treewide: remove redundant IS_ERR() before error code check
[linux/fpc-iii.git] / arch / mips / math-emu / dp_maddf.c
blobe24ef374d828e200e2ae84ad1fded29b399b7606
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * IEEE754 floating point arithmetic
4 * double precision: MADDF.f (Fused Multiply Add)
5 * MADDF.fmt: FPR[fd] = FPR[fd] + (FPR[fs] x FPR[ft])
7 * MIPS floating point support
8 * Copyright (C) 2015 Imagination Technologies, Ltd.
9 * Author: Markos Chandras <markos.chandras@imgtec.com>
12 #include "ieee754dp.h"
15 /* 128 bits shift right logical with rounding. */
16 static void srl128(u64 *hptr, u64 *lptr, int count)
18 u64 low;
20 if (count >= 128) {
21 *lptr = *hptr != 0 || *lptr != 0;
22 *hptr = 0;
23 } else if (count >= 64) {
24 if (count == 64) {
25 *lptr = *hptr | (*lptr != 0);
26 } else {
27 low = *lptr;
28 *lptr = *hptr >> (count - 64);
29 *lptr |= (*hptr << (128 - count)) != 0 || low != 0;
31 *hptr = 0;
32 } else {
33 low = *lptr;
34 *lptr = low >> count | *hptr << (64 - count);
35 *lptr |= (low << (64 - count)) != 0;
36 *hptr = *hptr >> count;
40 static union ieee754dp _dp_maddf(union ieee754dp z, union ieee754dp x,
41 union ieee754dp y, enum maddf_flags flags)
43 int re;
44 int rs;
45 unsigned int lxm;
46 unsigned int hxm;
47 unsigned int lym;
48 unsigned int hym;
49 u64 lrm;
50 u64 hrm;
51 u64 lzm;
52 u64 hzm;
53 u64 t;
54 u64 at;
55 int s;
57 COMPXDP;
58 COMPYDP;
59 COMPZDP;
61 EXPLODEXDP;
62 EXPLODEYDP;
63 EXPLODEZDP;
65 FLUSHXDP;
66 FLUSHYDP;
67 FLUSHZDP;
69 ieee754_clearcx();
71 rs = xs ^ ys;
72 if (flags & MADDF_NEGATE_PRODUCT)
73 rs ^= 1;
74 if (flags & MADDF_NEGATE_ADDITION)
75 zs ^= 1;
78 * Handle the cases when at least one of x, y or z is a NaN.
79 * Order of precedence is sNaN, qNaN and z, x, y.
81 if (zc == IEEE754_CLASS_SNAN)
82 return ieee754dp_nanxcpt(z);
83 if (xc == IEEE754_CLASS_SNAN)
84 return ieee754dp_nanxcpt(x);
85 if (yc == IEEE754_CLASS_SNAN)
86 return ieee754dp_nanxcpt(y);
87 if (zc == IEEE754_CLASS_QNAN)
88 return z;
89 if (xc == IEEE754_CLASS_QNAN)
90 return x;
91 if (yc == IEEE754_CLASS_QNAN)
92 return y;
94 if (zc == IEEE754_CLASS_DNORM)
95 DPDNORMZ;
96 /* ZERO z cases are handled separately below */
98 switch (CLPAIR(xc, yc)) {
101 * Infinity handling
103 case CLPAIR(IEEE754_CLASS_INF, IEEE754_CLASS_ZERO):
104 case CLPAIR(IEEE754_CLASS_ZERO, IEEE754_CLASS_INF):
105 ieee754_setcx(IEEE754_INVALID_OPERATION);
106 return ieee754dp_indef();
108 case CLPAIR(IEEE754_CLASS_NORM, IEEE754_CLASS_INF):
109 case CLPAIR(IEEE754_CLASS_DNORM, IEEE754_CLASS_INF):
110 case CLPAIR(IEEE754_CLASS_INF, IEEE754_CLASS_NORM):
111 case CLPAIR(IEEE754_CLASS_INF, IEEE754_CLASS_DNORM):
112 case CLPAIR(IEEE754_CLASS_INF, IEEE754_CLASS_INF):
113 if ((zc == IEEE754_CLASS_INF) && (zs != rs)) {
115 * Cases of addition of infinities with opposite signs
116 * or subtraction of infinities with same signs.
118 ieee754_setcx(IEEE754_INVALID_OPERATION);
119 return ieee754dp_indef();
122 * z is here either not an infinity, or an infinity having the
123 * same sign as product (x*y). The result must be an infinity,
124 * and its sign is determined only by the sign of product (x*y).
126 return ieee754dp_inf(rs);
128 case CLPAIR(IEEE754_CLASS_ZERO, IEEE754_CLASS_ZERO):
129 case CLPAIR(IEEE754_CLASS_ZERO, IEEE754_CLASS_NORM):
130 case CLPAIR(IEEE754_CLASS_ZERO, IEEE754_CLASS_DNORM):
131 case CLPAIR(IEEE754_CLASS_NORM, IEEE754_CLASS_ZERO):
132 case CLPAIR(IEEE754_CLASS_DNORM, IEEE754_CLASS_ZERO):
133 if (zc == IEEE754_CLASS_INF)
134 return ieee754dp_inf(zs);
135 if (zc == IEEE754_CLASS_ZERO) {
136 /* Handle cases +0 + (-0) and similar ones. */
137 if (zs == rs)
139 * Cases of addition of zeros of equal signs
140 * or subtraction of zeroes of opposite signs.
141 * The sign of the resulting zero is in any
142 * such case determined only by the sign of z.
144 return z;
146 return ieee754dp_zero(ieee754_csr.rm == FPU_CSR_RD);
148 /* x*y is here 0, and z is not 0, so just return z */
149 return z;
151 case CLPAIR(IEEE754_CLASS_DNORM, IEEE754_CLASS_DNORM):
152 DPDNORMX;
153 /* fall through */
155 case CLPAIR(IEEE754_CLASS_NORM, IEEE754_CLASS_DNORM):
156 if (zc == IEEE754_CLASS_INF)
157 return ieee754dp_inf(zs);
158 DPDNORMY;
159 break;
161 case CLPAIR(IEEE754_CLASS_DNORM, IEEE754_CLASS_NORM):
162 if (zc == IEEE754_CLASS_INF)
163 return ieee754dp_inf(zs);
164 DPDNORMX;
165 break;
167 case CLPAIR(IEEE754_CLASS_NORM, IEEE754_CLASS_NORM):
168 if (zc == IEEE754_CLASS_INF)
169 return ieee754dp_inf(zs);
170 /* continue to real computations */
173 /* Finally get to do some computation */
176 * Do the multiplication bit first
178 * rm = xm * ym, re = xe + ye basically
180 * At this point xm and ym should have been normalized.
182 assert(xm & DP_HIDDEN_BIT);
183 assert(ym & DP_HIDDEN_BIT);
185 re = xe + ye;
187 /* shunt to top of word */
188 xm <<= 64 - (DP_FBITS + 1);
189 ym <<= 64 - (DP_FBITS + 1);
192 * Multiply 64 bits xm and ym to give 128 bits result in hrm:lrm.
195 lxm = xm;
196 hxm = xm >> 32;
197 lym = ym;
198 hym = ym >> 32;
200 lrm = DPXMULT(lxm, lym);
201 hrm = DPXMULT(hxm, hym);
203 t = DPXMULT(lxm, hym);
205 at = lrm + (t << 32);
206 hrm += at < lrm;
207 lrm = at;
209 hrm = hrm + (t >> 32);
211 t = DPXMULT(hxm, lym);
213 at = lrm + (t << 32);
214 hrm += at < lrm;
215 lrm = at;
217 hrm = hrm + (t >> 32);
219 /* Put explicit bit at bit 126 if necessary */
220 if ((int64_t)hrm < 0) {
221 lrm = (hrm << 63) | (lrm >> 1);
222 hrm = hrm >> 1;
223 re++;
226 assert(hrm & (1 << 62));
228 if (zc == IEEE754_CLASS_ZERO) {
230 * Move explicit bit from bit 126 to bit 55 since the
231 * ieee754dp_format code expects the mantissa to be
232 * 56 bits wide (53 + 3 rounding bits).
234 srl128(&hrm, &lrm, (126 - 55));
235 return ieee754dp_format(rs, re, lrm);
238 /* Move explicit bit from bit 52 to bit 126 */
239 lzm = 0;
240 hzm = zm << 10;
241 assert(hzm & (1 << 62));
243 /* Make the exponents the same */
244 if (ze > re) {
246 * Have to shift y fraction right to align.
248 s = ze - re;
249 srl128(&hrm, &lrm, s);
250 re += s;
251 } else if (re > ze) {
253 * Have to shift x fraction right to align.
255 s = re - ze;
256 srl128(&hzm, &lzm, s);
257 ze += s;
259 assert(ze == re);
260 assert(ze <= DP_EMAX);
262 /* Do the addition */
263 if (zs == rs) {
265 * Generate 128 bit result by adding two 127 bit numbers
266 * leaving result in hzm:lzm, zs and ze.
268 hzm = hzm + hrm + (lzm > (lzm + lrm));
269 lzm = lzm + lrm;
270 if ((int64_t)hzm < 0) { /* carry out */
271 srl128(&hzm, &lzm, 1);
272 ze++;
274 } else {
275 if (hzm > hrm || (hzm == hrm && lzm >= lrm)) {
276 hzm = hzm - hrm - (lzm < lrm);
277 lzm = lzm - lrm;
278 } else {
279 hzm = hrm - hzm - (lrm < lzm);
280 lzm = lrm - lzm;
281 zs = rs;
283 if (lzm == 0 && hzm == 0)
284 return ieee754dp_zero(ieee754_csr.rm == FPU_CSR_RD);
287 * Put explicit bit at bit 126 if necessary.
289 if (hzm == 0) {
290 /* left shift by 63 or 64 bits */
291 if ((int64_t)lzm < 0) {
292 /* MSB of lzm is the explicit bit */
293 hzm = lzm >> 1;
294 lzm = lzm << 63;
295 ze -= 63;
296 } else {
297 hzm = lzm;
298 lzm = 0;
299 ze -= 64;
303 t = 0;
304 while ((hzm >> (62 - t)) == 0)
305 t++;
307 assert(t <= 62);
308 if (t) {
309 hzm = hzm << t | lzm >> (64 - t);
310 lzm = lzm << t;
311 ze -= t;
316 * Move explicit bit from bit 126 to bit 55 since the
317 * ieee754dp_format code expects the mantissa to be
318 * 56 bits wide (53 + 3 rounding bits).
320 srl128(&hzm, &lzm, (126 - 55));
322 return ieee754dp_format(zs, ze, lzm);
325 union ieee754dp ieee754dp_maddf(union ieee754dp z, union ieee754dp x,
326 union ieee754dp y)
328 return _dp_maddf(z, x, y, 0);
331 union ieee754dp ieee754dp_msubf(union ieee754dp z, union ieee754dp x,
332 union ieee754dp y)
334 return _dp_maddf(z, x, y, MADDF_NEGATE_PRODUCT);
337 union ieee754dp ieee754dp_madd(union ieee754dp z, union ieee754dp x,
338 union ieee754dp y)
340 return _dp_maddf(z, x, y, 0);
343 union ieee754dp ieee754dp_msub(union ieee754dp z, union ieee754dp x,
344 union ieee754dp y)
346 return _dp_maddf(z, x, y, MADDF_NEGATE_ADDITION);
349 union ieee754dp ieee754dp_nmadd(union ieee754dp z, union ieee754dp x,
350 union ieee754dp y)
352 return _dp_maddf(z, x, y, MADDF_NEGATE_PRODUCT|MADDF_NEGATE_ADDITION);
355 union ieee754dp ieee754dp_nmsub(union ieee754dp z, union ieee754dp x,
356 union ieee754dp y)
358 return _dp_maddf(z, x, y, MADDF_NEGATE_PRODUCT);