treewide: remove redundant IS_ERR() before error code check
[linux/fpc-iii.git] / arch / s390 / include / asm / pgtable.h
blob137a3920ca3632907ca17b515aed4045a8d4888c
1 /* SPDX-License-Identifier: GPL-2.0 */
2 /*
3 * S390 version
4 * Copyright IBM Corp. 1999, 2000
5 * Author(s): Hartmut Penner (hp@de.ibm.com)
6 * Ulrich Weigand (weigand@de.ibm.com)
7 * Martin Schwidefsky (schwidefsky@de.ibm.com)
9 * Derived from "include/asm-i386/pgtable.h"
12 #ifndef _ASM_S390_PGTABLE_H
13 #define _ASM_S390_PGTABLE_H
15 #include <linux/sched.h>
16 #include <linux/mm_types.h>
17 #include <linux/page-flags.h>
18 #include <linux/radix-tree.h>
19 #include <linux/atomic.h>
20 #include <asm/bug.h>
21 #include <asm/page.h>
23 extern pgd_t swapper_pg_dir[];
24 extern void paging_init(void);
26 enum {
27 PG_DIRECT_MAP_4K = 0,
28 PG_DIRECT_MAP_1M,
29 PG_DIRECT_MAP_2G,
30 PG_DIRECT_MAP_MAX
33 extern atomic_long_t direct_pages_count[PG_DIRECT_MAP_MAX];
35 static inline void update_page_count(int level, long count)
37 if (IS_ENABLED(CONFIG_PROC_FS))
38 atomic_long_add(count, &direct_pages_count[level]);
41 struct seq_file;
42 void arch_report_meminfo(struct seq_file *m);
45 * The S390 doesn't have any external MMU info: the kernel page
46 * tables contain all the necessary information.
48 #define update_mmu_cache(vma, address, ptep) do { } while (0)
49 #define update_mmu_cache_pmd(vma, address, ptep) do { } while (0)
52 * ZERO_PAGE is a global shared page that is always zero; used
53 * for zero-mapped memory areas etc..
56 extern unsigned long empty_zero_page;
57 extern unsigned long zero_page_mask;
59 #define ZERO_PAGE(vaddr) \
60 (virt_to_page((void *)(empty_zero_page + \
61 (((unsigned long)(vaddr)) &zero_page_mask))))
62 #define __HAVE_COLOR_ZERO_PAGE
64 /* TODO: s390 cannot support io_remap_pfn_range... */
66 #define FIRST_USER_ADDRESS 0UL
68 #define pte_ERROR(e) \
69 printk("%s:%d: bad pte %p.\n", __FILE__, __LINE__, (void *) pte_val(e))
70 #define pmd_ERROR(e) \
71 printk("%s:%d: bad pmd %p.\n", __FILE__, __LINE__, (void *) pmd_val(e))
72 #define pud_ERROR(e) \
73 printk("%s:%d: bad pud %p.\n", __FILE__, __LINE__, (void *) pud_val(e))
74 #define p4d_ERROR(e) \
75 printk("%s:%d: bad p4d %p.\n", __FILE__, __LINE__, (void *) p4d_val(e))
76 #define pgd_ERROR(e) \
77 printk("%s:%d: bad pgd %p.\n", __FILE__, __LINE__, (void *) pgd_val(e))
80 * The vmalloc and module area will always be on the topmost area of the
81 * kernel mapping. We reserve 128GB (64bit) for vmalloc and modules.
82 * On 64 bit kernels we have a 2GB area at the top of the vmalloc area where
83 * modules will reside. That makes sure that inter module branches always
84 * happen without trampolines and in addition the placement within a 2GB frame
85 * is branch prediction unit friendly.
87 extern unsigned long VMALLOC_START;
88 extern unsigned long VMALLOC_END;
89 #define VMALLOC_DEFAULT_SIZE ((128UL << 30) - MODULES_LEN)
90 extern struct page *vmemmap;
92 #define VMEM_MAX_PHYS ((unsigned long) vmemmap)
94 extern unsigned long MODULES_VADDR;
95 extern unsigned long MODULES_END;
96 #define MODULES_VADDR MODULES_VADDR
97 #define MODULES_END MODULES_END
98 #define MODULES_LEN (1UL << 31)
100 static inline int is_module_addr(void *addr)
102 BUILD_BUG_ON(MODULES_LEN > (1UL << 31));
103 if (addr < (void *)MODULES_VADDR)
104 return 0;
105 if (addr > (void *)MODULES_END)
106 return 0;
107 return 1;
111 * A 64 bit pagetable entry of S390 has following format:
112 * | PFRA |0IPC| OS |
113 * 0000000000111111111122222222223333333333444444444455555555556666
114 * 0123456789012345678901234567890123456789012345678901234567890123
116 * I Page-Invalid Bit: Page is not available for address-translation
117 * P Page-Protection Bit: Store access not possible for page
118 * C Change-bit override: HW is not required to set change bit
120 * A 64 bit segmenttable entry of S390 has following format:
121 * | P-table origin | TT
122 * 0000000000111111111122222222223333333333444444444455555555556666
123 * 0123456789012345678901234567890123456789012345678901234567890123
125 * I Segment-Invalid Bit: Segment is not available for address-translation
126 * C Common-Segment Bit: Segment is not private (PoP 3-30)
127 * P Page-Protection Bit: Store access not possible for page
128 * TT Type 00
130 * A 64 bit region table entry of S390 has following format:
131 * | S-table origin | TF TTTL
132 * 0000000000111111111122222222223333333333444444444455555555556666
133 * 0123456789012345678901234567890123456789012345678901234567890123
135 * I Segment-Invalid Bit: Segment is not available for address-translation
136 * TT Type 01
137 * TF
138 * TL Table length
140 * The 64 bit regiontable origin of S390 has following format:
141 * | region table origon | DTTL
142 * 0000000000111111111122222222223333333333444444444455555555556666
143 * 0123456789012345678901234567890123456789012345678901234567890123
145 * X Space-Switch event:
146 * G Segment-Invalid Bit:
147 * P Private-Space Bit:
148 * S Storage-Alteration:
149 * R Real space
150 * TL Table-Length:
152 * A storage key has the following format:
153 * | ACC |F|R|C|0|
154 * 0 3 4 5 6 7
155 * ACC: access key
156 * F : fetch protection bit
157 * R : referenced bit
158 * C : changed bit
161 /* Hardware bits in the page table entry */
162 #define _PAGE_NOEXEC 0x100 /* HW no-execute bit */
163 #define _PAGE_PROTECT 0x200 /* HW read-only bit */
164 #define _PAGE_INVALID 0x400 /* HW invalid bit */
165 #define _PAGE_LARGE 0x800 /* Bit to mark a large pte */
167 /* Software bits in the page table entry */
168 #define _PAGE_PRESENT 0x001 /* SW pte present bit */
169 #define _PAGE_YOUNG 0x004 /* SW pte young bit */
170 #define _PAGE_DIRTY 0x008 /* SW pte dirty bit */
171 #define _PAGE_READ 0x010 /* SW pte read bit */
172 #define _PAGE_WRITE 0x020 /* SW pte write bit */
173 #define _PAGE_SPECIAL 0x040 /* SW associated with special page */
174 #define _PAGE_UNUSED 0x080 /* SW bit for pgste usage state */
176 #ifdef CONFIG_MEM_SOFT_DIRTY
177 #define _PAGE_SOFT_DIRTY 0x002 /* SW pte soft dirty bit */
178 #else
179 #define _PAGE_SOFT_DIRTY 0x000
180 #endif
182 /* Set of bits not changed in pte_modify */
183 #define _PAGE_CHG_MASK (PAGE_MASK | _PAGE_SPECIAL | _PAGE_DIRTY | \
184 _PAGE_YOUNG | _PAGE_SOFT_DIRTY)
187 * handle_pte_fault uses pte_present and pte_none to find out the pte type
188 * WITHOUT holding the page table lock. The _PAGE_PRESENT bit is used to
189 * distinguish present from not-present ptes. It is changed only with the page
190 * table lock held.
192 * The following table gives the different possible bit combinations for
193 * the pte hardware and software bits in the last 12 bits of a pte
194 * (. unassigned bit, x don't care, t swap type):
196 * 842100000000
197 * 000084210000
198 * 000000008421
199 * .IR.uswrdy.p
200 * empty .10.00000000
201 * swap .11..ttttt.0
202 * prot-none, clean, old .11.xx0000.1
203 * prot-none, clean, young .11.xx0001.1
204 * prot-none, dirty, old .11.xx0010.1
205 * prot-none, dirty, young .11.xx0011.1
206 * read-only, clean, old .11.xx0100.1
207 * read-only, clean, young .01.xx0101.1
208 * read-only, dirty, old .11.xx0110.1
209 * read-only, dirty, young .01.xx0111.1
210 * read-write, clean, old .11.xx1100.1
211 * read-write, clean, young .01.xx1101.1
212 * read-write, dirty, old .10.xx1110.1
213 * read-write, dirty, young .00.xx1111.1
214 * HW-bits: R read-only, I invalid
215 * SW-bits: p present, y young, d dirty, r read, w write, s special,
216 * u unused, l large
218 * pte_none is true for the bit pattern .10.00000000, pte == 0x400
219 * pte_swap is true for the bit pattern .11..ooooo.0, (pte & 0x201) == 0x200
220 * pte_present is true for the bit pattern .xx.xxxxxx.1, (pte & 0x001) == 0x001
223 /* Bits in the segment/region table address-space-control-element */
224 #define _ASCE_ORIGIN ~0xfffUL/* region/segment table origin */
225 #define _ASCE_PRIVATE_SPACE 0x100 /* private space control */
226 #define _ASCE_ALT_EVENT 0x80 /* storage alteration event control */
227 #define _ASCE_SPACE_SWITCH 0x40 /* space switch event */
228 #define _ASCE_REAL_SPACE 0x20 /* real space control */
229 #define _ASCE_TYPE_MASK 0x0c /* asce table type mask */
230 #define _ASCE_TYPE_REGION1 0x0c /* region first table type */
231 #define _ASCE_TYPE_REGION2 0x08 /* region second table type */
232 #define _ASCE_TYPE_REGION3 0x04 /* region third table type */
233 #define _ASCE_TYPE_SEGMENT 0x00 /* segment table type */
234 #define _ASCE_TABLE_LENGTH 0x03 /* region table length */
236 /* Bits in the region table entry */
237 #define _REGION_ENTRY_ORIGIN ~0xfffUL/* region/segment table origin */
238 #define _REGION_ENTRY_PROTECT 0x200 /* region protection bit */
239 #define _REGION_ENTRY_NOEXEC 0x100 /* region no-execute bit */
240 #define _REGION_ENTRY_OFFSET 0xc0 /* region table offset */
241 #define _REGION_ENTRY_INVALID 0x20 /* invalid region table entry */
242 #define _REGION_ENTRY_TYPE_MASK 0x0c /* region table type mask */
243 #define _REGION_ENTRY_TYPE_R1 0x0c /* region first table type */
244 #define _REGION_ENTRY_TYPE_R2 0x08 /* region second table type */
245 #define _REGION_ENTRY_TYPE_R3 0x04 /* region third table type */
246 #define _REGION_ENTRY_LENGTH 0x03 /* region third length */
248 #define _REGION1_ENTRY (_REGION_ENTRY_TYPE_R1 | _REGION_ENTRY_LENGTH)
249 #define _REGION1_ENTRY_EMPTY (_REGION_ENTRY_TYPE_R1 | _REGION_ENTRY_INVALID)
250 #define _REGION2_ENTRY (_REGION_ENTRY_TYPE_R2 | _REGION_ENTRY_LENGTH)
251 #define _REGION2_ENTRY_EMPTY (_REGION_ENTRY_TYPE_R2 | _REGION_ENTRY_INVALID)
252 #define _REGION3_ENTRY (_REGION_ENTRY_TYPE_R3 | _REGION_ENTRY_LENGTH)
253 #define _REGION3_ENTRY_EMPTY (_REGION_ENTRY_TYPE_R3 | _REGION_ENTRY_INVALID)
255 #define _REGION3_ENTRY_ORIGIN_LARGE ~0x7fffffffUL /* large page address */
256 #define _REGION3_ENTRY_DIRTY 0x2000 /* SW region dirty bit */
257 #define _REGION3_ENTRY_YOUNG 0x1000 /* SW region young bit */
258 #define _REGION3_ENTRY_LARGE 0x0400 /* RTTE-format control, large page */
259 #define _REGION3_ENTRY_READ 0x0002 /* SW region read bit */
260 #define _REGION3_ENTRY_WRITE 0x0001 /* SW region write bit */
262 #ifdef CONFIG_MEM_SOFT_DIRTY
263 #define _REGION3_ENTRY_SOFT_DIRTY 0x4000 /* SW region soft dirty bit */
264 #else
265 #define _REGION3_ENTRY_SOFT_DIRTY 0x0000 /* SW region soft dirty bit */
266 #endif
268 #define _REGION_ENTRY_BITS 0xfffffffffffff22fUL
270 /* Bits in the segment table entry */
271 #define _SEGMENT_ENTRY_BITS 0xfffffffffffffe33UL
272 #define _SEGMENT_ENTRY_HARDWARE_BITS 0xfffffffffffffe30UL
273 #define _SEGMENT_ENTRY_HARDWARE_BITS_LARGE 0xfffffffffff00730UL
274 #define _SEGMENT_ENTRY_ORIGIN_LARGE ~0xfffffUL /* large page address */
275 #define _SEGMENT_ENTRY_ORIGIN ~0x7ffUL/* page table origin */
276 #define _SEGMENT_ENTRY_PROTECT 0x200 /* segment protection bit */
277 #define _SEGMENT_ENTRY_NOEXEC 0x100 /* segment no-execute bit */
278 #define _SEGMENT_ENTRY_INVALID 0x20 /* invalid segment table entry */
279 #define _SEGMENT_ENTRY_TYPE_MASK 0x0c /* segment table type mask */
281 #define _SEGMENT_ENTRY (0)
282 #define _SEGMENT_ENTRY_EMPTY (_SEGMENT_ENTRY_INVALID)
284 #define _SEGMENT_ENTRY_DIRTY 0x2000 /* SW segment dirty bit */
285 #define _SEGMENT_ENTRY_YOUNG 0x1000 /* SW segment young bit */
286 #define _SEGMENT_ENTRY_LARGE 0x0400 /* STE-format control, large page */
287 #define _SEGMENT_ENTRY_WRITE 0x0002 /* SW segment write bit */
288 #define _SEGMENT_ENTRY_READ 0x0001 /* SW segment read bit */
290 #ifdef CONFIG_MEM_SOFT_DIRTY
291 #define _SEGMENT_ENTRY_SOFT_DIRTY 0x4000 /* SW segment soft dirty bit */
292 #else
293 #define _SEGMENT_ENTRY_SOFT_DIRTY 0x0000 /* SW segment soft dirty bit */
294 #endif
296 #define _CRST_ENTRIES 2048 /* number of region/segment table entries */
297 #define _PAGE_ENTRIES 256 /* number of page table entries */
299 #define _CRST_TABLE_SIZE (_CRST_ENTRIES * 8)
300 #define _PAGE_TABLE_SIZE (_PAGE_ENTRIES * 8)
302 #define _REGION1_SHIFT 53
303 #define _REGION2_SHIFT 42
304 #define _REGION3_SHIFT 31
305 #define _SEGMENT_SHIFT 20
307 #define _REGION1_INDEX (0x7ffUL << _REGION1_SHIFT)
308 #define _REGION2_INDEX (0x7ffUL << _REGION2_SHIFT)
309 #define _REGION3_INDEX (0x7ffUL << _REGION3_SHIFT)
310 #define _SEGMENT_INDEX (0x7ffUL << _SEGMENT_SHIFT)
311 #define _PAGE_INDEX (0xffUL << _PAGE_SHIFT)
313 #define _REGION1_SIZE (1UL << _REGION1_SHIFT)
314 #define _REGION2_SIZE (1UL << _REGION2_SHIFT)
315 #define _REGION3_SIZE (1UL << _REGION3_SHIFT)
316 #define _SEGMENT_SIZE (1UL << _SEGMENT_SHIFT)
318 #define _REGION1_MASK (~(_REGION1_SIZE - 1))
319 #define _REGION2_MASK (~(_REGION2_SIZE - 1))
320 #define _REGION3_MASK (~(_REGION3_SIZE - 1))
321 #define _SEGMENT_MASK (~(_SEGMENT_SIZE - 1))
323 #define PMD_SHIFT _SEGMENT_SHIFT
324 #define PUD_SHIFT _REGION3_SHIFT
325 #define P4D_SHIFT _REGION2_SHIFT
326 #define PGDIR_SHIFT _REGION1_SHIFT
328 #define PMD_SIZE _SEGMENT_SIZE
329 #define PUD_SIZE _REGION3_SIZE
330 #define P4D_SIZE _REGION2_SIZE
331 #define PGDIR_SIZE _REGION1_SIZE
333 #define PMD_MASK _SEGMENT_MASK
334 #define PUD_MASK _REGION3_MASK
335 #define P4D_MASK _REGION2_MASK
336 #define PGDIR_MASK _REGION1_MASK
338 #define PTRS_PER_PTE _PAGE_ENTRIES
339 #define PTRS_PER_PMD _CRST_ENTRIES
340 #define PTRS_PER_PUD _CRST_ENTRIES
341 #define PTRS_PER_P4D _CRST_ENTRIES
342 #define PTRS_PER_PGD _CRST_ENTRIES
344 #define MAX_PTRS_PER_P4D PTRS_PER_P4D
347 * Segment table and region3 table entry encoding
348 * (R = read-only, I = invalid, y = young bit):
349 * dy..R...I...wr
350 * prot-none, clean, old 00..1...1...00
351 * prot-none, clean, young 01..1...1...00
352 * prot-none, dirty, old 10..1...1...00
353 * prot-none, dirty, young 11..1...1...00
354 * read-only, clean, old 00..1...1...01
355 * read-only, clean, young 01..1...0...01
356 * read-only, dirty, old 10..1...1...01
357 * read-only, dirty, young 11..1...0...01
358 * read-write, clean, old 00..1...1...11
359 * read-write, clean, young 01..1...0...11
360 * read-write, dirty, old 10..0...1...11
361 * read-write, dirty, young 11..0...0...11
362 * The segment table origin is used to distinguish empty (origin==0) from
363 * read-write, old segment table entries (origin!=0)
364 * HW-bits: R read-only, I invalid
365 * SW-bits: y young, d dirty, r read, w write
368 /* Page status table bits for virtualization */
369 #define PGSTE_ACC_BITS 0xf000000000000000UL
370 #define PGSTE_FP_BIT 0x0800000000000000UL
371 #define PGSTE_PCL_BIT 0x0080000000000000UL
372 #define PGSTE_HR_BIT 0x0040000000000000UL
373 #define PGSTE_HC_BIT 0x0020000000000000UL
374 #define PGSTE_GR_BIT 0x0004000000000000UL
375 #define PGSTE_GC_BIT 0x0002000000000000UL
376 #define PGSTE_UC_BIT 0x0000800000000000UL /* user dirty (migration) */
377 #define PGSTE_IN_BIT 0x0000400000000000UL /* IPTE notify bit */
378 #define PGSTE_VSIE_BIT 0x0000200000000000UL /* ref'd in a shadow table */
380 /* Guest Page State used for virtualization */
381 #define _PGSTE_GPS_ZERO 0x0000000080000000UL
382 #define _PGSTE_GPS_NODAT 0x0000000040000000UL
383 #define _PGSTE_GPS_USAGE_MASK 0x0000000003000000UL
384 #define _PGSTE_GPS_USAGE_STABLE 0x0000000000000000UL
385 #define _PGSTE_GPS_USAGE_UNUSED 0x0000000001000000UL
386 #define _PGSTE_GPS_USAGE_POT_VOLATILE 0x0000000002000000UL
387 #define _PGSTE_GPS_USAGE_VOLATILE _PGSTE_GPS_USAGE_MASK
390 * A user page table pointer has the space-switch-event bit, the
391 * private-space-control bit and the storage-alteration-event-control
392 * bit set. A kernel page table pointer doesn't need them.
394 #define _ASCE_USER_BITS (_ASCE_SPACE_SWITCH | _ASCE_PRIVATE_SPACE | \
395 _ASCE_ALT_EVENT)
398 * Page protection definitions.
400 #define PAGE_NONE __pgprot(_PAGE_PRESENT | _PAGE_INVALID | _PAGE_PROTECT)
401 #define PAGE_RO __pgprot(_PAGE_PRESENT | _PAGE_READ | \
402 _PAGE_NOEXEC | _PAGE_INVALID | _PAGE_PROTECT)
403 #define PAGE_RX __pgprot(_PAGE_PRESENT | _PAGE_READ | \
404 _PAGE_INVALID | _PAGE_PROTECT)
405 #define PAGE_RW __pgprot(_PAGE_PRESENT | _PAGE_READ | _PAGE_WRITE | \
406 _PAGE_NOEXEC | _PAGE_INVALID | _PAGE_PROTECT)
407 #define PAGE_RWX __pgprot(_PAGE_PRESENT | _PAGE_READ | _PAGE_WRITE | \
408 _PAGE_INVALID | _PAGE_PROTECT)
410 #define PAGE_SHARED __pgprot(_PAGE_PRESENT | _PAGE_READ | _PAGE_WRITE | \
411 _PAGE_YOUNG | _PAGE_DIRTY | _PAGE_NOEXEC)
412 #define PAGE_KERNEL __pgprot(_PAGE_PRESENT | _PAGE_READ | _PAGE_WRITE | \
413 _PAGE_YOUNG | _PAGE_DIRTY | _PAGE_NOEXEC)
414 #define PAGE_KERNEL_RO __pgprot(_PAGE_PRESENT | _PAGE_READ | _PAGE_YOUNG | \
415 _PAGE_PROTECT | _PAGE_NOEXEC)
416 #define PAGE_KERNEL_EXEC __pgprot(_PAGE_PRESENT | _PAGE_READ | _PAGE_WRITE | \
417 _PAGE_YOUNG | _PAGE_DIRTY)
420 * On s390 the page table entry has an invalid bit and a read-only bit.
421 * Read permission implies execute permission and write permission
422 * implies read permission.
424 /*xwr*/
425 #define __P000 PAGE_NONE
426 #define __P001 PAGE_RO
427 #define __P010 PAGE_RO
428 #define __P011 PAGE_RO
429 #define __P100 PAGE_RX
430 #define __P101 PAGE_RX
431 #define __P110 PAGE_RX
432 #define __P111 PAGE_RX
434 #define __S000 PAGE_NONE
435 #define __S001 PAGE_RO
436 #define __S010 PAGE_RW
437 #define __S011 PAGE_RW
438 #define __S100 PAGE_RX
439 #define __S101 PAGE_RX
440 #define __S110 PAGE_RWX
441 #define __S111 PAGE_RWX
444 * Segment entry (large page) protection definitions.
446 #define SEGMENT_NONE __pgprot(_SEGMENT_ENTRY_INVALID | \
447 _SEGMENT_ENTRY_PROTECT)
448 #define SEGMENT_RO __pgprot(_SEGMENT_ENTRY_PROTECT | \
449 _SEGMENT_ENTRY_READ | \
450 _SEGMENT_ENTRY_NOEXEC)
451 #define SEGMENT_RX __pgprot(_SEGMENT_ENTRY_PROTECT | \
452 _SEGMENT_ENTRY_READ)
453 #define SEGMENT_RW __pgprot(_SEGMENT_ENTRY_READ | \
454 _SEGMENT_ENTRY_WRITE | \
455 _SEGMENT_ENTRY_NOEXEC)
456 #define SEGMENT_RWX __pgprot(_SEGMENT_ENTRY_READ | \
457 _SEGMENT_ENTRY_WRITE)
458 #define SEGMENT_KERNEL __pgprot(_SEGMENT_ENTRY | \
459 _SEGMENT_ENTRY_LARGE | \
460 _SEGMENT_ENTRY_READ | \
461 _SEGMENT_ENTRY_WRITE | \
462 _SEGMENT_ENTRY_YOUNG | \
463 _SEGMENT_ENTRY_DIRTY | \
464 _SEGMENT_ENTRY_NOEXEC)
465 #define SEGMENT_KERNEL_RO __pgprot(_SEGMENT_ENTRY | \
466 _SEGMENT_ENTRY_LARGE | \
467 _SEGMENT_ENTRY_READ | \
468 _SEGMENT_ENTRY_YOUNG | \
469 _SEGMENT_ENTRY_PROTECT | \
470 _SEGMENT_ENTRY_NOEXEC)
471 #define SEGMENT_KERNEL_EXEC __pgprot(_SEGMENT_ENTRY | \
472 _SEGMENT_ENTRY_LARGE | \
473 _SEGMENT_ENTRY_READ | \
474 _SEGMENT_ENTRY_WRITE | \
475 _SEGMENT_ENTRY_YOUNG | \
476 _SEGMENT_ENTRY_DIRTY)
479 * Region3 entry (large page) protection definitions.
482 #define REGION3_KERNEL __pgprot(_REGION_ENTRY_TYPE_R3 | \
483 _REGION3_ENTRY_LARGE | \
484 _REGION3_ENTRY_READ | \
485 _REGION3_ENTRY_WRITE | \
486 _REGION3_ENTRY_YOUNG | \
487 _REGION3_ENTRY_DIRTY | \
488 _REGION_ENTRY_NOEXEC)
489 #define REGION3_KERNEL_RO __pgprot(_REGION_ENTRY_TYPE_R3 | \
490 _REGION3_ENTRY_LARGE | \
491 _REGION3_ENTRY_READ | \
492 _REGION3_ENTRY_YOUNG | \
493 _REGION_ENTRY_PROTECT | \
494 _REGION_ENTRY_NOEXEC)
496 static inline bool mm_p4d_folded(struct mm_struct *mm)
498 return mm->context.asce_limit <= _REGION1_SIZE;
500 #define mm_p4d_folded(mm) mm_p4d_folded(mm)
502 static inline bool mm_pud_folded(struct mm_struct *mm)
504 return mm->context.asce_limit <= _REGION2_SIZE;
506 #define mm_pud_folded(mm) mm_pud_folded(mm)
508 static inline bool mm_pmd_folded(struct mm_struct *mm)
510 return mm->context.asce_limit <= _REGION3_SIZE;
512 #define mm_pmd_folded(mm) mm_pmd_folded(mm)
514 static inline int mm_has_pgste(struct mm_struct *mm)
516 #ifdef CONFIG_PGSTE
517 if (unlikely(mm->context.has_pgste))
518 return 1;
519 #endif
520 return 0;
523 static inline int mm_alloc_pgste(struct mm_struct *mm)
525 #ifdef CONFIG_PGSTE
526 if (unlikely(mm->context.alloc_pgste))
527 return 1;
528 #endif
529 return 0;
533 * In the case that a guest uses storage keys
534 * faults should no longer be backed by zero pages
536 #define mm_forbids_zeropage mm_has_pgste
537 static inline int mm_uses_skeys(struct mm_struct *mm)
539 #ifdef CONFIG_PGSTE
540 if (mm->context.uses_skeys)
541 return 1;
542 #endif
543 return 0;
546 static inline void csp(unsigned int *ptr, unsigned int old, unsigned int new)
548 register unsigned long reg2 asm("2") = old;
549 register unsigned long reg3 asm("3") = new;
550 unsigned long address = (unsigned long)ptr | 1;
552 asm volatile(
553 " csp %0,%3"
554 : "+d" (reg2), "+m" (*ptr)
555 : "d" (reg3), "d" (address)
556 : "cc");
559 static inline void cspg(unsigned long *ptr, unsigned long old, unsigned long new)
561 register unsigned long reg2 asm("2") = old;
562 register unsigned long reg3 asm("3") = new;
563 unsigned long address = (unsigned long)ptr | 1;
565 asm volatile(
566 " .insn rre,0xb98a0000,%0,%3"
567 : "+d" (reg2), "+m" (*ptr)
568 : "d" (reg3), "d" (address)
569 : "cc");
572 #define CRDTE_DTT_PAGE 0x00UL
573 #define CRDTE_DTT_SEGMENT 0x10UL
574 #define CRDTE_DTT_REGION3 0x14UL
575 #define CRDTE_DTT_REGION2 0x18UL
576 #define CRDTE_DTT_REGION1 0x1cUL
578 static inline void crdte(unsigned long old, unsigned long new,
579 unsigned long table, unsigned long dtt,
580 unsigned long address, unsigned long asce)
582 register unsigned long reg2 asm("2") = old;
583 register unsigned long reg3 asm("3") = new;
584 register unsigned long reg4 asm("4") = table | dtt;
585 register unsigned long reg5 asm("5") = address;
587 asm volatile(".insn rrf,0xb98f0000,%0,%2,%4,0"
588 : "+d" (reg2)
589 : "d" (reg3), "d" (reg4), "d" (reg5), "a" (asce)
590 : "memory", "cc");
594 * pgd/p4d/pud/pmd/pte query functions
596 static inline int pgd_folded(pgd_t pgd)
598 return (pgd_val(pgd) & _REGION_ENTRY_TYPE_MASK) < _REGION_ENTRY_TYPE_R1;
601 static inline int pgd_present(pgd_t pgd)
603 if (pgd_folded(pgd))
604 return 1;
605 return (pgd_val(pgd) & _REGION_ENTRY_ORIGIN) != 0UL;
608 static inline int pgd_none(pgd_t pgd)
610 if (pgd_folded(pgd))
611 return 0;
612 return (pgd_val(pgd) & _REGION_ENTRY_INVALID) != 0UL;
615 static inline int pgd_bad(pgd_t pgd)
617 if ((pgd_val(pgd) & _REGION_ENTRY_TYPE_MASK) < _REGION_ENTRY_TYPE_R1)
618 return 0;
619 return (pgd_val(pgd) & ~_REGION_ENTRY_BITS) != 0;
622 static inline unsigned long pgd_pfn(pgd_t pgd)
624 unsigned long origin_mask;
626 origin_mask = _REGION_ENTRY_ORIGIN;
627 return (pgd_val(pgd) & origin_mask) >> PAGE_SHIFT;
630 static inline int p4d_folded(p4d_t p4d)
632 return (p4d_val(p4d) & _REGION_ENTRY_TYPE_MASK) < _REGION_ENTRY_TYPE_R2;
635 static inline int p4d_present(p4d_t p4d)
637 if (p4d_folded(p4d))
638 return 1;
639 return (p4d_val(p4d) & _REGION_ENTRY_ORIGIN) != 0UL;
642 static inline int p4d_none(p4d_t p4d)
644 if (p4d_folded(p4d))
645 return 0;
646 return p4d_val(p4d) == _REGION2_ENTRY_EMPTY;
649 static inline unsigned long p4d_pfn(p4d_t p4d)
651 unsigned long origin_mask;
653 origin_mask = _REGION_ENTRY_ORIGIN;
654 return (p4d_val(p4d) & origin_mask) >> PAGE_SHIFT;
657 static inline int pud_folded(pud_t pud)
659 return (pud_val(pud) & _REGION_ENTRY_TYPE_MASK) < _REGION_ENTRY_TYPE_R3;
662 static inline int pud_present(pud_t pud)
664 if (pud_folded(pud))
665 return 1;
666 return (pud_val(pud) & _REGION_ENTRY_ORIGIN) != 0UL;
669 static inline int pud_none(pud_t pud)
671 if (pud_folded(pud))
672 return 0;
673 return pud_val(pud) == _REGION3_ENTRY_EMPTY;
676 #define pud_leaf pud_large
677 static inline int pud_large(pud_t pud)
679 if ((pud_val(pud) & _REGION_ENTRY_TYPE_MASK) != _REGION_ENTRY_TYPE_R3)
680 return 0;
681 return !!(pud_val(pud) & _REGION3_ENTRY_LARGE);
684 static inline unsigned long pud_pfn(pud_t pud)
686 unsigned long origin_mask;
688 origin_mask = _REGION_ENTRY_ORIGIN;
689 if (pud_large(pud))
690 origin_mask = _REGION3_ENTRY_ORIGIN_LARGE;
691 return (pud_val(pud) & origin_mask) >> PAGE_SHIFT;
694 #define pmd_leaf pmd_large
695 static inline int pmd_large(pmd_t pmd)
697 return (pmd_val(pmd) & _SEGMENT_ENTRY_LARGE) != 0;
700 static inline int pmd_bad(pmd_t pmd)
702 if ((pmd_val(pmd) & _SEGMENT_ENTRY_TYPE_MASK) > 0 || pmd_large(pmd))
703 return 1;
704 return (pmd_val(pmd) & ~_SEGMENT_ENTRY_BITS) != 0;
707 static inline int pud_bad(pud_t pud)
709 unsigned long type = pud_val(pud) & _REGION_ENTRY_TYPE_MASK;
711 if (type > _REGION_ENTRY_TYPE_R3 || pud_large(pud))
712 return 1;
713 if (type < _REGION_ENTRY_TYPE_R3)
714 return 0;
715 return (pud_val(pud) & ~_REGION_ENTRY_BITS) != 0;
718 static inline int p4d_bad(p4d_t p4d)
720 unsigned long type = p4d_val(p4d) & _REGION_ENTRY_TYPE_MASK;
722 if (type > _REGION_ENTRY_TYPE_R2)
723 return 1;
724 if (type < _REGION_ENTRY_TYPE_R2)
725 return 0;
726 return (p4d_val(p4d) & ~_REGION_ENTRY_BITS) != 0;
729 static inline int pmd_present(pmd_t pmd)
731 return pmd_val(pmd) != _SEGMENT_ENTRY_EMPTY;
734 static inline int pmd_none(pmd_t pmd)
736 return pmd_val(pmd) == _SEGMENT_ENTRY_EMPTY;
739 static inline unsigned long pmd_pfn(pmd_t pmd)
741 unsigned long origin_mask;
743 origin_mask = _SEGMENT_ENTRY_ORIGIN;
744 if (pmd_large(pmd))
745 origin_mask = _SEGMENT_ENTRY_ORIGIN_LARGE;
746 return (pmd_val(pmd) & origin_mask) >> PAGE_SHIFT;
749 #define pmd_write pmd_write
750 static inline int pmd_write(pmd_t pmd)
752 return (pmd_val(pmd) & _SEGMENT_ENTRY_WRITE) != 0;
755 static inline int pmd_dirty(pmd_t pmd)
757 return (pmd_val(pmd) & _SEGMENT_ENTRY_DIRTY) != 0;
760 static inline int pmd_young(pmd_t pmd)
762 return (pmd_val(pmd) & _SEGMENT_ENTRY_YOUNG) != 0;
765 static inline int pte_present(pte_t pte)
767 /* Bit pattern: (pte & 0x001) == 0x001 */
768 return (pte_val(pte) & _PAGE_PRESENT) != 0;
771 static inline int pte_none(pte_t pte)
773 /* Bit pattern: pte == 0x400 */
774 return pte_val(pte) == _PAGE_INVALID;
777 static inline int pte_swap(pte_t pte)
779 /* Bit pattern: (pte & 0x201) == 0x200 */
780 return (pte_val(pte) & (_PAGE_PROTECT | _PAGE_PRESENT))
781 == _PAGE_PROTECT;
784 static inline int pte_special(pte_t pte)
786 return (pte_val(pte) & _PAGE_SPECIAL);
789 #define __HAVE_ARCH_PTE_SAME
790 static inline int pte_same(pte_t a, pte_t b)
792 return pte_val(a) == pte_val(b);
795 #ifdef CONFIG_NUMA_BALANCING
796 static inline int pte_protnone(pte_t pte)
798 return pte_present(pte) && !(pte_val(pte) & _PAGE_READ);
801 static inline int pmd_protnone(pmd_t pmd)
803 /* pmd_large(pmd) implies pmd_present(pmd) */
804 return pmd_large(pmd) && !(pmd_val(pmd) & _SEGMENT_ENTRY_READ);
806 #endif
808 static inline int pte_soft_dirty(pte_t pte)
810 return pte_val(pte) & _PAGE_SOFT_DIRTY;
812 #define pte_swp_soft_dirty pte_soft_dirty
814 static inline pte_t pte_mksoft_dirty(pte_t pte)
816 pte_val(pte) |= _PAGE_SOFT_DIRTY;
817 return pte;
819 #define pte_swp_mksoft_dirty pte_mksoft_dirty
821 static inline pte_t pte_clear_soft_dirty(pte_t pte)
823 pte_val(pte) &= ~_PAGE_SOFT_DIRTY;
824 return pte;
826 #define pte_swp_clear_soft_dirty pte_clear_soft_dirty
828 static inline int pmd_soft_dirty(pmd_t pmd)
830 return pmd_val(pmd) & _SEGMENT_ENTRY_SOFT_DIRTY;
833 static inline pmd_t pmd_mksoft_dirty(pmd_t pmd)
835 pmd_val(pmd) |= _SEGMENT_ENTRY_SOFT_DIRTY;
836 return pmd;
839 static inline pmd_t pmd_clear_soft_dirty(pmd_t pmd)
841 pmd_val(pmd) &= ~_SEGMENT_ENTRY_SOFT_DIRTY;
842 return pmd;
846 * query functions pte_write/pte_dirty/pte_young only work if
847 * pte_present() is true. Undefined behaviour if not..
849 static inline int pte_write(pte_t pte)
851 return (pte_val(pte) & _PAGE_WRITE) != 0;
854 static inline int pte_dirty(pte_t pte)
856 return (pte_val(pte) & _PAGE_DIRTY) != 0;
859 static inline int pte_young(pte_t pte)
861 return (pte_val(pte) & _PAGE_YOUNG) != 0;
864 #define __HAVE_ARCH_PTE_UNUSED
865 static inline int pte_unused(pte_t pte)
867 return pte_val(pte) & _PAGE_UNUSED;
871 * pgd/pmd/pte modification functions
874 static inline void pgd_clear(pgd_t *pgd)
876 if ((pgd_val(*pgd) & _REGION_ENTRY_TYPE_MASK) == _REGION_ENTRY_TYPE_R1)
877 pgd_val(*pgd) = _REGION1_ENTRY_EMPTY;
880 static inline void p4d_clear(p4d_t *p4d)
882 if ((p4d_val(*p4d) & _REGION_ENTRY_TYPE_MASK) == _REGION_ENTRY_TYPE_R2)
883 p4d_val(*p4d) = _REGION2_ENTRY_EMPTY;
886 static inline void pud_clear(pud_t *pud)
888 if ((pud_val(*pud) & _REGION_ENTRY_TYPE_MASK) == _REGION_ENTRY_TYPE_R3)
889 pud_val(*pud) = _REGION3_ENTRY_EMPTY;
892 static inline void pmd_clear(pmd_t *pmdp)
894 pmd_val(*pmdp) = _SEGMENT_ENTRY_EMPTY;
897 static inline void pte_clear(struct mm_struct *mm, unsigned long addr, pte_t *ptep)
899 pte_val(*ptep) = _PAGE_INVALID;
903 * The following pte modification functions only work if
904 * pte_present() is true. Undefined behaviour if not..
906 static inline pte_t pte_modify(pte_t pte, pgprot_t newprot)
908 pte_val(pte) &= _PAGE_CHG_MASK;
909 pte_val(pte) |= pgprot_val(newprot);
911 * newprot for PAGE_NONE, PAGE_RO, PAGE_RX, PAGE_RW and PAGE_RWX
912 * has the invalid bit set, clear it again for readable, young pages
914 if ((pte_val(pte) & _PAGE_YOUNG) && (pte_val(pte) & _PAGE_READ))
915 pte_val(pte) &= ~_PAGE_INVALID;
917 * newprot for PAGE_RO, PAGE_RX, PAGE_RW and PAGE_RWX has the page
918 * protection bit set, clear it again for writable, dirty pages
920 if ((pte_val(pte) & _PAGE_DIRTY) && (pte_val(pte) & _PAGE_WRITE))
921 pte_val(pte) &= ~_PAGE_PROTECT;
922 return pte;
925 static inline pte_t pte_wrprotect(pte_t pte)
927 pte_val(pte) &= ~_PAGE_WRITE;
928 pte_val(pte) |= _PAGE_PROTECT;
929 return pte;
932 static inline pte_t pte_mkwrite(pte_t pte)
934 pte_val(pte) |= _PAGE_WRITE;
935 if (pte_val(pte) & _PAGE_DIRTY)
936 pte_val(pte) &= ~_PAGE_PROTECT;
937 return pte;
940 static inline pte_t pte_mkclean(pte_t pte)
942 pte_val(pte) &= ~_PAGE_DIRTY;
943 pte_val(pte) |= _PAGE_PROTECT;
944 return pte;
947 static inline pte_t pte_mkdirty(pte_t pte)
949 pte_val(pte) |= _PAGE_DIRTY | _PAGE_SOFT_DIRTY;
950 if (pte_val(pte) & _PAGE_WRITE)
951 pte_val(pte) &= ~_PAGE_PROTECT;
952 return pte;
955 static inline pte_t pte_mkold(pte_t pte)
957 pte_val(pte) &= ~_PAGE_YOUNG;
958 pte_val(pte) |= _PAGE_INVALID;
959 return pte;
962 static inline pte_t pte_mkyoung(pte_t pte)
964 pte_val(pte) |= _PAGE_YOUNG;
965 if (pte_val(pte) & _PAGE_READ)
966 pte_val(pte) &= ~_PAGE_INVALID;
967 return pte;
970 static inline pte_t pte_mkspecial(pte_t pte)
972 pte_val(pte) |= _PAGE_SPECIAL;
973 return pte;
976 #ifdef CONFIG_HUGETLB_PAGE
977 static inline pte_t pte_mkhuge(pte_t pte)
979 pte_val(pte) |= _PAGE_LARGE;
980 return pte;
982 #endif
984 #define IPTE_GLOBAL 0
985 #define IPTE_LOCAL 1
987 #define IPTE_NODAT 0x400
988 #define IPTE_GUEST_ASCE 0x800
990 static __always_inline void __ptep_ipte(unsigned long address, pte_t *ptep,
991 unsigned long opt, unsigned long asce,
992 int local)
994 unsigned long pto = (unsigned long) ptep;
996 if (__builtin_constant_p(opt) && opt == 0) {
997 /* Invalidation + TLB flush for the pte */
998 asm volatile(
999 " .insn rrf,0xb2210000,%[r1],%[r2],0,%[m4]"
1000 : "+m" (*ptep) : [r1] "a" (pto), [r2] "a" (address),
1001 [m4] "i" (local));
1002 return;
1005 /* Invalidate ptes with options + TLB flush of the ptes */
1006 opt = opt | (asce & _ASCE_ORIGIN);
1007 asm volatile(
1008 " .insn rrf,0xb2210000,%[r1],%[r2],%[r3],%[m4]"
1009 : [r2] "+a" (address), [r3] "+a" (opt)
1010 : [r1] "a" (pto), [m4] "i" (local) : "memory");
1013 static __always_inline void __ptep_ipte_range(unsigned long address, int nr,
1014 pte_t *ptep, int local)
1016 unsigned long pto = (unsigned long) ptep;
1018 /* Invalidate a range of ptes + TLB flush of the ptes */
1019 do {
1020 asm volatile(
1021 " .insn rrf,0xb2210000,%[r1],%[r2],%[r3],%[m4]"
1022 : [r2] "+a" (address), [r3] "+a" (nr)
1023 : [r1] "a" (pto), [m4] "i" (local) : "memory");
1024 } while (nr != 255);
1028 * This is hard to understand. ptep_get_and_clear and ptep_clear_flush
1029 * both clear the TLB for the unmapped pte. The reason is that
1030 * ptep_get_and_clear is used in common code (e.g. change_pte_range)
1031 * to modify an active pte. The sequence is
1032 * 1) ptep_get_and_clear
1033 * 2) set_pte_at
1034 * 3) flush_tlb_range
1035 * On s390 the tlb needs to get flushed with the modification of the pte
1036 * if the pte is active. The only way how this can be implemented is to
1037 * have ptep_get_and_clear do the tlb flush. In exchange flush_tlb_range
1038 * is a nop.
1040 pte_t ptep_xchg_direct(struct mm_struct *, unsigned long, pte_t *, pte_t);
1041 pte_t ptep_xchg_lazy(struct mm_struct *, unsigned long, pte_t *, pte_t);
1043 #define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
1044 static inline int ptep_test_and_clear_young(struct vm_area_struct *vma,
1045 unsigned long addr, pte_t *ptep)
1047 pte_t pte = *ptep;
1049 pte = ptep_xchg_direct(vma->vm_mm, addr, ptep, pte_mkold(pte));
1050 return pte_young(pte);
1053 #define __HAVE_ARCH_PTEP_CLEAR_YOUNG_FLUSH
1054 static inline int ptep_clear_flush_young(struct vm_area_struct *vma,
1055 unsigned long address, pte_t *ptep)
1057 return ptep_test_and_clear_young(vma, address, ptep);
1060 #define __HAVE_ARCH_PTEP_GET_AND_CLEAR
1061 static inline pte_t ptep_get_and_clear(struct mm_struct *mm,
1062 unsigned long addr, pte_t *ptep)
1064 return ptep_xchg_lazy(mm, addr, ptep, __pte(_PAGE_INVALID));
1067 #define __HAVE_ARCH_PTEP_MODIFY_PROT_TRANSACTION
1068 pte_t ptep_modify_prot_start(struct vm_area_struct *, unsigned long, pte_t *);
1069 void ptep_modify_prot_commit(struct vm_area_struct *, unsigned long,
1070 pte_t *, pte_t, pte_t);
1072 #define __HAVE_ARCH_PTEP_CLEAR_FLUSH
1073 static inline pte_t ptep_clear_flush(struct vm_area_struct *vma,
1074 unsigned long addr, pte_t *ptep)
1076 return ptep_xchg_direct(vma->vm_mm, addr, ptep, __pte(_PAGE_INVALID));
1080 * The batched pte unmap code uses ptep_get_and_clear_full to clear the
1081 * ptes. Here an optimization is possible. tlb_gather_mmu flushes all
1082 * tlbs of an mm if it can guarantee that the ptes of the mm_struct
1083 * cannot be accessed while the batched unmap is running. In this case
1084 * full==1 and a simple pte_clear is enough. See tlb.h.
1086 #define __HAVE_ARCH_PTEP_GET_AND_CLEAR_FULL
1087 static inline pte_t ptep_get_and_clear_full(struct mm_struct *mm,
1088 unsigned long addr,
1089 pte_t *ptep, int full)
1091 if (full) {
1092 pte_t pte = *ptep;
1093 *ptep = __pte(_PAGE_INVALID);
1094 return pte;
1096 return ptep_xchg_lazy(mm, addr, ptep, __pte(_PAGE_INVALID));
1099 #define __HAVE_ARCH_PTEP_SET_WRPROTECT
1100 static inline void ptep_set_wrprotect(struct mm_struct *mm,
1101 unsigned long addr, pte_t *ptep)
1103 pte_t pte = *ptep;
1105 if (pte_write(pte))
1106 ptep_xchg_lazy(mm, addr, ptep, pte_wrprotect(pte));
1109 #define __HAVE_ARCH_PTEP_SET_ACCESS_FLAGS
1110 static inline int ptep_set_access_flags(struct vm_area_struct *vma,
1111 unsigned long addr, pte_t *ptep,
1112 pte_t entry, int dirty)
1114 if (pte_same(*ptep, entry))
1115 return 0;
1116 ptep_xchg_direct(vma->vm_mm, addr, ptep, entry);
1117 return 1;
1121 * Additional functions to handle KVM guest page tables
1123 void ptep_set_pte_at(struct mm_struct *mm, unsigned long addr,
1124 pte_t *ptep, pte_t entry);
1125 void ptep_set_notify(struct mm_struct *mm, unsigned long addr, pte_t *ptep);
1126 void ptep_notify(struct mm_struct *mm, unsigned long addr,
1127 pte_t *ptep, unsigned long bits);
1128 int ptep_force_prot(struct mm_struct *mm, unsigned long gaddr,
1129 pte_t *ptep, int prot, unsigned long bit);
1130 void ptep_zap_unused(struct mm_struct *mm, unsigned long addr,
1131 pte_t *ptep , int reset);
1132 void ptep_zap_key(struct mm_struct *mm, unsigned long addr, pte_t *ptep);
1133 int ptep_shadow_pte(struct mm_struct *mm, unsigned long saddr,
1134 pte_t *sptep, pte_t *tptep, pte_t pte);
1135 void ptep_unshadow_pte(struct mm_struct *mm, unsigned long saddr, pte_t *ptep);
1137 bool ptep_test_and_clear_uc(struct mm_struct *mm, unsigned long address,
1138 pte_t *ptep);
1139 int set_guest_storage_key(struct mm_struct *mm, unsigned long addr,
1140 unsigned char key, bool nq);
1141 int cond_set_guest_storage_key(struct mm_struct *mm, unsigned long addr,
1142 unsigned char key, unsigned char *oldkey,
1143 bool nq, bool mr, bool mc);
1144 int reset_guest_reference_bit(struct mm_struct *mm, unsigned long addr);
1145 int get_guest_storage_key(struct mm_struct *mm, unsigned long addr,
1146 unsigned char *key);
1148 int set_pgste_bits(struct mm_struct *mm, unsigned long addr,
1149 unsigned long bits, unsigned long value);
1150 int get_pgste(struct mm_struct *mm, unsigned long hva, unsigned long *pgstep);
1151 int pgste_perform_essa(struct mm_struct *mm, unsigned long hva, int orc,
1152 unsigned long *oldpte, unsigned long *oldpgste);
1153 void gmap_pmdp_csp(struct mm_struct *mm, unsigned long vmaddr);
1154 void gmap_pmdp_invalidate(struct mm_struct *mm, unsigned long vmaddr);
1155 void gmap_pmdp_idte_local(struct mm_struct *mm, unsigned long vmaddr);
1156 void gmap_pmdp_idte_global(struct mm_struct *mm, unsigned long vmaddr);
1159 * Certain architectures need to do special things when PTEs
1160 * within a page table are directly modified. Thus, the following
1161 * hook is made available.
1163 static inline void set_pte_at(struct mm_struct *mm, unsigned long addr,
1164 pte_t *ptep, pte_t entry)
1166 if (pte_present(entry))
1167 pte_val(entry) &= ~_PAGE_UNUSED;
1168 if (mm_has_pgste(mm))
1169 ptep_set_pte_at(mm, addr, ptep, entry);
1170 else
1171 *ptep = entry;
1175 * Conversion functions: convert a page and protection to a page entry,
1176 * and a page entry and page directory to the page they refer to.
1178 static inline pte_t mk_pte_phys(unsigned long physpage, pgprot_t pgprot)
1180 pte_t __pte;
1181 pte_val(__pte) = physpage + pgprot_val(pgprot);
1182 if (!MACHINE_HAS_NX)
1183 pte_val(__pte) &= ~_PAGE_NOEXEC;
1184 return pte_mkyoung(__pte);
1187 static inline pte_t mk_pte(struct page *page, pgprot_t pgprot)
1189 unsigned long physpage = page_to_phys(page);
1190 pte_t __pte = mk_pte_phys(physpage, pgprot);
1192 if (pte_write(__pte) && PageDirty(page))
1193 __pte = pte_mkdirty(__pte);
1194 return __pte;
1197 #define pgd_index(address) (((address) >> PGDIR_SHIFT) & (PTRS_PER_PGD-1))
1198 #define p4d_index(address) (((address) >> P4D_SHIFT) & (PTRS_PER_P4D-1))
1199 #define pud_index(address) (((address) >> PUD_SHIFT) & (PTRS_PER_PUD-1))
1200 #define pmd_index(address) (((address) >> PMD_SHIFT) & (PTRS_PER_PMD-1))
1201 #define pte_index(address) (((address) >> PAGE_SHIFT) & (PTRS_PER_PTE-1))
1203 #define pmd_deref(pmd) (pmd_val(pmd) & _SEGMENT_ENTRY_ORIGIN)
1204 #define pud_deref(pud) (pud_val(pud) & _REGION_ENTRY_ORIGIN)
1205 #define p4d_deref(pud) (p4d_val(pud) & _REGION_ENTRY_ORIGIN)
1206 #define pgd_deref(pgd) (pgd_val(pgd) & _REGION_ENTRY_ORIGIN)
1209 * The pgd_offset function *always* adds the index for the top-level
1210 * region/segment table. This is done to get a sequence like the
1211 * following to work:
1212 * pgdp = pgd_offset(current->mm, addr);
1213 * pgd = READ_ONCE(*pgdp);
1214 * p4dp = p4d_offset(&pgd, addr);
1215 * ...
1216 * The subsequent p4d_offset, pud_offset and pmd_offset functions
1217 * only add an index if they dereferenced the pointer.
1219 static inline pgd_t *pgd_offset_raw(pgd_t *pgd, unsigned long address)
1221 unsigned long rste;
1222 unsigned int shift;
1224 /* Get the first entry of the top level table */
1225 rste = pgd_val(*pgd);
1226 /* Pick up the shift from the table type of the first entry */
1227 shift = ((rste & _REGION_ENTRY_TYPE_MASK) >> 2) * 11 + 20;
1228 return pgd + ((address >> shift) & (PTRS_PER_PGD - 1));
1231 #define pgd_offset(mm, address) pgd_offset_raw(READ_ONCE((mm)->pgd), address)
1232 #define pgd_offset_k(address) pgd_offset(&init_mm, address)
1234 static inline p4d_t *p4d_offset(pgd_t *pgd, unsigned long address)
1236 if ((pgd_val(*pgd) & _REGION_ENTRY_TYPE_MASK) >= _REGION_ENTRY_TYPE_R1)
1237 return (p4d_t *) pgd_deref(*pgd) + p4d_index(address);
1238 return (p4d_t *) pgd;
1241 static inline pud_t *pud_offset(p4d_t *p4d, unsigned long address)
1243 if ((p4d_val(*p4d) & _REGION_ENTRY_TYPE_MASK) >= _REGION_ENTRY_TYPE_R2)
1244 return (pud_t *) p4d_deref(*p4d) + pud_index(address);
1245 return (pud_t *) p4d;
1248 static inline pmd_t *pmd_offset(pud_t *pud, unsigned long address)
1250 if ((pud_val(*pud) & _REGION_ENTRY_TYPE_MASK) >= _REGION_ENTRY_TYPE_R3)
1251 return (pmd_t *) pud_deref(*pud) + pmd_index(address);
1252 return (pmd_t *) pud;
1255 static inline pte_t *pte_offset(pmd_t *pmd, unsigned long address)
1257 return (pte_t *) pmd_deref(*pmd) + pte_index(address);
1260 #define pte_offset_kernel(pmd, address) pte_offset(pmd, address)
1261 #define pte_offset_map(pmd, address) pte_offset_kernel(pmd, address)
1263 static inline void pte_unmap(pte_t *pte) { }
1265 static inline bool gup_fast_permitted(unsigned long start, unsigned long end)
1267 return end <= current->mm->context.asce_limit;
1269 #define gup_fast_permitted gup_fast_permitted
1271 #define pfn_pte(pfn,pgprot) mk_pte_phys(__pa((pfn) << PAGE_SHIFT),(pgprot))
1272 #define pte_pfn(x) (pte_val(x) >> PAGE_SHIFT)
1273 #define pte_page(x) pfn_to_page(pte_pfn(x))
1275 #define pmd_page(pmd) pfn_to_page(pmd_pfn(pmd))
1276 #define pud_page(pud) pfn_to_page(pud_pfn(pud))
1277 #define p4d_page(p4d) pfn_to_page(p4d_pfn(p4d))
1278 #define pgd_page(pgd) pfn_to_page(pgd_pfn(pgd))
1280 static inline pmd_t pmd_wrprotect(pmd_t pmd)
1282 pmd_val(pmd) &= ~_SEGMENT_ENTRY_WRITE;
1283 pmd_val(pmd) |= _SEGMENT_ENTRY_PROTECT;
1284 return pmd;
1287 static inline pmd_t pmd_mkwrite(pmd_t pmd)
1289 pmd_val(pmd) |= _SEGMENT_ENTRY_WRITE;
1290 if (pmd_val(pmd) & _SEGMENT_ENTRY_DIRTY)
1291 pmd_val(pmd) &= ~_SEGMENT_ENTRY_PROTECT;
1292 return pmd;
1295 static inline pmd_t pmd_mkclean(pmd_t pmd)
1297 pmd_val(pmd) &= ~_SEGMENT_ENTRY_DIRTY;
1298 pmd_val(pmd) |= _SEGMENT_ENTRY_PROTECT;
1299 return pmd;
1302 static inline pmd_t pmd_mkdirty(pmd_t pmd)
1304 pmd_val(pmd) |= _SEGMENT_ENTRY_DIRTY | _SEGMENT_ENTRY_SOFT_DIRTY;
1305 if (pmd_val(pmd) & _SEGMENT_ENTRY_WRITE)
1306 pmd_val(pmd) &= ~_SEGMENT_ENTRY_PROTECT;
1307 return pmd;
1310 static inline pud_t pud_wrprotect(pud_t pud)
1312 pud_val(pud) &= ~_REGION3_ENTRY_WRITE;
1313 pud_val(pud) |= _REGION_ENTRY_PROTECT;
1314 return pud;
1317 static inline pud_t pud_mkwrite(pud_t pud)
1319 pud_val(pud) |= _REGION3_ENTRY_WRITE;
1320 if (pud_val(pud) & _REGION3_ENTRY_DIRTY)
1321 pud_val(pud) &= ~_REGION_ENTRY_PROTECT;
1322 return pud;
1325 static inline pud_t pud_mkclean(pud_t pud)
1327 pud_val(pud) &= ~_REGION3_ENTRY_DIRTY;
1328 pud_val(pud) |= _REGION_ENTRY_PROTECT;
1329 return pud;
1332 static inline pud_t pud_mkdirty(pud_t pud)
1334 pud_val(pud) |= _REGION3_ENTRY_DIRTY | _REGION3_ENTRY_SOFT_DIRTY;
1335 if (pud_val(pud) & _REGION3_ENTRY_WRITE)
1336 pud_val(pud) &= ~_REGION_ENTRY_PROTECT;
1337 return pud;
1340 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLB_PAGE)
1341 static inline unsigned long massage_pgprot_pmd(pgprot_t pgprot)
1344 * pgprot is PAGE_NONE, PAGE_RO, PAGE_RX, PAGE_RW or PAGE_RWX
1345 * (see __Pxxx / __Sxxx). Convert to segment table entry format.
1347 if (pgprot_val(pgprot) == pgprot_val(PAGE_NONE))
1348 return pgprot_val(SEGMENT_NONE);
1349 if (pgprot_val(pgprot) == pgprot_val(PAGE_RO))
1350 return pgprot_val(SEGMENT_RO);
1351 if (pgprot_val(pgprot) == pgprot_val(PAGE_RX))
1352 return pgprot_val(SEGMENT_RX);
1353 if (pgprot_val(pgprot) == pgprot_val(PAGE_RW))
1354 return pgprot_val(SEGMENT_RW);
1355 return pgprot_val(SEGMENT_RWX);
1358 static inline pmd_t pmd_mkyoung(pmd_t pmd)
1360 pmd_val(pmd) |= _SEGMENT_ENTRY_YOUNG;
1361 if (pmd_val(pmd) & _SEGMENT_ENTRY_READ)
1362 pmd_val(pmd) &= ~_SEGMENT_ENTRY_INVALID;
1363 return pmd;
1366 static inline pmd_t pmd_mkold(pmd_t pmd)
1368 pmd_val(pmd) &= ~_SEGMENT_ENTRY_YOUNG;
1369 pmd_val(pmd) |= _SEGMENT_ENTRY_INVALID;
1370 return pmd;
1373 static inline pmd_t pmd_modify(pmd_t pmd, pgprot_t newprot)
1375 pmd_val(pmd) &= _SEGMENT_ENTRY_ORIGIN_LARGE |
1376 _SEGMENT_ENTRY_DIRTY | _SEGMENT_ENTRY_YOUNG |
1377 _SEGMENT_ENTRY_LARGE | _SEGMENT_ENTRY_SOFT_DIRTY;
1378 pmd_val(pmd) |= massage_pgprot_pmd(newprot);
1379 if (!(pmd_val(pmd) & _SEGMENT_ENTRY_DIRTY))
1380 pmd_val(pmd) |= _SEGMENT_ENTRY_PROTECT;
1381 if (!(pmd_val(pmd) & _SEGMENT_ENTRY_YOUNG))
1382 pmd_val(pmd) |= _SEGMENT_ENTRY_INVALID;
1383 return pmd;
1386 static inline pmd_t mk_pmd_phys(unsigned long physpage, pgprot_t pgprot)
1388 pmd_t __pmd;
1389 pmd_val(__pmd) = physpage + massage_pgprot_pmd(pgprot);
1390 return __pmd;
1393 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLB_PAGE */
1395 static inline void __pmdp_csp(pmd_t *pmdp)
1397 csp((unsigned int *)pmdp + 1, pmd_val(*pmdp),
1398 pmd_val(*pmdp) | _SEGMENT_ENTRY_INVALID);
1401 #define IDTE_GLOBAL 0
1402 #define IDTE_LOCAL 1
1404 #define IDTE_PTOA 0x0800
1405 #define IDTE_NODAT 0x1000
1406 #define IDTE_GUEST_ASCE 0x2000
1408 static __always_inline void __pmdp_idte(unsigned long addr, pmd_t *pmdp,
1409 unsigned long opt, unsigned long asce,
1410 int local)
1412 unsigned long sto;
1414 sto = (unsigned long) pmdp - pmd_index(addr) * sizeof(pmd_t);
1415 if (__builtin_constant_p(opt) && opt == 0) {
1416 /* flush without guest asce */
1417 asm volatile(
1418 " .insn rrf,0xb98e0000,%[r1],%[r2],0,%[m4]"
1419 : "+m" (*pmdp)
1420 : [r1] "a" (sto), [r2] "a" ((addr & HPAGE_MASK)),
1421 [m4] "i" (local)
1422 : "cc" );
1423 } else {
1424 /* flush with guest asce */
1425 asm volatile(
1426 " .insn rrf,0xb98e0000,%[r1],%[r2],%[r3],%[m4]"
1427 : "+m" (*pmdp)
1428 : [r1] "a" (sto), [r2] "a" ((addr & HPAGE_MASK) | opt),
1429 [r3] "a" (asce), [m4] "i" (local)
1430 : "cc" );
1434 static __always_inline void __pudp_idte(unsigned long addr, pud_t *pudp,
1435 unsigned long opt, unsigned long asce,
1436 int local)
1438 unsigned long r3o;
1440 r3o = (unsigned long) pudp - pud_index(addr) * sizeof(pud_t);
1441 r3o |= _ASCE_TYPE_REGION3;
1442 if (__builtin_constant_p(opt) && opt == 0) {
1443 /* flush without guest asce */
1444 asm volatile(
1445 " .insn rrf,0xb98e0000,%[r1],%[r2],0,%[m4]"
1446 : "+m" (*pudp)
1447 : [r1] "a" (r3o), [r2] "a" ((addr & PUD_MASK)),
1448 [m4] "i" (local)
1449 : "cc");
1450 } else {
1451 /* flush with guest asce */
1452 asm volatile(
1453 " .insn rrf,0xb98e0000,%[r1],%[r2],%[r3],%[m4]"
1454 : "+m" (*pudp)
1455 : [r1] "a" (r3o), [r2] "a" ((addr & PUD_MASK) | opt),
1456 [r3] "a" (asce), [m4] "i" (local)
1457 : "cc" );
1461 pmd_t pmdp_xchg_direct(struct mm_struct *, unsigned long, pmd_t *, pmd_t);
1462 pmd_t pmdp_xchg_lazy(struct mm_struct *, unsigned long, pmd_t *, pmd_t);
1463 pud_t pudp_xchg_direct(struct mm_struct *, unsigned long, pud_t *, pud_t);
1465 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1467 #define __HAVE_ARCH_PGTABLE_DEPOSIT
1468 void pgtable_trans_huge_deposit(struct mm_struct *mm, pmd_t *pmdp,
1469 pgtable_t pgtable);
1471 #define __HAVE_ARCH_PGTABLE_WITHDRAW
1472 pgtable_t pgtable_trans_huge_withdraw(struct mm_struct *mm, pmd_t *pmdp);
1474 #define __HAVE_ARCH_PMDP_SET_ACCESS_FLAGS
1475 static inline int pmdp_set_access_flags(struct vm_area_struct *vma,
1476 unsigned long addr, pmd_t *pmdp,
1477 pmd_t entry, int dirty)
1479 VM_BUG_ON(addr & ~HPAGE_MASK);
1481 entry = pmd_mkyoung(entry);
1482 if (dirty)
1483 entry = pmd_mkdirty(entry);
1484 if (pmd_val(*pmdp) == pmd_val(entry))
1485 return 0;
1486 pmdp_xchg_direct(vma->vm_mm, addr, pmdp, entry);
1487 return 1;
1490 #define __HAVE_ARCH_PMDP_TEST_AND_CLEAR_YOUNG
1491 static inline int pmdp_test_and_clear_young(struct vm_area_struct *vma,
1492 unsigned long addr, pmd_t *pmdp)
1494 pmd_t pmd = *pmdp;
1496 pmd = pmdp_xchg_direct(vma->vm_mm, addr, pmdp, pmd_mkold(pmd));
1497 return pmd_young(pmd);
1500 #define __HAVE_ARCH_PMDP_CLEAR_YOUNG_FLUSH
1501 static inline int pmdp_clear_flush_young(struct vm_area_struct *vma,
1502 unsigned long addr, pmd_t *pmdp)
1504 VM_BUG_ON(addr & ~HPAGE_MASK);
1505 return pmdp_test_and_clear_young(vma, addr, pmdp);
1508 static inline void set_pmd_at(struct mm_struct *mm, unsigned long addr,
1509 pmd_t *pmdp, pmd_t entry)
1511 if (!MACHINE_HAS_NX)
1512 pmd_val(entry) &= ~_SEGMENT_ENTRY_NOEXEC;
1513 *pmdp = entry;
1516 static inline pmd_t pmd_mkhuge(pmd_t pmd)
1518 pmd_val(pmd) |= _SEGMENT_ENTRY_LARGE;
1519 pmd_val(pmd) |= _SEGMENT_ENTRY_YOUNG;
1520 pmd_val(pmd) |= _SEGMENT_ENTRY_PROTECT;
1521 return pmd;
1524 #define __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR
1525 static inline pmd_t pmdp_huge_get_and_clear(struct mm_struct *mm,
1526 unsigned long addr, pmd_t *pmdp)
1528 return pmdp_xchg_direct(mm, addr, pmdp, __pmd(_SEGMENT_ENTRY_EMPTY));
1531 #define __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR_FULL
1532 static inline pmd_t pmdp_huge_get_and_clear_full(struct mm_struct *mm,
1533 unsigned long addr,
1534 pmd_t *pmdp, int full)
1536 if (full) {
1537 pmd_t pmd = *pmdp;
1538 *pmdp = __pmd(_SEGMENT_ENTRY_EMPTY);
1539 return pmd;
1541 return pmdp_xchg_lazy(mm, addr, pmdp, __pmd(_SEGMENT_ENTRY_EMPTY));
1544 #define __HAVE_ARCH_PMDP_HUGE_CLEAR_FLUSH
1545 static inline pmd_t pmdp_huge_clear_flush(struct vm_area_struct *vma,
1546 unsigned long addr, pmd_t *pmdp)
1548 return pmdp_huge_get_and_clear(vma->vm_mm, addr, pmdp);
1551 #define __HAVE_ARCH_PMDP_INVALIDATE
1552 static inline pmd_t pmdp_invalidate(struct vm_area_struct *vma,
1553 unsigned long addr, pmd_t *pmdp)
1555 pmd_t pmd = __pmd(pmd_val(*pmdp) | _SEGMENT_ENTRY_INVALID);
1557 return pmdp_xchg_direct(vma->vm_mm, addr, pmdp, pmd);
1560 #define __HAVE_ARCH_PMDP_SET_WRPROTECT
1561 static inline void pmdp_set_wrprotect(struct mm_struct *mm,
1562 unsigned long addr, pmd_t *pmdp)
1564 pmd_t pmd = *pmdp;
1566 if (pmd_write(pmd))
1567 pmd = pmdp_xchg_lazy(mm, addr, pmdp, pmd_wrprotect(pmd));
1570 static inline pmd_t pmdp_collapse_flush(struct vm_area_struct *vma,
1571 unsigned long address,
1572 pmd_t *pmdp)
1574 return pmdp_huge_get_and_clear(vma->vm_mm, address, pmdp);
1576 #define pmdp_collapse_flush pmdp_collapse_flush
1578 #define pfn_pmd(pfn, pgprot) mk_pmd_phys(__pa((pfn) << PAGE_SHIFT), (pgprot))
1579 #define mk_pmd(page, pgprot) pfn_pmd(page_to_pfn(page), (pgprot))
1581 static inline int pmd_trans_huge(pmd_t pmd)
1583 return pmd_val(pmd) & _SEGMENT_ENTRY_LARGE;
1586 #define has_transparent_hugepage has_transparent_hugepage
1587 static inline int has_transparent_hugepage(void)
1589 return MACHINE_HAS_EDAT1 ? 1 : 0;
1591 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1594 * 64 bit swap entry format:
1595 * A page-table entry has some bits we have to treat in a special way.
1596 * Bits 52 and bit 55 have to be zero, otherwise a specification
1597 * exception will occur instead of a page translation exception. The
1598 * specification exception has the bad habit not to store necessary
1599 * information in the lowcore.
1600 * Bits 54 and 63 are used to indicate the page type.
1601 * A swap pte is indicated by bit pattern (pte & 0x201) == 0x200
1602 * This leaves the bits 0-51 and bits 56-62 to store type and offset.
1603 * We use the 5 bits from 57-61 for the type and the 52 bits from 0-51
1604 * for the offset.
1605 * | offset |01100|type |00|
1606 * |0000000000111111111122222222223333333333444444444455|55555|55566|66|
1607 * |0123456789012345678901234567890123456789012345678901|23456|78901|23|
1610 #define __SWP_OFFSET_MASK ((1UL << 52) - 1)
1611 #define __SWP_OFFSET_SHIFT 12
1612 #define __SWP_TYPE_MASK ((1UL << 5) - 1)
1613 #define __SWP_TYPE_SHIFT 2
1615 static inline pte_t mk_swap_pte(unsigned long type, unsigned long offset)
1617 pte_t pte;
1619 pte_val(pte) = _PAGE_INVALID | _PAGE_PROTECT;
1620 pte_val(pte) |= (offset & __SWP_OFFSET_MASK) << __SWP_OFFSET_SHIFT;
1621 pte_val(pte) |= (type & __SWP_TYPE_MASK) << __SWP_TYPE_SHIFT;
1622 return pte;
1625 static inline unsigned long __swp_type(swp_entry_t entry)
1627 return (entry.val >> __SWP_TYPE_SHIFT) & __SWP_TYPE_MASK;
1630 static inline unsigned long __swp_offset(swp_entry_t entry)
1632 return (entry.val >> __SWP_OFFSET_SHIFT) & __SWP_OFFSET_MASK;
1635 static inline swp_entry_t __swp_entry(unsigned long type, unsigned long offset)
1637 return (swp_entry_t) { pte_val(mk_swap_pte(type, offset)) };
1640 #define __pte_to_swp_entry(pte) ((swp_entry_t) { pte_val(pte) })
1641 #define __swp_entry_to_pte(x) ((pte_t) { (x).val })
1643 #define kern_addr_valid(addr) (1)
1645 extern int vmem_add_mapping(unsigned long start, unsigned long size);
1646 extern int vmem_remove_mapping(unsigned long start, unsigned long size);
1647 extern int s390_enable_sie(void);
1648 extern int s390_enable_skey(void);
1649 extern void s390_reset_cmma(struct mm_struct *mm);
1651 /* s390 has a private copy of get unmapped area to deal with cache synonyms */
1652 #define HAVE_ARCH_UNMAPPED_AREA
1653 #define HAVE_ARCH_UNMAPPED_AREA_TOPDOWN
1655 #include <asm-generic/pgtable.h>
1657 #endif /* _S390_PAGE_H */