1 // SPDX-License-Identifier: GPL-2.0-or-later
3 * Copyright (C) 2000,2001,2002,2003,2004 Broadcom Corporation
5 #include <linux/kernel.h>
6 #include <linux/init.h>
7 #include <linux/linkage.h>
8 #include <linux/interrupt.h>
10 #include <linux/spinlock.h>
12 #include <linux/kernel_stat.h>
14 #include <asm/errno.h>
15 #include <asm/irq_regs.h>
16 #include <asm/signal.h>
19 #include <asm/sibyte/bcm1480_regs.h>
20 #include <asm/sibyte/bcm1480_int.h>
21 #include <asm/sibyte/bcm1480_scd.h>
23 #include <asm/sibyte/sb1250_uart.h>
24 #include <asm/sibyte/sb1250.h>
27 * These are the routines that handle all the low level interrupt stuff.
28 * Actions handled here are: initialization of the interrupt map, requesting of
29 * interrupt lines by handlers, dispatching if interrupts to handlers, probing
34 extern unsigned long ht_eoi_space
;
37 /* Store the CPU id (not the logical number) */
38 int bcm1480_irq_owner
[BCM1480_NR_IRQS
];
40 static DEFINE_RAW_SPINLOCK(bcm1480_imr_lock
);
42 void bcm1480_mask_irq(int cpu
, int irq
)
44 unsigned long flags
, hl_spacing
;
47 raw_spin_lock_irqsave(&bcm1480_imr_lock
, flags
);
49 if ((irq
>= BCM1480_NR_IRQS_HALF
) && (irq
<= BCM1480_NR_IRQS
)) {
50 hl_spacing
= BCM1480_IMR_HL_SPACING
;
51 irq
-= BCM1480_NR_IRQS_HALF
;
53 cur_ints
= ____raw_readq(IOADDR(A_BCM1480_IMR_MAPPER(cpu
) + R_BCM1480_IMR_INTERRUPT_MASK_H
+ hl_spacing
));
54 cur_ints
|= (((u64
) 1) << irq
);
55 ____raw_writeq(cur_ints
, IOADDR(A_BCM1480_IMR_MAPPER(cpu
) + R_BCM1480_IMR_INTERRUPT_MASK_H
+ hl_spacing
));
56 raw_spin_unlock_irqrestore(&bcm1480_imr_lock
, flags
);
59 void bcm1480_unmask_irq(int cpu
, int irq
)
61 unsigned long flags
, hl_spacing
;
64 raw_spin_lock_irqsave(&bcm1480_imr_lock
, flags
);
66 if ((irq
>= BCM1480_NR_IRQS_HALF
) && (irq
<= BCM1480_NR_IRQS
)) {
67 hl_spacing
= BCM1480_IMR_HL_SPACING
;
68 irq
-= BCM1480_NR_IRQS_HALF
;
70 cur_ints
= ____raw_readq(IOADDR(A_BCM1480_IMR_MAPPER(cpu
) + R_BCM1480_IMR_INTERRUPT_MASK_H
+ hl_spacing
));
71 cur_ints
&= ~(((u64
) 1) << irq
);
72 ____raw_writeq(cur_ints
, IOADDR(A_BCM1480_IMR_MAPPER(cpu
) + R_BCM1480_IMR_INTERRUPT_MASK_H
+ hl_spacing
));
73 raw_spin_unlock_irqrestore(&bcm1480_imr_lock
, flags
);
77 static int bcm1480_set_affinity(struct irq_data
*d
, const struct cpumask
*mask
,
80 unsigned int irq_dirty
, irq
= d
->irq
;
81 int i
= 0, old_cpu
, cpu
, int_on
, k
;
85 i
= cpumask_first_and(mask
, cpu_online_mask
);
87 /* Convert logical CPU to physical CPU */
88 cpu
= cpu_logical_map(i
);
90 /* Protect against other affinity changers and IMR manipulation */
91 raw_spin_lock_irqsave(&bcm1480_imr_lock
, flags
);
93 /* Swizzle each CPU's IMR (but leave the IP selection alone) */
94 old_cpu
= bcm1480_irq_owner
[irq
];
96 if ((irq_dirty
>= BCM1480_NR_IRQS_HALF
) && (irq_dirty
<= BCM1480_NR_IRQS
)) {
97 irq_dirty
-= BCM1480_NR_IRQS_HALF
;
100 for (k
=0; k
<2; k
++) { /* Loop through high and low interrupt mask register */
101 cur_ints
= ____raw_readq(IOADDR(A_BCM1480_IMR_MAPPER(old_cpu
) + R_BCM1480_IMR_INTERRUPT_MASK_H
+ (k
*BCM1480_IMR_HL_SPACING
)));
102 int_on
= !(cur_ints
& (((u64
) 1) << irq_dirty
));
104 /* If it was on, mask it */
105 cur_ints
|= (((u64
) 1) << irq_dirty
);
106 ____raw_writeq(cur_ints
, IOADDR(A_BCM1480_IMR_MAPPER(old_cpu
) + R_BCM1480_IMR_INTERRUPT_MASK_H
+ (k
*BCM1480_IMR_HL_SPACING
)));
108 bcm1480_irq_owner
[irq
] = cpu
;
110 /* unmask for the new CPU */
111 cur_ints
= ____raw_readq(IOADDR(A_BCM1480_IMR_MAPPER(cpu
) + R_BCM1480_IMR_INTERRUPT_MASK_H
+ (k
*BCM1480_IMR_HL_SPACING
)));
112 cur_ints
&= ~(((u64
) 1) << irq_dirty
);
113 ____raw_writeq(cur_ints
, IOADDR(A_BCM1480_IMR_MAPPER(cpu
) + R_BCM1480_IMR_INTERRUPT_MASK_H
+ (k
*BCM1480_IMR_HL_SPACING
)));
116 raw_spin_unlock_irqrestore(&bcm1480_imr_lock
, flags
);
123 /*****************************************************************************/
125 static void disable_bcm1480_irq(struct irq_data
*d
)
127 unsigned int irq
= d
->irq
;
129 bcm1480_mask_irq(bcm1480_irq_owner
[irq
], irq
);
132 static void enable_bcm1480_irq(struct irq_data
*d
)
134 unsigned int irq
= d
->irq
;
136 bcm1480_unmask_irq(bcm1480_irq_owner
[irq
], irq
);
140 static void ack_bcm1480_irq(struct irq_data
*d
)
142 unsigned int irq_dirty
, irq
= d
->irq
;
147 * If the interrupt was an HT interrupt, now is the time to
148 * clear it. NOTE: we assume the HT bridge was set up to
149 * deliver the interrupts to all CPUs (which makes affinity
150 * changing easier for us)
153 if ((irq_dirty
>= BCM1480_NR_IRQS_HALF
) && (irq_dirty
<= BCM1480_NR_IRQS
)) {
154 irq_dirty
-= BCM1480_NR_IRQS_HALF
;
156 for (k
=0; k
<2; k
++) { /* Loop through high and low LDT interrupts */
157 pending
= __raw_readq(IOADDR(A_BCM1480_IMR_REGISTER(bcm1480_irq_owner
[irq
],
158 R_BCM1480_IMR_LDT_INTERRUPT_H
+ (k
*BCM1480_IMR_HL_SPACING
))));
159 pending
&= ((u64
)1 << (irq_dirty
));
163 for (i
=0; i
<NR_CPUS
; i
++) {
165 * Clear for all CPUs so an affinity switch
166 * doesn't find an old status
168 __raw_writeq(pending
, IOADDR(A_BCM1480_IMR_REGISTER(cpu_logical_map(i
),
169 R_BCM1480_IMR_LDT_INTERRUPT_CLR_H
+ (k
*BCM1480_IMR_HL_SPACING
))));
172 __raw_writeq(pending
, IOADDR(A_BCM1480_IMR_REGISTER(0, R_BCM1480_IMR_LDT_INTERRUPT_CLR_H
+ (k
*BCM1480_IMR_HL_SPACING
))));
176 * Generate EOI. For Pass 1 parts, EOI is a nop. For
177 * Pass 2, the LDT world may be edge-triggered, but
178 * this EOI shouldn't hurt. If they are
179 * level-sensitive, the EOI is required.
183 *(uint32_t *)(ht_eoi_space
+(irq
<<16)+(7<<2)) = 0;
187 bcm1480_mask_irq(bcm1480_irq_owner
[irq
], irq
);
190 static struct irq_chip bcm1480_irq_type
= {
191 .name
= "BCM1480-IMR",
192 .irq_mask_ack
= ack_bcm1480_irq
,
193 .irq_mask
= disable_bcm1480_irq
,
194 .irq_unmask
= enable_bcm1480_irq
,
196 .irq_set_affinity
= bcm1480_set_affinity
200 void __init
init_bcm1480_irqs(void)
204 for (i
= 0; i
< BCM1480_NR_IRQS
; i
++) {
205 irq_set_chip_and_handler(i
, &bcm1480_irq_type
,
207 bcm1480_irq_owner
[i
] = 0;
212 * init_IRQ is called early in the boot sequence from init/main.c. It
213 * is responsible for setting up the interrupt mapper and installing the
214 * handler that will be responsible for dispatching interrupts to the
218 * For now, map all interrupts to IP[2]. We could save
219 * some cycles by parceling out system interrupts to different
220 * IP lines, but keep it simple for bringup. We'll also direct
221 * all interrupts to a single CPU; we should probably route
222 * PCI and LDT to one cpu and everything else to the other
223 * to balance the load a bit.
225 * On the second cpu, everything is set to IP5, which is
226 * ignored, EXCEPT the mailbox interrupt. That one is
227 * set to IP[2] so it is handled. This is needed so we
228 * can do cross-cpu function calls, as required by SMP
231 #define IMR_IP2_VAL K_BCM1480_INT_MAP_I0
232 #define IMR_IP3_VAL K_BCM1480_INT_MAP_I1
233 #define IMR_IP4_VAL K_BCM1480_INT_MAP_I2
234 #define IMR_IP5_VAL K_BCM1480_INT_MAP_I3
235 #define IMR_IP6_VAL K_BCM1480_INT_MAP_I4
237 void __init
arch_init_irq(void)
241 unsigned int imask
= STATUSF_IP4
| STATUSF_IP3
| STATUSF_IP2
|
242 STATUSF_IP1
| STATUSF_IP0
;
244 /* Default everything to IP2 */
245 /* Start with _high registers which has no bit 0 interrupt source */
246 for (i
= 1; i
< BCM1480_NR_IRQS_HALF
; i
++) { /* was I0 */
247 for (cpu
= 0; cpu
< 4; cpu
++) {
248 __raw_writeq(IMR_IP2_VAL
,
249 IOADDR(A_BCM1480_IMR_REGISTER(cpu
,
250 R_BCM1480_IMR_INTERRUPT_MAP_BASE_H
) + (i
<< 3)));
254 /* Now do _low registers */
255 for (i
= 0; i
< BCM1480_NR_IRQS_HALF
; i
++) {
256 for (cpu
= 0; cpu
< 4; cpu
++) {
257 __raw_writeq(IMR_IP2_VAL
,
258 IOADDR(A_BCM1480_IMR_REGISTER(cpu
,
259 R_BCM1480_IMR_INTERRUPT_MAP_BASE_L
) + (i
<< 3)));
266 * Map the high 16 bits of mailbox_0 registers to IP[3], for
270 for (cpu
= 0; cpu
< 4; cpu
++) {
271 __raw_writeq(IMR_IP3_VAL
, IOADDR(A_BCM1480_IMR_REGISTER(cpu
, R_BCM1480_IMR_INTERRUPT_MAP_BASE_H
) +
272 (K_BCM1480_INT_MBOX_0_0
<< 3)));
276 /* Clear the mailboxes. The firmware may leave them dirty */
277 for (cpu
= 0; cpu
< 4; cpu
++) {
278 __raw_writeq(0xffffffffffffffffULL
,
279 IOADDR(A_BCM1480_IMR_REGISTER(cpu
, R_BCM1480_IMR_MAILBOX_0_CLR_CPU
)));
280 __raw_writeq(0xffffffffffffffffULL
,
281 IOADDR(A_BCM1480_IMR_REGISTER(cpu
, R_BCM1480_IMR_MAILBOX_1_CLR_CPU
)));
285 /* Mask everything except the high 16 bit of mailbox_0 registers for all cpus */
286 tmp
= ~((u64
) 0) ^ ( (((u64
) 1) << K_BCM1480_INT_MBOX_0_0
));
287 for (cpu
= 0; cpu
< 4; cpu
++) {
288 __raw_writeq(tmp
, IOADDR(A_BCM1480_IMR_REGISTER(cpu
, R_BCM1480_IMR_INTERRUPT_MASK_H
)));
291 for (cpu
= 0; cpu
< 4; cpu
++) {
292 __raw_writeq(tmp
, IOADDR(A_BCM1480_IMR_REGISTER(cpu
, R_BCM1480_IMR_INTERRUPT_MASK_L
)));
296 * Note that the timer interrupts are also mapped, but this is
297 * done in bcm1480_time_init(). Also, the profiling driver
298 * does its own management of IP7.
301 /* Enable necessary IPs, disable the rest */
302 change_c0_status(ST0_IM
, imask
);
305 extern void bcm1480_mailbox_interrupt(void);
307 static inline void dispatch_ip2(void)
309 unsigned long long mask_h
, mask_l
;
310 unsigned int cpu
= smp_processor_id();
314 * Default...we've hit an IP[2] interrupt, which means we've got to
315 * check the 1480 interrupt registers to figure out what to do. Need
316 * to detect which CPU we're on, now that smp_affinity is supported.
318 base
= A_BCM1480_IMR_MAPPER(cpu
);
319 mask_h
= __raw_readq(
320 IOADDR(base
+ R_BCM1480_IMR_INTERRUPT_STATUS_BASE_H
));
321 mask_l
= __raw_readq(
322 IOADDR(base
+ R_BCM1480_IMR_INTERRUPT_STATUS_BASE_L
));
326 do_IRQ(fls64(mask_h
) - 1);
328 do_IRQ(63 + fls64(mask_l
));
332 asmlinkage
void plat_irq_dispatch(void)
334 unsigned int cpu
= smp_processor_id();
335 unsigned int pending
;
337 pending
= read_c0_cause() & read_c0_status();
339 if (pending
& CAUSEF_IP4
)
340 do_IRQ(K_BCM1480_INT_TIMER_0
+ cpu
);
342 else if (pending
& CAUSEF_IP3
)
343 bcm1480_mailbox_interrupt();
346 else if (pending
& CAUSEF_IP2
)