treewide: remove redundant IS_ERR() before error code check
[linux/fpc-iii.git] / arch / s390 / kernel / kprobes.c
blob6f1388391620afc84734e526c51ca8dc8319ee14
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3 * Kernel Probes (KProbes)
5 * Copyright IBM Corp. 2002, 2006
7 * s390 port, used ppc64 as template. Mike Grundy <grundym@us.ibm.com>
8 */
10 #include <linux/kprobes.h>
11 #include <linux/ptrace.h>
12 #include <linux/preempt.h>
13 #include <linux/stop_machine.h>
14 #include <linux/kdebug.h>
15 #include <linux/uaccess.h>
16 #include <linux/extable.h>
17 #include <linux/module.h>
18 #include <linux/slab.h>
19 #include <linux/hardirq.h>
20 #include <linux/ftrace.h>
21 #include <asm/set_memory.h>
22 #include <asm/sections.h>
23 #include <asm/dis.h>
25 DEFINE_PER_CPU(struct kprobe *, current_kprobe);
26 DEFINE_PER_CPU(struct kprobe_ctlblk, kprobe_ctlblk);
28 struct kretprobe_blackpoint kretprobe_blacklist[] = { };
30 DEFINE_INSN_CACHE_OPS(s390_insn);
32 static int insn_page_in_use;
33 static char insn_page[PAGE_SIZE] __aligned(PAGE_SIZE);
35 static void *alloc_s390_insn_page(void)
37 if (xchg(&insn_page_in_use, 1) == 1)
38 return NULL;
39 set_memory_x((unsigned long) &insn_page, 1);
40 return &insn_page;
43 static void free_s390_insn_page(void *page)
45 set_memory_nx((unsigned long) page, 1);
46 xchg(&insn_page_in_use, 0);
49 struct kprobe_insn_cache kprobe_s390_insn_slots = {
50 .mutex = __MUTEX_INITIALIZER(kprobe_s390_insn_slots.mutex),
51 .alloc = alloc_s390_insn_page,
52 .free = free_s390_insn_page,
53 .pages = LIST_HEAD_INIT(kprobe_s390_insn_slots.pages),
54 .insn_size = MAX_INSN_SIZE,
57 static void copy_instruction(struct kprobe *p)
59 unsigned long ip = (unsigned long) p->addr;
60 s64 disp, new_disp;
61 u64 addr, new_addr;
63 if (ftrace_location(ip) == ip) {
65 * If kprobes patches the instruction that is morphed by
66 * ftrace make sure that kprobes always sees the branch
67 * "jg .+24" that skips the mcount block or the "brcl 0,0"
68 * in case of hotpatch.
70 ftrace_generate_nop_insn((struct ftrace_insn *)p->ainsn.insn);
71 p->ainsn.is_ftrace_insn = 1;
72 } else
73 memcpy(p->ainsn.insn, p->addr, insn_length(*p->addr >> 8));
74 p->opcode = p->ainsn.insn[0];
75 if (!probe_is_insn_relative_long(p->ainsn.insn))
76 return;
78 * For pc-relative instructions in RIL-b or RIL-c format patch the
79 * RI2 displacement field. We have already made sure that the insn
80 * slot for the patched instruction is within the same 2GB area
81 * as the original instruction (either kernel image or module area).
82 * Therefore the new displacement will always fit.
84 disp = *(s32 *)&p->ainsn.insn[1];
85 addr = (u64)(unsigned long)p->addr;
86 new_addr = (u64)(unsigned long)p->ainsn.insn;
87 new_disp = ((addr + (disp * 2)) - new_addr) / 2;
88 *(s32 *)&p->ainsn.insn[1] = new_disp;
90 NOKPROBE_SYMBOL(copy_instruction);
92 static inline int is_kernel_addr(void *addr)
94 return addr < (void *)_end;
97 static int s390_get_insn_slot(struct kprobe *p)
100 * Get an insn slot that is within the same 2GB area like the original
101 * instruction. That way instructions with a 32bit signed displacement
102 * field can be patched and executed within the insn slot.
104 p->ainsn.insn = NULL;
105 if (is_kernel_addr(p->addr))
106 p->ainsn.insn = get_s390_insn_slot();
107 else if (is_module_addr(p->addr))
108 p->ainsn.insn = get_insn_slot();
109 return p->ainsn.insn ? 0 : -ENOMEM;
111 NOKPROBE_SYMBOL(s390_get_insn_slot);
113 static void s390_free_insn_slot(struct kprobe *p)
115 if (!p->ainsn.insn)
116 return;
117 if (is_kernel_addr(p->addr))
118 free_s390_insn_slot(p->ainsn.insn, 0);
119 else
120 free_insn_slot(p->ainsn.insn, 0);
121 p->ainsn.insn = NULL;
123 NOKPROBE_SYMBOL(s390_free_insn_slot);
125 int arch_prepare_kprobe(struct kprobe *p)
127 if ((unsigned long) p->addr & 0x01)
128 return -EINVAL;
129 /* Make sure the probe isn't going on a difficult instruction */
130 if (probe_is_prohibited_opcode(p->addr))
131 return -EINVAL;
132 if (s390_get_insn_slot(p))
133 return -ENOMEM;
134 copy_instruction(p);
135 return 0;
137 NOKPROBE_SYMBOL(arch_prepare_kprobe);
139 int arch_check_ftrace_location(struct kprobe *p)
141 return 0;
144 struct swap_insn_args {
145 struct kprobe *p;
146 unsigned int arm_kprobe : 1;
149 static int swap_instruction(void *data)
151 struct swap_insn_args *args = data;
152 struct ftrace_insn new_insn, *insn;
153 struct kprobe *p = args->p;
154 size_t len;
156 new_insn.opc = args->arm_kprobe ? BREAKPOINT_INSTRUCTION : p->opcode;
157 len = sizeof(new_insn.opc);
158 if (!p->ainsn.is_ftrace_insn)
159 goto skip_ftrace;
160 len = sizeof(new_insn);
161 insn = (struct ftrace_insn *) p->addr;
162 if (args->arm_kprobe) {
163 if (is_ftrace_nop(insn))
164 new_insn.disp = KPROBE_ON_FTRACE_NOP;
165 else
166 new_insn.disp = KPROBE_ON_FTRACE_CALL;
167 } else {
168 ftrace_generate_call_insn(&new_insn, (unsigned long)p->addr);
169 if (insn->disp == KPROBE_ON_FTRACE_NOP)
170 ftrace_generate_nop_insn(&new_insn);
172 skip_ftrace:
173 s390_kernel_write(p->addr, &new_insn, len);
174 return 0;
176 NOKPROBE_SYMBOL(swap_instruction);
178 void arch_arm_kprobe(struct kprobe *p)
180 struct swap_insn_args args = {.p = p, .arm_kprobe = 1};
182 stop_machine_cpuslocked(swap_instruction, &args, NULL);
184 NOKPROBE_SYMBOL(arch_arm_kprobe);
186 void arch_disarm_kprobe(struct kprobe *p)
188 struct swap_insn_args args = {.p = p, .arm_kprobe = 0};
190 stop_machine_cpuslocked(swap_instruction, &args, NULL);
192 NOKPROBE_SYMBOL(arch_disarm_kprobe);
194 void arch_remove_kprobe(struct kprobe *p)
196 s390_free_insn_slot(p);
198 NOKPROBE_SYMBOL(arch_remove_kprobe);
200 static void enable_singlestep(struct kprobe_ctlblk *kcb,
201 struct pt_regs *regs,
202 unsigned long ip)
204 struct per_regs per_kprobe;
206 /* Set up the PER control registers %cr9-%cr11 */
207 per_kprobe.control = PER_EVENT_IFETCH;
208 per_kprobe.start = ip;
209 per_kprobe.end = ip;
211 /* Save control regs and psw mask */
212 __ctl_store(kcb->kprobe_saved_ctl, 9, 11);
213 kcb->kprobe_saved_imask = regs->psw.mask &
214 (PSW_MASK_PER | PSW_MASK_IO | PSW_MASK_EXT);
216 /* Set PER control regs, turns on single step for the given address */
217 __ctl_load(per_kprobe, 9, 11);
218 regs->psw.mask |= PSW_MASK_PER;
219 regs->psw.mask &= ~(PSW_MASK_IO | PSW_MASK_EXT);
220 regs->psw.addr = ip;
222 NOKPROBE_SYMBOL(enable_singlestep);
224 static void disable_singlestep(struct kprobe_ctlblk *kcb,
225 struct pt_regs *regs,
226 unsigned long ip)
228 /* Restore control regs and psw mask, set new psw address */
229 __ctl_load(kcb->kprobe_saved_ctl, 9, 11);
230 regs->psw.mask &= ~PSW_MASK_PER;
231 regs->psw.mask |= kcb->kprobe_saved_imask;
232 regs->psw.addr = ip;
234 NOKPROBE_SYMBOL(disable_singlestep);
237 * Activate a kprobe by storing its pointer to current_kprobe. The
238 * previous kprobe is stored in kcb->prev_kprobe. A stack of up to
239 * two kprobes can be active, see KPROBE_REENTER.
241 static void push_kprobe(struct kprobe_ctlblk *kcb, struct kprobe *p)
243 kcb->prev_kprobe.kp = __this_cpu_read(current_kprobe);
244 kcb->prev_kprobe.status = kcb->kprobe_status;
245 __this_cpu_write(current_kprobe, p);
247 NOKPROBE_SYMBOL(push_kprobe);
250 * Deactivate a kprobe by backing up to the previous state. If the
251 * current state is KPROBE_REENTER prev_kprobe.kp will be non-NULL,
252 * for any other state prev_kprobe.kp will be NULL.
254 static void pop_kprobe(struct kprobe_ctlblk *kcb)
256 __this_cpu_write(current_kprobe, kcb->prev_kprobe.kp);
257 kcb->kprobe_status = kcb->prev_kprobe.status;
259 NOKPROBE_SYMBOL(pop_kprobe);
261 void arch_prepare_kretprobe(struct kretprobe_instance *ri, struct pt_regs *regs)
263 ri->ret_addr = (kprobe_opcode_t *) regs->gprs[14];
265 /* Replace the return addr with trampoline addr */
266 regs->gprs[14] = (unsigned long) &kretprobe_trampoline;
268 NOKPROBE_SYMBOL(arch_prepare_kretprobe);
270 static void kprobe_reenter_check(struct kprobe_ctlblk *kcb, struct kprobe *p)
272 switch (kcb->kprobe_status) {
273 case KPROBE_HIT_SSDONE:
274 case KPROBE_HIT_ACTIVE:
275 kprobes_inc_nmissed_count(p);
276 break;
277 case KPROBE_HIT_SS:
278 case KPROBE_REENTER:
279 default:
281 * A kprobe on the code path to single step an instruction
282 * is a BUG. The code path resides in the .kprobes.text
283 * section and is executed with interrupts disabled.
285 pr_err("Invalid kprobe detected.\n");
286 dump_kprobe(p);
287 BUG();
290 NOKPROBE_SYMBOL(kprobe_reenter_check);
292 static int kprobe_handler(struct pt_regs *regs)
294 struct kprobe_ctlblk *kcb;
295 struct kprobe *p;
298 * We want to disable preemption for the entire duration of kprobe
299 * processing. That includes the calls to the pre/post handlers
300 * and single stepping the kprobe instruction.
302 preempt_disable();
303 kcb = get_kprobe_ctlblk();
304 p = get_kprobe((void *)(regs->psw.addr - 2));
306 if (p) {
307 if (kprobe_running()) {
309 * We have hit a kprobe while another is still
310 * active. This can happen in the pre and post
311 * handler. Single step the instruction of the
312 * new probe but do not call any handler function
313 * of this secondary kprobe.
314 * push_kprobe and pop_kprobe saves and restores
315 * the currently active kprobe.
317 kprobe_reenter_check(kcb, p);
318 push_kprobe(kcb, p);
319 kcb->kprobe_status = KPROBE_REENTER;
320 } else {
322 * If we have no pre-handler or it returned 0, we
323 * continue with single stepping. If we have a
324 * pre-handler and it returned non-zero, it prepped
325 * for changing execution path, so get out doing
326 * nothing more here.
328 push_kprobe(kcb, p);
329 kcb->kprobe_status = KPROBE_HIT_ACTIVE;
330 if (p->pre_handler && p->pre_handler(p, regs)) {
331 pop_kprobe(kcb);
332 preempt_enable_no_resched();
333 return 1;
335 kcb->kprobe_status = KPROBE_HIT_SS;
337 enable_singlestep(kcb, regs, (unsigned long) p->ainsn.insn);
338 return 1;
339 } /* else:
340 * No kprobe at this address and no active kprobe. The trap has
341 * not been caused by a kprobe breakpoint. The race of breakpoint
342 * vs. kprobe remove does not exist because on s390 as we use
343 * stop_machine to arm/disarm the breakpoints.
345 preempt_enable_no_resched();
346 return 0;
348 NOKPROBE_SYMBOL(kprobe_handler);
351 * Function return probe trampoline:
352 * - init_kprobes() establishes a probepoint here
353 * - When the probed function returns, this probe
354 * causes the handlers to fire
356 static void __used kretprobe_trampoline_holder(void)
358 asm volatile(".global kretprobe_trampoline\n"
359 "kretprobe_trampoline: bcr 0,0\n");
363 * Called when the probe at kretprobe trampoline is hit
365 static int trampoline_probe_handler(struct kprobe *p, struct pt_regs *regs)
367 struct kretprobe_instance *ri;
368 struct hlist_head *head, empty_rp;
369 struct hlist_node *tmp;
370 unsigned long flags, orig_ret_address;
371 unsigned long trampoline_address;
372 kprobe_opcode_t *correct_ret_addr;
374 INIT_HLIST_HEAD(&empty_rp);
375 kretprobe_hash_lock(current, &head, &flags);
378 * It is possible to have multiple instances associated with a given
379 * task either because an multiple functions in the call path
380 * have a return probe installed on them, and/or more than one return
381 * return probe was registered for a target function.
383 * We can handle this because:
384 * - instances are always inserted at the head of the list
385 * - when multiple return probes are registered for the same
386 * function, the first instance's ret_addr will point to the
387 * real return address, and all the rest will point to
388 * kretprobe_trampoline
390 ri = NULL;
391 orig_ret_address = 0;
392 correct_ret_addr = NULL;
393 trampoline_address = (unsigned long) &kretprobe_trampoline;
394 hlist_for_each_entry_safe(ri, tmp, head, hlist) {
395 if (ri->task != current)
396 /* another task is sharing our hash bucket */
397 continue;
399 orig_ret_address = (unsigned long) ri->ret_addr;
401 if (orig_ret_address != trampoline_address)
403 * This is the real return address. Any other
404 * instances associated with this task are for
405 * other calls deeper on the call stack
407 break;
410 kretprobe_assert(ri, orig_ret_address, trampoline_address);
412 correct_ret_addr = ri->ret_addr;
413 hlist_for_each_entry_safe(ri, tmp, head, hlist) {
414 if (ri->task != current)
415 /* another task is sharing our hash bucket */
416 continue;
418 orig_ret_address = (unsigned long) ri->ret_addr;
420 if (ri->rp && ri->rp->handler) {
421 ri->ret_addr = correct_ret_addr;
422 ri->rp->handler(ri, regs);
425 recycle_rp_inst(ri, &empty_rp);
427 if (orig_ret_address != trampoline_address)
429 * This is the real return address. Any other
430 * instances associated with this task are for
431 * other calls deeper on the call stack
433 break;
436 regs->psw.addr = orig_ret_address;
438 kretprobe_hash_unlock(current, &flags);
440 hlist_for_each_entry_safe(ri, tmp, &empty_rp, hlist) {
441 hlist_del(&ri->hlist);
442 kfree(ri);
445 * By returning a non-zero value, we are telling
446 * kprobe_handler() that we don't want the post_handler
447 * to run (and have re-enabled preemption)
449 return 1;
451 NOKPROBE_SYMBOL(trampoline_probe_handler);
454 * Called after single-stepping. p->addr is the address of the
455 * instruction whose first byte has been replaced by the "breakpoint"
456 * instruction. To avoid the SMP problems that can occur when we
457 * temporarily put back the original opcode to single-step, we
458 * single-stepped a copy of the instruction. The address of this
459 * copy is p->ainsn.insn.
461 static void resume_execution(struct kprobe *p, struct pt_regs *regs)
463 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
464 unsigned long ip = regs->psw.addr;
465 int fixup = probe_get_fixup_type(p->ainsn.insn);
467 /* Check if the kprobes location is an enabled ftrace caller */
468 if (p->ainsn.is_ftrace_insn) {
469 struct ftrace_insn *insn = (struct ftrace_insn *) p->addr;
470 struct ftrace_insn call_insn;
472 ftrace_generate_call_insn(&call_insn, (unsigned long) p->addr);
474 * A kprobe on an enabled ftrace call site actually single
475 * stepped an unconditional branch (ftrace nop equivalent).
476 * Now we need to fixup things and pretend that a brasl r0,...
477 * was executed instead.
479 if (insn->disp == KPROBE_ON_FTRACE_CALL) {
480 ip += call_insn.disp * 2 - MCOUNT_INSN_SIZE;
481 regs->gprs[0] = (unsigned long)p->addr + sizeof(*insn);
485 if (fixup & FIXUP_PSW_NORMAL)
486 ip += (unsigned long) p->addr - (unsigned long) p->ainsn.insn;
488 if (fixup & FIXUP_BRANCH_NOT_TAKEN) {
489 int ilen = insn_length(p->ainsn.insn[0] >> 8);
490 if (ip - (unsigned long) p->ainsn.insn == ilen)
491 ip = (unsigned long) p->addr + ilen;
494 if (fixup & FIXUP_RETURN_REGISTER) {
495 int reg = (p->ainsn.insn[0] & 0xf0) >> 4;
496 regs->gprs[reg] += (unsigned long) p->addr -
497 (unsigned long) p->ainsn.insn;
500 disable_singlestep(kcb, regs, ip);
502 NOKPROBE_SYMBOL(resume_execution);
504 static int post_kprobe_handler(struct pt_regs *regs)
506 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
507 struct kprobe *p = kprobe_running();
509 if (!p)
510 return 0;
512 if (kcb->kprobe_status != KPROBE_REENTER && p->post_handler) {
513 kcb->kprobe_status = KPROBE_HIT_SSDONE;
514 p->post_handler(p, regs, 0);
517 resume_execution(p, regs);
518 pop_kprobe(kcb);
519 preempt_enable_no_resched();
522 * if somebody else is singlestepping across a probe point, psw mask
523 * will have PER set, in which case, continue the remaining processing
524 * of do_single_step, as if this is not a probe hit.
526 if (regs->psw.mask & PSW_MASK_PER)
527 return 0;
529 return 1;
531 NOKPROBE_SYMBOL(post_kprobe_handler);
533 static int kprobe_trap_handler(struct pt_regs *regs, int trapnr)
535 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
536 struct kprobe *p = kprobe_running();
537 const struct exception_table_entry *entry;
539 switch(kcb->kprobe_status) {
540 case KPROBE_HIT_SS:
541 case KPROBE_REENTER:
543 * We are here because the instruction being single
544 * stepped caused a page fault. We reset the current
545 * kprobe and the nip points back to the probe address
546 * and allow the page fault handler to continue as a
547 * normal page fault.
549 disable_singlestep(kcb, regs, (unsigned long) p->addr);
550 pop_kprobe(kcb);
551 preempt_enable_no_resched();
552 break;
553 case KPROBE_HIT_ACTIVE:
554 case KPROBE_HIT_SSDONE:
556 * We increment the nmissed count for accounting,
557 * we can also use npre/npostfault count for accounting
558 * these specific fault cases.
560 kprobes_inc_nmissed_count(p);
563 * We come here because instructions in the pre/post
564 * handler caused the page_fault, this could happen
565 * if handler tries to access user space by
566 * copy_from_user(), get_user() etc. Let the
567 * user-specified handler try to fix it first.
569 if (p->fault_handler && p->fault_handler(p, regs, trapnr))
570 return 1;
573 * In case the user-specified fault handler returned
574 * zero, try to fix up.
576 entry = s390_search_extables(regs->psw.addr);
577 if (entry) {
578 regs->psw.addr = extable_fixup(entry);
579 return 1;
583 * fixup_exception() could not handle it,
584 * Let do_page_fault() fix it.
586 break;
587 default:
588 break;
590 return 0;
592 NOKPROBE_SYMBOL(kprobe_trap_handler);
594 int kprobe_fault_handler(struct pt_regs *regs, int trapnr)
596 int ret;
598 if (regs->psw.mask & (PSW_MASK_IO | PSW_MASK_EXT))
599 local_irq_disable();
600 ret = kprobe_trap_handler(regs, trapnr);
601 if (regs->psw.mask & (PSW_MASK_IO | PSW_MASK_EXT))
602 local_irq_restore(regs->psw.mask & ~PSW_MASK_PER);
603 return ret;
605 NOKPROBE_SYMBOL(kprobe_fault_handler);
608 * Wrapper routine to for handling exceptions.
610 int kprobe_exceptions_notify(struct notifier_block *self,
611 unsigned long val, void *data)
613 struct die_args *args = (struct die_args *) data;
614 struct pt_regs *regs = args->regs;
615 int ret = NOTIFY_DONE;
617 if (regs->psw.mask & (PSW_MASK_IO | PSW_MASK_EXT))
618 local_irq_disable();
620 switch (val) {
621 case DIE_BPT:
622 if (kprobe_handler(regs))
623 ret = NOTIFY_STOP;
624 break;
625 case DIE_SSTEP:
626 if (post_kprobe_handler(regs))
627 ret = NOTIFY_STOP;
628 break;
629 case DIE_TRAP:
630 if (!preemptible() && kprobe_running() &&
631 kprobe_trap_handler(regs, args->trapnr))
632 ret = NOTIFY_STOP;
633 break;
634 default:
635 break;
638 if (regs->psw.mask & (PSW_MASK_IO | PSW_MASK_EXT))
639 local_irq_restore(regs->psw.mask & ~PSW_MASK_PER);
641 return ret;
643 NOKPROBE_SYMBOL(kprobe_exceptions_notify);
645 static struct kprobe trampoline = {
646 .addr = (kprobe_opcode_t *) &kretprobe_trampoline,
647 .pre_handler = trampoline_probe_handler
650 int __init arch_init_kprobes(void)
652 return register_kprobe(&trampoline);
655 int arch_trampoline_kprobe(struct kprobe *p)
657 return p->addr == (kprobe_opcode_t *) &kretprobe_trampoline;
659 NOKPROBE_SYMBOL(arch_trampoline_kprobe);