = vcpu->kvm;
621 gfn_t gfn = gpa >> PAGE_SHIFT;
622 pte_t *ptep;
623 kvm_pfn_t pfn = 0; /* silence bogus GCC warning */
624 bool pfn_valid = false;
625 int ret = 0;
627 spin_lock(&kvm->mmu_lock);
629 /* Fast path - just check GPA page table for an existing entry */
630 ptep = kvm_mips_pte_for_gpa(kvm, NULL, gpa);
631 if (!ptep || !pte_present(*ptep)) {
632 ret = -EFAULT;
633 goto out;
636 /* Track access to pages marked old */
637 if (!pte_young(*ptep)) {
638 set_pte(ptep, pte_mkyoung(*ptep));
639 pfn = pte_pfn(*ptep);
640 pfn_valid = true;
641 /* call kvm_set_pfn_accessed() after unlock */
643 if (write_fault && !pte_dirty(*ptep)) {
644 if (!pte_write(*ptep)) {
645 ret = -EFAULT;
646 goto out;
649 /* Track dirtying of writeable pages */
650 set_pte(ptep, pte_mkdirty(*ptep));
651 pfn = pte_pfn(*ptep);
652 mark_page_dirty(kvm, gfn);
653 kvm_set_pfn_dirty(pfn);
656 if (out_entry)
657 *out_entry = *ptep;
658 if (out_buddy)
659 *out_buddy = *ptep_buddy(ptep);
661 out:
662 spin_unlock(&kvm->mmu_lock);
663 if (pfn_valid)
664 kvm_set_pfn_accessed(pfn);
665 return ret;
669 * kvm_mips_map_page() - Map a guest physical page.
670 * @vcpu: VCPU pointer.
671 * @gpa: Guest physical address of fault.
672 * @write_fault: Whether the fault was due to a write.
673 * @out_entry: New PTE for @gpa (written on success unless NULL).
674 * @out_buddy: New PTE for @gpa's buddy (written on success unless
675 * NULL).
677 * Handle GPA faults by creating a new GPA mapping (or updating an existing
678 * one).
680 * This takes care of marking pages young or dirty (idle/dirty page tracking),
681 * asking KVM for the corresponding PFN, and creating a mapping in the GPA page
682 * tables. Derived mappings (GVA page tables and TLBs) must be handled by the
683 * caller.
685 * Returns: 0 on success, in which case the caller may use the @out_entry
686 * and @out_buddy PTEs to update derived mappings and resume guest
687 * execution.
688 * -EFAULT if there is no memory region at @gpa or a write was
689 * attempted to a read-only memory region. This is usually handled
690 * as an MMIO access.
692 static int kvm_mips_map_page(struct kvm_vcpu *vcpu, unsigned long gpa,
693 bool write_fault,
694 pte_t *out_entry, pte_t *out_buddy)
696 struct kvm *kvm = vcpu->kvm;
697 struct kvm_mmu_memory_cache *memcache = &vcpu->arch.mmu_page_cache;
698 gfn_t gfn = gpa >> PAGE_SHIFT;
699 int srcu_idx, err;
700 kvm_pfn_t pfn;
701 pte_t *ptep, entry, old_pte;
702 bool writeable;
703 unsigned long prot_bits;
704 unsigned long mmu_seq;
706 /* Try the fast path to handle old / clean pages */
707 srcu_idx = srcu_read_lock(&kvm->srcu);
708 err = _kvm_mips_map_page_fast(vcpu, gpa, write_fault, out_entry,
709 out_buddy);
710 if (!err)
711 goto out;
713 /* We need a minimum of cached pages ready for page table creation */
714 err = mmu_topup_memory_cache(memcache, KVM_MMU_CACHE_MIN_PAGES,
715 KVM_NR_MEM_OBJS);
716 if (err)
717 goto out;
719 retry:
721 * Used to check for invalidations in progress, of the pfn that is
722 * returned by pfn_to_pfn_prot below.
724 mmu_seq = kvm->mmu_notifier_seq;
726 * Ensure the read of mmu_notifier_seq isn't reordered with PTE reads in
727 * gfn_to_pfn_prot() (which calls get_user_pages()), so that we don't
728 * risk the page we get a reference to getting unmapped before we have a
729 * chance to grab the mmu_lock without mmu_notifier_retry() noticing.
731 * This smp_rmb() pairs with the effective smp_wmb() of the combination
732 * of the pte_unmap_unlock() after the PTE is zapped, and the
733 * spin_lock() in kvm_mmu_notifier_invalidate_<page|range_end>() before
734 * mmu_notifier_seq is incremented.
736 smp_rmb();
738 /* Slow path - ask KVM core whether we can access this GPA */
739 pfn = gfn_to_pfn_prot(kvm, gfn, write_fault, &writeable);
740 if (is_error_noslot_pfn(pfn)) {
741 err = -EFAULT;
742 goto out;
745 spin_lock(&kvm->mmu_lock);
746 /* Check if an invalidation has taken place since we got pfn */
747 if (mmu_notifier_retry(kvm, mmu_seq)) {
749 * This can happen when mappings are changed asynchronously, but
750 * also synchronously if a COW is triggered by
751 * gfn_to_pfn_prot().
753 spin_unlock(&kvm->mmu_lock);
754 kvm_release_pfn_clean(pfn);
755 goto retry;
758 /* Ensure page tables are allocated */
759 ptep = kvm_mips_pte_for_gpa(kvm, memcache, gpa);
761 /* Set up the PTE */
762 prot_bits = _PAGE_PRESENT | __READABLE | _page_cachable_default;
763 if (writeable) {
764 prot_bits |= _PAGE_WRITE;
765 if (write_fault) {
766 prot_bits |= __WRITEABLE;
767 mark_page_dirty(kvm, gfn);
768 kvm_set_pfn_dirty(pfn);
771 entry = pfn_pte(pfn, __pgprot(prot_bits));
773 /* Write the PTE */
774 old_pte = *ptep;
775 set_pte(ptep, entry);
777 err = 0;
778 if (out_entry)
779 *out_entry = *ptep;
780 if (out_buddy)
781 *out_buddy = *ptep_buddy(ptep);
783 spin_unlock(&kvm->mmu_lock);
784 kvm_release_pfn_clean(pfn);
785 kvm_set_pfn_accessed(pfn);
786 out:
787 srcu_read_unlock(&kvm->srcu, srcu_idx);
788 return err;
791 static pte_t *kvm_trap_emul_pte_for_gva(struct kvm_vcpu *vcpu,
792 unsigned long addr)
794 struct kvm_mmu_memory_cache *memcache = &vcpu->arch.mmu_page_cache;
795 pgd_t *pgdp;
796 int ret;
798 /* We need a minimum of cached pages ready for page table creation */
799 ret = mmu_topup_memory_cache(memcache, KVM_MMU_CACHE_MIN_PAGES,
800 KVM_NR_MEM_OBJS);
801 if (ret)
802 return NULL;
804 if (KVM_GUEST_KERNEL_MODE(vcpu))
805 pgdp = vcpu->arch.guest_kernel_mm.pgd;
806 else
807 pgdp = vcpu->arch.guest_user_mm.pgd;
809 return kvm_mips_walk_pgd(pgdp, memcache, addr);
812 void kvm_trap_emul_invalidate_gva(struct kvm_vcpu *vcpu, unsigned long addr,
813 bool user)
815 pgd_t *pgdp;
816 pte_t *ptep;
818 addr &= PAGE_MASK << 1;
820 pgdp = vcpu->arch.guest_kernel_mm.pgd;
821 ptep = kvm_mips_walk_pgd(pgdp, NULL, addr);
822 if (ptep) {
823 ptep[0] = pfn_pte(0, __pgprot(0));
824 ptep[1] = pfn_pte(0, __pgprot(0));
827 if (user) {
828 pgdp = vcpu->arch.guest_user_mm.pgd;
829 ptep = kvm_mips_walk_pgd(pgdp, NULL, addr);
830 if (ptep) {
831 ptep[0] = pfn_pte(0, __pgprot(0));
832 ptep[1] = pfn_pte(0, __pgprot(0));
838 * kvm_mips_flush_gva_{pte,pmd,pud,pgd,pt}.
839 * Flush a range of guest physical address space from the VM's GPA page tables.
842 static bool kvm_mips_flush_gva_pte(pte_t *pte, unsigned long start_gva,
843 unsigned long end_gva)
845 int i_min = __pte_offset(start_gva);
846 int i_max = __pte_offset(end_gva);
847 bool safe_to_remove = (i_min == 0 && i_max == PTRS_PER_PTE - 1);
848 int i;
851 * There's no freeing to do, so there's no point clearing individual
852 * entries unless only part of the last level page table needs flushing.
854 if (safe_to_remove)
855 return true;
857 for (i = i_min; i <= i_max; ++i) {
858 if (!pte_present(pte[i]))
859 continue;
861 set_pte(pte + i, __pte(0));
863 return false;
866 static bool kvm_mips_flush_gva_pmd(pmd_t *pmd, unsigned long start_gva,
867 unsigned long end_gva)
869 pte_t *pte;
870 unsigned long end = ~0ul;
871 int i_min = pmd_index(start_gva);
872 int i_max = pmd_index(end_gva);
873 bool safe_to_remove = (i_min == 0 && i_max == PTRS_PER_PMD - 1);
874 int i;
876 for (i = i_min; i <= i_max; ++i, start_gva = 0) {
877 if (!pmd_present(pmd[i]))
878 continue;
880 pte = pte_offset(pmd + i, 0);
881 if (i == i_max)
882 end = end_gva;
884 if (kvm_mips_flush_gva_pte(pte, start_gva, end)) {
885 pmd_clear(pmd + i);
886 pte_free_kernel(NULL, pte);
887 } else {
888 safe_to_remove = false;
891 return safe_to_remove;
894 static bool kvm_mips_flush_gva_pud(pud_t *pud, unsigned long start_gva,
895 unsigned long end_gva)
897 pmd_t *pmd;
898 unsigned long end = ~0ul;
899 int i_min = pud_index(start_gva);
900 int i_max = pud_index(end_gva);
901 bool safe_to_remove = (i_min == 0 && i_max == PTRS_PER_PUD - 1);
902 int i;
904 for (i = i_min; i <= i_max; ++i, start_gva = 0) {
905 if (!pud_present(pud[i]))
906 continue;
908 pmd = pmd_offset(pud + i, 0);
909 if (i == i_max)
910 end = end_gva;
912 if (kvm_mips_flush_gva_pmd(pmd, start_gva, end)) {
913 pud_clear(pud + i);
914 pmd_free(NULL, pmd);
915 } else {
916 safe_to_remove = false;
919 return safe_to_remove;
922 static bool kvm_mips_flush_gva_pgd(pgd_t *pgd, unsigned long start_gva,
923 unsigned long end_gva)
925 p4d_t *p4d;
926 pud_t *pud;
927 unsigned long end = ~0ul;
928 int i_min = pgd_index(start_gva);
929 int i_max = pgd_index(end_gva);
930 bool safe_to_remove = (i_min == 0 && i_max == PTRS_PER_PGD - 1);
931 int i;
933 for (i = i_min; i <= i_max; ++i, start_gva = 0) {
934 if (!pgd_present(pgd[i]))
935 continue;
937 p4d = p4d_offset(pgd, 0);
938 pud = pud_offset(p4d + i, 0);
939 if (i == i_max)
940 end = end_gva;
942 if (kvm_mips_flush_gva_pud(pud, start_gva, end)) {
943 pgd_clear(pgd + i);
944 pud_free(NULL, pud);
945 } else {
946 safe_to_remove = false;
949 return safe_to_remove;
952 void kvm_mips_flush_gva_pt(pgd_t *pgd, enum kvm_mips_flush flags)
954 if (flags & KMF_GPA) {
955 /* all of guest virtual address space could be affected */
956 if (flags & KMF_KERN)
957 /* useg, kseg0, seg2/3 */
958 kvm_mips_flush_gva_pgd(pgd, 0, 0x7fffffff);
959 else
960 /* useg */
961 kvm_mips_flush_gva_pgd(pgd, 0, 0x3fffffff);
962 } else {
963 /* useg */
964 kvm_mips_flush_gva_pgd(pgd, 0, 0x3fffffff);
966 /* kseg2/3 */
967 if (flags & KMF_KERN)
968 kvm_mips_flush_gva_pgd(pgd, 0x60000000, 0x7fffffff);
972 static pte_t kvm_mips_gpa_pte_to_gva_unmapped(pte_t pte)
975 * Don't leak writeable but clean entries from GPA page tables. We don't
976 * want the normal Linux tlbmod handler to handle dirtying when KVM
977 * accesses guest memory.
979 if (!pte_dirty(pte))
980 pte = pte_wrprotect(pte);
982 return pte;
985 static pte_t kvm_mips_gpa_pte_to_gva_mapped(pte_t pte, long entrylo)
987 /* Guest EntryLo overrides host EntryLo */
988 if (!(entrylo & ENTRYLO_D))
989 pte = pte_mkclean(pte);
991 return kvm_mips_gpa_pte_to_gva_unmapped(pte);
994 #ifdef CONFIG_KVM_MIPS_VZ
995 int kvm_mips_handle_vz_root_tlb_fault(unsigned long badvaddr,
996 struct kvm_vcpu *vcpu,
997 bool write_fault)
999 int ret;
1001 ret = kvm_mips_map_page(vcpu, badvaddr, write_fault, NULL, NULL);
1002 if (ret)
1003 return ret;
1005 /* Invalidate this entry in the TLB */
1006 return kvm_vz_host_tlb_inv(vcpu, badvaddr);
1008 #endif
1010 /* XXXKYMA: Must be called with interrupts disabled */
1011 int kvm_mips_handle_kseg0_tlb_fault(unsigned long badvaddr,
1012 struct kvm_vcpu *vcpu,
1013 bool write_fault)
1015 unsigned long gpa;
1016 pte_t pte_gpa[2], *ptep_gva;
1017 int idx;
1019 if (KVM_GUEST_KSEGX(badvaddr) != KVM_GUEST_KSEG0) {
1020 kvm_err("%s: Invalid BadVaddr: %#lx\n", __func__, badvaddr);
1021 kvm_mips_dump_host_tlbs();
1022 return -1;
1025 /* Get the GPA page table entry */
1026 gpa = KVM_GUEST_CPHYSADDR(badvaddr);
1027 idx = (badvaddr >> PAGE_SHIFT) & 1;
1028 if (kvm_mips_map_page(vcpu, gpa, write_fault, &pte_gpa[idx],
1029 &pte_gpa[!idx]) < 0)
1030 return -1;
1032 /* Get the GVA page table entry */
1033 ptep_gva = kvm_trap_emul_pte_for_gva(vcpu, badvaddr & ~PAGE_SIZE);
1034 if (!ptep_gva) {
1035 kvm_err("No ptep for gva %lx\n", badvaddr);
1036 return -1;
1039 /* Copy a pair of entries from GPA page table to GVA page table */
1040 ptep_gva[0] = kvm_mips_gpa_pte_to_gva_unmapped(pte_gpa[0]);
1041 ptep_gva[1] = kvm_mips_gpa_pte_to_gva_unmapped(pte_gpa[1]);
1043 /* Invalidate this entry in the TLB, guest kernel ASID only */
1044 kvm_mips_host_tlb_inv(vcpu, badvaddr, false, true);
1045 return 0;
1048 int kvm_mips_handle_mapped_seg_tlb_fault(struct kvm_vcpu *vcpu,
1049 struct kvm_mips_tlb *tlb,
1050 unsigned long gva,
1051 bool write_fault)
1053 struct kvm *kvm = vcpu->kvm;
1054 long tlb_lo[2];
1055 pte_t pte_gpa[2], *ptep_buddy, *ptep_gva;
1056 unsigned int idx = TLB_LO_IDX(*tlb, gva);
1057 bool kernel = KVM_GUEST_KERNEL_MODE(vcpu);
1059 tlb_lo[0] = tlb->tlb_lo[0];
1060 tlb_lo[1] = tlb->tlb_lo[1];
1063 * The commpage address must not be mapped to anything else if the guest
1064 * TLB contains entries nearby, or commpage accesses will break.
1066 if (!((gva ^ KVM_GUEST_COMMPAGE_ADDR) & VPN2_MASK & (PAGE_MASK << 1)))
1067 tlb_lo[TLB_LO_IDX(*tlb, KVM_GUEST_COMMPAGE_ADDR)] = 0;
1069 /* Get the GPA page table entry */
1070 if (kvm_mips_map_page(vcpu, mips3_tlbpfn_to_paddr(tlb_lo[idx]),
1071 write_fault, &pte_gpa[idx], NULL) < 0)
1072 return -1;
1074 /* And its GVA buddy's GPA page table entry if it also exists */
1075 pte_gpa[!idx] = pfn_pte(0, __pgprot(0));
1076 if (tlb_lo[!idx] & ENTRYLO_V) {
1077 spin_lock(&kvm->mmu_lock);
1078 ptep_buddy = kvm_mips_pte_for_gpa(kvm, NULL,
1079 mips3_tlbpfn_to_paddr(tlb_lo[!idx]));
1080 if (ptep_buddy)
1081 pte_gpa[!idx] = *ptep_buddy;
1082 spin_unlock(&kvm->mmu_lock);
1085 /* Get the GVA page table entry pair */
1086 ptep_gva = kvm_trap_emul_pte_for_gva(vcpu, gva & ~PAGE_SIZE);
1087 if (!ptep_gva) {
1088 kvm_err("No ptep for gva %lx\n", gva);
1089 return -1;
1092 /* Copy a pair of entries from GPA page table to GVA page table */
1093 ptep_gva[0] = kvm_mips_gpa_pte_to_gva_mapped(pte_gpa[0], tlb_lo[0]);
1094 ptep_gva[1] = kvm_mips_gpa_pte_to_gva_mapped(pte_gpa[1], tlb_lo[1]);
1096 /* Invalidate this entry in the TLB, current guest mode ASID only */
1097 kvm_mips_host_tlb_inv(vcpu, gva, !kernel, kernel);
1099 kvm_debug("@ %#lx tlb_lo0: 0x%08lx tlb_lo1: 0x%08lx\n", vcpu->arch.pc,
1100 tlb->tlb_lo[0], tlb->tlb_lo[1]);
1102 return 0;
1105 int kvm_mips_handle_commpage_tlb_fault(unsigned long badvaddr,
1106 struct kvm_vcpu *vcpu)
1108 kvm_pfn_t pfn;
1109 pte_t *ptep;
1111 ptep = kvm_trap_emul_pte_for_gva(vcpu, badvaddr);
1112 if (!ptep) {
1113 kvm_err("No ptep for commpage %lx\n", badvaddr);
1114 return -1;
1117 pfn = PFN_DOWN(virt_to_phys(vcpu->arch.kseg0_commpage));
1118 /* Also set valid and dirty, so refill handler doesn't have to */
1119 *ptep = pte_mkyoung(pte_mkdirty(pfn_pte(pfn, PAGE_SHARED)));
1121 /* Invalidate this entry in the TLB, guest kernel ASID only */
1122 kvm_mips_host_tlb_inv(vcpu, badvaddr, false, true);
1123 return 0;
1127 * kvm_mips_migrate_count() - Migrate timer.
1128 * @vcpu: Virtual CPU.
1130 * Migrate CP0_Count hrtimer to the current CPU by cancelling and restarting it
1131 * if it was running prior to being cancelled.
1133 * Must be called when the VCPU is migrated to a different CPU to ensure that
1134 * timer expiry during guest execution interrupts the guest and causes the
1135 * interrupt to be delivered in a timely manner.
1137 static void kvm_mips_migrate_count(struct kvm_vcpu *vcpu)
1139 if (hrtimer_cancel(&vcpu->arch.comparecount_timer))
1140 hrtimer_restart(&vcpu->arch.comparecount_timer);
1143 /* Restore ASID once we are scheduled back after preemption */
1144 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
1146 unsigned long flags;
1148 kvm_debug("%s: vcpu %p, cpu: %d\n", __func__, vcpu, cpu);
1150 local_irq_save(flags);
1152 vcpu->cpu = cpu;
1153 if (vcpu->arch.last_sched_cpu != cpu) {
1154 kvm_debug("[%d->%d]KVM VCPU[%d] switch\n",
1155 vcpu->arch.last_sched_cpu, cpu, vcpu->vcpu_id);
1157 * Migrate the timer interrupt to the current CPU so that it
1158 * always interrupts the guest and synchronously triggers a
1159 * guest timer interrupt.
1161 kvm_mips_migrate_count(vcpu);
1164 /* restore guest state to registers */
1165 kvm_mips_callbacks->vcpu_load(vcpu, cpu);
1167 local_irq_restore(flags);
1170 /* ASID can change if another task is scheduled during preemption */
1171 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
1173 unsigned long flags;
1174 int cpu;
1176 local_irq_save(flags);
1178 cpu = smp_processor_id();
1179 vcpu->arch.last_sched_cpu = cpu;
1180 vcpu->cpu = -1;
1182 /* save guest state in registers */
1183 kvm_mips_callbacks->vcpu_put(vcpu, cpu);
1185 local_irq_restore(flags);
1189 * kvm_trap_emul_gva_fault() - Safely attempt to handle a GVA access fault.
1190 * @vcpu: Virtual CPU.
1191 * @gva: Guest virtual address to be accessed.
1192 * @write: True if write attempted (must be dirtied and made writable).
1194 * Safely attempt to handle a GVA fault, mapping GVA pages if necessary, and
1195 * dirtying the page if @write so that guest instructions can be modified.
1197 * Returns: KVM_MIPS_MAPPED on success.
1198 * KVM_MIPS_GVA if bad guest virtual address.
1199 * KVM_MIPS_GPA if bad guest physical address.
1200 * KVM_MIPS_TLB if guest TLB not present.
1201 * KVM_MIPS_TLBINV if guest TLB present but not valid.
1202 * KVM_MIPS_TLBMOD if guest TLB read only.
1204 enum kvm_mips_fault_result kvm_trap_emul_gva_fault(struct kvm_vcpu *vcpu,
1205 unsigned long gva,
1206 bool write)
1208 struct mips_coproc *cop0 = vcpu->arch.cop0;
1209 struct kvm_mips_tlb *tlb;
1210 int index;
1212 if (KVM_GUEST_KSEGX(gva) == KVM_GUEST_KSEG0) {
1213 if (kvm_mips_handle_kseg0_tlb_fault(gva, vcpu, write) < 0)
1214 return KVM_MIPS_GPA;
1215 } else if ((KVM_GUEST_KSEGX(gva) < KVM_GUEST_KSEG0) ||
1216 KVM_GUEST_KSEGX(gva) == KVM_GUEST_KSEG23) {
1217 /* Address should be in the guest TLB */
1218 index = kvm_mips_guest_tlb_lookup(vcpu, (gva & VPN2_MASK) |
1219 (kvm_read_c0_guest_entryhi(cop0) & KVM_ENTRYHI_ASID));
1220 if (index < 0)
1221 return KVM_MIPS_TLB;
1222 tlb = &vcpu->arch.guest_tlb[index];
1224 /* Entry should be valid, and dirty for writes */
1225 if (!TLB_IS_VALID(*tlb, gva))
1226 return KVM_MIPS_TLBINV;
1227 if (write && !TLB_IS_DIRTY(*tlb, gva))
1228 return KVM_MIPS_TLBMOD;
1230 if (kvm_mips_handle_mapped_seg_tlb_fault(vcpu, tlb, gva, write))
1231 return KVM_MIPS_GPA;
1232 } else {
1233 return KVM_MIPS_GVA;
1236 return KVM_MIPS_MAPPED;
1239 int kvm_get_inst(u32 *opc, struct kvm_vcpu *vcpu, u32 *out)
1241 int err;
1243 if (WARN(IS_ENABLED(CONFIG_KVM_MIPS_VZ),
1244 "Expect BadInstr/BadInstrP registers to be used with VZ\n"))
1245 return -EINVAL;
1247 retry:
1248 kvm_trap_emul_gva_lockless_begin(vcpu);
1249 err = get_user(*out, opc);
1250 kvm_trap_emul_gva_lockless_end(vcpu);
1252 if (unlikely(err)) {
1254 * Try to handle the fault, maybe we just raced with a GVA
1255 * invalidation.
1257 err = kvm_trap_emul_gva_fault(vcpu, (unsigned long)opc,
1258 false);
1259 if (unlikely(err)) {
1260 kvm_err("%s: illegal address: %p\n",
1261 __func__, opc);
1262 return -EFAULT;
1265 /* Hopefully it'll work now */
1266 goto retry;
1268 return 0;