1 // SPDX-License-Identifier: GPL-2.0-only
3 * Copyright 2017 Benjamin Herrenschmidt, IBM Corporation.
6 #define pr_fmt(fmt) "xive-kvm: " fmt
8 #include <linux/kernel.h>
9 #include <linux/kvm_host.h>
10 #include <linux/err.h>
11 #include <linux/gfp.h>
12 #include <linux/spinlock.h>
13 #include <linux/delay.h>
14 #include <linux/percpu.h>
15 #include <linux/cpumask.h>
16 #include <linux/uaccess.h>
17 #include <asm/kvm_book3s.h>
18 #include <asm/kvm_ppc.h>
19 #include <asm/hvcall.h>
22 #include <asm/xive-regs.h>
23 #include <asm/debug.h>
24 #include <asm/debugfs.h>
28 #include <linux/debugfs.h>
29 #include <linux/seq_file.h>
31 #include "book3s_xive.h"
35 * Virtual mode variants of the hcalls for use on radix/radix
36 * with AIL. They require the VCPU's VP to be "pushed"
38 * We still instantiate them here because we use some of the
39 * generated utility functions as well in this file.
41 #define XIVE_RUNTIME_CHECKS
42 #define X_PFX xive_vm_
43 #define X_STATIC static
44 #define X_STAT_PFX stat_vm_
45 #define __x_tima xive_tima
46 #define __x_eoi_page(xd) ((void __iomem *)((xd)->eoi_mmio))
47 #define __x_trig_page(xd) ((void __iomem *)((xd)->trig_mmio))
48 #define __x_writeb __raw_writeb
49 #define __x_readw __raw_readw
50 #define __x_readq __raw_readq
51 #define __x_writeq __raw_writeq
53 #include "book3s_xive_template.c"
56 * We leave a gap of a couple of interrupts in the queue to
57 * account for the IPI and additional safety guard.
62 * Push a vcpu's context to the XIVE on guest entry.
63 * This assumes we are in virtual mode (MMU on)
65 void kvmppc_xive_push_vcpu(struct kvm_vcpu
*vcpu
)
67 void __iomem
*tima
= local_paca
->kvm_hstate
.xive_tima_virt
;
71 * Nothing to do if the platform doesn't have a XIVE
72 * or this vCPU doesn't have its own XIVE context
73 * (e.g. because it's not using an in-kernel interrupt controller).
75 if (!tima
|| !vcpu
->arch
.xive_cam_word
)
79 __raw_writeq(vcpu
->arch
.xive_saved_state
.w01
, tima
+ TM_QW1_OS
);
80 __raw_writel(vcpu
->arch
.xive_cam_word
, tima
+ TM_QW1_OS
+ TM_WORD2
);
81 vcpu
->arch
.xive_pushed
= 1;
85 * We clear the irq_pending flag. There is a small chance of a
86 * race vs. the escalation interrupt happening on another
87 * processor setting it again, but the only consequence is to
88 * cause a spurious wakeup on the next H_CEDE, which is not an
91 vcpu
->arch
.irq_pending
= 0;
94 * In single escalation mode, if the escalation interrupt is
97 if (vcpu
->arch
.xive_esc_on
) {
98 pq
= __raw_readq((void __iomem
*)(vcpu
->arch
.xive_esc_vaddr
+
103 * We have a possible subtle race here: The escalation
104 * interrupt might have fired and be on its way to the
105 * host queue while we mask it, and if we unmask it
106 * early enough (re-cede right away), there is a
107 * theorical possibility that it fires again, thus
108 * landing in the target queue more than once which is
111 * Fortunately, solving this is rather easy. If the
112 * above load setting PQ to 01 returns a previous
113 * value where P is set, then we know the escalation
114 * interrupt is somewhere on its way to the host. In
115 * that case we simply don't clear the xive_esc_on
116 * flag below. It will be eventually cleared by the
117 * handler for the escalation interrupt.
119 * Then, when doing a cede, we check that flag again
120 * before re-enabling the escalation interrupt, and if
121 * set, we abort the cede.
123 if (!(pq
& XIVE_ESB_VAL_P
))
124 /* Now P is 0, we can clear the flag */
125 vcpu
->arch
.xive_esc_on
= 0;
128 EXPORT_SYMBOL_GPL(kvmppc_xive_push_vcpu
);
131 * This is a simple trigger for a generic XIVE IRQ. This must
132 * only be called for interrupts that support a trigger page
134 static bool xive_irq_trigger(struct xive_irq_data
*xd
)
136 /* This should be only for MSIs */
137 if (WARN_ON(xd
->flags
& XIVE_IRQ_FLAG_LSI
))
140 /* Those interrupts should always have a trigger page */
141 if (WARN_ON(!xd
->trig_mmio
))
144 out_be64(xd
->trig_mmio
, 0);
149 static irqreturn_t
xive_esc_irq(int irq
, void *data
)
151 struct kvm_vcpu
*vcpu
= data
;
153 vcpu
->arch
.irq_pending
= 1;
155 if (vcpu
->arch
.ceded
)
156 kvmppc_fast_vcpu_kick(vcpu
);
158 /* Since we have the no-EOI flag, the interrupt is effectively
159 * disabled now. Clearing xive_esc_on means we won't bother
160 * doing so on the next entry.
162 * This also allows the entry code to know that if a PQ combination
163 * of 10 is observed while xive_esc_on is true, it means the queue
164 * contains an unprocessed escalation interrupt. We don't make use of
165 * that knowledge today but might (see comment in book3s_hv_rmhandler.S)
167 vcpu
->arch
.xive_esc_on
= false;
169 /* This orders xive_esc_on = false vs. subsequent stale_p = true */
170 smp_wmb(); /* goes with smp_mb() in cleanup_single_escalation */
175 int kvmppc_xive_attach_escalation(struct kvm_vcpu
*vcpu
, u8 prio
,
176 bool single_escalation
)
178 struct kvmppc_xive_vcpu
*xc
= vcpu
->arch
.xive_vcpu
;
179 struct xive_q
*q
= &xc
->queues
[prio
];
183 /* Already there ? */
184 if (xc
->esc_virq
[prio
])
187 /* Hook up the escalation interrupt */
188 xc
->esc_virq
[prio
] = irq_create_mapping(NULL
, q
->esc_irq
);
189 if (!xc
->esc_virq
[prio
]) {
190 pr_err("Failed to map escalation interrupt for queue %d of VCPU %d\n",
191 prio
, xc
->server_num
);
195 if (single_escalation
)
196 name
= kasprintf(GFP_KERNEL
, "kvm-%d-%d",
197 vcpu
->kvm
->arch
.lpid
, xc
->server_num
);
199 name
= kasprintf(GFP_KERNEL
, "kvm-%d-%d-%d",
200 vcpu
->kvm
->arch
.lpid
, xc
->server_num
, prio
);
202 pr_err("Failed to allocate escalation irq name for queue %d of VCPU %d\n",
203 prio
, xc
->server_num
);
208 pr_devel("Escalation %s irq %d (prio %d)\n", name
, xc
->esc_virq
[prio
], prio
);
210 rc
= request_irq(xc
->esc_virq
[prio
], xive_esc_irq
,
211 IRQF_NO_THREAD
, name
, vcpu
);
213 pr_err("Failed to request escalation interrupt for queue %d of VCPU %d\n",
214 prio
, xc
->server_num
);
217 xc
->esc_virq_names
[prio
] = name
;
219 /* In single escalation mode, we grab the ESB MMIO of the
220 * interrupt and mask it. Also populate the VCPU v/raddr
221 * of the ESB page for use by asm entry/exit code. Finally
222 * set the XIVE_IRQ_NO_EOI flag which will prevent the
223 * core code from performing an EOI on the escalation
224 * interrupt, thus leaving it effectively masked after
227 if (single_escalation
) {
228 struct irq_data
*d
= irq_get_irq_data(xc
->esc_virq
[prio
]);
229 struct xive_irq_data
*xd
= irq_data_get_irq_handler_data(d
);
231 xive_vm_esb_load(xd
, XIVE_ESB_SET_PQ_01
);
232 vcpu
->arch
.xive_esc_raddr
= xd
->eoi_page
;
233 vcpu
->arch
.xive_esc_vaddr
= (__force u64
)xd
->eoi_mmio
;
234 xd
->flags
|= XIVE_IRQ_NO_EOI
;
239 irq_dispose_mapping(xc
->esc_virq
[prio
]);
240 xc
->esc_virq
[prio
] = 0;
245 static int xive_provision_queue(struct kvm_vcpu
*vcpu
, u8 prio
)
247 struct kvmppc_xive_vcpu
*xc
= vcpu
->arch
.xive_vcpu
;
248 struct kvmppc_xive
*xive
= xc
->xive
;
249 struct xive_q
*q
= &xc
->queues
[prio
];
253 if (WARN_ON(q
->qpage
))
256 /* Allocate the queue and retrieve infos on current node for now */
257 qpage
= (__be32
*)__get_free_pages(GFP_KERNEL
, xive
->q_page_order
);
259 pr_err("Failed to allocate queue %d for VCPU %d\n",
260 prio
, xc
->server_num
);
263 memset(qpage
, 0, 1 << xive
->q_order
);
266 * Reconfigure the queue. This will set q->qpage only once the
267 * queue is fully configured. This is a requirement for prio 0
268 * as we will stop doing EOIs for every IPI as soon as we observe
269 * qpage being non-NULL, and instead will only EOI when we receive
270 * corresponding queue 0 entries
272 rc
= xive_native_configure_queue(xc
->vp_id
, q
, prio
, qpage
,
273 xive
->q_order
, true);
275 pr_err("Failed to configure queue %d for VCPU %d\n",
276 prio
, xc
->server_num
);
280 /* Called with xive->lock held */
281 static int xive_check_provisioning(struct kvm
*kvm
, u8 prio
)
283 struct kvmppc_xive
*xive
= kvm
->arch
.xive
;
284 struct kvm_vcpu
*vcpu
;
287 lockdep_assert_held(&xive
->lock
);
289 /* Already provisioned ? */
290 if (xive
->qmap
& (1 << prio
))
293 pr_devel("Provisioning prio... %d\n", prio
);
295 /* Provision each VCPU and enable escalations if needed */
296 kvm_for_each_vcpu(i
, vcpu
, kvm
) {
297 if (!vcpu
->arch
.xive_vcpu
)
299 rc
= xive_provision_queue(vcpu
, prio
);
300 if (rc
== 0 && !xive
->single_escalation
)
301 kvmppc_xive_attach_escalation(vcpu
, prio
,
302 xive
->single_escalation
);
307 /* Order previous stores and mark it as provisioned */
309 xive
->qmap
|= (1 << prio
);
313 static void xive_inc_q_pending(struct kvm
*kvm
, u32 server
, u8 prio
)
315 struct kvm_vcpu
*vcpu
;
316 struct kvmppc_xive_vcpu
*xc
;
319 /* Locate target server */
320 vcpu
= kvmppc_xive_find_server(kvm
, server
);
322 pr_warn("%s: Can't find server %d\n", __func__
, server
);
325 xc
= vcpu
->arch
.xive_vcpu
;
329 q
= &xc
->queues
[prio
];
330 atomic_inc(&q
->pending_count
);
333 static int xive_try_pick_queue(struct kvm_vcpu
*vcpu
, u8 prio
)
335 struct kvmppc_xive_vcpu
*xc
= vcpu
->arch
.xive_vcpu
;
344 q
= &xc
->queues
[prio
];
345 if (WARN_ON(!q
->qpage
))
348 /* Calculate max number of interrupts in that queue. */
349 max
= (q
->msk
+ 1) - XIVE_Q_GAP
;
350 return atomic_add_unless(&q
->count
, 1, max
) ? 0 : -EBUSY
;
353 int kvmppc_xive_select_target(struct kvm
*kvm
, u32
*server
, u8 prio
)
355 struct kvm_vcpu
*vcpu
;
358 /* Locate target server */
359 vcpu
= kvmppc_xive_find_server(kvm
, *server
);
361 pr_devel("Can't find server %d\n", *server
);
365 pr_devel("Finding irq target on 0x%x/%d...\n", *server
, prio
);
368 rc
= xive_try_pick_queue(vcpu
, prio
);
372 pr_devel(" .. failed, looking up candidate...\n");
374 /* Failed, pick another VCPU */
375 kvm_for_each_vcpu(i
, vcpu
, kvm
) {
376 if (!vcpu
->arch
.xive_vcpu
)
378 rc
= xive_try_pick_queue(vcpu
, prio
);
380 *server
= vcpu
->arch
.xive_vcpu
->server_num
;
381 pr_devel(" found on 0x%x/%d\n", *server
, prio
);
385 pr_devel(" no available target !\n");
387 /* No available target ! */
391 static u8
xive_lock_and_mask(struct kvmppc_xive
*xive
,
392 struct kvmppc_xive_src_block
*sb
,
393 struct kvmppc_xive_irq_state
*state
)
395 struct xive_irq_data
*xd
;
401 * Take the lock, set masked, try again if racing
405 arch_spin_lock(&sb
->lock
);
406 old_prio
= state
->guest_priority
;
407 state
->guest_priority
= MASKED
;
411 state
->guest_priority
= old_prio
;
412 arch_spin_unlock(&sb
->lock
);
415 /* No change ? Bail */
416 if (old_prio
== MASKED
)
419 /* Get the right irq */
420 kvmppc_xive_select_irq(state
, &hw_num
, &xd
);
423 * If the interrupt is marked as needing masking via
424 * firmware, we do it here. Firmware masking however
425 * is "lossy", it won't return the old p and q bits
426 * and won't set the interrupt to a state where it will
427 * record queued ones. If this is an issue we should do
428 * lazy masking instead.
430 * For now, we work around this in unmask by forcing
431 * an interrupt whenever we unmask a non-LSI via FW
434 if (xd
->flags
& OPAL_XIVE_IRQ_MASK_VIA_FW
) {
435 xive_native_configure_irq(hw_num
,
436 kvmppc_xive_vp(xive
, state
->act_server
),
437 MASKED
, state
->number
);
438 /* set old_p so we can track if an H_EOI was done */
440 state
->old_q
= false;
442 /* Set PQ to 10, return old P and old Q and remember them */
443 val
= xive_vm_esb_load(xd
, XIVE_ESB_SET_PQ_10
);
444 state
->old_p
= !!(val
& 2);
445 state
->old_q
= !!(val
& 1);
448 * Synchronize hardware to sensure the queues are updated
451 xive_native_sync_source(hw_num
);
457 static void xive_lock_for_unmask(struct kvmppc_xive_src_block
*sb
,
458 struct kvmppc_xive_irq_state
*state
)
461 * Take the lock try again if racing with H_EOI
464 arch_spin_lock(&sb
->lock
);
467 arch_spin_unlock(&sb
->lock
);
471 static void xive_finish_unmask(struct kvmppc_xive
*xive
,
472 struct kvmppc_xive_src_block
*sb
,
473 struct kvmppc_xive_irq_state
*state
,
476 struct xive_irq_data
*xd
;
479 /* If we aren't changing a thing, move on */
480 if (state
->guest_priority
!= MASKED
)
483 /* Get the right irq */
484 kvmppc_xive_select_irq(state
, &hw_num
, &xd
);
487 * See command in xive_lock_and_mask() concerning masking
490 if (xd
->flags
& OPAL_XIVE_IRQ_MASK_VIA_FW
) {
491 xive_native_configure_irq(hw_num
,
492 kvmppc_xive_vp(xive
, state
->act_server
),
493 state
->act_priority
, state
->number
);
494 /* If an EOI is needed, do it here */
496 xive_vm_source_eoi(hw_num
, xd
);
497 /* If this is not an LSI, force a trigger */
498 if (!(xd
->flags
& OPAL_XIVE_IRQ_LSI
))
499 xive_irq_trigger(xd
);
503 /* Old Q set, set PQ to 11 */
505 xive_vm_esb_load(xd
, XIVE_ESB_SET_PQ_11
);
508 * If not old P, then perform an "effective" EOI,
509 * on the source. This will handle the cases where
513 xive_vm_source_eoi(hw_num
, xd
);
515 /* Synchronize ordering and mark unmasked */
518 state
->guest_priority
= prio
;
522 * Target an interrupt to a given server/prio, this will fallback
523 * to another server if necessary and perform the HW targetting
526 * NOTE: Must be called with the state lock held
528 static int xive_target_interrupt(struct kvm
*kvm
,
529 struct kvmppc_xive_irq_state
*state
,
532 struct kvmppc_xive
*xive
= kvm
->arch
.xive
;
537 * This will return a tentative server and actual
538 * priority. The count for that new target will have
539 * already been incremented.
541 rc
= kvmppc_xive_select_target(kvm
, &server
, prio
);
544 * We failed to find a target ? Not much we can do
545 * at least until we support the GIQ.
551 * Increment the old queue pending count if there
552 * was one so that the old queue count gets adjusted later
553 * when observed to be empty.
555 if (state
->act_priority
!= MASKED
)
556 xive_inc_q_pending(kvm
,
558 state
->act_priority
);
560 * Update state and HW
562 state
->act_priority
= prio
;
563 state
->act_server
= server
;
565 /* Get the right irq */
566 kvmppc_xive_select_irq(state
, &hw_num
, NULL
);
568 return xive_native_configure_irq(hw_num
,
569 kvmppc_xive_vp(xive
, server
),
570 prio
, state
->number
);
574 * Targetting rules: In order to avoid losing track of
575 * pending interrupts accross mask and unmask, which would
576 * allow queue overflows, we implement the following rules:
578 * - Unless it was never enabled (or we run out of capacity)
579 * an interrupt is always targetted at a valid server/queue
580 * pair even when "masked" by the guest. This pair tends to
581 * be the last one used but it can be changed under some
582 * circumstances. That allows us to separate targetting
583 * from masking, we only handle accounting during (re)targetting,
584 * this also allows us to let an interrupt drain into its target
585 * queue after masking, avoiding complex schemes to remove
586 * interrupts out of remote processor queues.
588 * - When masking, we set PQ to 10 and save the previous value
591 * - When unmasking, if saved Q was set, we set PQ to 11
592 * otherwise we leave PQ to the HW state which will be either
593 * 10 if nothing happened or 11 if the interrupt fired while
594 * masked. Effectively we are OR'ing the previous Q into the
597 * Then if saved P is clear, we do an effective EOI (Q->P->Trigger)
598 * which will unmask the interrupt and shoot a new one if Q was
601 * Otherwise (saved P is set) we leave PQ unchanged (so 10 or 11,
602 * effectively meaning an H_EOI from the guest is still expected
603 * for that interrupt).
605 * - If H_EOI occurs while masked, we clear the saved P.
607 * - When changing target, we account on the new target and
608 * increment a separate "pending" counter on the old one.
609 * This pending counter will be used to decrement the old
610 * target's count when its queue has been observed empty.
613 int kvmppc_xive_set_xive(struct kvm
*kvm
, u32 irq
, u32 server
,
616 struct kvmppc_xive
*xive
= kvm
->arch
.xive
;
617 struct kvmppc_xive_src_block
*sb
;
618 struct kvmppc_xive_irq_state
*state
;
626 pr_devel("set_xive ! irq 0x%x server 0x%x prio %d\n",
627 irq
, server
, priority
);
629 /* First, check provisioning of queues */
630 if (priority
!= MASKED
) {
631 mutex_lock(&xive
->lock
);
632 rc
= xive_check_provisioning(xive
->kvm
,
633 xive_prio_from_guest(priority
));
634 mutex_unlock(&xive
->lock
);
637 pr_devel(" provisioning failure %d !\n", rc
);
641 sb
= kvmppc_xive_find_source(xive
, irq
, &idx
);
644 state
= &sb
->irq_state
[idx
];
647 * We first handle masking/unmasking since the locking
648 * might need to be retried due to EOIs, we'll handle
649 * targetting changes later. These functions will return
650 * with the SB lock held.
652 * xive_lock_and_mask() will also set state->guest_priority
653 * but won't otherwise change other fields of the state.
655 * xive_lock_for_unmask will not actually unmask, this will
656 * be done later by xive_finish_unmask() once the targetting
657 * has been done, so we don't try to unmask an interrupt
658 * that hasn't yet been targetted.
660 if (priority
== MASKED
)
661 xive_lock_and_mask(xive
, sb
, state
);
663 xive_lock_for_unmask(sb
, state
);
667 * Then we handle targetting.
669 * First calculate a new "actual priority"
671 new_act_prio
= state
->act_priority
;
672 if (priority
!= MASKED
)
673 new_act_prio
= xive_prio_from_guest(priority
);
675 pr_devel(" new_act_prio=%x act_server=%x act_prio=%x\n",
676 new_act_prio
, state
->act_server
, state
->act_priority
);
679 * Then check if we actually need to change anything,
681 * The condition for re-targetting the interrupt is that
682 * we have a valid new priority (new_act_prio is not 0xff)
683 * and either the server or the priority changed.
685 * Note: If act_priority was ff and the new priority is
686 * also ff, we don't do anything and leave the interrupt
687 * untargetted. An attempt of doing an int_on on an
688 * untargetted interrupt will fail. If that is a problem
689 * we could initialize interrupts with valid default
692 if (new_act_prio
!= MASKED
&&
693 (state
->act_server
!= server
||
694 state
->act_priority
!= new_act_prio
))
695 rc
= xive_target_interrupt(kvm
, state
, server
, new_act_prio
);
698 * Perform the final unmasking of the interrupt source
701 if (priority
!= MASKED
)
702 xive_finish_unmask(xive
, sb
, state
, priority
);
705 * Finally Update saved_priority to match. Only int_on/off
706 * set this field to a different value.
708 state
->saved_priority
= priority
;
710 arch_spin_unlock(&sb
->lock
);
714 int kvmppc_xive_get_xive(struct kvm
*kvm
, u32 irq
, u32
*server
,
717 struct kvmppc_xive
*xive
= kvm
->arch
.xive
;
718 struct kvmppc_xive_src_block
*sb
;
719 struct kvmppc_xive_irq_state
*state
;
725 sb
= kvmppc_xive_find_source(xive
, irq
, &idx
);
728 state
= &sb
->irq_state
[idx
];
729 arch_spin_lock(&sb
->lock
);
730 *server
= state
->act_server
;
731 *priority
= state
->guest_priority
;
732 arch_spin_unlock(&sb
->lock
);
737 int kvmppc_xive_int_on(struct kvm
*kvm
, u32 irq
)
739 struct kvmppc_xive
*xive
= kvm
->arch
.xive
;
740 struct kvmppc_xive_src_block
*sb
;
741 struct kvmppc_xive_irq_state
*state
;
747 sb
= kvmppc_xive_find_source(xive
, irq
, &idx
);
750 state
= &sb
->irq_state
[idx
];
752 pr_devel("int_on(irq=0x%x)\n", irq
);
755 * Check if interrupt was not targetted
757 if (state
->act_priority
== MASKED
) {
758 pr_devel("int_on on untargetted interrupt\n");
762 /* If saved_priority is 0xff, do nothing */
763 if (state
->saved_priority
== MASKED
)
767 * Lock and unmask it.
769 xive_lock_for_unmask(sb
, state
);
770 xive_finish_unmask(xive
, sb
, state
, state
->saved_priority
);
771 arch_spin_unlock(&sb
->lock
);
776 int kvmppc_xive_int_off(struct kvm
*kvm
, u32 irq
)
778 struct kvmppc_xive
*xive
= kvm
->arch
.xive
;
779 struct kvmppc_xive_src_block
*sb
;
780 struct kvmppc_xive_irq_state
*state
;
786 sb
= kvmppc_xive_find_source(xive
, irq
, &idx
);
789 state
= &sb
->irq_state
[idx
];
791 pr_devel("int_off(irq=0x%x)\n", irq
);
796 state
->saved_priority
= xive_lock_and_mask(xive
, sb
, state
);
797 arch_spin_unlock(&sb
->lock
);
802 static bool xive_restore_pending_irq(struct kvmppc_xive
*xive
, u32 irq
)
804 struct kvmppc_xive_src_block
*sb
;
805 struct kvmppc_xive_irq_state
*state
;
808 sb
= kvmppc_xive_find_source(xive
, irq
, &idx
);
811 state
= &sb
->irq_state
[idx
];
816 * Trigger the IPI. This assumes we never restore a pass-through
817 * interrupt which should be safe enough
819 xive_irq_trigger(&state
->ipi_data
);
824 u64
kvmppc_xive_get_icp(struct kvm_vcpu
*vcpu
)
826 struct kvmppc_xive_vcpu
*xc
= vcpu
->arch
.xive_vcpu
;
831 /* Return the per-cpu state for state saving/migration */
832 return (u64
)xc
->cppr
<< KVM_REG_PPC_ICP_CPPR_SHIFT
|
833 (u64
)xc
->mfrr
<< KVM_REG_PPC_ICP_MFRR_SHIFT
|
834 (u64
)0xff << KVM_REG_PPC_ICP_PPRI_SHIFT
;
837 int kvmppc_xive_set_icp(struct kvm_vcpu
*vcpu
, u64 icpval
)
839 struct kvmppc_xive_vcpu
*xc
= vcpu
->arch
.xive_vcpu
;
840 struct kvmppc_xive
*xive
= vcpu
->kvm
->arch
.xive
;
847 /* Grab individual state fields. We don't use pending_pri */
848 cppr
= icpval
>> KVM_REG_PPC_ICP_CPPR_SHIFT
;
849 xisr
= (icpval
>> KVM_REG_PPC_ICP_XISR_SHIFT
) &
850 KVM_REG_PPC_ICP_XISR_MASK
;
851 mfrr
= icpval
>> KVM_REG_PPC_ICP_MFRR_SHIFT
;
853 pr_devel("set_icp vcpu %d cppr=0x%x mfrr=0x%x xisr=0x%x\n",
854 xc
->server_num
, cppr
, mfrr
, xisr
);
857 * We can't update the state of a "pushed" VCPU, but that
858 * shouldn't happen because the vcpu->mutex makes running a
859 * vcpu mutually exclusive with doing one_reg get/set on it.
861 if (WARN_ON(vcpu
->arch
.xive_pushed
))
864 /* Update VCPU HW saved state */
865 vcpu
->arch
.xive_saved_state
.cppr
= cppr
;
866 xc
->hw_cppr
= xc
->cppr
= cppr
;
869 * Update MFRR state. If it's not 0xff, we mark the VCPU as
870 * having a pending MFRR change, which will re-evaluate the
871 * target. The VCPU will thus potentially get a spurious
872 * interrupt but that's not a big deal.
876 xive_irq_trigger(&xc
->vp_ipi_data
);
879 * Now saved XIRR is "interesting". It means there's something in
880 * the legacy "1 element" queue... for an IPI we simply ignore it,
881 * as the MFRR restore will handle that. For anything else we need
882 * to force a resend of the source.
883 * However the source may not have been setup yet. If that's the
884 * case, we keep that info and increment a counter in the xive to
885 * tell subsequent xive_set_source() to go look.
887 if (xisr
> XICS_IPI
&& !xive_restore_pending_irq(xive
, xisr
)) {
888 xc
->delayed_irq
= xisr
;
889 xive
->delayed_irqs
++;
890 pr_devel(" xisr restore delayed\n");
896 int kvmppc_xive_set_mapped(struct kvm
*kvm
, unsigned long guest_irq
,
897 struct irq_desc
*host_desc
)
899 struct kvmppc_xive
*xive
= kvm
->arch
.xive
;
900 struct kvmppc_xive_src_block
*sb
;
901 struct kvmppc_xive_irq_state
*state
;
902 struct irq_data
*host_data
= irq_desc_get_irq_data(host_desc
);
903 unsigned int host_irq
= irq_desc_get_irq(host_desc
);
904 unsigned int hw_irq
= (unsigned int)irqd_to_hwirq(host_data
);
912 pr_devel("set_mapped girq 0x%lx host HW irq 0x%x...\n",guest_irq
, hw_irq
);
914 sb
= kvmppc_xive_find_source(xive
, guest_irq
, &idx
);
917 state
= &sb
->irq_state
[idx
];
920 * Mark the passed-through interrupt as going to a VCPU,
921 * this will prevent further EOIs and similar operations
922 * from the XIVE code. It will also mask the interrupt
923 * to either PQ=10 or 11 state, the latter if the interrupt
924 * is pending. This will allow us to unmask or retrigger it
925 * after routing it to the guest with a simple EOI.
927 * The "state" argument is a "token", all it needs is to be
928 * non-NULL to switch to passed-through or NULL for the
929 * other way around. We may not yet have an actual VCPU
930 * target here and we don't really care.
932 rc
= irq_set_vcpu_affinity(host_irq
, state
);
934 pr_err("Failed to set VCPU affinity for irq %d\n", host_irq
);
939 * Mask and read state of IPI. We need to know if its P bit
940 * is set as that means it's potentially already using a
941 * queue entry in the target
943 prio
= xive_lock_and_mask(xive
, sb
, state
);
944 pr_devel(" old IPI prio %02x P:%d Q:%d\n", prio
,
945 state
->old_p
, state
->old_q
);
947 /* Turn the IPI hard off */
948 xive_vm_esb_load(&state
->ipi_data
, XIVE_ESB_SET_PQ_01
);
951 * Reset ESB guest mapping. Needed when ESB pages are exposed
952 * to the guest in XIVE native mode
954 if (xive
->ops
&& xive
->ops
->reset_mapped
)
955 xive
->ops
->reset_mapped(kvm
, guest_irq
);
957 /* Grab info about irq */
958 state
->pt_number
= hw_irq
;
959 state
->pt_data
= irq_data_get_irq_handler_data(host_data
);
962 * Configure the IRQ to match the existing configuration of
963 * the IPI if it was already targetted. Otherwise this will
964 * mask the interrupt in a lossy way (act_priority is 0xff)
965 * which is fine for a never started interrupt.
967 xive_native_configure_irq(hw_irq
,
968 kvmppc_xive_vp(xive
, state
->act_server
),
969 state
->act_priority
, state
->number
);
972 * We do an EOI to enable the interrupt (and retrigger if needed)
973 * if the guest has the interrupt unmasked and the P bit was *not*
974 * set in the IPI. If it was set, we know a slot may still be in
975 * use in the target queue thus we have to wait for a guest
978 if (prio
!= MASKED
&& !state
->old_p
)
979 xive_vm_source_eoi(hw_irq
, state
->pt_data
);
981 /* Clear old_p/old_q as they are no longer relevant */
982 state
->old_p
= state
->old_q
= false;
984 /* Restore guest prio (unlocks EOI) */
986 state
->guest_priority
= prio
;
987 arch_spin_unlock(&sb
->lock
);
991 EXPORT_SYMBOL_GPL(kvmppc_xive_set_mapped
);
993 int kvmppc_xive_clr_mapped(struct kvm
*kvm
, unsigned long guest_irq
,
994 struct irq_desc
*host_desc
)
996 struct kvmppc_xive
*xive
= kvm
->arch
.xive
;
997 struct kvmppc_xive_src_block
*sb
;
998 struct kvmppc_xive_irq_state
*state
;
999 unsigned int host_irq
= irq_desc_get_irq(host_desc
);
1007 pr_devel("clr_mapped girq 0x%lx...\n", guest_irq
);
1009 sb
= kvmppc_xive_find_source(xive
, guest_irq
, &idx
);
1012 state
= &sb
->irq_state
[idx
];
1015 * Mask and read state of IRQ. We need to know if its P bit
1016 * is set as that means it's potentially already using a
1017 * queue entry in the target
1019 prio
= xive_lock_and_mask(xive
, sb
, state
);
1020 pr_devel(" old IRQ prio %02x P:%d Q:%d\n", prio
,
1021 state
->old_p
, state
->old_q
);
1024 * If old_p is set, the interrupt is pending, we switch it to
1025 * PQ=11. This will force a resend in the host so the interrupt
1026 * isn't lost to whatver host driver may pick it up
1029 xive_vm_esb_load(state
->pt_data
, XIVE_ESB_SET_PQ_11
);
1031 /* Release the passed-through interrupt to the host */
1032 rc
= irq_set_vcpu_affinity(host_irq
, NULL
);
1034 pr_err("Failed to clr VCPU affinity for irq %d\n", host_irq
);
1038 /* Forget about the IRQ */
1039 state
->pt_number
= 0;
1040 state
->pt_data
= NULL
;
1043 * Reset ESB guest mapping. Needed when ESB pages are exposed
1044 * to the guest in XIVE native mode
1046 if (xive
->ops
&& xive
->ops
->reset_mapped
) {
1047 xive
->ops
->reset_mapped(kvm
, guest_irq
);
1050 /* Reconfigure the IPI */
1051 xive_native_configure_irq(state
->ipi_number
,
1052 kvmppc_xive_vp(xive
, state
->act_server
),
1053 state
->act_priority
, state
->number
);
1056 * If old_p is set (we have a queue entry potentially
1057 * occupied) or the interrupt is masked, we set the IPI
1058 * to PQ=10 state. Otherwise we just re-enable it (PQ=00).
1060 if (prio
== MASKED
|| state
->old_p
)
1061 xive_vm_esb_load(&state
->ipi_data
, XIVE_ESB_SET_PQ_10
);
1063 xive_vm_esb_load(&state
->ipi_data
, XIVE_ESB_SET_PQ_00
);
1065 /* Restore guest prio (unlocks EOI) */
1067 state
->guest_priority
= prio
;
1068 arch_spin_unlock(&sb
->lock
);
1072 EXPORT_SYMBOL_GPL(kvmppc_xive_clr_mapped
);
1074 void kvmppc_xive_disable_vcpu_interrupts(struct kvm_vcpu
*vcpu
)
1076 struct kvmppc_xive_vcpu
*xc
= vcpu
->arch
.xive_vcpu
;
1077 struct kvm
*kvm
= vcpu
->kvm
;
1078 struct kvmppc_xive
*xive
= kvm
->arch
.xive
;
1081 for (i
= 0; i
<= xive
->max_sbid
; i
++) {
1082 struct kvmppc_xive_src_block
*sb
= xive
->src_blocks
[i
];
1086 for (j
= 0; j
< KVMPPC_XICS_IRQ_PER_ICS
; j
++) {
1087 struct kvmppc_xive_irq_state
*state
= &sb
->irq_state
[j
];
1091 if (state
->act_priority
== MASKED
)
1093 if (state
->act_server
!= xc
->server_num
)
1097 arch_spin_lock(&sb
->lock
);
1098 state
->act_priority
= MASKED
;
1099 xive_vm_esb_load(&state
->ipi_data
, XIVE_ESB_SET_PQ_01
);
1100 xive_native_configure_irq(state
->ipi_number
, 0, MASKED
, 0);
1101 if (state
->pt_number
) {
1102 xive_vm_esb_load(state
->pt_data
, XIVE_ESB_SET_PQ_01
);
1103 xive_native_configure_irq(state
->pt_number
, 0, MASKED
, 0);
1105 arch_spin_unlock(&sb
->lock
);
1109 /* Disable vcpu's escalation interrupt */
1110 if (vcpu
->arch
.xive_esc_on
) {
1111 __raw_readq((void __iomem
*)(vcpu
->arch
.xive_esc_vaddr
+
1112 XIVE_ESB_SET_PQ_01
));
1113 vcpu
->arch
.xive_esc_on
= false;
1117 * Clear pointers to escalation interrupt ESB.
1118 * This is safe because the vcpu->mutex is held, preventing
1119 * any other CPU from concurrently executing a KVM_RUN ioctl.
1121 vcpu
->arch
.xive_esc_vaddr
= 0;
1122 vcpu
->arch
.xive_esc_raddr
= 0;
1126 * In single escalation mode, the escalation interrupt is marked so
1127 * that EOI doesn't re-enable it, but just sets the stale_p flag to
1128 * indicate that the P bit has already been dealt with. However, the
1129 * assembly code that enters the guest sets PQ to 00 without clearing
1130 * stale_p (because it has no easy way to address it). Hence we have
1131 * to adjust stale_p before shutting down the interrupt.
1133 void xive_cleanup_single_escalation(struct kvm_vcpu
*vcpu
,
1134 struct kvmppc_xive_vcpu
*xc
, int irq
)
1136 struct irq_data
*d
= irq_get_irq_data(irq
);
1137 struct xive_irq_data
*xd
= irq_data_get_irq_handler_data(d
);
1140 * This slightly odd sequence gives the right result
1141 * (i.e. stale_p set if xive_esc_on is false) even if
1142 * we race with xive_esc_irq() and xive_irq_eoi().
1144 xd
->stale_p
= false;
1145 smp_mb(); /* paired with smb_wmb in xive_esc_irq */
1146 if (!vcpu
->arch
.xive_esc_on
)
1150 void kvmppc_xive_cleanup_vcpu(struct kvm_vcpu
*vcpu
)
1152 struct kvmppc_xive_vcpu
*xc
= vcpu
->arch
.xive_vcpu
;
1153 struct kvmppc_xive
*xive
= vcpu
->kvm
->arch
.xive
;
1156 if (!kvmppc_xics_enabled(vcpu
))
1162 pr_devel("cleanup_vcpu(cpu=%d)\n", xc
->server_num
);
1164 /* Ensure no interrupt is still routed to that VP */
1166 kvmppc_xive_disable_vcpu_interrupts(vcpu
);
1168 /* Mask the VP IPI */
1169 xive_vm_esb_load(&xc
->vp_ipi_data
, XIVE_ESB_SET_PQ_01
);
1171 /* Free escalations */
1172 for (i
= 0; i
< KVMPPC_XIVE_Q_COUNT
; i
++) {
1173 if (xc
->esc_virq
[i
]) {
1174 if (xc
->xive
->single_escalation
)
1175 xive_cleanup_single_escalation(vcpu
, xc
,
1177 free_irq(xc
->esc_virq
[i
], vcpu
);
1178 irq_dispose_mapping(xc
->esc_virq
[i
]);
1179 kfree(xc
->esc_virq_names
[i
]);
1183 /* Disable the VP */
1184 xive_native_disable_vp(xc
->vp_id
);
1186 /* Clear the cam word so guest entry won't try to push context */
1187 vcpu
->arch
.xive_cam_word
= 0;
1189 /* Free the queues */
1190 for (i
= 0; i
< KVMPPC_XIVE_Q_COUNT
; i
++) {
1191 struct xive_q
*q
= &xc
->queues
[i
];
1193 xive_native_disable_queue(xc
->vp_id
, q
, i
);
1195 free_pages((unsigned long)q
->qpage
,
1196 xive
->q_page_order
);
1203 xive_cleanup_irq_data(&xc
->vp_ipi_data
);
1204 xive_native_free_irq(xc
->vp_ipi
);
1209 /* Cleanup the vcpu */
1210 vcpu
->arch
.irq_type
= KVMPPC_IRQ_DEFAULT
;
1211 vcpu
->arch
.xive_vcpu
= NULL
;
1214 static bool kvmppc_xive_vcpu_id_valid(struct kvmppc_xive
*xive
, u32 cpu
)
1216 /* We have a block of xive->nr_servers VPs. We just need to check
1217 * raw vCPU ids are below the expected limit for this guest's
1218 * core stride ; kvmppc_pack_vcpu_id() will pack them down to an
1219 * index that can be safely used to compute a VP id that belongs
1222 return cpu
< xive
->nr_servers
* xive
->kvm
->arch
.emul_smt_mode
;
1225 int kvmppc_xive_compute_vp_id(struct kvmppc_xive
*xive
, u32 cpu
, u32
*vp
)
1229 if (!kvmppc_xive_vcpu_id_valid(xive
, cpu
)) {
1230 pr_devel("Out of bounds !\n");
1234 if (xive
->vp_base
== XIVE_INVALID_VP
) {
1235 xive
->vp_base
= xive_native_alloc_vp_block(xive
->nr_servers
);
1236 pr_devel("VP_Base=%x nr_servers=%d\n", xive
->vp_base
, xive
->nr_servers
);
1238 if (xive
->vp_base
== XIVE_INVALID_VP
)
1242 vp_id
= kvmppc_xive_vp(xive
, cpu
);
1243 if (kvmppc_xive_vp_in_use(xive
->kvm
, vp_id
)) {
1244 pr_devel("Duplicate !\n");
1253 int kvmppc_xive_connect_vcpu(struct kvm_device
*dev
,
1254 struct kvm_vcpu
*vcpu
, u32 cpu
)
1256 struct kvmppc_xive
*xive
= dev
->private;
1257 struct kvmppc_xive_vcpu
*xc
;
1261 pr_devel("connect_vcpu(cpu=%d)\n", cpu
);
1263 if (dev
->ops
!= &kvm_xive_ops
) {
1264 pr_devel("Wrong ops !\n");
1267 if (xive
->kvm
!= vcpu
->kvm
)
1269 if (vcpu
->arch
.irq_type
!= KVMPPC_IRQ_DEFAULT
)
1272 /* We need to synchronize with queue provisioning */
1273 mutex_lock(&xive
->lock
);
1275 r
= kvmppc_xive_compute_vp_id(xive
, cpu
, &vp_id
);
1279 xc
= kzalloc(sizeof(*xc
), GFP_KERNEL
);
1285 vcpu
->arch
.xive_vcpu
= xc
;
1288 xc
->server_num
= cpu
;
1293 r
= xive_native_get_vp_info(xc
->vp_id
, &xc
->vp_cam
, &xc
->vp_chip_id
);
1297 /* Configure VCPU fields for use by assembly push/pull */
1298 vcpu
->arch
.xive_saved_state
.w01
= cpu_to_be64(0xff000000);
1299 vcpu
->arch
.xive_cam_word
= cpu_to_be32(xc
->vp_cam
| TM_QW1W2_VO
);
1302 xc
->vp_ipi
= xive_native_alloc_irq();
1304 pr_err("Failed to allocate xive irq for VCPU IPI\n");
1308 pr_devel(" IPI=0x%x\n", xc
->vp_ipi
);
1310 r
= xive_native_populate_irq_data(xc
->vp_ipi
, &xc
->vp_ipi_data
);
1315 * Enable the VP first as the single escalation mode will
1316 * affect escalation interrupts numbering
1318 r
= xive_native_enable_vp(xc
->vp_id
, xive
->single_escalation
);
1320 pr_err("Failed to enable VP in OPAL, err %d\n", r
);
1325 * Initialize queues. Initially we set them all for no queueing
1326 * and we enable escalation for queue 0 only which we'll use for
1327 * our mfrr change notifications. If the VCPU is hot-plugged, we
1328 * do handle provisioning however based on the existing "map"
1329 * of enabled queues.
1331 for (i
= 0; i
< KVMPPC_XIVE_Q_COUNT
; i
++) {
1332 struct xive_q
*q
= &xc
->queues
[i
];
1334 /* Single escalation, no queue 7 */
1335 if (i
== 7 && xive
->single_escalation
)
1338 /* Is queue already enabled ? Provision it */
1339 if (xive
->qmap
& (1 << i
)) {
1340 r
= xive_provision_queue(vcpu
, i
);
1341 if (r
== 0 && !xive
->single_escalation
)
1342 kvmppc_xive_attach_escalation(
1343 vcpu
, i
, xive
->single_escalation
);
1347 r
= xive_native_configure_queue(xc
->vp_id
,
1348 q
, i
, NULL
, 0, true);
1350 pr_err("Failed to configure queue %d for VCPU %d\n",
1357 /* If not done above, attach priority 0 escalation */
1358 r
= kvmppc_xive_attach_escalation(vcpu
, 0, xive
->single_escalation
);
1363 r
= xive_native_configure_irq(xc
->vp_ipi
, xc
->vp_id
, 0, XICS_IPI
);
1365 xive_vm_esb_load(&xc
->vp_ipi_data
, XIVE_ESB_SET_PQ_00
);
1368 mutex_unlock(&xive
->lock
);
1370 kvmppc_xive_cleanup_vcpu(vcpu
);
1374 vcpu
->arch
.irq_type
= KVMPPC_IRQ_XICS
;
1379 * Scanning of queues before/after migration save
1381 static void xive_pre_save_set_queued(struct kvmppc_xive
*xive
, u32 irq
)
1383 struct kvmppc_xive_src_block
*sb
;
1384 struct kvmppc_xive_irq_state
*state
;
1387 sb
= kvmppc_xive_find_source(xive
, irq
, &idx
);
1391 state
= &sb
->irq_state
[idx
];
1393 /* Some sanity checking */
1394 if (!state
->valid
) {
1395 pr_err("invalid irq 0x%x in cpu queue!\n", irq
);
1400 * If the interrupt is in a queue it should have P set.
1401 * We warn so that gets reported. A backtrace isn't useful
1402 * so no need to use a WARN_ON.
1404 if (!state
->saved_p
)
1405 pr_err("Interrupt 0x%x is marked in a queue but P not set !\n", irq
);
1408 state
->in_queue
= true;
1411 static void xive_pre_save_mask_irq(struct kvmppc_xive
*xive
,
1412 struct kvmppc_xive_src_block
*sb
,
1415 struct kvmppc_xive_irq_state
*state
= &sb
->irq_state
[irq
];
1420 /* Mask and save state, this will also sync HW queues */
1421 state
->saved_scan_prio
= xive_lock_and_mask(xive
, sb
, state
);
1423 /* Transfer P and Q */
1424 state
->saved_p
= state
->old_p
;
1425 state
->saved_q
= state
->old_q
;
1428 arch_spin_unlock(&sb
->lock
);
1431 static void xive_pre_save_unmask_irq(struct kvmppc_xive
*xive
,
1432 struct kvmppc_xive_src_block
*sb
,
1435 struct kvmppc_xive_irq_state
*state
= &sb
->irq_state
[irq
];
1441 * Lock / exclude EOI (not technically necessary if the
1442 * guest isn't running concurrently. If this becomes a
1443 * performance issue we can probably remove the lock.
1445 xive_lock_for_unmask(sb
, state
);
1447 /* Restore mask/prio if it wasn't masked */
1448 if (state
->saved_scan_prio
!= MASKED
)
1449 xive_finish_unmask(xive
, sb
, state
, state
->saved_scan_prio
);
1452 arch_spin_unlock(&sb
->lock
);
1455 static void xive_pre_save_queue(struct kvmppc_xive
*xive
, struct xive_q
*q
)
1458 u32 toggle
= q
->toggle
;
1462 irq
= __xive_read_eq(q
->qpage
, q
->msk
, &idx
, &toggle
);
1464 xive_pre_save_set_queued(xive
, irq
);
1468 static void xive_pre_save_scan(struct kvmppc_xive
*xive
)
1470 struct kvm_vcpu
*vcpu
= NULL
;
1474 * See comment in xive_get_source() about how this
1475 * work. Collect a stable state for all interrupts
1477 for (i
= 0; i
<= xive
->max_sbid
; i
++) {
1478 struct kvmppc_xive_src_block
*sb
= xive
->src_blocks
[i
];
1481 for (j
= 0; j
< KVMPPC_XICS_IRQ_PER_ICS
; j
++)
1482 xive_pre_save_mask_irq(xive
, sb
, j
);
1485 /* Then scan the queues and update the "in_queue" flag */
1486 kvm_for_each_vcpu(i
, vcpu
, xive
->kvm
) {
1487 struct kvmppc_xive_vcpu
*xc
= vcpu
->arch
.xive_vcpu
;
1490 for (j
= 0; j
< KVMPPC_XIVE_Q_COUNT
; j
++) {
1491 if (xc
->queues
[j
].qpage
)
1492 xive_pre_save_queue(xive
, &xc
->queues
[j
]);
1496 /* Finally restore interrupt states */
1497 for (i
= 0; i
<= xive
->max_sbid
; i
++) {
1498 struct kvmppc_xive_src_block
*sb
= xive
->src_blocks
[i
];
1501 for (j
= 0; j
< KVMPPC_XICS_IRQ_PER_ICS
; j
++)
1502 xive_pre_save_unmask_irq(xive
, sb
, j
);
1506 static void xive_post_save_scan(struct kvmppc_xive
*xive
)
1510 /* Clear all the in_queue flags */
1511 for (i
= 0; i
<= xive
->max_sbid
; i
++) {
1512 struct kvmppc_xive_src_block
*sb
= xive
->src_blocks
[i
];
1515 for (j
= 0; j
< KVMPPC_XICS_IRQ_PER_ICS
; j
++)
1516 sb
->irq_state
[j
].in_queue
= false;
1519 /* Next get_source() will do a new scan */
1520 xive
->saved_src_count
= 0;
1524 * This returns the source configuration and state to user space.
1526 static int xive_get_source(struct kvmppc_xive
*xive
, long irq
, u64 addr
)
1528 struct kvmppc_xive_src_block
*sb
;
1529 struct kvmppc_xive_irq_state
*state
;
1530 u64 __user
*ubufp
= (u64 __user
*) addr
;
1534 sb
= kvmppc_xive_find_source(xive
, irq
, &idx
);
1538 state
= &sb
->irq_state
[idx
];
1543 pr_devel("get_source(%ld)...\n", irq
);
1546 * So to properly save the state into something that looks like a
1547 * XICS migration stream we cannot treat interrupts individually.
1549 * We need, instead, mask them all (& save their previous PQ state)
1550 * to get a stable state in the HW, then sync them to ensure that
1551 * any interrupt that had already fired hits its queue, and finally
1552 * scan all the queues to collect which interrupts are still present
1553 * in the queues, so we can set the "pending" flag on them and
1554 * they can be resent on restore.
1556 * So we do it all when the "first" interrupt gets saved, all the
1557 * state is collected at that point, the rest of xive_get_source()
1558 * will merely collect and convert that state to the expected
1559 * userspace bit mask.
1561 if (xive
->saved_src_count
== 0)
1562 xive_pre_save_scan(xive
);
1563 xive
->saved_src_count
++;
1565 /* Convert saved state into something compatible with xics */
1566 val
= state
->act_server
;
1567 prio
= state
->saved_scan_prio
;
1569 if (prio
== MASKED
) {
1570 val
|= KVM_XICS_MASKED
;
1571 prio
= state
->saved_priority
;
1573 val
|= prio
<< KVM_XICS_PRIORITY_SHIFT
;
1575 val
|= KVM_XICS_LEVEL_SENSITIVE
;
1577 val
|= KVM_XICS_PENDING
;
1580 val
|= KVM_XICS_PRESENTED
;
1583 val
|= KVM_XICS_QUEUED
;
1586 * We mark it pending (which will attempt a re-delivery)
1587 * if we are in a queue *or* we were masked and had
1588 * Q set which is equivalent to the XICS "masked pending"
1591 if (state
->in_queue
|| (prio
== MASKED
&& state
->saved_q
))
1592 val
|= KVM_XICS_PENDING
;
1596 * If that was the last interrupt saved, reset the
1599 if (xive
->saved_src_count
== xive
->src_count
)
1600 xive_post_save_scan(xive
);
1602 /* Copy the result to userspace */
1603 if (put_user(val
, ubufp
))
1609 struct kvmppc_xive_src_block
*kvmppc_xive_create_src_block(
1610 struct kvmppc_xive
*xive
, int irq
)
1612 struct kvmppc_xive_src_block
*sb
;
1615 bid
= irq
>> KVMPPC_XICS_ICS_SHIFT
;
1617 mutex_lock(&xive
->lock
);
1619 /* block already exists - somebody else got here first */
1620 if (xive
->src_blocks
[bid
])
1623 /* Create the ICS */
1624 sb
= kzalloc(sizeof(*sb
), GFP_KERNEL
);
1630 for (i
= 0; i
< KVMPPC_XICS_IRQ_PER_ICS
; i
++) {
1631 sb
->irq_state
[i
].number
= (bid
<< KVMPPC_XICS_ICS_SHIFT
) | i
;
1632 sb
->irq_state
[i
].eisn
= 0;
1633 sb
->irq_state
[i
].guest_priority
= MASKED
;
1634 sb
->irq_state
[i
].saved_priority
= MASKED
;
1635 sb
->irq_state
[i
].act_priority
= MASKED
;
1638 xive
->src_blocks
[bid
] = sb
;
1640 if (bid
> xive
->max_sbid
)
1641 xive
->max_sbid
= bid
;
1644 mutex_unlock(&xive
->lock
);
1645 return xive
->src_blocks
[bid
];
1648 static bool xive_check_delayed_irq(struct kvmppc_xive
*xive
, u32 irq
)
1650 struct kvm
*kvm
= xive
->kvm
;
1651 struct kvm_vcpu
*vcpu
= NULL
;
1654 kvm_for_each_vcpu(i
, vcpu
, kvm
) {
1655 struct kvmppc_xive_vcpu
*xc
= vcpu
->arch
.xive_vcpu
;
1660 if (xc
->delayed_irq
== irq
) {
1661 xc
->delayed_irq
= 0;
1662 xive
->delayed_irqs
--;
1669 static int xive_set_source(struct kvmppc_xive
*xive
, long irq
, u64 addr
)
1671 struct kvmppc_xive_src_block
*sb
;
1672 struct kvmppc_xive_irq_state
*state
;
1673 u64 __user
*ubufp
= (u64 __user
*) addr
;
1676 u8 act_prio
, guest_prio
;
1680 if (irq
< KVMPPC_XICS_FIRST_IRQ
|| irq
>= KVMPPC_XICS_NR_IRQS
)
1683 pr_devel("set_source(irq=0x%lx)\n", irq
);
1685 /* Find the source */
1686 sb
= kvmppc_xive_find_source(xive
, irq
, &idx
);
1688 pr_devel("No source, creating source block...\n");
1689 sb
= kvmppc_xive_create_src_block(xive
, irq
);
1691 pr_devel("Failed to create block...\n");
1695 state
= &sb
->irq_state
[idx
];
1697 /* Read user passed data */
1698 if (get_user(val
, ubufp
)) {
1699 pr_devel("fault getting user info !\n");
1703 server
= val
& KVM_XICS_DESTINATION_MASK
;
1704 guest_prio
= val
>> KVM_XICS_PRIORITY_SHIFT
;
1706 pr_devel(" val=0x016%llx (server=0x%x, guest_prio=%d)\n",
1707 val
, server
, guest_prio
);
1710 * If the source doesn't already have an IPI, allocate
1711 * one and get the corresponding data
1713 if (!state
->ipi_number
) {
1714 state
->ipi_number
= xive_native_alloc_irq();
1715 if (state
->ipi_number
== 0) {
1716 pr_devel("Failed to allocate IPI !\n");
1719 xive_native_populate_irq_data(state
->ipi_number
, &state
->ipi_data
);
1720 pr_devel(" src_ipi=0x%x\n", state
->ipi_number
);
1724 * We use lock_and_mask() to set us in the right masked
1725 * state. We will override that state from the saved state
1726 * further down, but this will handle the cases of interrupts
1727 * that need FW masking. We set the initial guest_priority to
1728 * 0 before calling it to ensure it actually performs the masking.
1730 state
->guest_priority
= 0;
1731 xive_lock_and_mask(xive
, sb
, state
);
1734 * Now, we select a target if we have one. If we don't we
1735 * leave the interrupt untargetted. It means that an interrupt
1736 * can become "untargetted" accross migration if it was masked
1737 * by set_xive() but there is little we can do about it.
1740 /* First convert prio and mark interrupt as untargetted */
1741 act_prio
= xive_prio_from_guest(guest_prio
);
1742 state
->act_priority
= MASKED
;
1745 * We need to drop the lock due to the mutex below. Hopefully
1746 * nothing is touching that interrupt yet since it hasn't been
1747 * advertized to a running guest yet
1749 arch_spin_unlock(&sb
->lock
);
1751 /* If we have a priority target the interrupt */
1752 if (act_prio
!= MASKED
) {
1753 /* First, check provisioning of queues */
1754 mutex_lock(&xive
->lock
);
1755 rc
= xive_check_provisioning(xive
->kvm
, act_prio
);
1756 mutex_unlock(&xive
->lock
);
1758 /* Target interrupt */
1760 rc
= xive_target_interrupt(xive
->kvm
, state
,
1763 * If provisioning or targetting failed, leave it
1764 * alone and masked. It will remain disabled until
1765 * the guest re-targets it.
1770 * Find out if this was a delayed irq stashed in an ICP,
1771 * in which case, treat it as pending
1773 if (xive
->delayed_irqs
&& xive_check_delayed_irq(xive
, irq
)) {
1774 val
|= KVM_XICS_PENDING
;
1775 pr_devel(" Found delayed ! forcing PENDING !\n");
1778 /* Cleanup the SW state */
1779 state
->old_p
= false;
1780 state
->old_q
= false;
1782 state
->asserted
= false;
1784 /* Restore LSI state */
1785 if (val
& KVM_XICS_LEVEL_SENSITIVE
) {
1787 if (val
& KVM_XICS_PENDING
)
1788 state
->asserted
= true;
1789 pr_devel(" LSI ! Asserted=%d\n", state
->asserted
);
1793 * Restore P and Q. If the interrupt was pending, we
1794 * force Q and !P, which will trigger a resend.
1796 * That means that a guest that had both an interrupt
1797 * pending (queued) and Q set will restore with only
1798 * one instance of that interrupt instead of 2, but that
1799 * is perfectly fine as coalescing interrupts that haven't
1800 * been presented yet is always allowed.
1802 if (val
& KVM_XICS_PRESENTED
&& !(val
& KVM_XICS_PENDING
))
1803 state
->old_p
= true;
1804 if (val
& KVM_XICS_QUEUED
|| val
& KVM_XICS_PENDING
)
1805 state
->old_q
= true;
1807 pr_devel(" P=%d, Q=%d\n", state
->old_p
, state
->old_q
);
1810 * If the interrupt was unmasked, update guest priority and
1811 * perform the appropriate state transition and do a
1812 * re-trigger if necessary.
1814 if (val
& KVM_XICS_MASKED
) {
1815 pr_devel(" masked, saving prio\n");
1816 state
->guest_priority
= MASKED
;
1817 state
->saved_priority
= guest_prio
;
1819 pr_devel(" unmasked, restoring to prio %d\n", guest_prio
);
1820 xive_finish_unmask(xive
, sb
, state
, guest_prio
);
1821 state
->saved_priority
= guest_prio
;
1824 /* Increment the number of valid sources and mark this one valid */
1827 state
->valid
= true;
1832 int kvmppc_xive_set_irq(struct kvm
*kvm
, int irq_source_id
, u32 irq
, int level
,
1835 struct kvmppc_xive
*xive
= kvm
->arch
.xive
;
1836 struct kvmppc_xive_src_block
*sb
;
1837 struct kvmppc_xive_irq_state
*state
;
1843 sb
= kvmppc_xive_find_source(xive
, irq
, &idx
);
1847 /* Perform locklessly .... (we need to do some RCUisms here...) */
1848 state
= &sb
->irq_state
[idx
];
1852 /* We don't allow a trigger on a passed-through interrupt */
1853 if (state
->pt_number
)
1856 if ((level
== 1 && state
->lsi
) || level
== KVM_INTERRUPT_SET_LEVEL
)
1857 state
->asserted
= 1;
1858 else if (level
== 0 || level
== KVM_INTERRUPT_UNSET
) {
1859 state
->asserted
= 0;
1863 /* Trigger the IPI */
1864 xive_irq_trigger(&state
->ipi_data
);
1869 int kvmppc_xive_set_nr_servers(struct kvmppc_xive
*xive
, u64 addr
)
1871 u32 __user
*ubufp
= (u32 __user
*) addr
;
1875 if (get_user(nr_servers
, ubufp
))
1878 pr_devel("%s nr_servers=%u\n", __func__
, nr_servers
);
1880 if (!nr_servers
|| nr_servers
> KVM_MAX_VCPU_ID
)
1883 mutex_lock(&xive
->lock
);
1884 if (xive
->vp_base
!= XIVE_INVALID_VP
)
1885 /* The VP block is allocated once and freed when the device
1886 * is released. Better not allow to change its size since its
1887 * used by connect_vcpu to validate vCPU ids are valid (eg,
1888 * setting it back to a higher value could allow connect_vcpu
1889 * to come up with a VP id that goes beyond the VP block, which
1890 * is likely to cause a crash in OPAL).
1893 else if (nr_servers
> KVM_MAX_VCPUS
)
1894 /* We don't need more servers. Higher vCPU ids get packed
1895 * down below KVM_MAX_VCPUS by kvmppc_pack_vcpu_id().
1897 xive
->nr_servers
= KVM_MAX_VCPUS
;
1899 xive
->nr_servers
= nr_servers
;
1901 mutex_unlock(&xive
->lock
);
1906 static int xive_set_attr(struct kvm_device
*dev
, struct kvm_device_attr
*attr
)
1908 struct kvmppc_xive
*xive
= dev
->private;
1910 /* We honor the existing XICS ioctl */
1911 switch (attr
->group
) {
1912 case KVM_DEV_XICS_GRP_SOURCES
:
1913 return xive_set_source(xive
, attr
->attr
, attr
->addr
);
1914 case KVM_DEV_XICS_GRP_CTRL
:
1915 switch (attr
->attr
) {
1916 case KVM_DEV_XICS_NR_SERVERS
:
1917 return kvmppc_xive_set_nr_servers(xive
, attr
->addr
);
1923 static int xive_get_attr(struct kvm_device
*dev
, struct kvm_device_attr
*attr
)
1925 struct kvmppc_xive
*xive
= dev
->private;
1927 /* We honor the existing XICS ioctl */
1928 switch (attr
->group
) {
1929 case KVM_DEV_XICS_GRP_SOURCES
:
1930 return xive_get_source(xive
, attr
->attr
, attr
->addr
);
1935 static int xive_has_attr(struct kvm_device
*dev
, struct kvm_device_attr
*attr
)
1937 /* We honor the same limits as XICS, at least for now */
1938 switch (attr
->group
) {
1939 case KVM_DEV_XICS_GRP_SOURCES
:
1940 if (attr
->attr
>= KVMPPC_XICS_FIRST_IRQ
&&
1941 attr
->attr
< KVMPPC_XICS_NR_IRQS
)
1944 case KVM_DEV_XICS_GRP_CTRL
:
1945 switch (attr
->attr
) {
1946 case KVM_DEV_XICS_NR_SERVERS
:
1953 static void kvmppc_xive_cleanup_irq(u32 hw_num
, struct xive_irq_data
*xd
)
1955 xive_vm_esb_load(xd
, XIVE_ESB_SET_PQ_01
);
1956 xive_native_configure_irq(hw_num
, 0, MASKED
, 0);
1959 void kvmppc_xive_free_sources(struct kvmppc_xive_src_block
*sb
)
1963 for (i
= 0; i
< KVMPPC_XICS_IRQ_PER_ICS
; i
++) {
1964 struct kvmppc_xive_irq_state
*state
= &sb
->irq_state
[i
];
1969 kvmppc_xive_cleanup_irq(state
->ipi_number
, &state
->ipi_data
);
1970 xive_cleanup_irq_data(&state
->ipi_data
);
1971 xive_native_free_irq(state
->ipi_number
);
1973 /* Pass-through, cleanup too but keep IRQ hw data */
1974 if (state
->pt_number
)
1975 kvmppc_xive_cleanup_irq(state
->pt_number
, state
->pt_data
);
1977 state
->valid
= false;
1982 * Called when device fd is closed. kvm->lock is held.
1984 static void kvmppc_xive_release(struct kvm_device
*dev
)
1986 struct kvmppc_xive
*xive
= dev
->private;
1987 struct kvm
*kvm
= xive
->kvm
;
1988 struct kvm_vcpu
*vcpu
;
1991 pr_devel("Releasing xive device\n");
1994 * Since this is the device release function, we know that
1995 * userspace does not have any open fd referring to the
1996 * device. Therefore there can not be any of the device
1997 * attribute set/get functions being executed concurrently,
1998 * and similarly, the connect_vcpu and set/clr_mapped
1999 * functions also cannot be being executed.
2002 debugfs_remove(xive
->dentry
);
2005 * We should clean up the vCPU interrupt presenters first.
2007 kvm_for_each_vcpu(i
, vcpu
, kvm
) {
2009 * Take vcpu->mutex to ensure that no one_reg get/set ioctl
2010 * (i.e. kvmppc_xive_[gs]et_icp) can be done concurrently.
2011 * Holding the vcpu->mutex also means that the vcpu cannot
2012 * be executing the KVM_RUN ioctl, and therefore it cannot
2013 * be executing the XIVE push or pull code or accessing
2014 * the XIVE MMIO regions.
2016 mutex_lock(&vcpu
->mutex
);
2017 kvmppc_xive_cleanup_vcpu(vcpu
);
2018 mutex_unlock(&vcpu
->mutex
);
2022 * Now that we have cleared vcpu->arch.xive_vcpu, vcpu->arch.irq_type
2023 * and vcpu->arch.xive_esc_[vr]addr on each vcpu, we are safe
2024 * against xive code getting called during vcpu execution or
2025 * set/get one_reg operations.
2027 kvm
->arch
.xive
= NULL
;
2029 /* Mask and free interrupts */
2030 for (i
= 0; i
<= xive
->max_sbid
; i
++) {
2031 if (xive
->src_blocks
[i
])
2032 kvmppc_xive_free_sources(xive
->src_blocks
[i
]);
2033 kfree(xive
->src_blocks
[i
]);
2034 xive
->src_blocks
[i
] = NULL
;
2037 if (xive
->vp_base
!= XIVE_INVALID_VP
)
2038 xive_native_free_vp_block(xive
->vp_base
);
2041 * A reference of the kvmppc_xive pointer is now kept under
2042 * the xive_devices struct of the machine for reuse. It is
2043 * freed when the VM is destroyed for now until we fix all the
2051 * When the guest chooses the interrupt mode (XICS legacy or XIVE
2052 * native), the VM will switch of KVM device. The previous device will
2053 * be "released" before the new one is created.
2055 * Until we are sure all execution paths are well protected, provide a
2056 * fail safe (transitional) method for device destruction, in which
2057 * the XIVE device pointer is recycled and not directly freed.
2059 struct kvmppc_xive
*kvmppc_xive_get_device(struct kvm
*kvm
, u32 type
)
2061 struct kvmppc_xive
**kvm_xive_device
= type
== KVM_DEV_TYPE_XIVE
?
2062 &kvm
->arch
.xive_devices
.native
:
2063 &kvm
->arch
.xive_devices
.xics_on_xive
;
2064 struct kvmppc_xive
*xive
= *kvm_xive_device
;
2067 xive
= kzalloc(sizeof(*xive
), GFP_KERNEL
);
2068 *kvm_xive_device
= xive
;
2070 memset(xive
, 0, sizeof(*xive
));
2077 * Create a XICS device with XIVE backend. kvm->lock is held.
2079 static int kvmppc_xive_create(struct kvm_device
*dev
, u32 type
)
2081 struct kvmppc_xive
*xive
;
2082 struct kvm
*kvm
= dev
->kvm
;
2084 pr_devel("Creating xive for partition\n");
2086 /* Already there ? */
2090 xive
= kvmppc_xive_get_device(kvm
, type
);
2094 dev
->private = xive
;
2097 mutex_init(&xive
->lock
);
2099 /* We use the default queue size set by the host */
2100 xive
->q_order
= xive_native_default_eq_shift();
2101 if (xive
->q_order
< PAGE_SHIFT
)
2102 xive
->q_page_order
= 0;
2104 xive
->q_page_order
= xive
->q_order
- PAGE_SHIFT
;
2106 /* VP allocation is delayed to the first call to connect_vcpu */
2107 xive
->vp_base
= XIVE_INVALID_VP
;
2108 /* KVM_MAX_VCPUS limits the number of VMs to roughly 64 per sockets
2109 * on a POWER9 system.
2111 xive
->nr_servers
= KVM_MAX_VCPUS
;
2113 xive
->single_escalation
= xive_native_has_single_escalation();
2115 kvm
->arch
.xive
= xive
;
2119 int kvmppc_xive_debug_show_queues(struct seq_file
*m
, struct kvm_vcpu
*vcpu
)
2121 struct kvmppc_xive_vcpu
*xc
= vcpu
->arch
.xive_vcpu
;
2124 for (i
= 0; i
< KVMPPC_XIVE_Q_COUNT
; i
++) {
2125 struct xive_q
*q
= &xc
->queues
[i
];
2128 if (!q
->qpage
&& !xc
->esc_virq
[i
])
2131 seq_printf(m
, " [q%d]: ", i
);
2135 i0
= be32_to_cpup(q
->qpage
+ idx
);
2136 idx
= (idx
+ 1) & q
->msk
;
2137 i1
= be32_to_cpup(q
->qpage
+ idx
);
2138 seq_printf(m
, "T=%d %08x %08x...\n", q
->toggle
,
2141 if (xc
->esc_virq
[i
]) {
2142 struct irq_data
*d
= irq_get_irq_data(xc
->esc_virq
[i
]);
2143 struct xive_irq_data
*xd
=
2144 irq_data_get_irq_handler_data(d
);
2145 u64 pq
= xive_vm_esb_load(xd
, XIVE_ESB_GET
);
2147 seq_printf(m
, "E:%c%c I(%d:%llx:%llx)",
2148 (pq
& XIVE_ESB_VAL_P
) ? 'P' : 'p',
2149 (pq
& XIVE_ESB_VAL_Q
) ? 'Q' : 'q',
2150 xc
->esc_virq
[i
], pq
, xd
->eoi_page
);
2157 static int xive_debug_show(struct seq_file
*m
, void *private)
2159 struct kvmppc_xive
*xive
= m
->private;
2160 struct kvm
*kvm
= xive
->kvm
;
2161 struct kvm_vcpu
*vcpu
;
2162 u64 t_rm_h_xirr
= 0;
2163 u64 t_rm_h_ipoll
= 0;
2164 u64 t_rm_h_cppr
= 0;
2167 u64 t_vm_h_xirr
= 0;
2168 u64 t_vm_h_ipoll
= 0;
2169 u64 t_vm_h_cppr
= 0;
2177 seq_printf(m
, "=========\nVCPU state\n=========\n");
2179 kvm_for_each_vcpu(i
, vcpu
, kvm
) {
2180 struct kvmppc_xive_vcpu
*xc
= vcpu
->arch
.xive_vcpu
;
2185 seq_printf(m
, "cpu server %#x VP:%#x CPPR:%#x HWCPPR:%#x"
2186 " MFRR:%#x PEND:%#x h_xirr: R=%lld V=%lld\n",
2187 xc
->server_num
, xc
->vp_id
, xc
->cppr
, xc
->hw_cppr
,
2188 xc
->mfrr
, xc
->pending
,
2189 xc
->stat_rm_h_xirr
, xc
->stat_vm_h_xirr
);
2191 kvmppc_xive_debug_show_queues(m
, vcpu
);
2193 t_rm_h_xirr
+= xc
->stat_rm_h_xirr
;
2194 t_rm_h_ipoll
+= xc
->stat_rm_h_ipoll
;
2195 t_rm_h_cppr
+= xc
->stat_rm_h_cppr
;
2196 t_rm_h_eoi
+= xc
->stat_rm_h_eoi
;
2197 t_rm_h_ipi
+= xc
->stat_rm_h_ipi
;
2198 t_vm_h_xirr
+= xc
->stat_vm_h_xirr
;
2199 t_vm_h_ipoll
+= xc
->stat_vm_h_ipoll
;
2200 t_vm_h_cppr
+= xc
->stat_vm_h_cppr
;
2201 t_vm_h_eoi
+= xc
->stat_vm_h_eoi
;
2202 t_vm_h_ipi
+= xc
->stat_vm_h_ipi
;
2205 seq_printf(m
, "Hcalls totals\n");
2206 seq_printf(m
, " H_XIRR R=%10lld V=%10lld\n", t_rm_h_xirr
, t_vm_h_xirr
);
2207 seq_printf(m
, " H_IPOLL R=%10lld V=%10lld\n", t_rm_h_ipoll
, t_vm_h_ipoll
);
2208 seq_printf(m
, " H_CPPR R=%10lld V=%10lld\n", t_rm_h_cppr
, t_vm_h_cppr
);
2209 seq_printf(m
, " H_EOI R=%10lld V=%10lld\n", t_rm_h_eoi
, t_vm_h_eoi
);
2210 seq_printf(m
, " H_IPI R=%10lld V=%10lld\n", t_rm_h_ipi
, t_vm_h_ipi
);
2215 DEFINE_SHOW_ATTRIBUTE(xive_debug
);
2217 static void xive_debugfs_init(struct kvmppc_xive
*xive
)
2221 name
= kasprintf(GFP_KERNEL
, "kvm-xive-%p", xive
);
2223 pr_err("%s: no memory for name\n", __func__
);
2227 xive
->dentry
= debugfs_create_file(name
, S_IRUGO
, powerpc_debugfs_root
,
2228 xive
, &xive_debug_fops
);
2230 pr_debug("%s: created %s\n", __func__
, name
);
2234 static void kvmppc_xive_init(struct kvm_device
*dev
)
2236 struct kvmppc_xive
*xive
= (struct kvmppc_xive
*)dev
->private;
2238 /* Register some debug interfaces */
2239 xive_debugfs_init(xive
);
2242 struct kvm_device_ops kvm_xive_ops
= {
2244 .create
= kvmppc_xive_create
,
2245 .init
= kvmppc_xive_init
,
2246 .release
= kvmppc_xive_release
,
2247 .set_attr
= xive_set_attr
,
2248 .get_attr
= xive_get_attr
,
2249 .has_attr
= xive_has_attr
,
2252 void kvmppc_xive_init_module(void)
2254 __xive_vm_h_xirr
= xive_vm_h_xirr
;
2255 __xive_vm_h_ipoll
= xive_vm_h_ipoll
;
2256 __xive_vm_h_ipi
= xive_vm_h_ipi
;
2257 __xive_vm_h_cppr
= xive_vm_h_cppr
;
2258 __xive_vm_h_eoi
= xive_vm_h_eoi
;
2261 void kvmppc_xive_exit_module(void)
2263 __xive_vm_h_xirr
= NULL
;
2264 __xive_vm_h_ipoll
= NULL
;
2265 __xive_vm_h_ipi
= NULL
;
2266 __xive_vm_h_cppr
= NULL
;
2267 __xive_vm_h_eoi
= NULL
;