treewide: remove redundant IS_ERR() before error code check
[linux/fpc-iii.git] / arch / powerpc / sysdev / mpic_timer.c
bloba42a20280035195279f7ddd8d30da604dd99f71e
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * MPIC timer driver
5 * Copyright 2013 Freescale Semiconductor, Inc.
6 * Author: Dongsheng Wang <Dongsheng.Wang@freescale.com>
7 * Li Yang <leoli@freescale.com>
8 */
10 #include <linux/kernel.h>
11 #include <linux/init.h>
12 #include <linux/module.h>
13 #include <linux/errno.h>
14 #include <linux/mm.h>
15 #include <linux/interrupt.h>
16 #include <linux/slab.h>
17 #include <linux/of.h>
18 #include <linux/of_address.h>
19 #include <linux/of_device.h>
20 #include <linux/of_irq.h>
21 #include <linux/syscore_ops.h>
22 #include <sysdev/fsl_soc.h>
23 #include <asm/io.h>
25 #include <asm/mpic_timer.h>
27 #define FSL_GLOBAL_TIMER 0x1
29 /* Clock Ratio
30 * Divide by 64 0x00000300
31 * Divide by 32 0x00000200
32 * Divide by 16 0x00000100
33 * Divide by 8 0x00000000 (Hardware default div)
35 #define MPIC_TIMER_TCR_CLKDIV 0x00000300
37 #define MPIC_TIMER_TCR_ROVR_OFFSET 24
39 #define TIMER_STOP 0x80000000
40 #define GTCCR_TOG 0x80000000
41 #define TIMERS_PER_GROUP 4
42 #define MAX_TICKS (~0U >> 1)
43 #define MAX_TICKS_CASCADE (~0U)
44 #define TIMER_OFFSET(num) (1 << (TIMERS_PER_GROUP - 1 - num))
46 struct timer_regs {
47 u32 gtccr;
48 u32 res0[3];
49 u32 gtbcr;
50 u32 res1[3];
51 u32 gtvpr;
52 u32 res2[3];
53 u32 gtdr;
54 u32 res3[3];
57 struct cascade_priv {
58 u32 tcr_value; /* TCR register: CASC & ROVR value */
59 unsigned int cascade_map; /* cascade map */
60 unsigned int timer_num; /* cascade control timer */
63 struct timer_group_priv {
64 struct timer_regs __iomem *regs;
65 struct mpic_timer timer[TIMERS_PER_GROUP];
66 struct list_head node;
67 unsigned int timerfreq;
68 unsigned int idle;
69 unsigned int flags;
70 spinlock_t lock;
71 void __iomem *group_tcr;
74 static struct cascade_priv cascade_timer[] = {
75 /* cascade timer 0 and 1 */
76 {0x1, 0xc, 0x1},
77 /* cascade timer 1 and 2 */
78 {0x2, 0x6, 0x2},
79 /* cascade timer 2 and 3 */
80 {0x4, 0x3, 0x3}
83 static LIST_HEAD(timer_group_list);
85 static void convert_ticks_to_time(struct timer_group_priv *priv,
86 const u64 ticks, time64_t *time)
88 *time = (u64)div_u64(ticks, priv->timerfreq);
91 /* the time set by the user is converted to "ticks" */
92 static int convert_time_to_ticks(struct timer_group_priv *priv,
93 time64_t time, u64 *ticks)
95 u64 max_value; /* prevent u64 overflow */
97 max_value = div_u64(ULLONG_MAX, priv->timerfreq);
99 if (time > max_value)
100 return -EINVAL;
102 *ticks = (u64)time * (u64)priv->timerfreq;
104 return 0;
107 /* detect whether there is a cascade timer available */
108 static struct mpic_timer *detect_idle_cascade_timer(
109 struct timer_group_priv *priv)
111 struct cascade_priv *casc_priv;
112 unsigned int map;
113 unsigned int array_size = ARRAY_SIZE(cascade_timer);
114 unsigned int num;
115 unsigned int i;
116 unsigned long flags;
118 casc_priv = cascade_timer;
119 for (i = 0; i < array_size; i++) {
120 spin_lock_irqsave(&priv->lock, flags);
121 map = casc_priv->cascade_map & priv->idle;
122 if (map == casc_priv->cascade_map) {
123 num = casc_priv->timer_num;
124 priv->timer[num].cascade_handle = casc_priv;
126 /* set timer busy */
127 priv->idle &= ~casc_priv->cascade_map;
128 spin_unlock_irqrestore(&priv->lock, flags);
129 return &priv->timer[num];
131 spin_unlock_irqrestore(&priv->lock, flags);
132 casc_priv++;
135 return NULL;
138 static int set_cascade_timer(struct timer_group_priv *priv, u64 ticks,
139 unsigned int num)
141 struct cascade_priv *casc_priv;
142 u32 tcr;
143 u32 tmp_ticks;
144 u32 rem_ticks;
146 /* set group tcr reg for cascade */
147 casc_priv = priv->timer[num].cascade_handle;
148 if (!casc_priv)
149 return -EINVAL;
151 tcr = casc_priv->tcr_value |
152 (casc_priv->tcr_value << MPIC_TIMER_TCR_ROVR_OFFSET);
153 setbits32(priv->group_tcr, tcr);
155 tmp_ticks = div_u64_rem(ticks, MAX_TICKS_CASCADE, &rem_ticks);
157 out_be32(&priv->regs[num].gtccr, 0);
158 out_be32(&priv->regs[num].gtbcr, tmp_ticks | TIMER_STOP);
160 out_be32(&priv->regs[num - 1].gtccr, 0);
161 out_be32(&priv->regs[num - 1].gtbcr, rem_ticks);
163 return 0;
166 static struct mpic_timer *get_cascade_timer(struct timer_group_priv *priv,
167 u64 ticks)
169 struct mpic_timer *allocated_timer;
171 /* Two cascade timers: Support the maximum time */
172 const u64 max_ticks = (u64)MAX_TICKS * (u64)MAX_TICKS_CASCADE;
173 int ret;
175 if (ticks > max_ticks)
176 return NULL;
178 /* detect idle timer */
179 allocated_timer = detect_idle_cascade_timer(priv);
180 if (!allocated_timer)
181 return NULL;
183 /* set ticks to timer */
184 ret = set_cascade_timer(priv, ticks, allocated_timer->num);
185 if (ret < 0)
186 return NULL;
188 return allocated_timer;
191 static struct mpic_timer *get_timer(time64_t time)
193 struct timer_group_priv *priv;
194 struct mpic_timer *timer;
196 u64 ticks;
197 unsigned int num;
198 unsigned int i;
199 unsigned long flags;
200 int ret;
202 list_for_each_entry(priv, &timer_group_list, node) {
203 ret = convert_time_to_ticks(priv, time, &ticks);
204 if (ret < 0)
205 return NULL;
207 if (ticks > MAX_TICKS) {
208 if (!(priv->flags & FSL_GLOBAL_TIMER))
209 return NULL;
211 timer = get_cascade_timer(priv, ticks);
212 if (!timer)
213 continue;
215 return timer;
218 for (i = 0; i < TIMERS_PER_GROUP; i++) {
219 /* one timer: Reverse allocation */
220 num = TIMERS_PER_GROUP - 1 - i;
221 spin_lock_irqsave(&priv->lock, flags);
222 if (priv->idle & (1 << i)) {
223 /* set timer busy */
224 priv->idle &= ~(1 << i);
225 /* set ticks & stop timer */
226 out_be32(&priv->regs[num].gtbcr,
227 ticks | TIMER_STOP);
228 out_be32(&priv->regs[num].gtccr, 0);
229 priv->timer[num].cascade_handle = NULL;
230 spin_unlock_irqrestore(&priv->lock, flags);
231 return &priv->timer[num];
233 spin_unlock_irqrestore(&priv->lock, flags);
237 return NULL;
241 * mpic_start_timer - start hardware timer
242 * @handle: the timer to be started.
244 * It will do ->fn(->dev) callback from the hardware interrupt at
245 * the 'time64_t' point in the future.
247 void mpic_start_timer(struct mpic_timer *handle)
249 struct timer_group_priv *priv = container_of(handle,
250 struct timer_group_priv, timer[handle->num]);
252 clrbits32(&priv->regs[handle->num].gtbcr, TIMER_STOP);
254 EXPORT_SYMBOL(mpic_start_timer);
257 * mpic_stop_timer - stop hardware timer
258 * @handle: the timer to be stoped
260 * The timer periodically generates an interrupt. Unless user stops the timer.
262 void mpic_stop_timer(struct mpic_timer *handle)
264 struct timer_group_priv *priv = container_of(handle,
265 struct timer_group_priv, timer[handle->num]);
266 struct cascade_priv *casc_priv;
268 setbits32(&priv->regs[handle->num].gtbcr, TIMER_STOP);
270 casc_priv = priv->timer[handle->num].cascade_handle;
271 if (casc_priv) {
272 out_be32(&priv->regs[handle->num].gtccr, 0);
273 out_be32(&priv->regs[handle->num - 1].gtccr, 0);
274 } else {
275 out_be32(&priv->regs[handle->num].gtccr, 0);
278 EXPORT_SYMBOL(mpic_stop_timer);
281 * mpic_get_remain_time - get timer time
282 * @handle: the timer to be selected.
283 * @time: time for timer
285 * Query timer remaining time.
287 void mpic_get_remain_time(struct mpic_timer *handle, time64_t *time)
289 struct timer_group_priv *priv = container_of(handle,
290 struct timer_group_priv, timer[handle->num]);
291 struct cascade_priv *casc_priv;
293 u64 ticks;
294 u32 tmp_ticks;
296 casc_priv = priv->timer[handle->num].cascade_handle;
297 if (casc_priv) {
298 tmp_ticks = in_be32(&priv->regs[handle->num].gtccr);
299 tmp_ticks &= ~GTCCR_TOG;
300 ticks = ((u64)tmp_ticks & UINT_MAX) * (u64)MAX_TICKS_CASCADE;
301 tmp_ticks = in_be32(&priv->regs[handle->num - 1].gtccr);
302 ticks += tmp_ticks;
303 } else {
304 ticks = in_be32(&priv->regs[handle->num].gtccr);
305 ticks &= ~GTCCR_TOG;
308 convert_ticks_to_time(priv, ticks, time);
310 EXPORT_SYMBOL(mpic_get_remain_time);
313 * mpic_free_timer - free hardware timer
314 * @handle: the timer to be removed.
316 * Free the timer.
318 * Note: can not be used in interrupt context.
320 void mpic_free_timer(struct mpic_timer *handle)
322 struct timer_group_priv *priv = container_of(handle,
323 struct timer_group_priv, timer[handle->num]);
325 struct cascade_priv *casc_priv;
326 unsigned long flags;
328 mpic_stop_timer(handle);
330 casc_priv = priv->timer[handle->num].cascade_handle;
332 free_irq(priv->timer[handle->num].irq, priv->timer[handle->num].dev);
334 spin_lock_irqsave(&priv->lock, flags);
335 if (casc_priv) {
336 u32 tcr;
337 tcr = casc_priv->tcr_value | (casc_priv->tcr_value <<
338 MPIC_TIMER_TCR_ROVR_OFFSET);
339 clrbits32(priv->group_tcr, tcr);
340 priv->idle |= casc_priv->cascade_map;
341 priv->timer[handle->num].cascade_handle = NULL;
342 } else {
343 priv->idle |= TIMER_OFFSET(handle->num);
345 spin_unlock_irqrestore(&priv->lock, flags);
347 EXPORT_SYMBOL(mpic_free_timer);
350 * mpic_request_timer - get a hardware timer
351 * @fn: interrupt handler function
352 * @dev: callback function of the data
353 * @time: time for timer
355 * This executes the "request_irq", returning NULL
356 * else "handle" on success.
358 struct mpic_timer *mpic_request_timer(irq_handler_t fn, void *dev,
359 time64_t time)
361 struct mpic_timer *allocated_timer;
362 int ret;
364 if (list_empty(&timer_group_list))
365 return NULL;
367 if (time < 0)
368 return NULL;
370 allocated_timer = get_timer(time);
371 if (!allocated_timer)
372 return NULL;
374 ret = request_irq(allocated_timer->irq, fn,
375 IRQF_TRIGGER_LOW, "global-timer", dev);
376 if (ret) {
377 mpic_free_timer(allocated_timer);
378 return NULL;
381 allocated_timer->dev = dev;
383 return allocated_timer;
385 EXPORT_SYMBOL(mpic_request_timer);
387 static int timer_group_get_freq(struct device_node *np,
388 struct timer_group_priv *priv)
390 u32 div;
392 if (priv->flags & FSL_GLOBAL_TIMER) {
393 struct device_node *dn;
395 dn = of_find_compatible_node(NULL, NULL, "fsl,mpic");
396 if (dn) {
397 of_property_read_u32(dn, "clock-frequency",
398 &priv->timerfreq);
399 of_node_put(dn);
403 if (priv->timerfreq <= 0)
404 return -EINVAL;
406 if (priv->flags & FSL_GLOBAL_TIMER) {
407 div = (1 << (MPIC_TIMER_TCR_CLKDIV >> 8)) * 8;
408 priv->timerfreq /= div;
411 return 0;
414 static int timer_group_get_irq(struct device_node *np,
415 struct timer_group_priv *priv)
417 const u32 all_timer[] = { 0, TIMERS_PER_GROUP };
418 const u32 *p;
419 u32 offset;
420 u32 count;
422 unsigned int i;
423 unsigned int j;
424 unsigned int irq_index = 0;
425 unsigned int irq;
426 int len;
428 p = of_get_property(np, "fsl,available-ranges", &len);
429 if (p && len % (2 * sizeof(u32)) != 0) {
430 pr_err("%pOF: malformed available-ranges property.\n", np);
431 return -EINVAL;
434 if (!p) {
435 p = all_timer;
436 len = sizeof(all_timer);
439 len /= 2 * sizeof(u32);
441 for (i = 0; i < len; i++) {
442 offset = p[i * 2];
443 count = p[i * 2 + 1];
444 for (j = 0; j < count; j++) {
445 irq = irq_of_parse_and_map(np, irq_index);
446 if (!irq) {
447 pr_err("%pOF: irq parse and map failed.\n", np);
448 return -EINVAL;
451 /* Set timer idle */
452 priv->idle |= TIMER_OFFSET((offset + j));
453 priv->timer[offset + j].irq = irq;
454 priv->timer[offset + j].num = offset + j;
455 irq_index++;
459 return 0;
462 static void timer_group_init(struct device_node *np)
464 struct timer_group_priv *priv;
465 unsigned int i = 0;
466 int ret;
468 priv = kzalloc(sizeof(struct timer_group_priv), GFP_KERNEL);
469 if (!priv) {
470 pr_err("%pOF: cannot allocate memory for group.\n", np);
471 return;
474 if (of_device_is_compatible(np, "fsl,mpic-global-timer"))
475 priv->flags |= FSL_GLOBAL_TIMER;
477 priv->regs = of_iomap(np, i++);
478 if (!priv->regs) {
479 pr_err("%pOF: cannot ioremap timer register address.\n", np);
480 goto out;
483 if (priv->flags & FSL_GLOBAL_TIMER) {
484 priv->group_tcr = of_iomap(np, i++);
485 if (!priv->group_tcr) {
486 pr_err("%pOF: cannot ioremap tcr address.\n", np);
487 goto out;
491 ret = timer_group_get_freq(np, priv);
492 if (ret < 0) {
493 pr_err("%pOF: cannot get timer frequency.\n", np);
494 goto out;
497 ret = timer_group_get_irq(np, priv);
498 if (ret < 0) {
499 pr_err("%pOF: cannot get timer irqs.\n", np);
500 goto out;
503 spin_lock_init(&priv->lock);
505 /* Init FSL timer hardware */
506 if (priv->flags & FSL_GLOBAL_TIMER)
507 setbits32(priv->group_tcr, MPIC_TIMER_TCR_CLKDIV);
509 list_add_tail(&priv->node, &timer_group_list);
511 return;
513 out:
514 if (priv->regs)
515 iounmap(priv->regs);
517 if (priv->group_tcr)
518 iounmap(priv->group_tcr);
520 kfree(priv);
523 static void mpic_timer_resume(void)
525 struct timer_group_priv *priv;
527 list_for_each_entry(priv, &timer_group_list, node) {
528 /* Init FSL timer hardware */
529 if (priv->flags & FSL_GLOBAL_TIMER)
530 setbits32(priv->group_tcr, MPIC_TIMER_TCR_CLKDIV);
534 static const struct of_device_id mpic_timer_ids[] = {
535 { .compatible = "fsl,mpic-global-timer", },
539 static struct syscore_ops mpic_timer_syscore_ops = {
540 .resume = mpic_timer_resume,
543 static int __init mpic_timer_init(void)
545 struct device_node *np = NULL;
547 for_each_matching_node(np, mpic_timer_ids)
548 timer_group_init(np);
550 register_syscore_ops(&mpic_timer_syscore_ops);
552 if (list_empty(&timer_group_list))
553 return -ENODEV;
555 return 0;
557 subsys_initcall(mpic_timer_init);