2 * This file is subject to the terms and conditions of the GNU General Public
3 * License. See the file "COPYING" in the main directory of this archive
6 * KVM/MIPS: Support for hardware virtualization extensions
8 * Copyright (C) 2012 MIPS Technologies, Inc. All rights reserved.
9 * Authors: Yann Le Du <ledu@kymasys.com>
12 #include <linux/errno.h>
13 #include <linux/err.h>
14 #include <linux/module.h>
15 #include <linux/preempt.h>
16 #include <linux/vmalloc.h>
17 #include <asm/cacheflush.h>
18 #include <asm/cacheops.h>
19 #include <asm/cmpxchg.h>
21 #include <asm/hazards.h>
23 #include <asm/mmu_context.h>
24 #include <asm/r4kcache.h>
27 #include <asm/tlbex.h>
29 #include <linux/kvm_host.h>
31 #include "interrupt.h"
35 /* Pointers to last VCPU loaded on each physical CPU */
36 static struct kvm_vcpu
*last_vcpu
[NR_CPUS
];
37 /* Pointers to last VCPU executed on each physical CPU */
38 static struct kvm_vcpu
*last_exec_vcpu
[NR_CPUS
];
41 * Number of guest VTLB entries to use, so we can catch inconsistency between
44 static unsigned int kvm_vz_guest_vtlb_size
;
46 static inline long kvm_vz_read_gc0_ebase(void)
48 if (sizeof(long) == 8 && cpu_has_ebase_wg
)
49 return read_gc0_ebase_64();
51 return read_gc0_ebase();
54 static inline void kvm_vz_write_gc0_ebase(long v
)
57 * First write with WG=1 to write upper bits, then write again in case
58 * WG should be left at 0.
59 * write_gc0_ebase_64() is no longer UNDEFINED since R6.
61 if (sizeof(long) == 8 &&
62 (cpu_has_mips64r6
|| cpu_has_ebase_wg
)) {
63 write_gc0_ebase_64(v
| MIPS_EBASE_WG
);
64 write_gc0_ebase_64(v
);
66 write_gc0_ebase(v
| MIPS_EBASE_WG
);
72 * These Config bits may be writable by the guest:
73 * Config: [K23, KU] (!TLB), K0
75 * Config2: [TU, SU] (impl)
77 * Config4: FTLBPageSize
78 * Config5: K, CV, MSAEn, UFE, FRE, SBRI, UFR
81 static inline unsigned int kvm_vz_config_guest_wrmask(struct kvm_vcpu
*vcpu
)
86 static inline unsigned int kvm_vz_config1_guest_wrmask(struct kvm_vcpu
*vcpu
)
91 static inline unsigned int kvm_vz_config2_guest_wrmask(struct kvm_vcpu
*vcpu
)
96 static inline unsigned int kvm_vz_config3_guest_wrmask(struct kvm_vcpu
*vcpu
)
98 return MIPS_CONF3_ISA_OE
;
101 static inline unsigned int kvm_vz_config4_guest_wrmask(struct kvm_vcpu
*vcpu
)
103 /* no need to be exact */
104 return MIPS_CONF4_VFTLBPAGESIZE
;
107 static inline unsigned int kvm_vz_config5_guest_wrmask(struct kvm_vcpu
*vcpu
)
109 unsigned int mask
= MIPS_CONF5_K
| MIPS_CONF5_CV
| MIPS_CONF5_SBRI
;
111 /* Permit MSAEn changes if MSA supported and enabled */
112 if (kvm_mips_guest_has_msa(&vcpu
->arch
))
113 mask
|= MIPS_CONF5_MSAEN
;
116 * Permit guest FPU mode changes if FPU is enabled and the relevant
117 * feature exists according to FIR register.
119 if (kvm_mips_guest_has_fpu(&vcpu
->arch
)) {
121 mask
|= MIPS_CONF5_UFR
;
123 mask
|= MIPS_CONF5_FRE
| MIPS_CONF5_UFE
;
130 * VZ optionally allows these additional Config bits to be written by root:
132 * Config1: M, [MMUSize-1, C2, MD, PC, WR, CA], FP
134 * Config3: M, MSAP, [BPG], ULRI, [DSP2P, DSPP], CTXTC, [ITL, LPA, VEIC,
135 * VInt, SP, CDMM, MT, SM, TL]
136 * Config4: M, [VTLBSizeExt, MMUSizeExt]
140 static inline unsigned int kvm_vz_config_user_wrmask(struct kvm_vcpu
*vcpu
)
142 return kvm_vz_config_guest_wrmask(vcpu
) | MIPS_CONF_M
;
145 static inline unsigned int kvm_vz_config1_user_wrmask(struct kvm_vcpu
*vcpu
)
147 unsigned int mask
= kvm_vz_config1_guest_wrmask(vcpu
) | MIPS_CONF_M
;
149 /* Permit FPU to be present if FPU is supported */
150 if (kvm_mips_guest_can_have_fpu(&vcpu
->arch
))
151 mask
|= MIPS_CONF1_FP
;
156 static inline unsigned int kvm_vz_config2_user_wrmask(struct kvm_vcpu
*vcpu
)
158 return kvm_vz_config2_guest_wrmask(vcpu
) | MIPS_CONF_M
;
161 static inline unsigned int kvm_vz_config3_user_wrmask(struct kvm_vcpu
*vcpu
)
163 unsigned int mask
= kvm_vz_config3_guest_wrmask(vcpu
) | MIPS_CONF_M
|
164 MIPS_CONF3_ULRI
| MIPS_CONF3_CTXTC
;
166 /* Permit MSA to be present if MSA is supported */
167 if (kvm_mips_guest_can_have_msa(&vcpu
->arch
))
168 mask
|= MIPS_CONF3_MSA
;
173 static inline unsigned int kvm_vz_config4_user_wrmask(struct kvm_vcpu
*vcpu
)
175 return kvm_vz_config4_guest_wrmask(vcpu
) | MIPS_CONF_M
;
178 static inline unsigned int kvm_vz_config5_user_wrmask(struct kvm_vcpu
*vcpu
)
180 return kvm_vz_config5_guest_wrmask(vcpu
) | MIPS_CONF5_MRP
;
183 static gpa_t
kvm_vz_gva_to_gpa_cb(gva_t gva
)
185 /* VZ guest has already converted gva to gpa */
189 static void kvm_vz_queue_irq(struct kvm_vcpu
*vcpu
, unsigned int priority
)
191 set_bit(priority
, &vcpu
->arch
.pending_exceptions
);
192 clear_bit(priority
, &vcpu
->arch
.pending_exceptions_clr
);
195 static void kvm_vz_dequeue_irq(struct kvm_vcpu
*vcpu
, unsigned int priority
)
197 clear_bit(priority
, &vcpu
->arch
.pending_exceptions
);
198 set_bit(priority
, &vcpu
->arch
.pending_exceptions_clr
);
201 static void kvm_vz_queue_timer_int_cb(struct kvm_vcpu
*vcpu
)
204 * timer expiry is asynchronous to vcpu execution therefore defer guest
207 kvm_vz_queue_irq(vcpu
, MIPS_EXC_INT_TIMER
);
210 static void kvm_vz_dequeue_timer_int_cb(struct kvm_vcpu
*vcpu
)
213 * timer expiry is asynchronous to vcpu execution therefore defer guest
216 kvm_vz_dequeue_irq(vcpu
, MIPS_EXC_INT_TIMER
);
219 static void kvm_vz_queue_io_int_cb(struct kvm_vcpu
*vcpu
,
220 struct kvm_mips_interrupt
*irq
)
222 int intr
= (int)irq
->irq
;
225 * interrupts are asynchronous to vcpu execution therefore defer guest
230 kvm_vz_queue_irq(vcpu
, MIPS_EXC_INT_IO
);
234 kvm_vz_queue_irq(vcpu
, MIPS_EXC_INT_IPI_1
);
238 kvm_vz_queue_irq(vcpu
, MIPS_EXC_INT_IPI_2
);
247 static void kvm_vz_dequeue_io_int_cb(struct kvm_vcpu
*vcpu
,
248 struct kvm_mips_interrupt
*irq
)
250 int intr
= (int)irq
->irq
;
253 * interrupts are asynchronous to vcpu execution therefore defer guest
258 kvm_vz_dequeue_irq(vcpu
, MIPS_EXC_INT_IO
);
262 kvm_vz_dequeue_irq(vcpu
, MIPS_EXC_INT_IPI_1
);
266 kvm_vz_dequeue_irq(vcpu
, MIPS_EXC_INT_IPI_2
);
275 static u32 kvm_vz_priority_to_irq
[MIPS_EXC_MAX
] = {
276 [MIPS_EXC_INT_TIMER
] = C_IRQ5
,
277 [MIPS_EXC_INT_IO
] = C_IRQ0
,
278 [MIPS_EXC_INT_IPI_1
] = C_IRQ1
,
279 [MIPS_EXC_INT_IPI_2
] = C_IRQ2
,
282 static int kvm_vz_irq_deliver_cb(struct kvm_vcpu
*vcpu
, unsigned int priority
,
285 u32 irq
= (priority
< MIPS_EXC_MAX
) ?
286 kvm_vz_priority_to_irq
[priority
] : 0;
289 case MIPS_EXC_INT_TIMER
:
293 case MIPS_EXC_INT_IO
:
294 case MIPS_EXC_INT_IPI_1
:
295 case MIPS_EXC_INT_IPI_2
:
296 if (cpu_has_guestctl2
)
297 set_c0_guestctl2(irq
);
306 clear_bit(priority
, &vcpu
->arch
.pending_exceptions
);
310 static int kvm_vz_irq_clear_cb(struct kvm_vcpu
*vcpu
, unsigned int priority
,
313 u32 irq
= (priority
< MIPS_EXC_MAX
) ?
314 kvm_vz_priority_to_irq
[priority
] : 0;
317 case MIPS_EXC_INT_TIMER
:
319 * Call to kvm_write_c0_guest_compare() clears Cause.TI in
320 * kvm_mips_emulate_CP0(). Explicitly clear irq associated with
321 * Cause.IP[IPTI] if GuestCtl2 virtual interrupt register not
322 * supported or if not using GuestCtl2 Hardware Clear.
324 if (cpu_has_guestctl2
) {
325 if (!(read_c0_guestctl2() & (irq
<< 14)))
326 clear_c0_guestctl2(irq
);
328 clear_gc0_cause(irq
);
332 case MIPS_EXC_INT_IO
:
333 case MIPS_EXC_INT_IPI_1
:
334 case MIPS_EXC_INT_IPI_2
:
335 /* Clear GuestCtl2.VIP irq if not using Hardware Clear */
336 if (cpu_has_guestctl2
) {
337 if (!(read_c0_guestctl2() & (irq
<< 14)))
338 clear_c0_guestctl2(irq
);
340 clear_gc0_cause(irq
);
348 clear_bit(priority
, &vcpu
->arch
.pending_exceptions_clr
);
353 * VZ guest timer handling.
357 * kvm_vz_should_use_htimer() - Find whether to use the VZ hard guest timer.
358 * @vcpu: Virtual CPU.
360 * Returns: true if the VZ GTOffset & real guest CP0_Count should be used
361 * instead of software emulation of guest timer.
364 static bool kvm_vz_should_use_htimer(struct kvm_vcpu
*vcpu
)
366 if (kvm_mips_count_disabled(vcpu
))
369 /* Chosen frequency must match real frequency */
370 if (mips_hpt_frequency
!= vcpu
->arch
.count_hz
)
373 /* We don't support a CP0_GTOffset with fewer bits than CP0_Count */
374 if (current_cpu_data
.gtoffset_mask
!= 0xffffffff)
381 * _kvm_vz_restore_stimer() - Restore soft timer state.
382 * @vcpu: Virtual CPU.
383 * @compare: CP0_Compare register value, restored by caller.
384 * @cause: CP0_Cause register to restore.
386 * Restore VZ state relating to the soft timer. The hard timer can be enabled
389 static void _kvm_vz_restore_stimer(struct kvm_vcpu
*vcpu
, u32 compare
,
393 * Avoid spurious counter interrupts by setting Guest CP0_Count to just
394 * after Guest CP0_Compare.
396 write_c0_gtoffset(compare
- read_c0_count());
398 back_to_back_c0_hazard();
399 write_gc0_cause(cause
);
403 * _kvm_vz_restore_htimer() - Restore hard timer state.
404 * @vcpu: Virtual CPU.
405 * @compare: CP0_Compare register value, restored by caller.
406 * @cause: CP0_Cause register to restore.
408 * Restore hard timer Guest.Count & Guest.Cause taking care to preserve the
409 * value of Guest.CP0_Cause.TI while restoring Guest.CP0_Cause.
411 static void _kvm_vz_restore_htimer(struct kvm_vcpu
*vcpu
,
412 u32 compare
, u32 cause
)
414 u32 start_count
, after_count
;
419 * Freeze the soft-timer and sync the guest CP0_Count with it. We do
420 * this with interrupts disabled to avoid latency.
422 local_irq_save(flags
);
423 freeze_time
= kvm_mips_freeze_hrtimer(vcpu
, &start_count
);
424 write_c0_gtoffset(start_count
- read_c0_count());
425 local_irq_restore(flags
);
427 /* restore guest CP0_Cause, as TI may already be set */
428 back_to_back_c0_hazard();
429 write_gc0_cause(cause
);
432 * The above sequence isn't atomic and would result in lost timer
433 * interrupts if we're not careful. Detect if a timer interrupt is due
436 back_to_back_c0_hazard();
437 after_count
= read_gc0_count();
438 if (after_count
- start_count
> compare
- start_count
- 1)
439 kvm_vz_queue_irq(vcpu
, MIPS_EXC_INT_TIMER
);
443 * kvm_vz_restore_timer() - Restore timer state.
444 * @vcpu: Virtual CPU.
446 * Restore soft timer state from saved context.
448 static void kvm_vz_restore_timer(struct kvm_vcpu
*vcpu
)
450 struct mips_coproc
*cop0
= vcpu
->arch
.cop0
;
453 compare
= kvm_read_sw_gc0_compare(cop0
);
454 cause
= kvm_read_sw_gc0_cause(cop0
);
456 write_gc0_compare(compare
);
457 _kvm_vz_restore_stimer(vcpu
, compare
, cause
);
461 * kvm_vz_acquire_htimer() - Switch to hard timer state.
462 * @vcpu: Virtual CPU.
464 * Restore hard timer state on top of existing soft timer state if possible.
466 * Since hard timer won't remain active over preemption, preemption should be
467 * disabled by the caller.
469 void kvm_vz_acquire_htimer(struct kvm_vcpu
*vcpu
)
473 gctl0
= read_c0_guestctl0();
474 if (!(gctl0
& MIPS_GCTL0_GT
) && kvm_vz_should_use_htimer(vcpu
)) {
475 /* enable guest access to hard timer */
476 write_c0_guestctl0(gctl0
| MIPS_GCTL0_GT
);
478 _kvm_vz_restore_htimer(vcpu
, read_gc0_compare(),
484 * _kvm_vz_save_htimer() - Switch to software emulation of guest timer.
485 * @vcpu: Virtual CPU.
486 * @compare: Pointer to write compare value to.
487 * @cause: Pointer to write cause value to.
489 * Save VZ guest timer state and switch to software emulation of guest CP0
490 * timer. The hard timer must already be in use, so preemption should be
493 static void _kvm_vz_save_htimer(struct kvm_vcpu
*vcpu
,
494 u32
*out_compare
, u32
*out_cause
)
496 u32 cause
, compare
, before_count
, end_count
;
499 compare
= read_gc0_compare();
500 *out_compare
= compare
;
502 before_time
= ktime_get();
505 * Record the CP0_Count *prior* to saving CP0_Cause, so we have a time
506 * at which no pending timer interrupt is missing.
508 before_count
= read_gc0_count();
509 back_to_back_c0_hazard();
510 cause
= read_gc0_cause();
514 * Record a final CP0_Count which we will transfer to the soft-timer.
515 * This is recorded *after* saving CP0_Cause, so we don't get any timer
516 * interrupts from just after the final CP0_Count point.
518 back_to_back_c0_hazard();
519 end_count
= read_gc0_count();
522 * The above sequence isn't atomic, so we could miss a timer interrupt
523 * between reading CP0_Cause and end_count. Detect and record any timer
524 * interrupt due between before_count and end_count.
526 if (end_count
- before_count
> compare
- before_count
- 1)
527 kvm_vz_queue_irq(vcpu
, MIPS_EXC_INT_TIMER
);
530 * Restore soft-timer, ignoring a small amount of negative drift due to
531 * delay between freeze_hrtimer and setting CP0_GTOffset.
533 kvm_mips_restore_hrtimer(vcpu
, before_time
, end_count
, -0x10000);
537 * kvm_vz_save_timer() - Save guest timer state.
538 * @vcpu: Virtual CPU.
540 * Save VZ guest timer state and switch to soft guest timer if hard timer was in
543 static void kvm_vz_save_timer(struct kvm_vcpu
*vcpu
)
545 struct mips_coproc
*cop0
= vcpu
->arch
.cop0
;
546 u32 gctl0
, compare
, cause
;
548 gctl0
= read_c0_guestctl0();
549 if (gctl0
& MIPS_GCTL0_GT
) {
550 /* disable guest use of hard timer */
551 write_c0_guestctl0(gctl0
& ~MIPS_GCTL0_GT
);
553 /* save hard timer state */
554 _kvm_vz_save_htimer(vcpu
, &compare
, &cause
);
556 compare
= read_gc0_compare();
557 cause
= read_gc0_cause();
560 /* save timer-related state to VCPU context */
561 kvm_write_sw_gc0_cause(cop0
, cause
);
562 kvm_write_sw_gc0_compare(cop0
, compare
);
566 * kvm_vz_lose_htimer() - Ensure hard guest timer is not in use.
567 * @vcpu: Virtual CPU.
569 * Transfers the state of the hard guest timer to the soft guest timer, leaving
570 * guest state intact so it can continue to be used with the soft timer.
572 void kvm_vz_lose_htimer(struct kvm_vcpu
*vcpu
)
574 u32 gctl0
, compare
, cause
;
577 gctl0
= read_c0_guestctl0();
578 if (gctl0
& MIPS_GCTL0_GT
) {
579 /* disable guest use of timer */
580 write_c0_guestctl0(gctl0
& ~MIPS_GCTL0_GT
);
582 /* switch to soft timer */
583 _kvm_vz_save_htimer(vcpu
, &compare
, &cause
);
585 /* leave soft timer in usable state */
586 _kvm_vz_restore_stimer(vcpu
, compare
, cause
);
592 * is_eva_access() - Find whether an instruction is an EVA memory accessor.
593 * @inst: 32-bit instruction encoding.
595 * Finds whether @inst encodes an EVA memory access instruction, which would
596 * indicate that emulation of it should access the user mode address space
597 * instead of the kernel mode address space. This matters for MUSUK segments
598 * which are TLB mapped for user mode but unmapped for kernel mode.
600 * Returns: Whether @inst encodes an EVA accessor instruction.
602 static bool is_eva_access(union mips_instruction inst
)
604 if (inst
.spec3_format
.opcode
!= spec3_op
)
607 switch (inst
.spec3_format
.func
) {
631 * is_eva_am_mapped() - Find whether an access mode is mapped.
632 * @vcpu: KVM VCPU state.
633 * @am: 3-bit encoded access mode.
634 * @eu: Segment becomes unmapped and uncached when Status.ERL=1.
636 * Decode @am to find whether it encodes a mapped segment for the current VCPU
637 * state. Where necessary @eu and the actual instruction causing the fault are
638 * taken into account to make the decision.
640 * Returns: Whether the VCPU faulted on a TLB mapped address.
642 static bool is_eva_am_mapped(struct kvm_vcpu
*vcpu
, unsigned int am
, bool eu
)
648 * Interpret access control mode. We assume address errors will already
649 * have been caught by the guest, leaving us with:
650 * AM UM SM KM 31..24 23..16
653 * MSK 2 010 TLB TLB 1
654 * MUSK 3 011 TLB TLB TLB 1
655 * MUSUK 4 100 TLB TLB Unm 0 1
656 * USK 5 101 Unm Unm 0 0
658 * UUSK 7 111 Unm Unm Unm 0 0
660 * We shift a magic value by AM across the sign bit to find if always
661 * TLB mapped, and if not shift by 8 again to find if it depends on KM.
663 am_lookup
= 0x70080000 << am
;
664 if ((s32
)am_lookup
< 0) {
667 * Always TLB mapped, unless SegCtl.EU && ERL
669 if (!eu
|| !(read_gc0_status() & ST0_ERL
))
673 if ((s32
)am_lookup
< 0) {
674 union mips_instruction inst
;
680 * TLB mapped if not in kernel mode
682 status
= read_gc0_status();
683 if (!(status
& (ST0_EXL
| ST0_ERL
)) &&
687 * EVA access instructions in kernel
688 * mode access user address space.
690 opc
= (u32
*)vcpu
->arch
.pc
;
691 if (vcpu
->arch
.host_cp0_cause
& CAUSEF_BD
)
693 err
= kvm_get_badinstr(opc
, vcpu
, &inst
.word
);
694 if (!err
&& is_eva_access(inst
))
703 * kvm_vz_gva_to_gpa() - Convert valid GVA to GPA.
704 * @vcpu: KVM VCPU state.
705 * @gva: Guest virtual address to convert.
706 * @gpa: Output guest physical address.
708 * Convert a guest virtual address (GVA) which is valid according to the guest
709 * context, to a guest physical address (GPA).
711 * Returns: 0 on success.
714 static int kvm_vz_gva_to_gpa(struct kvm_vcpu
*vcpu
, unsigned long gva
,
718 unsigned long segctl
;
720 if ((long)gva
== (s32
)gva32
) {
721 /* Handle canonical 32-bit virtual address */
722 if (cpu_guest_has_segments
) {
723 unsigned long mask
, pa
;
725 switch (gva32
>> 29) {
727 case 1: /* CFG5 (1GB) */
728 segctl
= read_gc0_segctl2() >> 16;
729 mask
= (unsigned long)0xfc0000000ull
;
732 case 3: /* CFG4 (1GB) */
733 segctl
= read_gc0_segctl2();
734 mask
= (unsigned long)0xfc0000000ull
;
736 case 4: /* CFG3 (512MB) */
737 segctl
= read_gc0_segctl1() >> 16;
738 mask
= (unsigned long)0xfe0000000ull
;
740 case 5: /* CFG2 (512MB) */
741 segctl
= read_gc0_segctl1();
742 mask
= (unsigned long)0xfe0000000ull
;
744 case 6: /* CFG1 (512MB) */
745 segctl
= read_gc0_segctl0() >> 16;
746 mask
= (unsigned long)0xfe0000000ull
;
748 case 7: /* CFG0 (512MB) */
749 segctl
= read_gc0_segctl0();
750 mask
= (unsigned long)0xfe0000000ull
;
754 * GCC 4.9 isn't smart enough to figure out that
755 * segctl and mask are always initialised.
760 if (is_eva_am_mapped(vcpu
, (segctl
>> 4) & 0x7,
764 /* Unmapped, find guest physical address */
765 pa
= (segctl
<< 20) & mask
;
769 } else if ((s32
)gva32
< (s32
)0xc0000000) {
770 /* legacy unmapped KSeg0 or KSeg1 */
771 *gpa
= gva32
& 0x1fffffff;
775 } else if ((gva
& 0xc000000000000000) == 0x8000000000000000) {
777 if (cpu_guest_has_segments
) {
779 * Each of the 8 regions can be overridden by SegCtl2.XR
780 * to use SegCtl1.XAM.
782 segctl
= read_gc0_segctl2();
783 if (segctl
& (1ull << (56 + ((gva
>> 59) & 0x7)))) {
784 segctl
= read_gc0_segctl1();
785 if (is_eva_am_mapped(vcpu
, (segctl
>> 59) & 0x7,
792 * Traditionally fully unmapped.
793 * Bits 61:59 specify the CCA, which we can just mask off here.
794 * Bits 58:PABITS should be zero, but we shouldn't have got here
797 *gpa
= gva
& 0x07ffffffffffffff;
803 return kvm_vz_guest_tlb_lookup(vcpu
, gva
, gpa
);
807 * kvm_vz_badvaddr_to_gpa() - Convert GVA BadVAddr from root exception to GPA.
808 * @vcpu: KVM VCPU state.
809 * @badvaddr: Root BadVAddr.
810 * @gpa: Output guest physical address.
812 * VZ implementations are permitted to report guest virtual addresses (GVA) in
813 * BadVAddr on a root exception during guest execution, instead of the more
814 * convenient guest physical addresses (GPA). When we get a GVA, this function
815 * converts it to a GPA, taking into account guest segmentation and guest TLB
818 * Returns: 0 on success.
821 static int kvm_vz_badvaddr_to_gpa(struct kvm_vcpu
*vcpu
, unsigned long badvaddr
,
824 unsigned int gexccode
= (vcpu
->arch
.host_cp0_guestctl0
&
825 MIPS_GCTL0_GEXC
) >> MIPS_GCTL0_GEXC_SHIFT
;
827 /* If BadVAddr is GPA, then all is well in the world */
828 if (likely(gexccode
== MIPS_GCTL0_GEXC_GPA
)) {
833 /* Otherwise we'd expect it to be GVA ... */
834 if (WARN(gexccode
!= MIPS_GCTL0_GEXC_GVA
,
835 "Unexpected gexccode %#x\n", gexccode
))
838 /* ... and we need to perform the GVA->GPA translation in software */
839 return kvm_vz_gva_to_gpa(vcpu
, badvaddr
, gpa
);
842 static int kvm_trap_vz_no_handler(struct kvm_vcpu
*vcpu
)
844 u32
*opc
= (u32
*) vcpu
->arch
.pc
;
845 u32 cause
= vcpu
->arch
.host_cp0_cause
;
846 u32 exccode
= (cause
& CAUSEF_EXCCODE
) >> CAUSEB_EXCCODE
;
847 unsigned long badvaddr
= vcpu
->arch
.host_cp0_badvaddr
;
851 * Fetch the instruction.
853 if (cause
& CAUSEF_BD
)
855 kvm_get_badinstr(opc
, vcpu
, &inst
);
857 kvm_err("Exception Code: %d not handled @ PC: %p, inst: 0x%08x BadVaddr: %#lx Status: %#x\n",
858 exccode
, opc
, inst
, badvaddr
,
860 kvm_arch_vcpu_dump_regs(vcpu
);
861 vcpu
->run
->exit_reason
= KVM_EXIT_INTERNAL_ERROR
;
865 static unsigned long mips_process_maar(unsigned int op
, unsigned long val
)
867 /* Mask off unused bits */
868 unsigned long mask
= 0xfffff000 | MIPS_MAAR_S
| MIPS_MAAR_VL
;
870 if (read_gc0_pagegrain() & PG_ELPA
)
871 mask
|= 0x00ffffff00000000ull
;
872 if (cpu_guest_has_mvh
)
873 mask
|= MIPS_MAAR_VH
;
875 /* Set or clear VH */
878 val
&= ~MIPS_MAAR_VH
;
879 } else if (op
== dmtc_op
) {
880 /* set VH to match VL */
881 val
&= ~MIPS_MAAR_VH
;
882 if (val
& MIPS_MAAR_VL
)
889 static void kvm_write_maari(struct kvm_vcpu
*vcpu
, unsigned long val
)
891 struct mips_coproc
*cop0
= vcpu
->arch
.cop0
;
893 val
&= MIPS_MAARI_INDEX
;
894 if (val
== MIPS_MAARI_INDEX
)
895 kvm_write_sw_gc0_maari(cop0
, ARRAY_SIZE(vcpu
->arch
.maar
) - 1);
896 else if (val
< ARRAY_SIZE(vcpu
->arch
.maar
))
897 kvm_write_sw_gc0_maari(cop0
, val
);
900 static enum emulation_result
kvm_vz_gpsi_cop0(union mips_instruction inst
,
903 struct kvm_vcpu
*vcpu
)
905 struct mips_coproc
*cop0
= vcpu
->arch
.cop0
;
906 enum emulation_result er
= EMULATE_DONE
;
908 unsigned long curr_pc
;
912 * Update PC and hold onto current PC in case there is
913 * an error and we want to rollback the PC
915 curr_pc
= vcpu
->arch
.pc
;
916 er
= update_pc(vcpu
, cause
);
917 if (er
== EMULATE_FAIL
)
920 if (inst
.co_format
.co
) {
921 switch (inst
.co_format
.func
) {
923 er
= kvm_mips_emul_wait(vcpu
);
929 rt
= inst
.c0r_format
.rt
;
930 rd
= inst
.c0r_format
.rd
;
931 sel
= inst
.c0r_format
.sel
;
933 switch (inst
.c0r_format
.rs
) {
936 #ifdef CONFIG_KVM_MIPS_DEBUG_COP0_COUNTERS
937 cop0
->stat
[rd
][sel
]++;
939 if (rd
== MIPS_CP0_COUNT
&&
940 sel
== 0) { /* Count */
941 val
= kvm_mips_read_count(vcpu
);
942 } else if (rd
== MIPS_CP0_COMPARE
&&
943 sel
== 0) { /* Compare */
944 val
= read_gc0_compare();
945 } else if (rd
== MIPS_CP0_LLADDR
&&
946 sel
== 0) { /* LLAddr */
947 if (cpu_guest_has_rw_llb
)
948 val
= read_gc0_lladdr() &
952 } else if (rd
== MIPS_CP0_LLADDR
&&
953 sel
== 1 && /* MAAR */
954 cpu_guest_has_maar
&&
955 !cpu_guest_has_dyn_maar
) {
956 /* MAARI must be in range */
957 BUG_ON(kvm_read_sw_gc0_maari(cop0
) >=
958 ARRAY_SIZE(vcpu
->arch
.maar
));
959 val
= vcpu
->arch
.maar
[
960 kvm_read_sw_gc0_maari(cop0
)];
961 } else if ((rd
== MIPS_CP0_PRID
&&
962 (sel
== 0 || /* PRid */
963 sel
== 2 || /* CDMMBase */
964 sel
== 3)) || /* CMGCRBase */
965 (rd
== MIPS_CP0_STATUS
&&
966 (sel
== 2 || /* SRSCtl */
967 sel
== 3)) || /* SRSMap */
968 (rd
== MIPS_CP0_CONFIG
&&
969 (sel
== 7)) || /* Config7 */
970 (rd
== MIPS_CP0_LLADDR
&&
971 (sel
== 2) && /* MAARI */
972 cpu_guest_has_maar
&&
973 !cpu_guest_has_dyn_maar
) ||
974 (rd
== MIPS_CP0_ERRCTL
&&
975 (sel
== 0))) { /* ErrCtl */
976 val
= cop0
->reg
[rd
][sel
];
982 if (er
!= EMULATE_FAIL
) {
984 if (inst
.c0r_format
.rs
== mfc_op
)
986 vcpu
->arch
.gprs
[rt
] = val
;
989 trace_kvm_hwr(vcpu
, (inst
.c0r_format
.rs
== mfc_op
) ?
990 KVM_TRACE_MFC0
: KVM_TRACE_DMFC0
,
991 KVM_TRACE_COP0(rd
, sel
), val
);
996 #ifdef CONFIG_KVM_MIPS_DEBUG_COP0_COUNTERS
997 cop0
->stat
[rd
][sel
]++;
999 val
= vcpu
->arch
.gprs
[rt
];
1000 trace_kvm_hwr(vcpu
, (inst
.c0r_format
.rs
== mtc_op
) ?
1001 KVM_TRACE_MTC0
: KVM_TRACE_DMTC0
,
1002 KVM_TRACE_COP0(rd
, sel
), val
);
1004 if (rd
== MIPS_CP0_COUNT
&&
1005 sel
== 0) { /* Count */
1006 kvm_vz_lose_htimer(vcpu
);
1007 kvm_mips_write_count(vcpu
, vcpu
->arch
.gprs
[rt
]);
1008 } else if (rd
== MIPS_CP0_COMPARE
&&
1009 sel
== 0) { /* Compare */
1010 kvm_mips_write_compare(vcpu
,
1011 vcpu
->arch
.gprs
[rt
],
1013 } else if (rd
== MIPS_CP0_LLADDR
&&
1014 sel
== 0) { /* LLAddr */
1016 * P5600 generates GPSI on guest MTC0 LLAddr.
1017 * Only allow the guest to clear LLB.
1019 if (cpu_guest_has_rw_llb
&&
1020 !(val
& MIPS_LLADDR_LLB
))
1021 write_gc0_lladdr(0);
1022 } else if (rd
== MIPS_CP0_LLADDR
&&
1023 sel
== 1 && /* MAAR */
1024 cpu_guest_has_maar
&&
1025 !cpu_guest_has_dyn_maar
) {
1026 val
= mips_process_maar(inst
.c0r_format
.rs
,
1029 /* MAARI must be in range */
1030 BUG_ON(kvm_read_sw_gc0_maari(cop0
) >=
1031 ARRAY_SIZE(vcpu
->arch
.maar
));
1032 vcpu
->arch
.maar
[kvm_read_sw_gc0_maari(cop0
)] =
1034 } else if (rd
== MIPS_CP0_LLADDR
&&
1035 (sel
== 2) && /* MAARI */
1036 cpu_guest_has_maar
&&
1037 !cpu_guest_has_dyn_maar
) {
1038 kvm_write_maari(vcpu
, val
);
1039 } else if (rd
== MIPS_CP0_ERRCTL
&&
1040 (sel
== 0)) { /* ErrCtl */
1041 /* ignore the written value */
1052 /* Rollback PC only if emulation was unsuccessful */
1053 if (er
== EMULATE_FAIL
) {
1054 kvm_err("[%#lx]%s: unsupported cop0 instruction 0x%08x\n",
1055 curr_pc
, __func__
, inst
.word
);
1057 vcpu
->arch
.pc
= curr_pc
;
1063 static enum emulation_result
kvm_vz_gpsi_cache(union mips_instruction inst
,
1064 u32
*opc
, u32 cause
,
1065 struct kvm_run
*run
,
1066 struct kvm_vcpu
*vcpu
)
1068 enum emulation_result er
= EMULATE_DONE
;
1069 u32 cache
, op_inst
, op
, base
;
1071 struct kvm_vcpu_arch
*arch
= &vcpu
->arch
;
1072 unsigned long va
, curr_pc
;
1075 * Update PC and hold onto current PC in case there is
1076 * an error and we want to rollback the PC
1078 curr_pc
= vcpu
->arch
.pc
;
1079 er
= update_pc(vcpu
, cause
);
1080 if (er
== EMULATE_FAIL
)
1083 base
= inst
.i_format
.rs
;
1084 op_inst
= inst
.i_format
.rt
;
1085 if (cpu_has_mips_r6
)
1086 offset
= inst
.spec3_format
.simmediate
;
1088 offset
= inst
.i_format
.simmediate
;
1089 cache
= op_inst
& CacheOp_Cache
;
1090 op
= op_inst
& CacheOp_Op
;
1092 va
= arch
->gprs
[base
] + offset
;
1094 kvm_debug("CACHE (cache: %#x, op: %#x, base[%d]: %#lx, offset: %#x\n",
1095 cache
, op
, base
, arch
->gprs
[base
], offset
);
1097 /* Secondary or tirtiary cache ops ignored */
1098 if (cache
!= Cache_I
&& cache
!= Cache_D
)
1099 return EMULATE_DONE
;
1102 case Index_Invalidate_I
:
1103 flush_icache_line_indexed(va
);
1104 return EMULATE_DONE
;
1105 case Index_Writeback_Inv_D
:
1106 flush_dcache_line_indexed(va
);
1107 return EMULATE_DONE
;
1108 case Hit_Invalidate_I
:
1109 case Hit_Invalidate_D
:
1110 case Hit_Writeback_Inv_D
:
1111 if (boot_cpu_type() == CPU_CAVIUM_OCTEON3
) {
1112 /* We can just flush entire icache */
1113 local_flush_icache_range(0, 0);
1114 return EMULATE_DONE
;
1117 /* So far, other platforms support guest hit cache ops */
1123 kvm_err("@ %#lx/%#lx CACHE (cache: %#x, op: %#x, base[%d]: %#lx, offset: %#x\n",
1124 curr_pc
, vcpu
->arch
.gprs
[31], cache
, op
, base
, arch
->gprs
[base
],
1127 vcpu
->arch
.pc
= curr_pc
;
1129 return EMULATE_FAIL
;
1132 static enum emulation_result
kvm_trap_vz_handle_gpsi(u32 cause
, u32
*opc
,
1133 struct kvm_vcpu
*vcpu
)
1135 enum emulation_result er
= EMULATE_DONE
;
1136 struct kvm_vcpu_arch
*arch
= &vcpu
->arch
;
1137 struct kvm_run
*run
= vcpu
->run
;
1138 union mips_instruction inst
;
1143 * Fetch the instruction.
1145 if (cause
& CAUSEF_BD
)
1147 err
= kvm_get_badinstr(opc
, vcpu
, &inst
.word
);
1149 return EMULATE_FAIL
;
1151 switch (inst
.r_format
.opcode
) {
1153 er
= kvm_vz_gpsi_cop0(inst
, opc
, cause
, run
, vcpu
);
1155 #ifndef CONFIG_CPU_MIPSR6
1157 trace_kvm_exit(vcpu
, KVM_TRACE_EXIT_CACHE
);
1158 er
= kvm_vz_gpsi_cache(inst
, opc
, cause
, run
, vcpu
);
1162 switch (inst
.spec3_format
.func
) {
1163 #ifdef CONFIG_CPU_MIPSR6
1165 trace_kvm_exit(vcpu
, KVM_TRACE_EXIT_CACHE
);
1166 er
= kvm_vz_gpsi_cache(inst
, opc
, cause
, run
, vcpu
);
1170 if (inst
.r_format
.rs
|| (inst
.r_format
.re
>> 3))
1173 rd
= inst
.r_format
.rd
;
1174 rt
= inst
.r_format
.rt
;
1175 sel
= inst
.r_format
.re
& 0x7;
1178 case MIPS_HWR_CC
: /* Read count register */
1180 (long)(int)kvm_mips_read_count(vcpu
);
1183 trace_kvm_hwr(vcpu
, KVM_TRACE_RDHWR
,
1184 KVM_TRACE_HWR(rd
, sel
), 0);
1188 trace_kvm_hwr(vcpu
, KVM_TRACE_RDHWR
,
1189 KVM_TRACE_HWR(rd
, sel
), arch
->gprs
[rt
]);
1191 er
= update_pc(vcpu
, cause
);
1200 kvm_err("GPSI exception not supported (%p/%#x)\n",
1202 kvm_arch_vcpu_dump_regs(vcpu
);
1210 static enum emulation_result
kvm_trap_vz_handle_gsfc(u32 cause
, u32
*opc
,
1211 struct kvm_vcpu
*vcpu
)
1213 enum emulation_result er
= EMULATE_DONE
;
1214 struct kvm_vcpu_arch
*arch
= &vcpu
->arch
;
1215 union mips_instruction inst
;
1219 * Fetch the instruction.
1221 if (cause
& CAUSEF_BD
)
1223 err
= kvm_get_badinstr(opc
, vcpu
, &inst
.word
);
1225 return EMULATE_FAIL
;
1227 /* complete MTC0 on behalf of guest and advance EPC */
1228 if (inst
.c0r_format
.opcode
== cop0_op
&&
1229 inst
.c0r_format
.rs
== mtc_op
&&
1230 inst
.c0r_format
.z
== 0) {
1231 int rt
= inst
.c0r_format
.rt
;
1232 int rd
= inst
.c0r_format
.rd
;
1233 int sel
= inst
.c0r_format
.sel
;
1234 unsigned int val
= arch
->gprs
[rt
];
1235 unsigned int old_val
, change
;
1237 trace_kvm_hwr(vcpu
, KVM_TRACE_MTC0
, KVM_TRACE_COP0(rd
, sel
),
1240 if ((rd
== MIPS_CP0_STATUS
) && (sel
== 0)) {
1241 /* FR bit should read as zero if no FPU */
1242 if (!kvm_mips_guest_has_fpu(&vcpu
->arch
))
1243 val
&= ~(ST0_CU1
| ST0_FR
);
1246 * Also don't allow FR to be set if host doesn't support
1249 if (!(boot_cpu_data
.fpu_id
& MIPS_FPIR_F64
))
1252 old_val
= read_gc0_status();
1253 change
= val
^ old_val
;
1255 if (change
& ST0_FR
) {
1257 * FPU and Vector register state is made
1258 * UNPREDICTABLE by a change of FR, so don't
1259 * even bother saving it.
1265 * If MSA state is already live, it is undefined how it
1266 * interacts with FR=0 FPU state, and we don't want to
1267 * hit reserved instruction exceptions trying to save
1268 * the MSA state later when CU=1 && FR=1, so play it
1269 * safe and save it first.
1271 if (change
& ST0_CU1
&& !(val
& ST0_FR
) &&
1272 vcpu
->arch
.aux_inuse
& KVM_MIPS_AUX_MSA
)
1275 write_gc0_status(val
);
1276 } else if ((rd
== MIPS_CP0_CAUSE
) && (sel
== 0)) {
1277 u32 old_cause
= read_gc0_cause();
1278 u32 change
= old_cause
^ val
;
1280 /* DC bit enabling/disabling timer? */
1281 if (change
& CAUSEF_DC
) {
1282 if (val
& CAUSEF_DC
) {
1283 kvm_vz_lose_htimer(vcpu
);
1284 kvm_mips_count_disable_cause(vcpu
);
1286 kvm_mips_count_enable_cause(vcpu
);
1290 /* Only certain bits are RW to the guest */
1291 change
&= (CAUSEF_DC
| CAUSEF_IV
| CAUSEF_WP
|
1292 CAUSEF_IP0
| CAUSEF_IP1
);
1294 /* WP can only be cleared */
1295 change
&= ~CAUSEF_WP
| old_cause
;
1297 write_gc0_cause(old_cause
^ change
);
1298 } else if ((rd
== MIPS_CP0_STATUS
) && (sel
== 1)) { /* IntCtl */
1299 write_gc0_intctl(val
);
1300 } else if ((rd
== MIPS_CP0_CONFIG
) && (sel
== 5)) {
1301 old_val
= read_gc0_config5();
1302 change
= val
^ old_val
;
1303 /* Handle changes in FPU/MSA modes */
1307 * Propagate FRE changes immediately if the FPU
1308 * context is already loaded.
1310 if (change
& MIPS_CONF5_FRE
&&
1311 vcpu
->arch
.aux_inuse
& KVM_MIPS_AUX_FPU
)
1312 change_c0_config5(MIPS_CONF5_FRE
, val
);
1317 (change
& kvm_vz_config5_guest_wrmask(vcpu
));
1318 write_gc0_config5(val
);
1320 kvm_err("Handle GSFC, unsupported field change @ %p: %#x\n",
1325 if (er
!= EMULATE_FAIL
)
1326 er
= update_pc(vcpu
, cause
);
1328 kvm_err("Handle GSFC, unrecognized instruction @ %p: %#x\n",
1336 static enum emulation_result
kvm_trap_vz_handle_ghfc(u32 cause
, u32
*opc
,
1337 struct kvm_vcpu
*vcpu
)
1340 * Presumably this is due to MC (guest mode change), so lets trace some
1343 trace_kvm_guest_mode_change(vcpu
);
1345 return EMULATE_DONE
;
1348 static enum emulation_result
kvm_trap_vz_handle_hc(u32 cause
, u32
*opc
,
1349 struct kvm_vcpu
*vcpu
)
1351 enum emulation_result er
;
1352 union mips_instruction inst
;
1353 unsigned long curr_pc
;
1356 if (cause
& CAUSEF_BD
)
1358 err
= kvm_get_badinstr(opc
, vcpu
, &inst
.word
);
1360 return EMULATE_FAIL
;
1363 * Update PC and hold onto current PC in case there is
1364 * an error and we want to rollback the PC
1366 curr_pc
= vcpu
->arch
.pc
;
1367 er
= update_pc(vcpu
, cause
);
1368 if (er
== EMULATE_FAIL
)
1371 er
= kvm_mips_emul_hypcall(vcpu
, inst
);
1372 if (er
== EMULATE_FAIL
)
1373 vcpu
->arch
.pc
= curr_pc
;
1378 static enum emulation_result
kvm_trap_vz_no_handler_guest_exit(u32 gexccode
,
1381 struct kvm_vcpu
*vcpu
)
1386 * Fetch the instruction.
1388 if (cause
& CAUSEF_BD
)
1390 kvm_get_badinstr(opc
, vcpu
, &inst
);
1392 kvm_err("Guest Exception Code: %d not yet handled @ PC: %p, inst: 0x%08x Status: %#x\n",
1393 gexccode
, opc
, inst
, read_gc0_status());
1395 return EMULATE_FAIL
;
1398 static int kvm_trap_vz_handle_guest_exit(struct kvm_vcpu
*vcpu
)
1400 u32
*opc
= (u32
*) vcpu
->arch
.pc
;
1401 u32 cause
= vcpu
->arch
.host_cp0_cause
;
1402 enum emulation_result er
= EMULATE_DONE
;
1403 u32 gexccode
= (vcpu
->arch
.host_cp0_guestctl0
&
1404 MIPS_GCTL0_GEXC
) >> MIPS_GCTL0_GEXC_SHIFT
;
1405 int ret
= RESUME_GUEST
;
1407 trace_kvm_exit(vcpu
, KVM_TRACE_EXIT_GEXCCODE_BASE
+ gexccode
);
1409 case MIPS_GCTL0_GEXC_GPSI
:
1410 ++vcpu
->stat
.vz_gpsi_exits
;
1411 er
= kvm_trap_vz_handle_gpsi(cause
, opc
, vcpu
);
1413 case MIPS_GCTL0_GEXC_GSFC
:
1414 ++vcpu
->stat
.vz_gsfc_exits
;
1415 er
= kvm_trap_vz_handle_gsfc(cause
, opc
, vcpu
);
1417 case MIPS_GCTL0_GEXC_HC
:
1418 ++vcpu
->stat
.vz_hc_exits
;
1419 er
= kvm_trap_vz_handle_hc(cause
, opc
, vcpu
);
1421 case MIPS_GCTL0_GEXC_GRR
:
1422 ++vcpu
->stat
.vz_grr_exits
;
1423 er
= kvm_trap_vz_no_handler_guest_exit(gexccode
, cause
, opc
,
1426 case MIPS_GCTL0_GEXC_GVA
:
1427 ++vcpu
->stat
.vz_gva_exits
;
1428 er
= kvm_trap_vz_no_handler_guest_exit(gexccode
, cause
, opc
,
1431 case MIPS_GCTL0_GEXC_GHFC
:
1432 ++vcpu
->stat
.vz_ghfc_exits
;
1433 er
= kvm_trap_vz_handle_ghfc(cause
, opc
, vcpu
);
1435 case MIPS_GCTL0_GEXC_GPA
:
1436 ++vcpu
->stat
.vz_gpa_exits
;
1437 er
= kvm_trap_vz_no_handler_guest_exit(gexccode
, cause
, opc
,
1441 ++vcpu
->stat
.vz_resvd_exits
;
1442 er
= kvm_trap_vz_no_handler_guest_exit(gexccode
, cause
, opc
,
1448 if (er
== EMULATE_DONE
) {
1450 } else if (er
== EMULATE_HYPERCALL
) {
1451 ret
= kvm_mips_handle_hypcall(vcpu
);
1453 vcpu
->run
->exit_reason
= KVM_EXIT_INTERNAL_ERROR
;
1460 * kvm_trap_vz_handle_cop_unusuable() - Guest used unusable coprocessor.
1461 * @vcpu: Virtual CPU context.
1463 * Handle when the guest attempts to use a coprocessor which hasn't been allowed
1464 * by the root context.
1466 static int kvm_trap_vz_handle_cop_unusable(struct kvm_vcpu
*vcpu
)
1468 struct kvm_run
*run
= vcpu
->run
;
1469 u32 cause
= vcpu
->arch
.host_cp0_cause
;
1470 enum emulation_result er
= EMULATE_FAIL
;
1471 int ret
= RESUME_GUEST
;
1473 if (((cause
& CAUSEF_CE
) >> CAUSEB_CE
) == 1) {
1475 * If guest FPU not present, the FPU operation should have been
1476 * treated as a reserved instruction!
1477 * If FPU already in use, we shouldn't get this at all.
1479 if (WARN_ON(!kvm_mips_guest_has_fpu(&vcpu
->arch
) ||
1480 vcpu
->arch
.aux_inuse
& KVM_MIPS_AUX_FPU
)) {
1482 return EMULATE_FAIL
;
1488 /* other coprocessors not handled */
1496 run
->exit_reason
= KVM_EXIT_INTERNAL_ERROR
;
1507 * kvm_trap_vz_handle_msa_disabled() - Guest used MSA while disabled in root.
1508 * @vcpu: Virtual CPU context.
1510 * Handle when the guest attempts to use MSA when it is disabled in the root
1513 static int kvm_trap_vz_handle_msa_disabled(struct kvm_vcpu
*vcpu
)
1515 struct kvm_run
*run
= vcpu
->run
;
1518 * If MSA not present or not exposed to guest or FR=0, the MSA operation
1519 * should have been treated as a reserved instruction!
1520 * Same if CU1=1, FR=0.
1521 * If MSA already in use, we shouldn't get this at all.
1523 if (!kvm_mips_guest_has_msa(&vcpu
->arch
) ||
1524 (read_gc0_status() & (ST0_CU1
| ST0_FR
)) == ST0_CU1
||
1525 !(read_gc0_config5() & MIPS_CONF5_MSAEN
) ||
1526 vcpu
->arch
.aux_inuse
& KVM_MIPS_AUX_MSA
) {
1527 run
->exit_reason
= KVM_EXIT_INTERNAL_ERROR
;
1533 return RESUME_GUEST
;
1536 static int kvm_trap_vz_handle_tlb_ld_miss(struct kvm_vcpu
*vcpu
)
1538 struct kvm_run
*run
= vcpu
->run
;
1539 u32
*opc
= (u32
*) vcpu
->arch
.pc
;
1540 u32 cause
= vcpu
->arch
.host_cp0_cause
;
1541 ulong badvaddr
= vcpu
->arch
.host_cp0_badvaddr
;
1542 union mips_instruction inst
;
1543 enum emulation_result er
= EMULATE_DONE
;
1544 int err
, ret
= RESUME_GUEST
;
1546 if (kvm_mips_handle_vz_root_tlb_fault(badvaddr
, vcpu
, false)) {
1547 /* A code fetch fault doesn't count as an MMIO */
1548 if (kvm_is_ifetch_fault(&vcpu
->arch
)) {
1549 run
->exit_reason
= KVM_EXIT_INTERNAL_ERROR
;
1553 /* Fetch the instruction */
1554 if (cause
& CAUSEF_BD
)
1556 err
= kvm_get_badinstr(opc
, vcpu
, &inst
.word
);
1558 run
->exit_reason
= KVM_EXIT_INTERNAL_ERROR
;
1563 er
= kvm_mips_emulate_load(inst
, cause
, run
, vcpu
);
1564 if (er
== EMULATE_FAIL
) {
1565 kvm_err("Guest Emulate Load from MMIO space failed: PC: %p, BadVaddr: %#lx\n",
1567 run
->exit_reason
= KVM_EXIT_INTERNAL_ERROR
;
1571 if (er
== EMULATE_DONE
) {
1573 } else if (er
== EMULATE_DO_MMIO
) {
1574 run
->exit_reason
= KVM_EXIT_MMIO
;
1577 run
->exit_reason
= KVM_EXIT_INTERNAL_ERROR
;
1583 static int kvm_trap_vz_handle_tlb_st_miss(struct kvm_vcpu
*vcpu
)
1585 struct kvm_run
*run
= vcpu
->run
;
1586 u32
*opc
= (u32
*) vcpu
->arch
.pc
;
1587 u32 cause
= vcpu
->arch
.host_cp0_cause
;
1588 ulong badvaddr
= vcpu
->arch
.host_cp0_badvaddr
;
1589 union mips_instruction inst
;
1590 enum emulation_result er
= EMULATE_DONE
;
1592 int ret
= RESUME_GUEST
;
1594 /* Just try the access again if we couldn't do the translation */
1595 if (kvm_vz_badvaddr_to_gpa(vcpu
, badvaddr
, &badvaddr
))
1596 return RESUME_GUEST
;
1597 vcpu
->arch
.host_cp0_badvaddr
= badvaddr
;
1599 if (kvm_mips_handle_vz_root_tlb_fault(badvaddr
, vcpu
, true)) {
1600 /* Fetch the instruction */
1601 if (cause
& CAUSEF_BD
)
1603 err
= kvm_get_badinstr(opc
, vcpu
, &inst
.word
);
1605 run
->exit_reason
= KVM_EXIT_INTERNAL_ERROR
;
1610 er
= kvm_mips_emulate_store(inst
, cause
, run
, vcpu
);
1611 if (er
== EMULATE_FAIL
) {
1612 kvm_err("Guest Emulate Store to MMIO space failed: PC: %p, BadVaddr: %#lx\n",
1614 run
->exit_reason
= KVM_EXIT_INTERNAL_ERROR
;
1618 if (er
== EMULATE_DONE
) {
1620 } else if (er
== EMULATE_DO_MMIO
) {
1621 run
->exit_reason
= KVM_EXIT_MMIO
;
1624 run
->exit_reason
= KVM_EXIT_INTERNAL_ERROR
;
1630 static u64 kvm_vz_get_one_regs
[] = {
1631 KVM_REG_MIPS_CP0_INDEX
,
1632 KVM_REG_MIPS_CP0_ENTRYLO0
,
1633 KVM_REG_MIPS_CP0_ENTRYLO1
,
1634 KVM_REG_MIPS_CP0_CONTEXT
,
1635 KVM_REG_MIPS_CP0_PAGEMASK
,
1636 KVM_REG_MIPS_CP0_PAGEGRAIN
,
1637 KVM_REG_MIPS_CP0_WIRED
,
1638 KVM_REG_MIPS_CP0_HWRENA
,
1639 KVM_REG_MIPS_CP0_BADVADDR
,
1640 KVM_REG_MIPS_CP0_COUNT
,
1641 KVM_REG_MIPS_CP0_ENTRYHI
,
1642 KVM_REG_MIPS_CP0_COMPARE
,
1643 KVM_REG_MIPS_CP0_STATUS
,
1644 KVM_REG_MIPS_CP0_INTCTL
,
1645 KVM_REG_MIPS_CP0_CAUSE
,
1646 KVM_REG_MIPS_CP0_EPC
,
1647 KVM_REG_MIPS_CP0_PRID
,
1648 KVM_REG_MIPS_CP0_EBASE
,
1649 KVM_REG_MIPS_CP0_CONFIG
,
1650 KVM_REG_MIPS_CP0_CONFIG1
,
1651 KVM_REG_MIPS_CP0_CONFIG2
,
1652 KVM_REG_MIPS_CP0_CONFIG3
,
1653 KVM_REG_MIPS_CP0_CONFIG4
,
1654 KVM_REG_MIPS_CP0_CONFIG5
,
1656 KVM_REG_MIPS_CP0_XCONTEXT
,
1658 KVM_REG_MIPS_CP0_ERROREPC
,
1660 KVM_REG_MIPS_COUNT_CTL
,
1661 KVM_REG_MIPS_COUNT_RESUME
,
1662 KVM_REG_MIPS_COUNT_HZ
,
1665 static u64 kvm_vz_get_one_regs_contextconfig
[] = {
1666 KVM_REG_MIPS_CP0_CONTEXTCONFIG
,
1668 KVM_REG_MIPS_CP0_XCONTEXTCONFIG
,
1672 static u64 kvm_vz_get_one_regs_segments
[] = {
1673 KVM_REG_MIPS_CP0_SEGCTL0
,
1674 KVM_REG_MIPS_CP0_SEGCTL1
,
1675 KVM_REG_MIPS_CP0_SEGCTL2
,
1678 static u64 kvm_vz_get_one_regs_htw
[] = {
1679 KVM_REG_MIPS_CP0_PWBASE
,
1680 KVM_REG_MIPS_CP0_PWFIELD
,
1681 KVM_REG_MIPS_CP0_PWSIZE
,
1682 KVM_REG_MIPS_CP0_PWCTL
,
1685 static u64 kvm_vz_get_one_regs_kscratch
[] = {
1686 KVM_REG_MIPS_CP0_KSCRATCH1
,
1687 KVM_REG_MIPS_CP0_KSCRATCH2
,
1688 KVM_REG_MIPS_CP0_KSCRATCH3
,
1689 KVM_REG_MIPS_CP0_KSCRATCH4
,
1690 KVM_REG_MIPS_CP0_KSCRATCH5
,
1691 KVM_REG_MIPS_CP0_KSCRATCH6
,
1694 static unsigned long kvm_vz_num_regs(struct kvm_vcpu
*vcpu
)
1698 ret
= ARRAY_SIZE(kvm_vz_get_one_regs
);
1699 if (cpu_guest_has_userlocal
)
1701 if (cpu_guest_has_badinstr
)
1703 if (cpu_guest_has_badinstrp
)
1705 if (cpu_guest_has_contextconfig
)
1706 ret
+= ARRAY_SIZE(kvm_vz_get_one_regs_contextconfig
);
1707 if (cpu_guest_has_segments
)
1708 ret
+= ARRAY_SIZE(kvm_vz_get_one_regs_segments
);
1709 if (cpu_guest_has_htw
)
1710 ret
+= ARRAY_SIZE(kvm_vz_get_one_regs_htw
);
1711 if (cpu_guest_has_maar
&& !cpu_guest_has_dyn_maar
)
1712 ret
+= 1 + ARRAY_SIZE(vcpu
->arch
.maar
);
1713 ret
+= __arch_hweight8(cpu_data
[0].guest
.kscratch_mask
);
1718 static int kvm_vz_copy_reg_indices(struct kvm_vcpu
*vcpu
, u64 __user
*indices
)
1723 if (copy_to_user(indices
, kvm_vz_get_one_regs
,
1724 sizeof(kvm_vz_get_one_regs
)))
1726 indices
+= ARRAY_SIZE(kvm_vz_get_one_regs
);
1728 if (cpu_guest_has_userlocal
) {
1729 index
= KVM_REG_MIPS_CP0_USERLOCAL
;
1730 if (copy_to_user(indices
, &index
, sizeof(index
)))
1734 if (cpu_guest_has_badinstr
) {
1735 index
= KVM_REG_MIPS_CP0_BADINSTR
;
1736 if (copy_to_user(indices
, &index
, sizeof(index
)))
1740 if (cpu_guest_has_badinstrp
) {
1741 index
= KVM_REG_MIPS_CP0_BADINSTRP
;
1742 if (copy_to_user(indices
, &index
, sizeof(index
)))
1746 if (cpu_guest_has_contextconfig
) {
1747 if (copy_to_user(indices
, kvm_vz_get_one_regs_contextconfig
,
1748 sizeof(kvm_vz_get_one_regs_contextconfig
)))
1750 indices
+= ARRAY_SIZE(kvm_vz_get_one_regs_contextconfig
);
1752 if (cpu_guest_has_segments
) {
1753 if (copy_to_user(indices
, kvm_vz_get_one_regs_segments
,
1754 sizeof(kvm_vz_get_one_regs_segments
)))
1756 indices
+= ARRAY_SIZE(kvm_vz_get_one_regs_segments
);
1758 if (cpu_guest_has_htw
) {
1759 if (copy_to_user(indices
, kvm_vz_get_one_regs_htw
,
1760 sizeof(kvm_vz_get_one_regs_htw
)))
1762 indices
+= ARRAY_SIZE(kvm_vz_get_one_regs_htw
);
1764 if (cpu_guest_has_maar
&& !cpu_guest_has_dyn_maar
) {
1765 for (i
= 0; i
< ARRAY_SIZE(vcpu
->arch
.maar
); ++i
) {
1766 index
= KVM_REG_MIPS_CP0_MAAR(i
);
1767 if (copy_to_user(indices
, &index
, sizeof(index
)))
1772 index
= KVM_REG_MIPS_CP0_MAARI
;
1773 if (copy_to_user(indices
, &index
, sizeof(index
)))
1777 for (i
= 0; i
< 6; ++i
) {
1778 if (!cpu_guest_has_kscr(i
+ 2))
1781 if (copy_to_user(indices
, &kvm_vz_get_one_regs_kscratch
[i
],
1782 sizeof(kvm_vz_get_one_regs_kscratch
[i
])))
1790 static inline s64
entrylo_kvm_to_user(unsigned long v
)
1794 if (BITS_PER_LONG
== 32) {
1796 * KVM API exposes 64-bit version of the register, so move the
1797 * RI/XI bits up into place.
1799 mask
= MIPS_ENTRYLO_RI
| MIPS_ENTRYLO_XI
;
1801 ret
|= ((s64
)v
& mask
) << 32;
1806 static inline unsigned long entrylo_user_to_kvm(s64 v
)
1808 unsigned long mask
, ret
= v
;
1810 if (BITS_PER_LONG
== 32) {
1812 * KVM API exposes 64-bit versiono of the register, so move the
1813 * RI/XI bits down into place.
1815 mask
= MIPS_ENTRYLO_RI
| MIPS_ENTRYLO_XI
;
1817 ret
|= (v
>> 32) & mask
;
1822 static int kvm_vz_get_one_reg(struct kvm_vcpu
*vcpu
,
1823 const struct kvm_one_reg
*reg
,
1826 struct mips_coproc
*cop0
= vcpu
->arch
.cop0
;
1830 case KVM_REG_MIPS_CP0_INDEX
:
1831 *v
= (long)read_gc0_index();
1833 case KVM_REG_MIPS_CP0_ENTRYLO0
:
1834 *v
= entrylo_kvm_to_user(read_gc0_entrylo0());
1836 case KVM_REG_MIPS_CP0_ENTRYLO1
:
1837 *v
= entrylo_kvm_to_user(read_gc0_entrylo1());
1839 case KVM_REG_MIPS_CP0_CONTEXT
:
1840 *v
= (long)read_gc0_context();
1842 case KVM_REG_MIPS_CP0_CONTEXTCONFIG
:
1843 if (!cpu_guest_has_contextconfig
)
1845 *v
= read_gc0_contextconfig();
1847 case KVM_REG_MIPS_CP0_USERLOCAL
:
1848 if (!cpu_guest_has_userlocal
)
1850 *v
= read_gc0_userlocal();
1853 case KVM_REG_MIPS_CP0_XCONTEXTCONFIG
:
1854 if (!cpu_guest_has_contextconfig
)
1856 *v
= read_gc0_xcontextconfig();
1859 case KVM_REG_MIPS_CP0_PAGEMASK
:
1860 *v
= (long)read_gc0_pagemask();
1862 case KVM_REG_MIPS_CP0_PAGEGRAIN
:
1863 *v
= (long)read_gc0_pagegrain();
1865 case KVM_REG_MIPS_CP0_SEGCTL0
:
1866 if (!cpu_guest_has_segments
)
1868 *v
= read_gc0_segctl0();
1870 case KVM_REG_MIPS_CP0_SEGCTL1
:
1871 if (!cpu_guest_has_segments
)
1873 *v
= read_gc0_segctl1();
1875 case KVM_REG_MIPS_CP0_SEGCTL2
:
1876 if (!cpu_guest_has_segments
)
1878 *v
= read_gc0_segctl2();
1880 case KVM_REG_MIPS_CP0_PWBASE
:
1881 if (!cpu_guest_has_htw
)
1883 *v
= read_gc0_pwbase();
1885 case KVM_REG_MIPS_CP0_PWFIELD
:
1886 if (!cpu_guest_has_htw
)
1888 *v
= read_gc0_pwfield();
1890 case KVM_REG_MIPS_CP0_PWSIZE
:
1891 if (!cpu_guest_has_htw
)
1893 *v
= read_gc0_pwsize();
1895 case KVM_REG_MIPS_CP0_WIRED
:
1896 *v
= (long)read_gc0_wired();
1898 case KVM_REG_MIPS_CP0_PWCTL
:
1899 if (!cpu_guest_has_htw
)
1901 *v
= read_gc0_pwctl();
1903 case KVM_REG_MIPS_CP0_HWRENA
:
1904 *v
= (long)read_gc0_hwrena();
1906 case KVM_REG_MIPS_CP0_BADVADDR
:
1907 *v
= (long)read_gc0_badvaddr();
1909 case KVM_REG_MIPS_CP0_BADINSTR
:
1910 if (!cpu_guest_has_badinstr
)
1912 *v
= read_gc0_badinstr();
1914 case KVM_REG_MIPS_CP0_BADINSTRP
:
1915 if (!cpu_guest_has_badinstrp
)
1917 *v
= read_gc0_badinstrp();
1919 case KVM_REG_MIPS_CP0_COUNT
:
1920 *v
= kvm_mips_read_count(vcpu
);
1922 case KVM_REG_MIPS_CP0_ENTRYHI
:
1923 *v
= (long)read_gc0_entryhi();
1925 case KVM_REG_MIPS_CP0_COMPARE
:
1926 *v
= (long)read_gc0_compare();
1928 case KVM_REG_MIPS_CP0_STATUS
:
1929 *v
= (long)read_gc0_status();
1931 case KVM_REG_MIPS_CP0_INTCTL
:
1932 *v
= read_gc0_intctl();
1934 case KVM_REG_MIPS_CP0_CAUSE
:
1935 *v
= (long)read_gc0_cause();
1937 case KVM_REG_MIPS_CP0_EPC
:
1938 *v
= (long)read_gc0_epc();
1940 case KVM_REG_MIPS_CP0_PRID
:
1941 switch (boot_cpu_type()) {
1942 case CPU_CAVIUM_OCTEON3
:
1943 /* Octeon III has a read-only guest.PRid */
1944 *v
= read_gc0_prid();
1947 *v
= (long)kvm_read_c0_guest_prid(cop0
);
1951 case KVM_REG_MIPS_CP0_EBASE
:
1952 *v
= kvm_vz_read_gc0_ebase();
1954 case KVM_REG_MIPS_CP0_CONFIG
:
1955 *v
= read_gc0_config();
1957 case KVM_REG_MIPS_CP0_CONFIG1
:
1958 if (!cpu_guest_has_conf1
)
1960 *v
= read_gc0_config1();
1962 case KVM_REG_MIPS_CP0_CONFIG2
:
1963 if (!cpu_guest_has_conf2
)
1965 *v
= read_gc0_config2();
1967 case KVM_REG_MIPS_CP0_CONFIG3
:
1968 if (!cpu_guest_has_conf3
)
1970 *v
= read_gc0_config3();
1972 case KVM_REG_MIPS_CP0_CONFIG4
:
1973 if (!cpu_guest_has_conf4
)
1975 *v
= read_gc0_config4();
1977 case KVM_REG_MIPS_CP0_CONFIG5
:
1978 if (!cpu_guest_has_conf5
)
1980 *v
= read_gc0_config5();
1982 case KVM_REG_MIPS_CP0_MAAR(0) ... KVM_REG_MIPS_CP0_MAAR(0x3f):
1983 if (!cpu_guest_has_maar
|| cpu_guest_has_dyn_maar
)
1985 idx
= reg
->id
- KVM_REG_MIPS_CP0_MAAR(0);
1986 if (idx
>= ARRAY_SIZE(vcpu
->arch
.maar
))
1988 *v
= vcpu
->arch
.maar
[idx
];
1990 case KVM_REG_MIPS_CP0_MAARI
:
1991 if (!cpu_guest_has_maar
|| cpu_guest_has_dyn_maar
)
1993 *v
= kvm_read_sw_gc0_maari(vcpu
->arch
.cop0
);
1996 case KVM_REG_MIPS_CP0_XCONTEXT
:
1997 *v
= read_gc0_xcontext();
2000 case KVM_REG_MIPS_CP0_ERROREPC
:
2001 *v
= (long)read_gc0_errorepc();
2003 case KVM_REG_MIPS_CP0_KSCRATCH1
... KVM_REG_MIPS_CP0_KSCRATCH6
:
2004 idx
= reg
->id
- KVM_REG_MIPS_CP0_KSCRATCH1
+ 2;
2005 if (!cpu_guest_has_kscr(idx
))
2009 *v
= (long)read_gc0_kscratch1();
2012 *v
= (long)read_gc0_kscratch2();
2015 *v
= (long)read_gc0_kscratch3();
2018 *v
= (long)read_gc0_kscratch4();
2021 *v
= (long)read_gc0_kscratch5();
2024 *v
= (long)read_gc0_kscratch6();
2028 case KVM_REG_MIPS_COUNT_CTL
:
2029 *v
= vcpu
->arch
.count_ctl
;
2031 case KVM_REG_MIPS_COUNT_RESUME
:
2032 *v
= ktime_to_ns(vcpu
->arch
.count_resume
);
2034 case KVM_REG_MIPS_COUNT_HZ
:
2035 *v
= vcpu
->arch
.count_hz
;
2043 static int kvm_vz_set_one_reg(struct kvm_vcpu
*vcpu
,
2044 const struct kvm_one_reg
*reg
,
2047 struct mips_coproc
*cop0
= vcpu
->arch
.cop0
;
2050 unsigned int cur
, change
;
2053 case KVM_REG_MIPS_CP0_INDEX
:
2056 case KVM_REG_MIPS_CP0_ENTRYLO0
:
2057 write_gc0_entrylo0(entrylo_user_to_kvm(v
));
2059 case KVM_REG_MIPS_CP0_ENTRYLO1
:
2060 write_gc0_entrylo1(entrylo_user_to_kvm(v
));
2062 case KVM_REG_MIPS_CP0_CONTEXT
:
2063 write_gc0_context(v
);
2065 case KVM_REG_MIPS_CP0_CONTEXTCONFIG
:
2066 if (!cpu_guest_has_contextconfig
)
2068 write_gc0_contextconfig(v
);
2070 case KVM_REG_MIPS_CP0_USERLOCAL
:
2071 if (!cpu_guest_has_userlocal
)
2073 write_gc0_userlocal(v
);
2076 case KVM_REG_MIPS_CP0_XCONTEXTCONFIG
:
2077 if (!cpu_guest_has_contextconfig
)
2079 write_gc0_xcontextconfig(v
);
2082 case KVM_REG_MIPS_CP0_PAGEMASK
:
2083 write_gc0_pagemask(v
);
2085 case KVM_REG_MIPS_CP0_PAGEGRAIN
:
2086 write_gc0_pagegrain(v
);
2088 case KVM_REG_MIPS_CP0_SEGCTL0
:
2089 if (!cpu_guest_has_segments
)
2091 write_gc0_segctl0(v
);
2093 case KVM_REG_MIPS_CP0_SEGCTL1
:
2094 if (!cpu_guest_has_segments
)
2096 write_gc0_segctl1(v
);
2098 case KVM_REG_MIPS_CP0_SEGCTL2
:
2099 if (!cpu_guest_has_segments
)
2101 write_gc0_segctl2(v
);
2103 case KVM_REG_MIPS_CP0_PWBASE
:
2104 if (!cpu_guest_has_htw
)
2106 write_gc0_pwbase(v
);
2108 case KVM_REG_MIPS_CP0_PWFIELD
:
2109 if (!cpu_guest_has_htw
)
2111 write_gc0_pwfield(v
);
2113 case KVM_REG_MIPS_CP0_PWSIZE
:
2114 if (!cpu_guest_has_htw
)
2116 write_gc0_pwsize(v
);
2118 case KVM_REG_MIPS_CP0_WIRED
:
2119 change_gc0_wired(MIPSR6_WIRED_WIRED
, v
);
2121 case KVM_REG_MIPS_CP0_PWCTL
:
2122 if (!cpu_guest_has_htw
)
2126 case KVM_REG_MIPS_CP0_HWRENA
:
2127 write_gc0_hwrena(v
);
2129 case KVM_REG_MIPS_CP0_BADVADDR
:
2130 write_gc0_badvaddr(v
);
2132 case KVM_REG_MIPS_CP0_BADINSTR
:
2133 if (!cpu_guest_has_badinstr
)
2135 write_gc0_badinstr(v
);
2137 case KVM_REG_MIPS_CP0_BADINSTRP
:
2138 if (!cpu_guest_has_badinstrp
)
2140 write_gc0_badinstrp(v
);
2142 case KVM_REG_MIPS_CP0_COUNT
:
2143 kvm_mips_write_count(vcpu
, v
);
2145 case KVM_REG_MIPS_CP0_ENTRYHI
:
2146 write_gc0_entryhi(v
);
2148 case KVM_REG_MIPS_CP0_COMPARE
:
2149 kvm_mips_write_compare(vcpu
, v
, false);
2151 case KVM_REG_MIPS_CP0_STATUS
:
2152 write_gc0_status(v
);
2154 case KVM_REG_MIPS_CP0_INTCTL
:
2155 write_gc0_intctl(v
);
2157 case KVM_REG_MIPS_CP0_CAUSE
:
2159 * If the timer is stopped or started (DC bit) it must look
2160 * atomic with changes to the timer interrupt pending bit (TI).
2161 * A timer interrupt should not happen in between.
2163 if ((read_gc0_cause() ^ v
) & CAUSEF_DC
) {
2164 if (v
& CAUSEF_DC
) {
2165 /* disable timer first */
2166 kvm_mips_count_disable_cause(vcpu
);
2167 change_gc0_cause((u32
)~CAUSEF_DC
, v
);
2169 /* enable timer last */
2170 change_gc0_cause((u32
)~CAUSEF_DC
, v
);
2171 kvm_mips_count_enable_cause(vcpu
);
2177 case KVM_REG_MIPS_CP0_EPC
:
2180 case KVM_REG_MIPS_CP0_PRID
:
2181 switch (boot_cpu_type()) {
2182 case CPU_CAVIUM_OCTEON3
:
2183 /* Octeon III has a guest.PRid, but its read-only */
2186 kvm_write_c0_guest_prid(cop0
, v
);
2190 case KVM_REG_MIPS_CP0_EBASE
:
2191 kvm_vz_write_gc0_ebase(v
);
2193 case KVM_REG_MIPS_CP0_CONFIG
:
2194 cur
= read_gc0_config();
2195 change
= (cur
^ v
) & kvm_vz_config_user_wrmask(vcpu
);
2198 write_gc0_config(v
);
2201 case KVM_REG_MIPS_CP0_CONFIG1
:
2202 if (!cpu_guest_has_conf1
)
2204 cur
= read_gc0_config1();
2205 change
= (cur
^ v
) & kvm_vz_config1_user_wrmask(vcpu
);
2208 write_gc0_config1(v
);
2211 case KVM_REG_MIPS_CP0_CONFIG2
:
2212 if (!cpu_guest_has_conf2
)
2214 cur
= read_gc0_config2();
2215 change
= (cur
^ v
) & kvm_vz_config2_user_wrmask(vcpu
);
2218 write_gc0_config2(v
);
2221 case KVM_REG_MIPS_CP0_CONFIG3
:
2222 if (!cpu_guest_has_conf3
)
2224 cur
= read_gc0_config3();
2225 change
= (cur
^ v
) & kvm_vz_config3_user_wrmask(vcpu
);
2228 write_gc0_config3(v
);
2231 case KVM_REG_MIPS_CP0_CONFIG4
:
2232 if (!cpu_guest_has_conf4
)
2234 cur
= read_gc0_config4();
2235 change
= (cur
^ v
) & kvm_vz_config4_user_wrmask(vcpu
);
2238 write_gc0_config4(v
);
2241 case KVM_REG_MIPS_CP0_CONFIG5
:
2242 if (!cpu_guest_has_conf5
)
2244 cur
= read_gc0_config5();
2245 change
= (cur
^ v
) & kvm_vz_config5_user_wrmask(vcpu
);
2248 write_gc0_config5(v
);
2251 case KVM_REG_MIPS_CP0_MAAR(0) ... KVM_REG_MIPS_CP0_MAAR(0x3f):
2252 if (!cpu_guest_has_maar
|| cpu_guest_has_dyn_maar
)
2254 idx
= reg
->id
- KVM_REG_MIPS_CP0_MAAR(0);
2255 if (idx
>= ARRAY_SIZE(vcpu
->arch
.maar
))
2257 vcpu
->arch
.maar
[idx
] = mips_process_maar(dmtc_op
, v
);
2259 case KVM_REG_MIPS_CP0_MAARI
:
2260 if (!cpu_guest_has_maar
|| cpu_guest_has_dyn_maar
)
2262 kvm_write_maari(vcpu
, v
);
2265 case KVM_REG_MIPS_CP0_XCONTEXT
:
2266 write_gc0_xcontext(v
);
2269 case KVM_REG_MIPS_CP0_ERROREPC
:
2270 write_gc0_errorepc(v
);
2272 case KVM_REG_MIPS_CP0_KSCRATCH1
... KVM_REG_MIPS_CP0_KSCRATCH6
:
2273 idx
= reg
->id
- KVM_REG_MIPS_CP0_KSCRATCH1
+ 2;
2274 if (!cpu_guest_has_kscr(idx
))
2278 write_gc0_kscratch1(v
);
2281 write_gc0_kscratch2(v
);
2284 write_gc0_kscratch3(v
);
2287 write_gc0_kscratch4(v
);
2290 write_gc0_kscratch5(v
);
2293 write_gc0_kscratch6(v
);
2297 case KVM_REG_MIPS_COUNT_CTL
:
2298 ret
= kvm_mips_set_count_ctl(vcpu
, v
);
2300 case KVM_REG_MIPS_COUNT_RESUME
:
2301 ret
= kvm_mips_set_count_resume(vcpu
, v
);
2303 case KVM_REG_MIPS_COUNT_HZ
:
2304 ret
= kvm_mips_set_count_hz(vcpu
, v
);
2312 #define guestid_cache(cpu) (cpu_data[cpu].guestid_cache)
2313 static void kvm_vz_get_new_guestid(unsigned long cpu
, struct kvm_vcpu
*vcpu
)
2315 unsigned long guestid
= guestid_cache(cpu
);
2317 if (!(++guestid
& GUESTID_MASK
)) {
2318 if (cpu_has_vtag_icache
)
2321 if (!guestid
) /* fix version if needed */
2322 guestid
= GUESTID_FIRST_VERSION
;
2324 ++guestid
; /* guestid 0 reserved for root */
2326 /* start new guestid cycle */
2327 kvm_vz_local_flush_roottlb_all_guests();
2328 kvm_vz_local_flush_guesttlb_all();
2331 guestid_cache(cpu
) = guestid
;
2334 /* Returns 1 if the guest TLB may be clobbered */
2335 static int kvm_vz_check_requests(struct kvm_vcpu
*vcpu
, int cpu
)
2340 if (!kvm_request_pending(vcpu
))
2343 if (kvm_check_request(KVM_REQ_TLB_FLUSH
, vcpu
)) {
2344 if (cpu_has_guestid
) {
2345 /* Drop all GuestIDs for this VCPU */
2346 for_each_possible_cpu(i
)
2347 vcpu
->arch
.vzguestid
[i
] = 0;
2348 /* This will clobber guest TLB contents too */
2352 * For Root ASID Dealias (RAD) we don't do anything here, but we
2353 * still need the request to ensure we recheck asid_flush_mask.
2354 * We can still return 0 as only the root TLB will be affected
2355 * by a root ASID flush.
2362 static void kvm_vz_vcpu_save_wired(struct kvm_vcpu
*vcpu
)
2364 unsigned int wired
= read_gc0_wired();
2365 struct kvm_mips_tlb
*tlbs
;
2368 /* Expand the wired TLB array if necessary */
2369 wired
&= MIPSR6_WIRED_WIRED
;
2370 if (wired
> vcpu
->arch
.wired_tlb_limit
) {
2371 tlbs
= krealloc(vcpu
->arch
.wired_tlb
, wired
*
2372 sizeof(*vcpu
->arch
.wired_tlb
), GFP_ATOMIC
);
2373 if (WARN_ON(!tlbs
)) {
2374 /* Save whatever we can */
2375 wired
= vcpu
->arch
.wired_tlb_limit
;
2377 vcpu
->arch
.wired_tlb
= tlbs
;
2378 vcpu
->arch
.wired_tlb_limit
= wired
;
2383 /* Save wired entries from the guest TLB */
2384 kvm_vz_save_guesttlb(vcpu
->arch
.wired_tlb
, 0, wired
);
2385 /* Invalidate any dropped entries since last time */
2386 for (i
= wired
; i
< vcpu
->arch
.wired_tlb_used
; ++i
) {
2387 vcpu
->arch
.wired_tlb
[i
].tlb_hi
= UNIQUE_GUEST_ENTRYHI(i
);
2388 vcpu
->arch
.wired_tlb
[i
].tlb_lo
[0] = 0;
2389 vcpu
->arch
.wired_tlb
[i
].tlb_lo
[1] = 0;
2390 vcpu
->arch
.wired_tlb
[i
].tlb_mask
= 0;
2392 vcpu
->arch
.wired_tlb_used
= wired
;
2395 static void kvm_vz_vcpu_load_wired(struct kvm_vcpu
*vcpu
)
2397 /* Load wired entries into the guest TLB */
2398 if (vcpu
->arch
.wired_tlb
)
2399 kvm_vz_load_guesttlb(vcpu
->arch
.wired_tlb
, 0,
2400 vcpu
->arch
.wired_tlb_used
);
2403 static void kvm_vz_vcpu_load_tlb(struct kvm_vcpu
*vcpu
, int cpu
)
2405 struct kvm
*kvm
= vcpu
->kvm
;
2406 struct mm_struct
*gpa_mm
= &kvm
->arch
.gpa_mm
;
2410 * Are we entering guest context on a different CPU to last time?
2411 * If so, the VCPU's guest TLB state on this CPU may be stale.
2413 migrated
= (vcpu
->arch
.last_exec_cpu
!= cpu
);
2414 vcpu
->arch
.last_exec_cpu
= cpu
;
2417 * A vcpu's GuestID is set in GuestCtl1.ID when the vcpu is loaded and
2418 * remains set until another vcpu is loaded in. As a rule GuestRID
2419 * remains zeroed when in root context unless the kernel is busy
2420 * manipulating guest tlb entries.
2422 if (cpu_has_guestid
) {
2424 * Check if our GuestID is of an older version and thus invalid.
2426 * We also discard the stored GuestID if we've executed on
2427 * another CPU, as the guest mappings may have changed without
2428 * hypervisor knowledge.
2431 (vcpu
->arch
.vzguestid
[cpu
] ^ guestid_cache(cpu
)) &
2432 GUESTID_VERSION_MASK
) {
2433 kvm_vz_get_new_guestid(cpu
, vcpu
);
2434 vcpu
->arch
.vzguestid
[cpu
] = guestid_cache(cpu
);
2435 trace_kvm_guestid_change(vcpu
,
2436 vcpu
->arch
.vzguestid
[cpu
]);
2439 /* Restore GuestID */
2440 change_c0_guestctl1(GUESTID_MASK
, vcpu
->arch
.vzguestid
[cpu
]);
2443 * The Guest TLB only stores a single guest's TLB state, so
2444 * flush it if another VCPU has executed on this CPU.
2446 * We also flush if we've executed on another CPU, as the guest
2447 * mappings may have changed without hypervisor knowledge.
2449 if (migrated
|| last_exec_vcpu
[cpu
] != vcpu
)
2450 kvm_vz_local_flush_guesttlb_all();
2451 last_exec_vcpu
[cpu
] = vcpu
;
2454 * Root ASID dealiases guest GPA mappings in the root TLB.
2455 * Allocate new root ASID if needed.
2457 if (cpumask_test_and_clear_cpu(cpu
, &kvm
->arch
.asid_flush_mask
))
2458 get_new_mmu_context(gpa_mm
);
2460 check_mmu_context(gpa_mm
);
2464 static int kvm_vz_vcpu_load(struct kvm_vcpu
*vcpu
, int cpu
)
2466 struct mips_coproc
*cop0
= vcpu
->arch
.cop0
;
2470 * Have we migrated to a different CPU?
2471 * If so, any old guest TLB state may be stale.
2473 migrated
= (vcpu
->arch
.last_sched_cpu
!= cpu
);
2476 * Was this the last VCPU to run on this CPU?
2477 * If not, any old guest state from this VCPU will have been clobbered.
2479 all
= migrated
|| (last_vcpu
[cpu
] != vcpu
);
2480 last_vcpu
[cpu
] = vcpu
;
2483 * Restore CP0_Wired unconditionally as we clear it after use, and
2484 * restore wired guest TLB entries (while in guest context).
2486 kvm_restore_gc0_wired(cop0
);
2487 if (current
->flags
& PF_VCPU
) {
2489 kvm_vz_vcpu_load_tlb(vcpu
, cpu
);
2490 kvm_vz_vcpu_load_wired(vcpu
);
2494 * Restore timer state regardless, as e.g. Cause.TI can change over time
2495 * if left unmaintained.
2497 kvm_vz_restore_timer(vcpu
);
2499 /* Set MC bit if we want to trace guest mode changes */
2500 if (kvm_trace_guest_mode_change
)
2501 set_c0_guestctl0(MIPS_GCTL0_MC
);
2503 clear_c0_guestctl0(MIPS_GCTL0_MC
);
2505 /* Don't bother restoring registers multiple times unless necessary */
2510 * Restore config registers first, as some implementations restrict
2511 * writes to other registers when the corresponding feature bits aren't
2512 * set. For example Status.CU1 cannot be set unless Config1.FP is set.
2514 kvm_restore_gc0_config(cop0
);
2515 if (cpu_guest_has_conf1
)
2516 kvm_restore_gc0_config1(cop0
);
2517 if (cpu_guest_has_conf2
)
2518 kvm_restore_gc0_config2(cop0
);
2519 if (cpu_guest_has_conf3
)
2520 kvm_restore_gc0_config3(cop0
);
2521 if (cpu_guest_has_conf4
)
2522 kvm_restore_gc0_config4(cop0
);
2523 if (cpu_guest_has_conf5
)
2524 kvm_restore_gc0_config5(cop0
);
2525 if (cpu_guest_has_conf6
)
2526 kvm_restore_gc0_config6(cop0
);
2527 if (cpu_guest_has_conf7
)
2528 kvm_restore_gc0_config7(cop0
);
2530 kvm_restore_gc0_index(cop0
);
2531 kvm_restore_gc0_entrylo0(cop0
);
2532 kvm_restore_gc0_entrylo1(cop0
);
2533 kvm_restore_gc0_context(cop0
);
2534 if (cpu_guest_has_contextconfig
)
2535 kvm_restore_gc0_contextconfig(cop0
);
2537 kvm_restore_gc0_xcontext(cop0
);
2538 if (cpu_guest_has_contextconfig
)
2539 kvm_restore_gc0_xcontextconfig(cop0
);
2541 kvm_restore_gc0_pagemask(cop0
);
2542 kvm_restore_gc0_pagegrain(cop0
);
2543 kvm_restore_gc0_hwrena(cop0
);
2544 kvm_restore_gc0_badvaddr(cop0
);
2545 kvm_restore_gc0_entryhi(cop0
);
2546 kvm_restore_gc0_status(cop0
);
2547 kvm_restore_gc0_intctl(cop0
);
2548 kvm_restore_gc0_epc(cop0
);
2549 kvm_vz_write_gc0_ebase(kvm_read_sw_gc0_ebase(cop0
));
2550 if (cpu_guest_has_userlocal
)
2551 kvm_restore_gc0_userlocal(cop0
);
2553 kvm_restore_gc0_errorepc(cop0
);
2555 /* restore KScratch registers if enabled in guest */
2556 if (cpu_guest_has_conf4
) {
2557 if (cpu_guest_has_kscr(2))
2558 kvm_restore_gc0_kscratch1(cop0
);
2559 if (cpu_guest_has_kscr(3))
2560 kvm_restore_gc0_kscratch2(cop0
);
2561 if (cpu_guest_has_kscr(4))
2562 kvm_restore_gc0_kscratch3(cop0
);
2563 if (cpu_guest_has_kscr(5))
2564 kvm_restore_gc0_kscratch4(cop0
);
2565 if (cpu_guest_has_kscr(6))
2566 kvm_restore_gc0_kscratch5(cop0
);
2567 if (cpu_guest_has_kscr(7))
2568 kvm_restore_gc0_kscratch6(cop0
);
2571 if (cpu_guest_has_badinstr
)
2572 kvm_restore_gc0_badinstr(cop0
);
2573 if (cpu_guest_has_badinstrp
)
2574 kvm_restore_gc0_badinstrp(cop0
);
2576 if (cpu_guest_has_segments
) {
2577 kvm_restore_gc0_segctl0(cop0
);
2578 kvm_restore_gc0_segctl1(cop0
);
2579 kvm_restore_gc0_segctl2(cop0
);
2582 /* restore HTW registers */
2583 if (cpu_guest_has_htw
) {
2584 kvm_restore_gc0_pwbase(cop0
);
2585 kvm_restore_gc0_pwfield(cop0
);
2586 kvm_restore_gc0_pwsize(cop0
);
2587 kvm_restore_gc0_pwctl(cop0
);
2590 /* restore Root.GuestCtl2 from unused Guest guestctl2 register */
2591 if (cpu_has_guestctl2
)
2593 cop0
->reg
[MIPS_CP0_GUESTCTL2
][MIPS_CP0_GUESTCTL2_SEL
]);
2596 * We should clear linked load bit to break interrupted atomics. This
2597 * prevents a SC on the next VCPU from succeeding by matching a LL on
2598 * the previous VCPU.
2600 if (cpu_guest_has_rw_llb
)
2601 write_gc0_lladdr(0);
2606 static int kvm_vz_vcpu_put(struct kvm_vcpu
*vcpu
, int cpu
)
2608 struct mips_coproc
*cop0
= vcpu
->arch
.cop0
;
2610 if (current
->flags
& PF_VCPU
)
2611 kvm_vz_vcpu_save_wired(vcpu
);
2615 kvm_save_gc0_index(cop0
);
2616 kvm_save_gc0_entrylo0(cop0
);
2617 kvm_save_gc0_entrylo1(cop0
);
2618 kvm_save_gc0_context(cop0
);
2619 if (cpu_guest_has_contextconfig
)
2620 kvm_save_gc0_contextconfig(cop0
);
2622 kvm_save_gc0_xcontext(cop0
);
2623 if (cpu_guest_has_contextconfig
)
2624 kvm_save_gc0_xcontextconfig(cop0
);
2626 kvm_save_gc0_pagemask(cop0
);
2627 kvm_save_gc0_pagegrain(cop0
);
2628 kvm_save_gc0_wired(cop0
);
2629 /* allow wired TLB entries to be overwritten */
2630 clear_gc0_wired(MIPSR6_WIRED_WIRED
);
2631 kvm_save_gc0_hwrena(cop0
);
2632 kvm_save_gc0_badvaddr(cop0
);
2633 kvm_save_gc0_entryhi(cop0
);
2634 kvm_save_gc0_status(cop0
);
2635 kvm_save_gc0_intctl(cop0
);
2636 kvm_save_gc0_epc(cop0
);
2637 kvm_write_sw_gc0_ebase(cop0
, kvm_vz_read_gc0_ebase());
2638 if (cpu_guest_has_userlocal
)
2639 kvm_save_gc0_userlocal(cop0
);
2641 /* only save implemented config registers */
2642 kvm_save_gc0_config(cop0
);
2643 if (cpu_guest_has_conf1
)
2644 kvm_save_gc0_config1(cop0
);
2645 if (cpu_guest_has_conf2
)
2646 kvm_save_gc0_config2(cop0
);
2647 if (cpu_guest_has_conf3
)
2648 kvm_save_gc0_config3(cop0
);
2649 if (cpu_guest_has_conf4
)
2650 kvm_save_gc0_config4(cop0
);
2651 if (cpu_guest_has_conf5
)
2652 kvm_save_gc0_config5(cop0
);
2653 if (cpu_guest_has_conf6
)
2654 kvm_save_gc0_config6(cop0
);
2655 if (cpu_guest_has_conf7
)
2656 kvm_save_gc0_config7(cop0
);
2658 kvm_save_gc0_errorepc(cop0
);
2660 /* save KScratch registers if enabled in guest */
2661 if (cpu_guest_has_conf4
) {
2662 if (cpu_guest_has_kscr(2))
2663 kvm_save_gc0_kscratch1(cop0
);
2664 if (cpu_guest_has_kscr(3))
2665 kvm_save_gc0_kscratch2(cop0
);
2666 if (cpu_guest_has_kscr(4))
2667 kvm_save_gc0_kscratch3(cop0
);
2668 if (cpu_guest_has_kscr(5))
2669 kvm_save_gc0_kscratch4(cop0
);
2670 if (cpu_guest_has_kscr(6))
2671 kvm_save_gc0_kscratch5(cop0
);
2672 if (cpu_guest_has_kscr(7))
2673 kvm_save_gc0_kscratch6(cop0
);
2676 if (cpu_guest_has_badinstr
)
2677 kvm_save_gc0_badinstr(cop0
);
2678 if (cpu_guest_has_badinstrp
)
2679 kvm_save_gc0_badinstrp(cop0
);
2681 if (cpu_guest_has_segments
) {
2682 kvm_save_gc0_segctl0(cop0
);
2683 kvm_save_gc0_segctl1(cop0
);
2684 kvm_save_gc0_segctl2(cop0
);
2687 /* save HTW registers if enabled in guest */
2688 if (cpu_guest_has_htw
&&
2689 kvm_read_sw_gc0_config3(cop0
) & MIPS_CONF3_PW
) {
2690 kvm_save_gc0_pwbase(cop0
);
2691 kvm_save_gc0_pwfield(cop0
);
2692 kvm_save_gc0_pwsize(cop0
);
2693 kvm_save_gc0_pwctl(cop0
);
2696 kvm_vz_save_timer(vcpu
);
2698 /* save Root.GuestCtl2 in unused Guest guestctl2 register */
2699 if (cpu_has_guestctl2
)
2700 cop0
->reg
[MIPS_CP0_GUESTCTL2
][MIPS_CP0_GUESTCTL2_SEL
] =
2701 read_c0_guestctl2();
2707 * kvm_vz_resize_guest_vtlb() - Attempt to resize guest VTLB.
2708 * @size: Number of guest VTLB entries (0 < @size <= root VTLB entries).
2710 * Attempt to resize the guest VTLB by writing guest Config registers. This is
2711 * necessary for cores with a shared root/guest TLB to avoid overlap with wired
2712 * entries in the root VTLB.
2714 * Returns: The resulting guest VTLB size.
2716 static unsigned int kvm_vz_resize_guest_vtlb(unsigned int size
)
2718 unsigned int config4
= 0, ret
= 0, limit
;
2720 /* Write MMUSize - 1 into guest Config registers */
2721 if (cpu_guest_has_conf1
)
2722 change_gc0_config1(MIPS_CONF1_TLBS
,
2723 (size
- 1) << MIPS_CONF1_TLBS_SHIFT
);
2724 if (cpu_guest_has_conf4
) {
2725 config4
= read_gc0_config4();
2726 if (cpu_has_mips_r6
|| (config4
& MIPS_CONF4_MMUEXTDEF
) ==
2727 MIPS_CONF4_MMUEXTDEF_VTLBSIZEEXT
) {
2728 config4
&= ~MIPS_CONF4_VTLBSIZEEXT
;
2729 config4
|= ((size
- 1) >> MIPS_CONF1_TLBS_SIZE
) <<
2730 MIPS_CONF4_VTLBSIZEEXT_SHIFT
;
2731 } else if ((config4
& MIPS_CONF4_MMUEXTDEF
) ==
2732 MIPS_CONF4_MMUEXTDEF_MMUSIZEEXT
) {
2733 config4
&= ~MIPS_CONF4_MMUSIZEEXT
;
2734 config4
|= ((size
- 1) >> MIPS_CONF1_TLBS_SIZE
) <<
2735 MIPS_CONF4_MMUSIZEEXT_SHIFT
;
2737 write_gc0_config4(config4
);
2741 * Set Guest.Wired.Limit = 0 (no limit up to Guest.MMUSize-1), unless it
2742 * would exceed Root.Wired.Limit (clearing Guest.Wired.Wired so write
2745 if (cpu_has_mips_r6
) {
2746 limit
= (read_c0_wired() & MIPSR6_WIRED_LIMIT
) >>
2747 MIPSR6_WIRED_LIMIT_SHIFT
;
2748 if (size
- 1 <= limit
)
2750 write_gc0_wired(limit
<< MIPSR6_WIRED_LIMIT_SHIFT
);
2753 /* Read back MMUSize - 1 */
2754 back_to_back_c0_hazard();
2755 if (cpu_guest_has_conf1
)
2756 ret
= (read_gc0_config1() & MIPS_CONF1_TLBS
) >>
2757 MIPS_CONF1_TLBS_SHIFT
;
2759 if (cpu_has_mips_r6
|| (config4
& MIPS_CONF4_MMUEXTDEF
) ==
2760 MIPS_CONF4_MMUEXTDEF_VTLBSIZEEXT
)
2761 ret
|= ((config4
& MIPS_CONF4_VTLBSIZEEXT
) >>
2762 MIPS_CONF4_VTLBSIZEEXT_SHIFT
) <<
2763 MIPS_CONF1_TLBS_SIZE
;
2764 else if ((config4
& MIPS_CONF4_MMUEXTDEF
) ==
2765 MIPS_CONF4_MMUEXTDEF_MMUSIZEEXT
)
2766 ret
|= ((config4
& MIPS_CONF4_MMUSIZEEXT
) >>
2767 MIPS_CONF4_MMUSIZEEXT_SHIFT
) <<
2768 MIPS_CONF1_TLBS_SIZE
;
2773 static int kvm_vz_hardware_enable(void)
2775 unsigned int mmu_size
, guest_mmu_size
, ftlb_size
;
2776 u64 guest_cvmctl
, cvmvmconfig
;
2778 switch (current_cpu_type()) {
2779 case CPU_CAVIUM_OCTEON3
:
2780 /* Set up guest timer/perfcount IRQ lines */
2781 guest_cvmctl
= read_gc0_cvmctl();
2782 guest_cvmctl
&= ~CVMCTL_IPTI
;
2783 guest_cvmctl
|= 7ull << CVMCTL_IPTI_SHIFT
;
2784 guest_cvmctl
&= ~CVMCTL_IPPCI
;
2785 guest_cvmctl
|= 6ull << CVMCTL_IPPCI_SHIFT
;
2786 write_gc0_cvmctl(guest_cvmctl
);
2788 cvmvmconfig
= read_c0_cvmvmconfig();
2789 /* No I/O hole translation. */
2790 cvmvmconfig
|= CVMVMCONF_DGHT
;
2791 /* Halve the root MMU size */
2792 mmu_size
= ((cvmvmconfig
& CVMVMCONF_MMUSIZEM1
)
2793 >> CVMVMCONF_MMUSIZEM1_S
) + 1;
2794 guest_mmu_size
= mmu_size
/ 2;
2795 mmu_size
-= guest_mmu_size
;
2796 cvmvmconfig
&= ~CVMVMCONF_RMMUSIZEM1
;
2797 cvmvmconfig
|= mmu_size
- 1;
2798 write_c0_cvmvmconfig(cvmvmconfig
);
2800 /* Update our records */
2801 current_cpu_data
.tlbsize
= mmu_size
;
2802 current_cpu_data
.tlbsizevtlb
= mmu_size
;
2803 current_cpu_data
.guest
.tlbsize
= guest_mmu_size
;
2805 /* Flush moved entries in new (guest) context */
2806 kvm_vz_local_flush_guesttlb_all();
2810 * ImgTec cores tend to use a shared root/guest TLB. To avoid
2811 * overlap of root wired and guest entries, the guest TLB may
2814 mmu_size
= current_cpu_data
.tlbsizevtlb
;
2815 ftlb_size
= current_cpu_data
.tlbsize
- mmu_size
;
2817 /* Try switching to maximum guest VTLB size for flush */
2818 guest_mmu_size
= kvm_vz_resize_guest_vtlb(mmu_size
);
2819 current_cpu_data
.guest
.tlbsize
= guest_mmu_size
+ ftlb_size
;
2820 kvm_vz_local_flush_guesttlb_all();
2823 * Reduce to make space for root wired entries and at least 2
2824 * root non-wired entries. This does assume that long-term wired
2825 * entries won't be added later.
2827 guest_mmu_size
= mmu_size
- num_wired_entries() - 2;
2828 guest_mmu_size
= kvm_vz_resize_guest_vtlb(guest_mmu_size
);
2829 current_cpu_data
.guest
.tlbsize
= guest_mmu_size
+ ftlb_size
;
2832 * Write the VTLB size, but if another CPU has already written,
2833 * check it matches or we won't provide a consistent view to the
2834 * guest. If this ever happens it suggests an asymmetric number
2837 if (cmpxchg(&kvm_vz_guest_vtlb_size
, 0, guest_mmu_size
) &&
2838 WARN(guest_mmu_size
!= kvm_vz_guest_vtlb_size
,
2839 "Available guest VTLB size mismatch"))
2845 * Enable virtualization features granting guest direct control of
2847 * CP0=1: Guest coprocessor 0 context.
2848 * AT=Guest: Guest MMU.
2849 * CG=1: Hit (virtual address) CACHE operations (optional).
2850 * CF=1: Guest Config registers.
2851 * CGI=1: Indexed flush CACHE operations (optional).
2853 write_c0_guestctl0(MIPS_GCTL0_CP0
|
2854 (MIPS_GCTL0_AT_GUEST
<< MIPS_GCTL0_AT_SHIFT
) |
2855 MIPS_GCTL0_CG
| MIPS_GCTL0_CF
);
2856 if (cpu_has_guestctl0ext
)
2857 set_c0_guestctl0ext(MIPS_GCTL0EXT_CGI
);
2859 if (cpu_has_guestid
) {
2860 write_c0_guestctl1(0);
2861 kvm_vz_local_flush_roottlb_all_guests();
2863 GUESTID_MASK
= current_cpu_data
.guestid_mask
;
2864 GUESTID_FIRST_VERSION
= GUESTID_MASK
+ 1;
2865 GUESTID_VERSION_MASK
= ~GUESTID_MASK
;
2867 current_cpu_data
.guestid_cache
= GUESTID_FIRST_VERSION
;
2870 /* clear any pending injected virtual guest interrupts */
2871 if (cpu_has_guestctl2
)
2872 clear_c0_guestctl2(0x3f << 10);
2877 static void kvm_vz_hardware_disable(void)
2880 unsigned int mmu_size
;
2882 /* Flush any remaining guest TLB entries */
2883 kvm_vz_local_flush_guesttlb_all();
2885 switch (current_cpu_type()) {
2886 case CPU_CAVIUM_OCTEON3
:
2888 * Allocate whole TLB for root. Existing guest TLB entries will
2889 * change ownership to the root TLB. We should be safe though as
2890 * they've already been flushed above while in guest TLB.
2892 cvmvmconfig
= read_c0_cvmvmconfig();
2893 mmu_size
= ((cvmvmconfig
& CVMVMCONF_MMUSIZEM1
)
2894 >> CVMVMCONF_MMUSIZEM1_S
) + 1;
2895 cvmvmconfig
&= ~CVMVMCONF_RMMUSIZEM1
;
2896 cvmvmconfig
|= mmu_size
- 1;
2897 write_c0_cvmvmconfig(cvmvmconfig
);
2899 /* Update our records */
2900 current_cpu_data
.tlbsize
= mmu_size
;
2901 current_cpu_data
.tlbsizevtlb
= mmu_size
;
2902 current_cpu_data
.guest
.tlbsize
= 0;
2904 /* Flush moved entries in new (root) context */
2905 local_flush_tlb_all();
2909 if (cpu_has_guestid
) {
2910 write_c0_guestctl1(0);
2911 kvm_vz_local_flush_roottlb_all_guests();
2915 static int kvm_vz_check_extension(struct kvm
*kvm
, long ext
)
2920 case KVM_CAP_MIPS_VZ
:
2921 /* we wouldn't be here unless cpu_has_vz */
2925 case KVM_CAP_MIPS_64BIT
:
2926 /* We support 64-bit registers/operations and addresses */
2938 static int kvm_vz_vcpu_init(struct kvm_vcpu
*vcpu
)
2942 for_each_possible_cpu(i
)
2943 vcpu
->arch
.vzguestid
[i
] = 0;
2948 static void kvm_vz_vcpu_uninit(struct kvm_vcpu
*vcpu
)
2953 * If the VCPU is freed and reused as another VCPU, we don't want the
2954 * matching pointer wrongly hanging around in last_vcpu[] or
2957 for_each_possible_cpu(cpu
) {
2958 if (last_vcpu
[cpu
] == vcpu
)
2959 last_vcpu
[cpu
] = NULL
;
2960 if (last_exec_vcpu
[cpu
] == vcpu
)
2961 last_exec_vcpu
[cpu
] = NULL
;
2965 static int kvm_vz_vcpu_setup(struct kvm_vcpu
*vcpu
)
2967 struct mips_coproc
*cop0
= vcpu
->arch
.cop0
;
2968 unsigned long count_hz
= 100*1000*1000; /* default to 100 MHz */
2971 * Start off the timer at the same frequency as the host timer, but the
2972 * soft timer doesn't handle frequencies greater than 1GHz yet.
2974 if (mips_hpt_frequency
&& mips_hpt_frequency
<= NSEC_PER_SEC
)
2975 count_hz
= mips_hpt_frequency
;
2976 kvm_mips_init_count(vcpu
, count_hz
);
2979 * Initialize guest register state to valid architectural reset state.
2983 if (cpu_has_mips_r6
)
2984 kvm_write_sw_gc0_pagegrain(cop0
, PG_RIE
| PG_XIE
| PG_IEC
);
2986 if (cpu_has_mips_r6
)
2987 kvm_write_sw_gc0_wired(cop0
,
2988 read_gc0_wired() & MIPSR6_WIRED_LIMIT
);
2990 kvm_write_sw_gc0_status(cop0
, ST0_BEV
| ST0_ERL
);
2991 if (cpu_has_mips_r6
)
2992 kvm_change_sw_gc0_status(cop0
, ST0_FR
, read_gc0_status());
2994 kvm_write_sw_gc0_intctl(cop0
, read_gc0_intctl() &
2995 (INTCTLF_IPFDC
| INTCTLF_IPPCI
| INTCTLF_IPTI
));
2997 kvm_write_sw_gc0_prid(cop0
, boot_cpu_data
.processor_id
);
2999 kvm_write_sw_gc0_ebase(cop0
, (s32
)0x80000000 | vcpu
->vcpu_id
);
3001 kvm_save_gc0_config(cop0
);
3002 /* architecturally writable (e.g. from guest) */
3003 kvm_change_sw_gc0_config(cop0
, CONF_CM_CMASK
,
3004 _page_cachable_default
>> _CACHE_SHIFT
);
3005 /* architecturally read only, but maybe writable from root */
3006 kvm_change_sw_gc0_config(cop0
, MIPS_CONF_MT
, read_c0_config());
3007 if (cpu_guest_has_conf1
) {
3008 kvm_set_sw_gc0_config(cop0
, MIPS_CONF_M
);
3010 kvm_save_gc0_config1(cop0
);
3011 /* architecturally read only, but maybe writable from root */
3012 kvm_clear_sw_gc0_config1(cop0
, MIPS_CONF1_C2
|
3019 if (cpu_guest_has_conf2
) {
3020 kvm_set_sw_gc0_config1(cop0
, MIPS_CONF_M
);
3022 kvm_save_gc0_config2(cop0
);
3024 if (cpu_guest_has_conf3
) {
3025 kvm_set_sw_gc0_config2(cop0
, MIPS_CONF_M
);
3027 kvm_save_gc0_config3(cop0
);
3028 /* architecturally writable (e.g. from guest) */
3029 kvm_clear_sw_gc0_config3(cop0
, MIPS_CONF3_ISA_OE
);
3030 /* architecturally read only, but maybe writable from root */
3031 kvm_clear_sw_gc0_config3(cop0
, MIPS_CONF3_MSA
|
3046 if (cpu_guest_has_conf4
) {
3047 kvm_set_sw_gc0_config3(cop0
, MIPS_CONF_M
);
3049 kvm_save_gc0_config4(cop0
);
3051 if (cpu_guest_has_conf5
) {
3052 kvm_set_sw_gc0_config4(cop0
, MIPS_CONF_M
);
3054 kvm_save_gc0_config5(cop0
);
3055 /* architecturally writable (e.g. from guest) */
3056 kvm_clear_sw_gc0_config5(cop0
, MIPS_CONF5_K
|
3063 /* architecturally read only, but maybe writable from root */
3064 kvm_clear_sw_gc0_config5(cop0
, MIPS_CONF5_MRP
);
3067 if (cpu_guest_has_contextconfig
) {
3069 kvm_write_sw_gc0_contextconfig(cop0
, 0x007ffff0);
3071 /* XContextConfig */
3072 /* bits SEGBITS-13+3:4 set */
3073 kvm_write_sw_gc0_xcontextconfig(cop0
,
3074 ((1ull << (cpu_vmbits
- 13)) - 1) << 4);
3078 /* Implementation dependent, use the legacy layout */
3079 if (cpu_guest_has_segments
) {
3080 /* SegCtl0, SegCtl1, SegCtl2 */
3081 kvm_write_sw_gc0_segctl0(cop0
, 0x00200010);
3082 kvm_write_sw_gc0_segctl1(cop0
, 0x00000002 |
3083 (_page_cachable_default
>> _CACHE_SHIFT
) <<
3084 (16 + MIPS_SEGCFG_C_SHIFT
));
3085 kvm_write_sw_gc0_segctl2(cop0
, 0x00380438);
3088 /* reset HTW registers */
3089 if (cpu_guest_has_htw
&& cpu_has_mips_r6
) {
3091 kvm_write_sw_gc0_pwfield(cop0
, 0x0c30c302);
3093 kvm_write_sw_gc0_pwsize(cop0
, 1 << MIPS_PWSIZE_PTW_SHIFT
);
3096 /* start with no pending virtual guest interrupts */
3097 if (cpu_has_guestctl2
)
3098 cop0
->reg
[MIPS_CP0_GUESTCTL2
][MIPS_CP0_GUESTCTL2_SEL
] = 0;
3100 /* Put PC at reset vector */
3101 vcpu
->arch
.pc
= CKSEG1ADDR(0x1fc00000);
3106 static void kvm_vz_flush_shadow_all(struct kvm
*kvm
)
3108 if (cpu_has_guestid
) {
3109 /* Flush GuestID for each VCPU individually */
3110 kvm_flush_remote_tlbs(kvm
);
3113 * For each CPU there is a single GPA ASID used by all VCPUs in
3114 * the VM, so it doesn't make sense for the VCPUs to handle
3115 * invalidation of these ASIDs individually.
3117 * Instead mark all CPUs as needing ASID invalidation in
3118 * asid_flush_mask, and just use kvm_flush_remote_tlbs(kvm) to
3119 * kick any running VCPUs so they check asid_flush_mask.
3121 cpumask_setall(&kvm
->arch
.asid_flush_mask
);
3122 kvm_flush_remote_tlbs(kvm
);
3126 static void kvm_vz_flush_shadow_memslot(struct kvm
*kvm
,
3127 const struct kvm_memory_slot
*slot
)
3129 kvm_vz_flush_shadow_all(kvm
);
3132 static void kvm_vz_vcpu_reenter(struct kvm_run
*run
, struct kvm_vcpu
*vcpu
)
3134 int cpu
= smp_processor_id();
3135 int preserve_guest_tlb
;
3137 preserve_guest_tlb
= kvm_vz_check_requests(vcpu
, cpu
);
3139 if (preserve_guest_tlb
)
3140 kvm_vz_vcpu_save_wired(vcpu
);
3142 kvm_vz_vcpu_load_tlb(vcpu
, cpu
);
3144 if (preserve_guest_tlb
)
3145 kvm_vz_vcpu_load_wired(vcpu
);
3148 static int kvm_vz_vcpu_run(struct kvm_run
*run
, struct kvm_vcpu
*vcpu
)
3150 int cpu
= smp_processor_id();
3153 kvm_vz_acquire_htimer(vcpu
);
3154 /* Check if we have any exceptions/interrupts pending */
3155 kvm_mips_deliver_interrupts(vcpu
, read_gc0_cause());
3157 kvm_vz_check_requests(vcpu
, cpu
);
3158 kvm_vz_vcpu_load_tlb(vcpu
, cpu
);
3159 kvm_vz_vcpu_load_wired(vcpu
);
3161 r
= vcpu
->arch
.vcpu_run(run
, vcpu
);
3163 kvm_vz_vcpu_save_wired(vcpu
);
3168 static struct kvm_mips_callbacks kvm_vz_callbacks
= {
3169 .handle_cop_unusable
= kvm_trap_vz_handle_cop_unusable
,
3170 .handle_tlb_mod
= kvm_trap_vz_handle_tlb_st_miss
,
3171 .handle_tlb_ld_miss
= kvm_trap_vz_handle_tlb_ld_miss
,
3172 .handle_tlb_st_miss
= kvm_trap_vz_handle_tlb_st_miss
,
3173 .handle_addr_err_st
= kvm_trap_vz_no_handler
,
3174 .handle_addr_err_ld
= kvm_trap_vz_no_handler
,
3175 .handle_syscall
= kvm_trap_vz_no_handler
,
3176 .handle_res_inst
= kvm_trap_vz_no_handler
,
3177 .handle_break
= kvm_trap_vz_no_handler
,
3178 .handle_msa_disabled
= kvm_trap_vz_handle_msa_disabled
,
3179 .handle_guest_exit
= kvm_trap_vz_handle_guest_exit
,
3181 .hardware_enable
= kvm_vz_hardware_enable
,
3182 .hardware_disable
= kvm_vz_hardware_disable
,
3183 .check_extension
= kvm_vz_check_extension
,
3184 .vcpu_init
= kvm_vz_vcpu_init
,
3185 .vcpu_uninit
= kvm_vz_vcpu_uninit
,
3186 .vcpu_setup
= kvm_vz_vcpu_setup
,
3187 .flush_shadow_all
= kvm_vz_flush_shadow_all
,
3188 .flush_shadow_memslot
= kvm_vz_flush_shadow_memslot
,
3189 .gva_to_gpa
= kvm_vz_gva_to_gpa_cb
,
3190 .queue_timer_int
= kvm_vz_queue_timer_int_cb
,
3191 .dequeue_timer_int
= kvm_vz_dequeue_timer_int_cb
,
3192 .queue_io_int
= kvm_vz_queue_io_int_cb
,
3193 .dequeue_io_int
= kvm_vz_dequeue_io_int_cb
,
3194 .irq_deliver
= kvm_vz_irq_deliver_cb
,
3195 .irq_clear
= kvm_vz_irq_clear_cb
,
3196 .num_regs
= kvm_vz_num_regs
,
3197 .copy_reg_indices
= kvm_vz_copy_reg_indices
,
3198 .get_one_reg
= kvm_vz_get_one_reg
,
3199 .set_one_reg
= kvm_vz_set_one_reg
,
3200 .vcpu_load
= kvm_vz_vcpu_load
,
3201 .vcpu_put
= kvm_vz_vcpu_put
,
3202 .vcpu_run
= kvm_vz_vcpu_run
,
3203 .vcpu_reenter
= kvm_vz_vcpu_reenter
,
3206 int kvm_mips_emulation_init(struct kvm_mips_callbacks
**install_callbacks
)
3212 * VZ requires at least 2 KScratch registers, so it should have been
3213 * possible to allocate pgd_reg.
3215 if (WARN(pgd_reg
== -1,
3216 "pgd_reg not allocated even though cpu_has_vz\n"))
3219 pr_info("Starting KVM with MIPS VZ extensions\n");
3221 *install_callbacks
= &kvm_vz_callbacks
;