1 // SPDX-License-Identifier: GPL-2.0
3 * Performance event support for the System z CPU-measurement Sampling Facility
5 * Copyright IBM Corp. 2013, 2018
6 * Author(s): Hendrik Brueckner <brueckner@linux.vnet.ibm.com>
8 #define KMSG_COMPONENT "cpum_sf"
9 #define pr_fmt(fmt) KMSG_COMPONENT ": " fmt
11 #include <linux/kernel.h>
12 #include <linux/kernel_stat.h>
13 #include <linux/perf_event.h>
14 #include <linux/percpu.h>
15 #include <linux/pid.h>
16 #include <linux/notifier.h>
17 #include <linux/export.h>
18 #include <linux/slab.h>
20 #include <linux/moduleparam.h>
21 #include <asm/cpu_mf.h>
23 #include <asm/debug.h>
24 #include <asm/timex.h>
26 /* Minimum number of sample-data-block-tables:
27 * At least one table is required for the sampling buffer structure.
28 * A single table contains up to 511 pointers to sample-data-blocks.
30 #define CPUM_SF_MIN_SDBT 1
32 /* Number of sample-data-blocks per sample-data-block-table (SDBT):
33 * A table contains SDB pointers (8 bytes) and one table-link entry
34 * that points to the origin of the next SDBT.
36 #define CPUM_SF_SDB_PER_TABLE ((PAGE_SIZE - 8) / 8)
38 /* Maximum page offset for an SDBT table-link entry:
39 * If this page offset is reached, a table-link entry to the next SDBT
42 #define CPUM_SF_SDBT_TL_OFFSET (CPUM_SF_SDB_PER_TABLE * 8)
43 static inline int require_table_link(const void *sdbt
)
45 return ((unsigned long) sdbt
& ~PAGE_MASK
) == CPUM_SF_SDBT_TL_OFFSET
;
48 /* Minimum and maximum sampling buffer sizes:
50 * This number represents the maximum size of the sampling buffer taking
51 * the number of sample-data-block-tables into account. Note that these
52 * numbers apply to the basic-sampling function only.
53 * The maximum number of SDBs is increased by CPUM_SF_SDB_DIAG_FACTOR if
54 * the diagnostic-sampling function is active.
56 * Sampling buffer size Buffer characteristics
57 * ---------------------------------------------------
58 * 64KB == 16 pages (4KB per page)
59 * 1 page for SDB-tables
62 * 32MB == 8192 pages (4KB per page)
63 * 16 pages for SDB-tables
66 static unsigned long __read_mostly CPUM_SF_MIN_SDB
= 15;
67 static unsigned long __read_mostly CPUM_SF_MAX_SDB
= 8176;
68 static unsigned long __read_mostly CPUM_SF_SDB_DIAG_FACTOR
= 1;
71 unsigned long *sdbt
; /* Sample-data-block-table origin */
72 /* buffer characteristics (required for buffer increments) */
73 unsigned long num_sdb
; /* Number of sample-data-blocks */
74 unsigned long num_sdbt
; /* Number of sample-data-block-tables */
75 unsigned long *tail
; /* last sample-data-block-table */
80 unsigned long head
; /* index of SDB of buffer head */
81 unsigned long alert_mark
; /* index of SDB of alert request position */
82 unsigned long empty_mark
; /* mark of SDB not marked full */
83 unsigned long *sdb_index
; /* SDB address for fast lookup */
84 unsigned long *sdbt_index
; /* SDBT address for fast lookup */
88 /* CPU-measurement sampling information block */
89 struct hws_qsi_info_block qsi
;
90 /* CPU-measurement sampling control block */
91 struct hws_lsctl_request_block lsctl
;
92 struct sf_buffer sfb
; /* Sampling buffer */
93 unsigned int flags
; /* Status flags */
94 struct perf_event
*event
; /* Scheduled perf event */
95 struct perf_output_handle handle
; /* AUX buffer output handle */
97 static DEFINE_PER_CPU(struct cpu_hw_sf
, cpu_hw_sf
);
100 static debug_info_t
*sfdbg
;
103 * sf_disable() - Switch off sampling facility
105 static int sf_disable(void)
107 struct hws_lsctl_request_block sreq
;
109 memset(&sreq
, 0, sizeof(sreq
));
114 * sf_buffer_available() - Check for an allocated sampling buffer
116 static int sf_buffer_available(struct cpu_hw_sf
*cpuhw
)
118 return !!cpuhw
->sfb
.sdbt
;
122 * deallocate sampling facility buffer
124 static void free_sampling_buffer(struct sf_buffer
*sfb
)
126 unsigned long *sdbt
, *curr
;
134 /* Free the SDBT after all SDBs are processed... */
139 /* Process table-link entries */
140 if (is_link_entry(curr
)) {
141 curr
= get_next_sdbt(curr
);
143 free_page((unsigned long) sdbt
);
145 /* If the origin is reached, sampling buffer is freed */
146 if (curr
== sfb
->sdbt
)
151 /* Process SDB pointer */
159 debug_sprintf_event(sfdbg
, 5, "%s: freed sdbt %#lx\n", __func__
,
160 (unsigned long)sfb
->sdbt
);
161 memset(sfb
, 0, sizeof(*sfb
));
164 static int alloc_sample_data_block(unsigned long *sdbt
, gfp_t gfp_flags
)
166 unsigned long sdb
, *trailer
;
168 /* Allocate and initialize sample-data-block */
169 sdb
= get_zeroed_page(gfp_flags
);
172 trailer
= trailer_entry_ptr(sdb
);
173 *trailer
= SDB_TE_ALERT_REQ_MASK
;
175 /* Link SDB into the sample-data-block-table */
182 * realloc_sampling_buffer() - extend sampler memory
184 * Allocates new sample-data-blocks and adds them to the specified sampling
187 * Important: This modifies the sampling buffer and must be called when the
188 * sampling facility is disabled.
190 * Returns zero on success, non-zero otherwise.
192 static int realloc_sampling_buffer(struct sf_buffer
*sfb
,
193 unsigned long num_sdb
, gfp_t gfp_flags
)
196 unsigned long *new, *tail
, *tail_prev
= NULL
;
198 if (!sfb
->sdbt
|| !sfb
->tail
)
201 if (!is_link_entry(sfb
->tail
))
204 /* Append to the existing sampling buffer, overwriting the table-link
206 * The tail variables always points to the "tail" (last and table-link)
207 * entry in an SDB-table.
211 /* Do a sanity check whether the table-link entry points to
212 * the sampling buffer origin.
214 if (sfb
->sdbt
!= get_next_sdbt(tail
)) {
215 debug_sprintf_event(sfdbg
, 3, "%s: "
216 "sampling buffer is not linked: origin %#lx"
217 " tail %#lx\n", __func__
,
218 (unsigned long)sfb
->sdbt
,
219 (unsigned long)tail
);
223 /* Allocate remaining SDBs */
225 for (i
= 0; i
< num_sdb
; i
++) {
226 /* Allocate a new SDB-table if it is full. */
227 if (require_table_link(tail
)) {
228 new = (unsigned long *) get_zeroed_page(gfp_flags
);
234 /* Link current page to tail of chain */
235 *tail
= (unsigned long)(void *) new + 1;
240 /* Allocate a new sample-data-block.
241 * If there is not enough memory, stop the realloc process
242 * and simply use what was allocated. If this is a temporary
243 * issue, a new realloc call (if required) might succeed.
245 rc
= alloc_sample_data_block(tail
, gfp_flags
);
247 /* Undo last SDBT. An SDBT with no SDB at its first
248 * entry but with an SDBT entry instead can not be
249 * handled by the interrupt handler code.
250 * Avoid this situation.
254 free_page((unsigned long) new);
261 tail_prev
= new = NULL
; /* Allocated at least one SBD */
264 /* Link sampling buffer to its origin */
265 *tail
= (unsigned long) sfb
->sdbt
+ 1;
268 debug_sprintf_event(sfdbg
, 4, "%s: new buffer"
269 " settings: sdbt %lu sdb %lu\n", __func__
,
270 sfb
->num_sdbt
, sfb
->num_sdb
);
275 * allocate_sampling_buffer() - allocate sampler memory
277 * Allocates and initializes a sampling buffer structure using the
278 * specified number of sample-data-blocks (SDB). For each allocation,
279 * a 4K page is used. The number of sample-data-block-tables (SDBT)
280 * are calculated from SDBs.
281 * Also set the ALERT_REQ mask in each SDBs trailer.
283 * Returns zero on success, non-zero otherwise.
285 static int alloc_sampling_buffer(struct sf_buffer
*sfb
, unsigned long num_sdb
)
292 /* Allocate the sample-data-block-table origin */
293 sfb
->sdbt
= (unsigned long *) get_zeroed_page(GFP_KERNEL
);
299 /* Link the table origin to point to itself to prepare for
300 * realloc_sampling_buffer() invocation.
302 sfb
->tail
= sfb
->sdbt
;
303 *sfb
->tail
= (unsigned long)(void *) sfb
->sdbt
+ 1;
305 /* Allocate requested number of sample-data-blocks */
306 rc
= realloc_sampling_buffer(sfb
, num_sdb
, GFP_KERNEL
);
308 free_sampling_buffer(sfb
);
309 debug_sprintf_event(sfdbg
, 4, "%s: "
310 "realloc_sampling_buffer failed with rc %i\n",
313 debug_sprintf_event(sfdbg
, 4,
314 "%s: tear %#lx dear %#lx\n", __func__
,
315 (unsigned long)sfb
->sdbt
, (unsigned long)*sfb
->sdbt
);
319 static void sfb_set_limits(unsigned long min
, unsigned long max
)
321 struct hws_qsi_info_block si
;
323 CPUM_SF_MIN_SDB
= min
;
324 CPUM_SF_MAX_SDB
= max
;
326 memset(&si
, 0, sizeof(si
));
328 CPUM_SF_SDB_DIAG_FACTOR
= DIV_ROUND_UP(si
.dsdes
, si
.bsdes
);
331 static unsigned long sfb_max_limit(struct hw_perf_event
*hwc
)
333 return SAMPL_DIAG_MODE(hwc
) ? CPUM_SF_MAX_SDB
* CPUM_SF_SDB_DIAG_FACTOR
337 static unsigned long sfb_pending_allocs(struct sf_buffer
*sfb
,
338 struct hw_perf_event
*hwc
)
341 return SFB_ALLOC_REG(hwc
);
342 if (SFB_ALLOC_REG(hwc
) > sfb
->num_sdb
)
343 return SFB_ALLOC_REG(hwc
) - sfb
->num_sdb
;
347 static int sfb_has_pending_allocs(struct sf_buffer
*sfb
,
348 struct hw_perf_event
*hwc
)
350 return sfb_pending_allocs(sfb
, hwc
) > 0;
353 static void sfb_account_allocs(unsigned long num
, struct hw_perf_event
*hwc
)
355 /* Limit the number of SDBs to not exceed the maximum */
356 num
= min_t(unsigned long, num
, sfb_max_limit(hwc
) - SFB_ALLOC_REG(hwc
));
358 SFB_ALLOC_REG(hwc
) += num
;
361 static void sfb_init_allocs(unsigned long num
, struct hw_perf_event
*hwc
)
363 SFB_ALLOC_REG(hwc
) = 0;
364 sfb_account_allocs(num
, hwc
);
367 static void deallocate_buffers(struct cpu_hw_sf
*cpuhw
)
370 free_sampling_buffer(&cpuhw
->sfb
);
373 static int allocate_buffers(struct cpu_hw_sf
*cpuhw
, struct hw_perf_event
*hwc
)
375 unsigned long n_sdb
, freq
, factor
;
378 /* Calculate sampling buffers using 4K pages
380 * 1. Determine the sample data size which depends on the used
381 * sampling functions, for example, basic-sampling or
382 * basic-sampling with diagnostic-sampling.
384 * 2. Use the sampling frequency as input. The sampling buffer is
385 * designed for almost one second. This can be adjusted through
386 * the "factor" variable.
387 * In any case, alloc_sampling_buffer() sets the Alert Request
388 * Control indicator to trigger a measurement-alert to harvest
389 * sample-data-blocks (sdb).
391 * 3. Compute the number of sample-data-blocks and ensure a minimum
392 * of CPUM_SF_MIN_SDB. Also ensure the upper limit does not
393 * exceed a "calculated" maximum. The symbolic maximum is
394 * designed for basic-sampling only and needs to be increased if
395 * diagnostic-sampling is active.
396 * See also the remarks for these symbolic constants.
398 * 4. Compute the number of sample-data-block-tables (SDBT) and
399 * ensure a minimum of CPUM_SF_MIN_SDBT (one table can manage up
402 sample_size
= sizeof(struct hws_basic_entry
);
403 freq
= sample_rate_to_freq(&cpuhw
->qsi
, SAMPL_RATE(hwc
));
405 n_sdb
= DIV_ROUND_UP(freq
, factor
* ((PAGE_SIZE
-64) / sample_size
));
406 if (n_sdb
< CPUM_SF_MIN_SDB
)
407 n_sdb
= CPUM_SF_MIN_SDB
;
409 /* If there is already a sampling buffer allocated, it is very likely
410 * that the sampling facility is enabled too. If the event to be
411 * initialized requires a greater sampling buffer, the allocation must
412 * be postponed. Changing the sampling buffer requires the sampling
413 * facility to be in the disabled state. So, account the number of
414 * required SDBs and let cpumsf_pmu_enable() resize the buffer just
415 * before the event is started.
417 sfb_init_allocs(n_sdb
, hwc
);
418 if (sf_buffer_available(cpuhw
))
421 debug_sprintf_event(sfdbg
, 3,
422 "%s: rate %lu f %lu sdb %lu/%lu"
423 " sample_size %lu cpuhw %p\n", __func__
,
424 SAMPL_RATE(hwc
), freq
, n_sdb
, sfb_max_limit(hwc
),
427 return alloc_sampling_buffer(&cpuhw
->sfb
,
428 sfb_pending_allocs(&cpuhw
->sfb
, hwc
));
431 static unsigned long min_percent(unsigned int percent
, unsigned long base
,
434 return min_t(unsigned long, min
, DIV_ROUND_UP(percent
* base
, 100));
437 static unsigned long compute_sfb_extent(unsigned long ratio
, unsigned long base
)
439 /* Use a percentage-based approach to extend the sampling facility
440 * buffer. Accept up to 5% sample data loss.
441 * Vary the extents between 1% to 5% of the current number of
442 * sample-data-blocks.
447 return min_percent(1, base
, 1);
449 return min_percent(1, base
, 1);
451 return min_percent(2, base
, 2);
453 return min_percent(3, base
, 3);
455 return min_percent(4, base
, 4);
457 return min_percent(5, base
, 8);
460 static void sfb_account_overflows(struct cpu_hw_sf
*cpuhw
,
461 struct hw_perf_event
*hwc
)
463 unsigned long ratio
, num
;
465 if (!OVERFLOW_REG(hwc
))
468 /* The sample_overflow contains the average number of sample data
469 * that has been lost because sample-data-blocks were full.
471 * Calculate the total number of sample data entries that has been
472 * discarded. Then calculate the ratio of lost samples to total samples
473 * per second in percent.
475 ratio
= DIV_ROUND_UP(100 * OVERFLOW_REG(hwc
) * cpuhw
->sfb
.num_sdb
,
476 sample_rate_to_freq(&cpuhw
->qsi
, SAMPL_RATE(hwc
)));
478 /* Compute number of sample-data-blocks */
479 num
= compute_sfb_extent(ratio
, cpuhw
->sfb
.num_sdb
);
481 sfb_account_allocs(num
, hwc
);
483 debug_sprintf_event(sfdbg
, 5, "%s: overflow %llu ratio %lu num %lu\n",
484 __func__
, OVERFLOW_REG(hwc
), ratio
, num
);
485 OVERFLOW_REG(hwc
) = 0;
488 /* extend_sampling_buffer() - Extend sampling buffer
489 * @sfb: Sampling buffer structure (for local CPU)
490 * @hwc: Perf event hardware structure
492 * Use this function to extend the sampling buffer based on the overflow counter
493 * and postponed allocation extents stored in the specified Perf event hardware.
495 * Important: This function disables the sampling facility in order to safely
496 * change the sampling buffer structure. Do not call this function
497 * when the PMU is active.
499 static void extend_sampling_buffer(struct sf_buffer
*sfb
,
500 struct hw_perf_event
*hwc
)
502 unsigned long num
, num_old
;
505 num
= sfb_pending_allocs(sfb
, hwc
);
508 num_old
= sfb
->num_sdb
;
510 /* Disable the sampling facility to reset any states and also
511 * clear pending measurement alerts.
515 /* Extend the sampling buffer.
516 * This memory allocation typically happens in an atomic context when
517 * called by perf. Because this is a reallocation, it is fine if the
518 * new SDB-request cannot be satisfied immediately.
520 rc
= realloc_sampling_buffer(sfb
, num
, GFP_ATOMIC
);
522 debug_sprintf_event(sfdbg
, 5, "%s: realloc failed with rc %i\n",
525 if (sfb_has_pending_allocs(sfb
, hwc
))
526 debug_sprintf_event(sfdbg
, 5, "%s: "
527 "req %lu alloc %lu remaining %lu\n",
528 __func__
, num
, sfb
->num_sdb
- num_old
,
529 sfb_pending_allocs(sfb
, hwc
));
532 /* Number of perf events counting hardware events */
533 static atomic_t num_events
;
534 /* Used to avoid races in calling reserve/release_cpumf_hardware */
535 static DEFINE_MUTEX(pmc_reserve_mutex
);
538 #define PMC_RELEASE 1
539 #define PMC_FAILURE 2
540 static void setup_pmc_cpu(void *flags
)
543 struct cpu_hw_sf
*cpusf
= this_cpu_ptr(&cpu_hw_sf
);
546 switch (*((int *) flags
)) {
548 memset(cpusf
, 0, sizeof(*cpusf
));
549 err
= qsi(&cpusf
->qsi
);
552 cpusf
->flags
|= PMU_F_RESERVED
;
555 pr_err("Switching off the sampling facility failed "
556 "with rc %i\n", err
);
557 debug_sprintf_event(sfdbg
, 5,
558 "%s: initialized: cpuhw %p\n", __func__
,
562 cpusf
->flags
&= ~PMU_F_RESERVED
;
565 pr_err("Switching off the sampling facility failed "
566 "with rc %i\n", err
);
568 deallocate_buffers(cpusf
);
569 debug_sprintf_event(sfdbg
, 5,
570 "%s: released: cpuhw %p\n", __func__
,
575 *((int *) flags
) |= PMC_FAILURE
;
578 static void release_pmc_hardware(void)
580 int flags
= PMC_RELEASE
;
582 irq_subclass_unregister(IRQ_SUBCLASS_MEASUREMENT_ALERT
);
583 on_each_cpu(setup_pmc_cpu
, &flags
, 1);
586 static int reserve_pmc_hardware(void)
588 int flags
= PMC_INIT
;
590 on_each_cpu(setup_pmc_cpu
, &flags
, 1);
591 if (flags
& PMC_FAILURE
) {
592 release_pmc_hardware();
595 irq_subclass_register(IRQ_SUBCLASS_MEASUREMENT_ALERT
);
600 static void hw_perf_event_destroy(struct perf_event
*event
)
602 /* Release PMC if this is the last perf event */
603 if (!atomic_add_unless(&num_events
, -1, 1)) {
604 mutex_lock(&pmc_reserve_mutex
);
605 if (atomic_dec_return(&num_events
) == 0)
606 release_pmc_hardware();
607 mutex_unlock(&pmc_reserve_mutex
);
611 static void hw_init_period(struct hw_perf_event
*hwc
, u64 period
)
613 hwc
->sample_period
= period
;
614 hwc
->last_period
= hwc
->sample_period
;
615 local64_set(&hwc
->period_left
, hwc
->sample_period
);
618 static unsigned long hw_limit_rate(const struct hws_qsi_info_block
*si
,
621 return clamp_t(unsigned long, rate
,
622 si
->min_sampl_rate
, si
->max_sampl_rate
);
625 static u32
cpumsf_pid_type(struct perf_event
*event
,
626 u32 pid
, enum pid_type type
)
628 struct task_struct
*tsk
;
634 tsk
= find_task_by_pid_ns(pid
, &init_pid_ns
);
638 * Only top level events contain the pid namespace in which
642 event
= event
->parent
;
643 pid
= __task_pid_nr_ns(tsk
, type
, event
->ns
);
645 * See also 1d953111b648
646 * "perf/core: Don't report zero PIDs for exiting tasks".
648 if (!pid
&& !pid_alive(tsk
))
655 static void cpumsf_output_event_pid(struct perf_event
*event
,
656 struct perf_sample_data
*data
,
657 struct pt_regs
*regs
)
660 struct perf_event_header header
;
661 struct perf_output_handle handle
;
664 * Obtain the PID from the basic-sampling data entry and
665 * correct the data->tid_entry.pid value.
667 pid
= data
->tid_entry
.pid
;
669 /* Protect callchain buffers, tasks */
672 perf_prepare_sample(&header
, data
, event
, regs
);
673 if (perf_output_begin(&handle
, event
, header
.size
))
676 /* Update the process ID (see also kernel/events/core.c) */
677 data
->tid_entry
.pid
= cpumsf_pid_type(event
, pid
, PIDTYPE_TGID
);
678 data
->tid_entry
.tid
= cpumsf_pid_type(event
, pid
, PIDTYPE_PID
);
680 perf_output_sample(&handle
, &header
, data
, event
);
681 perf_output_end(&handle
);
686 static unsigned long getrate(bool freq
, unsigned long sample
,
687 struct hws_qsi_info_block
*si
)
692 rate
= freq_to_sample_rate(si
, sample
);
693 rate
= hw_limit_rate(si
, rate
);
695 /* The min/max sampling rates specifies the valid range
696 * of sample periods. If the specified sample period is
697 * out of range, limit the period to the range boundary.
699 rate
= hw_limit_rate(si
, sample
);
701 /* The perf core maintains a maximum sample rate that is
702 * configurable through the sysctl interface. Ensure the
703 * sampling rate does not exceed this value. This also helps
704 * to avoid throttling when pushing samples with
705 * perf_event_overflow().
707 if (sample_rate_to_freq(si
, rate
) >
708 sysctl_perf_event_sample_rate
) {
709 debug_sprintf_event(sfdbg
, 1, "%s: "
710 "Sampling rate exceeds maximum "
711 "perf sample rate\n", __func__
);
718 /* The sampling information (si) contains information about the
719 * min/max sampling intervals and the CPU speed. So calculate the
720 * correct sampling interval and avoid the whole period adjust
723 * Since the CPU Measurement sampling facility can not handle frequency
724 * calculate the sampling interval when frequency is specified using
726 * interval := cpu_speed * 1000000 / sample_freq
728 * Returns errno on bad input and zero on success with parameter interval
729 * set to the correct sampling rate.
731 * Note: This function turns off freq bit to avoid calling function
732 * perf_adjust_period(). This causes frequency adjustment in the common
733 * code part which causes tremendous variations in the counter values.
735 static int __hw_perf_event_init_rate(struct perf_event
*event
,
736 struct hws_qsi_info_block
*si
)
738 struct perf_event_attr
*attr
= &event
->attr
;
739 struct hw_perf_event
*hwc
= &event
->hw
;
743 if (!attr
->sample_freq
)
745 rate
= getrate(attr
->freq
, attr
->sample_freq
, si
);
746 attr
->freq
= 0; /* Don't call perf_adjust_period() */
747 SAMPL_FLAGS(hwc
) |= PERF_CPUM_SF_FREQ_MODE
;
749 rate
= getrate(attr
->freq
, attr
->sample_period
, si
);
753 attr
->sample_period
= rate
;
754 SAMPL_RATE(hwc
) = rate
;
755 hw_init_period(hwc
, SAMPL_RATE(hwc
));
756 debug_sprintf_event(sfdbg
, 4, "%s: cpu %d period %#llx freq %d,%#lx\n",
757 __func__
, event
->cpu
, event
->attr
.sample_period
,
758 event
->attr
.freq
, SAMPLE_FREQ_MODE(hwc
));
762 static int __hw_perf_event_init(struct perf_event
*event
)
764 struct cpu_hw_sf
*cpuhw
;
765 struct hws_qsi_info_block si
;
766 struct perf_event_attr
*attr
= &event
->attr
;
767 struct hw_perf_event
*hwc
= &event
->hw
;
770 /* Reserve CPU-measurement sampling facility */
772 if (!atomic_inc_not_zero(&num_events
)) {
773 mutex_lock(&pmc_reserve_mutex
);
774 if (atomic_read(&num_events
) == 0 && reserve_pmc_hardware())
777 atomic_inc(&num_events
);
778 mutex_unlock(&pmc_reserve_mutex
);
780 event
->destroy
= hw_perf_event_destroy
;
785 /* Access per-CPU sampling information (query sampling info) */
787 * The event->cpu value can be -1 to count on every CPU, for example,
788 * when attaching to a task. If this is specified, use the query
789 * sampling info from the current CPU, otherwise use event->cpu to
790 * retrieve the per-CPU information.
791 * Later, cpuhw indicates whether to allocate sampling buffers for a
792 * particular CPU (cpuhw!=NULL) or each online CPU (cpuw==NULL).
794 memset(&si
, 0, sizeof(si
));
796 if (event
->cpu
== -1)
799 /* Event is pinned to a particular CPU, retrieve the per-CPU
800 * sampling structure for accessing the CPU-specific QSI.
802 cpuhw
= &per_cpu(cpu_hw_sf
, event
->cpu
);
806 /* Check sampling facility authorization and, if not authorized,
807 * fall back to other PMUs. It is safe to check any CPU because
808 * the authorization is identical for all configured CPUs.
815 if (si
.ribm
& CPU_MF_SF_RIBM_NOTAV
) {
816 pr_warn("CPU Measurement Facility sampling is temporarily not available\n");
821 /* Always enable basic sampling */
822 SAMPL_FLAGS(hwc
) = PERF_CPUM_SF_BASIC_MODE
;
824 /* Check if diagnostic sampling is requested. Deny if the required
825 * sampling authorization is missing.
827 if (attr
->config
== PERF_EVENT_CPUM_SF_DIAG
) {
832 SAMPL_FLAGS(hwc
) |= PERF_CPUM_SF_DIAG_MODE
;
835 /* Check and set other sampling flags */
836 if (attr
->config1
& PERF_CPUM_SF_FULL_BLOCKS
)
837 SAMPL_FLAGS(hwc
) |= PERF_CPUM_SF_FULL_BLOCKS
;
839 err
= __hw_perf_event_init_rate(event
, &si
);
843 /* Initialize sample data overflow accounting */
844 hwc
->extra_reg
.reg
= REG_OVERFLOW
;
845 OVERFLOW_REG(hwc
) = 0;
847 /* Use AUX buffer. No need to allocate it by ourself */
848 if (attr
->config
== PERF_EVENT_CPUM_SF_DIAG
)
851 /* Allocate the per-CPU sampling buffer using the CPU information
852 * from the event. If the event is not pinned to a particular
853 * CPU (event->cpu == -1; or cpuhw == NULL), allocate sampling
854 * buffers for each online CPU.
857 /* Event is pinned to a particular CPU */
858 err
= allocate_buffers(cpuhw
, hwc
);
860 /* Event is not pinned, allocate sampling buffer on
863 for_each_online_cpu(cpu
) {
864 cpuhw
= &per_cpu(cpu_hw_sf
, cpu
);
865 err
= allocate_buffers(cpuhw
, hwc
);
871 /* If PID/TID sampling is active, replace the default overflow
872 * handler to extract and resolve the PIDs from the basic-sampling
875 if (event
->attr
.sample_type
& PERF_SAMPLE_TID
)
876 if (is_default_overflow_handler(event
))
877 event
->overflow_handler
= cpumsf_output_event_pid
;
882 static int cpumsf_pmu_event_init(struct perf_event
*event
)
886 /* No support for taken branch sampling */
887 if (has_branch_stack(event
))
890 switch (event
->attr
.type
) {
892 if ((event
->attr
.config
!= PERF_EVENT_CPUM_SF
) &&
893 (event
->attr
.config
!= PERF_EVENT_CPUM_SF_DIAG
))
896 case PERF_TYPE_HARDWARE
:
897 /* Support sampling of CPU cycles in addition to the
898 * counter facility. However, the counter facility
899 * is more precise and, hence, restrict this PMU to
900 * sampling events only.
902 if (event
->attr
.config
!= PERF_COUNT_HW_CPU_CYCLES
)
904 if (!is_sampling_event(event
))
911 /* Check online status of the CPU to which the event is pinned */
912 if (event
->cpu
>= 0 && !cpu_online(event
->cpu
))
915 /* Force reset of idle/hv excludes regardless of what the
918 if (event
->attr
.exclude_hv
)
919 event
->attr
.exclude_hv
= 0;
920 if (event
->attr
.exclude_idle
)
921 event
->attr
.exclude_idle
= 0;
923 err
= __hw_perf_event_init(event
);
926 event
->destroy(event
);
930 static void cpumsf_pmu_enable(struct pmu
*pmu
)
932 struct cpu_hw_sf
*cpuhw
= this_cpu_ptr(&cpu_hw_sf
);
933 struct hw_perf_event
*hwc
;
936 if (cpuhw
->flags
& PMU_F_ENABLED
)
939 if (cpuhw
->flags
& PMU_F_ERR_MASK
)
942 /* Check whether to extent the sampling buffer.
944 * Two conditions trigger an increase of the sampling buffer for a
946 * 1. Postponed buffer allocations from the event initialization.
947 * 2. Sampling overflows that contribute to pending allocations.
949 * Note that the extend_sampling_buffer() function disables the sampling
950 * facility, but it can be fully re-enabled using sampling controls that
951 * have been saved in cpumsf_pmu_disable().
954 hwc
= &cpuhw
->event
->hw
;
955 if (!(SAMPL_DIAG_MODE(hwc
))) {
957 * Account number of overflow-designated
960 sfb_account_overflows(cpuhw
, hwc
);
961 extend_sampling_buffer(&cpuhw
->sfb
, hwc
);
963 /* Rate may be adjusted with ioctl() */
964 cpuhw
->lsctl
.interval
= SAMPL_RATE(&cpuhw
->event
->hw
);
967 /* (Re)enable the PMU and sampling facility */
968 cpuhw
->flags
|= PMU_F_ENABLED
;
971 err
= lsctl(&cpuhw
->lsctl
);
973 cpuhw
->flags
&= ~PMU_F_ENABLED
;
974 pr_err("Loading sampling controls failed: op %i err %i\n",
979 /* Load current program parameter */
980 lpp(&S390_lowcore
.lpp
);
982 debug_sprintf_event(sfdbg
, 6, "%s: es %i cs %i ed %i cd %i "
983 "interval %#lx tear %#lx dear %#lx\n", __func__
,
984 cpuhw
->lsctl
.es
, cpuhw
->lsctl
.cs
, cpuhw
->lsctl
.ed
,
985 cpuhw
->lsctl
.cd
, cpuhw
->lsctl
.interval
,
986 cpuhw
->lsctl
.tear
, cpuhw
->lsctl
.dear
);
989 static void cpumsf_pmu_disable(struct pmu
*pmu
)
991 struct cpu_hw_sf
*cpuhw
= this_cpu_ptr(&cpu_hw_sf
);
992 struct hws_lsctl_request_block inactive
;
993 struct hws_qsi_info_block si
;
996 if (!(cpuhw
->flags
& PMU_F_ENABLED
))
999 if (cpuhw
->flags
& PMU_F_ERR_MASK
)
1002 /* Switch off sampling activation control */
1003 inactive
= cpuhw
->lsctl
;
1007 err
= lsctl(&inactive
);
1009 pr_err("Loading sampling controls failed: op %i err %i\n",
1014 /* Save state of TEAR and DEAR register contents */
1017 /* TEAR/DEAR values are valid only if the sampling facility is
1018 * enabled. Note that cpumsf_pmu_disable() might be called even
1019 * for a disabled sampling facility because cpumsf_pmu_enable()
1020 * controls the enable/disable state.
1023 cpuhw
->lsctl
.tear
= si
.tear
;
1024 cpuhw
->lsctl
.dear
= si
.dear
;
1027 debug_sprintf_event(sfdbg
, 3, "%s: qsi() failed with err %i\n",
1030 cpuhw
->flags
&= ~PMU_F_ENABLED
;
1033 /* perf_exclude_event() - Filter event
1034 * @event: The perf event
1035 * @regs: pt_regs structure
1036 * @sde_regs: Sample-data-entry (sde) regs structure
1038 * Filter perf events according to their exclude specification.
1040 * Return non-zero if the event shall be excluded.
1042 static int perf_exclude_event(struct perf_event
*event
, struct pt_regs
*regs
,
1043 struct perf_sf_sde_regs
*sde_regs
)
1045 if (event
->attr
.exclude_user
&& user_mode(regs
))
1047 if (event
->attr
.exclude_kernel
&& !user_mode(regs
))
1049 if (event
->attr
.exclude_guest
&& sde_regs
->in_guest
)
1051 if (event
->attr
.exclude_host
&& !sde_regs
->in_guest
)
1056 /* perf_push_sample() - Push samples to perf
1057 * @event: The perf event
1058 * @sample: Hardware sample data
1060 * Use the hardware sample data to create perf event sample. The sample
1061 * is the pushed to the event subsystem and the function checks for
1062 * possible event overflows. If an event overflow occurs, the PMU is
1065 * Return non-zero if an event overflow occurred.
1067 static int perf_push_sample(struct perf_event
*event
,
1068 struct hws_basic_entry
*basic
)
1071 struct pt_regs regs
;
1072 struct perf_sf_sde_regs
*sde_regs
;
1073 struct perf_sample_data data
;
1075 /* Setup perf sample */
1076 perf_sample_data_init(&data
, 0, event
->hw
.last_period
);
1078 /* Setup pt_regs to look like an CPU-measurement external interrupt
1079 * using the Program Request Alert code. The regs.int_parm_long
1080 * field which is unused contains additional sample-data-entry related
1083 memset(®s
, 0, sizeof(regs
));
1084 regs
.int_code
= 0x1407;
1085 regs
.int_parm
= CPU_MF_INT_SF_PRA
;
1086 sde_regs
= (struct perf_sf_sde_regs
*) ®s
.int_parm_long
;
1088 psw_bits(regs
.psw
).ia
= basic
->ia
;
1089 psw_bits(regs
.psw
).dat
= basic
->T
;
1090 psw_bits(regs
.psw
).wait
= basic
->W
;
1091 psw_bits(regs
.psw
).pstate
= basic
->P
;
1092 psw_bits(regs
.psw
).as
= basic
->AS
;
1095 * Use the hardware provided configuration level to decide if the
1096 * sample belongs to a guest or host. If that is not available,
1097 * fall back to the following heuristics:
1098 * A non-zero guest program parameter always indicates a guest
1099 * sample. Some early samples or samples from guests without
1100 * lpp usage would be misaccounted to the host. We use the asn
1101 * value as an addon heuristic to detect most of these guest samples.
1102 * If the value differs from 0xffff (the host value), we assume to
1105 switch (basic
->CL
) {
1106 case 1: /* logical partition */
1107 sde_regs
->in_guest
= 0;
1109 case 2: /* virtual machine */
1110 sde_regs
->in_guest
= 1;
1112 default: /* old machine, use heuristics */
1113 if (basic
->gpp
|| basic
->prim_asn
!= 0xffff)
1114 sde_regs
->in_guest
= 1;
1119 * Store the PID value from the sample-data-entry to be
1120 * processed and resolved by cpumsf_output_event_pid().
1122 data
.tid_entry
.pid
= basic
->hpp
& LPP_PID_MASK
;
1125 if (perf_exclude_event(event
, ®s
, sde_regs
))
1127 if (perf_event_overflow(event
, &data
, ®s
)) {
1129 event
->pmu
->stop(event
, 0);
1131 perf_event_update_userpage(event
);
1136 static void perf_event_count_update(struct perf_event
*event
, u64 count
)
1138 local64_add(count
, &event
->count
);
1141 /* hw_collect_samples() - Walk through a sample-data-block and collect samples
1142 * @event: The perf event
1143 * @sdbt: Sample-data-block table
1144 * @overflow: Event overflow counter
1146 * Walks through a sample-data-block and collects sampling data entries that are
1147 * then pushed to the perf event subsystem. Depending on the sampling function,
1148 * there can be either basic-sampling or combined-sampling data entries. A
1149 * combined-sampling data entry consists of a basic- and a diagnostic-sampling
1150 * data entry. The sampling function is determined by the flags in the perf
1151 * event hardware structure. The function always works with a combined-sampling
1152 * data entry but ignores the the diagnostic portion if it is not available.
1154 * Note that the implementation focuses on basic-sampling data entries and, if
1155 * such an entry is not valid, the entire combined-sampling data entry is
1158 * The overflow variables counts the number of samples that has been discarded
1159 * due to a perf event overflow.
1161 static void hw_collect_samples(struct perf_event
*event
, unsigned long *sdbt
,
1162 unsigned long long *overflow
)
1164 struct hws_trailer_entry
*te
;
1165 struct hws_basic_entry
*sample
;
1167 te
= (struct hws_trailer_entry
*) trailer_entry_ptr(*sdbt
);
1168 sample
= (struct hws_basic_entry
*) *sdbt
;
1169 while ((unsigned long *) sample
< (unsigned long *) te
) {
1170 /* Check for an empty sample */
1174 /* Update perf event period */
1175 perf_event_count_update(event
, SAMPL_RATE(&event
->hw
));
1177 /* Check whether sample is valid */
1178 if (sample
->def
== 0x0001) {
1179 /* If an event overflow occurred, the PMU is stopped to
1180 * throttle event delivery. Remaining sample data is
1184 /* Check whether sample is consistent */
1185 if (sample
->I
== 0 && sample
->W
== 0) {
1186 /* Deliver sample data to perf */
1187 *overflow
= perf_push_sample(event
,
1191 /* Count discarded samples */
1194 debug_sprintf_event(sfdbg
, 4,
1196 " sampling data entry: te->f %i"
1197 " basic.def %#4x (%p)\n", __func__
,
1198 te
->f
, sample
->def
, sample
);
1199 /* Sample slot is not yet written or other record.
1201 * This condition can occur if the buffer was reused
1202 * from a combined basic- and diagnostic-sampling.
1203 * If only basic-sampling is then active, entries are
1204 * written into the larger diagnostic entries.
1205 * This is typically the case for sample-data-blocks
1206 * that are not full. Stop processing if the first
1207 * invalid format was detected.
1213 /* Reset sample slot and advance to next sample */
1219 /* hw_perf_event_update() - Process sampling buffer
1220 * @event: The perf event
1221 * @flush_all: Flag to also flush partially filled sample-data-blocks
1223 * Processes the sampling buffer and create perf event samples.
1224 * The sampling buffer position are retrieved and saved in the TEAR_REG
1225 * register of the specified perf event.
1227 * Only full sample-data-blocks are processed. Specify the flash_all flag
1228 * to also walk through partially filled sample-data-blocks. It is ignored
1229 * if PERF_CPUM_SF_FULL_BLOCKS is set. The PERF_CPUM_SF_FULL_BLOCKS flag
1230 * enforces the processing of full sample-data-blocks only (trailer entries
1231 * with the block-full-indicator bit set).
1233 static void hw_perf_event_update(struct perf_event
*event
, int flush_all
)
1235 struct hw_perf_event
*hwc
= &event
->hw
;
1236 struct hws_trailer_entry
*te
;
1237 unsigned long *sdbt
;
1238 unsigned long long event_overflow
, sampl_overflow
, num_sdb
, te_flags
;
1242 * AUX buffer is used when in diagnostic sampling mode.
1243 * No perf events/samples are created.
1245 if (SAMPL_DIAG_MODE(&event
->hw
))
1248 if (flush_all
&& SDB_FULL_BLOCKS(hwc
))
1251 sdbt
= (unsigned long *) TEAR_REG(hwc
);
1252 done
= event_overflow
= sampl_overflow
= num_sdb
= 0;
1254 /* Get the trailer entry of the sample-data-block */
1255 te
= (struct hws_trailer_entry
*) trailer_entry_ptr(*sdbt
);
1257 /* Leave loop if no more work to do (block full indicator) */
1264 /* Check the sample overflow count */
1266 /* Account sample overflows and, if a particular limit
1267 * is reached, extend the sampling buffer.
1268 * For details, see sfb_account_overflows().
1270 sampl_overflow
+= te
->overflow
;
1272 /* Timestamps are valid for full sample-data-blocks only */
1273 debug_sprintf_event(sfdbg
, 6, "%s: sdbt %#lx "
1274 "overflow %llu timestamp %#llx\n",
1275 __func__
, (unsigned long)sdbt
, te
->overflow
,
1276 (te
->f
) ? trailer_timestamp(te
) : 0ULL);
1278 /* Collect all samples from a single sample-data-block and
1279 * flag if an (perf) event overflow happened. If so, the PMU
1280 * is stopped and remaining samples will be discarded.
1282 hw_collect_samples(event
, sdbt
, &event_overflow
);
1285 /* Reset trailer (using compare-double-and-swap) */
1287 te_flags
= te
->flags
& ~SDB_TE_BUFFER_FULL_MASK
;
1288 te_flags
|= SDB_TE_ALERT_REQ_MASK
;
1289 } while (!cmpxchg_double(&te
->flags
, &te
->overflow
,
1290 te
->flags
, te
->overflow
,
1293 /* Advance to next sample-data-block */
1295 if (is_link_entry(sdbt
))
1296 sdbt
= get_next_sdbt(sdbt
);
1298 /* Update event hardware registers */
1299 TEAR_REG(hwc
) = (unsigned long) sdbt
;
1301 /* Stop processing sample-data if all samples of the current
1302 * sample-data-block were flushed even if it was not full.
1304 if (flush_all
&& done
)
1308 /* Account sample overflows in the event hardware structure */
1310 OVERFLOW_REG(hwc
) = DIV_ROUND_UP(OVERFLOW_REG(hwc
) +
1311 sampl_overflow
, 1 + num_sdb
);
1313 /* Perf_event_overflow() and perf_event_account_interrupt() limit
1314 * the interrupt rate to an upper limit. Roughly 1000 samples per
1316 * Hitting this limit results in a large number
1317 * of throttled REF_REPORT_THROTTLE entries and the samples
1319 * Slightly increase the interval to avoid hitting this limit.
1321 if (event_overflow
) {
1322 SAMPL_RATE(hwc
) += DIV_ROUND_UP(SAMPL_RATE(hwc
), 10);
1323 debug_sprintf_event(sfdbg
, 1, "%s: rate adjustment %ld\n",
1325 DIV_ROUND_UP(SAMPL_RATE(hwc
), 10));
1328 if (sampl_overflow
|| event_overflow
)
1329 debug_sprintf_event(sfdbg
, 4, "%s: "
1330 "overflows: sample %llu event %llu"
1331 " total %llu num_sdb %llu\n",
1332 __func__
, sampl_overflow
, event_overflow
,
1333 OVERFLOW_REG(hwc
), num_sdb
);
1336 #define AUX_SDB_INDEX(aux, i) ((i) % aux->sfb.num_sdb)
1337 #define AUX_SDB_NUM(aux, start, end) (end >= start ? end - start + 1 : 0)
1338 #define AUX_SDB_NUM_ALERT(aux) AUX_SDB_NUM(aux, aux->head, aux->alert_mark)
1339 #define AUX_SDB_NUM_EMPTY(aux) AUX_SDB_NUM(aux, aux->head, aux->empty_mark)
1342 * Get trailer entry by index of SDB.
1344 static struct hws_trailer_entry
*aux_sdb_trailer(struct aux_buffer
*aux
,
1345 unsigned long index
)
1349 index
= AUX_SDB_INDEX(aux
, index
);
1350 sdb
= aux
->sdb_index
[index
];
1351 return (struct hws_trailer_entry
*)trailer_entry_ptr(sdb
);
1355 * Finish sampling on the cpu. Called by cpumsf_pmu_del() with pmu
1356 * disabled. Collect the full SDBs in AUX buffer which have not reached
1357 * the point of alert indicator. And ignore the SDBs which are not
1360 * 1. Scan SDBs to see how much data is there and consume them.
1361 * 2. Remove alert indicator in the buffer.
1363 static void aux_output_end(struct perf_output_handle
*handle
)
1365 unsigned long i
, range_scan
, idx
;
1366 struct aux_buffer
*aux
;
1367 struct hws_trailer_entry
*te
;
1369 aux
= perf_get_aux(handle
);
1373 range_scan
= AUX_SDB_NUM_ALERT(aux
);
1374 for (i
= 0, idx
= aux
->head
; i
< range_scan
; i
++, idx
++) {
1375 te
= aux_sdb_trailer(aux
, idx
);
1376 if (!(te
->flags
& SDB_TE_BUFFER_FULL_MASK
))
1379 /* i is num of SDBs which are full */
1380 perf_aux_output_end(handle
, i
<< PAGE_SHIFT
);
1382 /* Remove alert indicators in the buffer */
1383 te
= aux_sdb_trailer(aux
, aux
->alert_mark
);
1384 te
->flags
&= ~SDB_TE_ALERT_REQ_MASK
;
1386 debug_sprintf_event(sfdbg
, 6, "%s: SDBs %ld range %ld head %ld\n",
1387 __func__
, i
, range_scan
, aux
->head
);
1391 * Start sampling on the CPU. Called by cpumsf_pmu_add() when an event
1392 * is first added to the CPU or rescheduled again to the CPU. It is called
1393 * with pmu disabled.
1395 * 1. Reset the trailer of SDBs to get ready for new data.
1396 * 2. Tell the hardware where to put the data by reset the SDBs buffer
1399 static int aux_output_begin(struct perf_output_handle
*handle
,
1400 struct aux_buffer
*aux
,
1401 struct cpu_hw_sf
*cpuhw
)
1403 unsigned long range
;
1404 unsigned long i
, range_scan
, idx
;
1405 unsigned long head
, base
, offset
;
1406 struct hws_trailer_entry
*te
;
1408 if (WARN_ON_ONCE(handle
->head
& ~PAGE_MASK
))
1411 aux
->head
= handle
->head
>> PAGE_SHIFT
;
1412 range
= (handle
->size
+ 1) >> PAGE_SHIFT
;
1417 * SDBs between aux->head and aux->empty_mark are already ready
1418 * for new data. range_scan is num of SDBs not within them.
1420 debug_sprintf_event(sfdbg
, 6,
1421 "%s: range %ld head %ld alert %ld empty %ld\n",
1422 __func__
, range
, aux
->head
, aux
->alert_mark
,
1424 if (range
> AUX_SDB_NUM_EMPTY(aux
)) {
1425 range_scan
= range
- AUX_SDB_NUM_EMPTY(aux
);
1426 idx
= aux
->empty_mark
+ 1;
1427 for (i
= 0; i
< range_scan
; i
++, idx
++) {
1428 te
= aux_sdb_trailer(aux
, idx
);
1429 te
->flags
&= ~(SDB_TE_BUFFER_FULL_MASK
|
1430 SDB_TE_ALERT_REQ_MASK
);
1433 /* Save the position of empty SDBs */
1434 aux
->empty_mark
= aux
->head
+ range
- 1;
1437 /* Set alert indicator */
1438 aux
->alert_mark
= aux
->head
+ range
/2 - 1;
1439 te
= aux_sdb_trailer(aux
, aux
->alert_mark
);
1440 te
->flags
= te
->flags
| SDB_TE_ALERT_REQ_MASK
;
1442 /* Reset hardware buffer head */
1443 head
= AUX_SDB_INDEX(aux
, aux
->head
);
1444 base
= aux
->sdbt_index
[head
/ CPUM_SF_SDB_PER_TABLE
];
1445 offset
= head
% CPUM_SF_SDB_PER_TABLE
;
1446 cpuhw
->lsctl
.tear
= base
+ offset
* sizeof(unsigned long);
1447 cpuhw
->lsctl
.dear
= aux
->sdb_index
[head
];
1449 debug_sprintf_event(sfdbg
, 6, "%s: head %ld alert %ld empty %ld "
1450 "index %ld tear %#lx dear %#lx\n", __func__
,
1451 aux
->head
, aux
->alert_mark
, aux
->empty_mark
,
1452 head
/ CPUM_SF_SDB_PER_TABLE
,
1453 cpuhw
->lsctl
.tear
, cpuhw
->lsctl
.dear
);
1459 * Set alert indicator on SDB at index @alert_index while sampler is running.
1461 * Return true if successfully.
1462 * Return false if full indicator is already set by hardware sampler.
1464 static bool aux_set_alert(struct aux_buffer
*aux
, unsigned long alert_index
,
1465 unsigned long long *overflow
)
1467 unsigned long long orig_overflow
, orig_flags
, new_flags
;
1468 struct hws_trailer_entry
*te
;
1470 te
= aux_sdb_trailer(aux
, alert_index
);
1472 orig_flags
= te
->flags
;
1473 *overflow
= orig_overflow
= te
->overflow
;
1474 if (orig_flags
& SDB_TE_BUFFER_FULL_MASK
) {
1476 * SDB is already set by hardware.
1477 * Abort and try to set somewhere
1482 new_flags
= orig_flags
| SDB_TE_ALERT_REQ_MASK
;
1483 } while (!cmpxchg_double(&te
->flags
, &te
->overflow
,
1484 orig_flags
, orig_overflow
,
1490 * aux_reset_buffer() - Scan and setup SDBs for new samples
1491 * @aux: The AUX buffer to set
1492 * @range: The range of SDBs to scan started from aux->head
1493 * @overflow: Set to overflow count
1495 * Set alert indicator on the SDB at index of aux->alert_mark. If this SDB is
1496 * marked as empty, check if it is already set full by the hardware sampler.
1497 * If yes, that means new data is already there before we can set an alert
1498 * indicator. Caller should try to set alert indicator to some position behind.
1500 * Scan the SDBs in AUX buffer from behind aux->empty_mark. They are used
1501 * previously and have already been consumed by user space. Reset these SDBs
1502 * (clear full indicator and alert indicator) for new data.
1503 * If aux->alert_mark fall in this area, just set it. Overflow count is
1504 * recorded while scanning.
1506 * SDBs between aux->head and aux->empty_mark are already reset at last time.
1507 * and ready for new samples. So scanning on this area could be skipped.
1509 * Return true if alert indicator is set successfully and false if not.
1511 static bool aux_reset_buffer(struct aux_buffer
*aux
, unsigned long range
,
1512 unsigned long long *overflow
)
1514 unsigned long long orig_overflow
, orig_flags
, new_flags
;
1515 unsigned long i
, range_scan
, idx
, idx_old
;
1516 struct hws_trailer_entry
*te
;
1518 debug_sprintf_event(sfdbg
, 6, "%s: range %ld head %ld alert %ld "
1519 "empty %ld\n", __func__
, range
, aux
->head
,
1520 aux
->alert_mark
, aux
->empty_mark
);
1521 if (range
<= AUX_SDB_NUM_EMPTY(aux
))
1523 * No need to scan. All SDBs in range are marked as empty.
1524 * Just set alert indicator. Should check race with hardware
1527 return aux_set_alert(aux
, aux
->alert_mark
, overflow
);
1529 if (aux
->alert_mark
<= aux
->empty_mark
)
1531 * Set alert indicator on empty SDB. Should check race
1532 * with hardware sampler.
1534 if (!aux_set_alert(aux
, aux
->alert_mark
, overflow
))
1538 * Scan the SDBs to clear full and alert indicator used previously.
1539 * Start scanning from one SDB behind empty_mark. If the new alert
1540 * indicator fall into this range, set it.
1542 range_scan
= range
- AUX_SDB_NUM_EMPTY(aux
);
1543 idx_old
= idx
= aux
->empty_mark
+ 1;
1544 for (i
= 0; i
< range_scan
; i
++, idx
++) {
1545 te
= aux_sdb_trailer(aux
, idx
);
1547 orig_flags
= te
->flags
;
1548 orig_overflow
= te
->overflow
;
1549 new_flags
= orig_flags
& ~SDB_TE_BUFFER_FULL_MASK
;
1550 if (idx
== aux
->alert_mark
)
1551 new_flags
|= SDB_TE_ALERT_REQ_MASK
;
1553 new_flags
&= ~SDB_TE_ALERT_REQ_MASK
;
1554 } while (!cmpxchg_double(&te
->flags
, &te
->overflow
,
1555 orig_flags
, orig_overflow
,
1557 *overflow
+= orig_overflow
;
1560 /* Update empty_mark to new position */
1561 aux
->empty_mark
= aux
->head
+ range
- 1;
1563 debug_sprintf_event(sfdbg
, 6, "%s: range_scan %ld idx %ld..%ld "
1564 "empty %ld\n", __func__
, range_scan
, idx_old
,
1565 idx
- 1, aux
->empty_mark
);
1570 * Measurement alert handler for diagnostic mode sampling.
1572 static void hw_collect_aux(struct cpu_hw_sf
*cpuhw
)
1574 struct aux_buffer
*aux
;
1576 unsigned long range
= 0, size
;
1577 unsigned long long overflow
= 0;
1578 struct perf_output_handle
*handle
= &cpuhw
->handle
;
1580 aux
= perf_get_aux(handle
);
1581 if (WARN_ON_ONCE(!aux
))
1584 /* Inform user space new data arrived */
1585 size
= AUX_SDB_NUM_ALERT(aux
) << PAGE_SHIFT
;
1586 debug_sprintf_event(sfdbg
, 6, "%s: #alert %ld\n", __func__
,
1587 size
>> PAGE_SHIFT
);
1588 perf_aux_output_end(handle
, size
);
1591 /* Get an output handle */
1592 aux
= perf_aux_output_begin(handle
, cpuhw
->event
);
1593 if (handle
->size
== 0) {
1594 pr_err("The AUX buffer with %lu pages for the "
1595 "diagnostic-sampling mode is full\n",
1597 debug_sprintf_event(sfdbg
, 1,
1598 "%s: AUX buffer used up\n",
1602 if (WARN_ON_ONCE(!aux
))
1605 /* Update head and alert_mark to new position */
1606 aux
->head
= handle
->head
>> PAGE_SHIFT
;
1607 range
= (handle
->size
+ 1) >> PAGE_SHIFT
;
1609 aux
->alert_mark
= aux
->head
;
1611 aux
->alert_mark
= aux
->head
+ range
/2 - 1;
1613 if (aux_reset_buffer(aux
, range
, &overflow
)) {
1618 size
= range
<< PAGE_SHIFT
;
1619 perf_aux_output_end(&cpuhw
->handle
, size
);
1620 pr_err("Sample data caused the AUX buffer with %lu "
1621 "pages to overflow\n", aux
->sfb
.num_sdb
);
1622 debug_sprintf_event(sfdbg
, 1, "%s: head %ld range %ld "
1623 "overflow %lld\n", __func__
,
1624 aux
->head
, range
, overflow
);
1626 size
= AUX_SDB_NUM_ALERT(aux
) << PAGE_SHIFT
;
1627 perf_aux_output_end(&cpuhw
->handle
, size
);
1628 debug_sprintf_event(sfdbg
, 6, "%s: head %ld alert %ld "
1629 "already full, try another\n",
1631 aux
->head
, aux
->alert_mark
);
1636 debug_sprintf_event(sfdbg
, 6, "%s: head %ld alert %ld "
1637 "empty %ld\n", __func__
, aux
->head
,
1638 aux
->alert_mark
, aux
->empty_mark
);
1642 * Callback when freeing AUX buffers.
1644 static void aux_buffer_free(void *data
)
1646 struct aux_buffer
*aux
= data
;
1647 unsigned long i
, num_sdbt
;
1652 /* Free SDBT. SDB is freed by the caller */
1653 num_sdbt
= aux
->sfb
.num_sdbt
;
1654 for (i
= 0; i
< num_sdbt
; i
++)
1655 free_page(aux
->sdbt_index
[i
]);
1657 kfree(aux
->sdbt_index
);
1658 kfree(aux
->sdb_index
);
1661 debug_sprintf_event(sfdbg
, 4, "%s: SDBTs %lu\n", __func__
, num_sdbt
);
1664 static void aux_sdb_init(unsigned long sdb
)
1666 struct hws_trailer_entry
*te
;
1668 te
= (struct hws_trailer_entry
*)trailer_entry_ptr(sdb
);
1670 /* Save clock base */
1672 memcpy(&te
->progusage2
, &tod_clock_base
[1], 8);
1676 * aux_buffer_setup() - Setup AUX buffer for diagnostic mode sampling
1677 * @event: Event the buffer is setup for, event->cpu == -1 means current
1678 * @pages: Array of pointers to buffer pages passed from perf core
1679 * @nr_pages: Total pages
1680 * @snapshot: Flag for snapshot mode
1682 * This is the callback when setup an event using AUX buffer. Perf tool can
1683 * trigger this by an additional mmap() call on the event. Unlike the buffer
1684 * for basic samples, AUX buffer belongs to the event. It is scheduled with
1685 * the task among online cpus when it is a per-thread event.
1687 * Return the private AUX buffer structure if success or NULL if fails.
1689 static void *aux_buffer_setup(struct perf_event
*event
, void **pages
,
1690 int nr_pages
, bool snapshot
)
1692 struct sf_buffer
*sfb
;
1693 struct aux_buffer
*aux
;
1694 unsigned long *new, *tail
;
1697 if (!nr_pages
|| !pages
)
1700 if (nr_pages
> CPUM_SF_MAX_SDB
* CPUM_SF_SDB_DIAG_FACTOR
) {
1701 pr_err("AUX buffer size (%i pages) is larger than the "
1702 "maximum sampling buffer limit\n",
1705 } else if (nr_pages
< CPUM_SF_MIN_SDB
* CPUM_SF_SDB_DIAG_FACTOR
) {
1706 pr_err("AUX buffer size (%i pages) is less than the "
1707 "minimum sampling buffer limit\n",
1712 /* Allocate aux_buffer struct for the event */
1713 aux
= kzalloc(sizeof(struct aux_buffer
), GFP_KERNEL
);
1718 /* Allocate sdbt_index for fast reference */
1719 n_sdbt
= DIV_ROUND_UP(nr_pages
, CPUM_SF_SDB_PER_TABLE
);
1720 aux
->sdbt_index
= kmalloc_array(n_sdbt
, sizeof(void *), GFP_KERNEL
);
1721 if (!aux
->sdbt_index
)
1724 /* Allocate sdb_index for fast reference */
1725 aux
->sdb_index
= kmalloc_array(nr_pages
, sizeof(void *), GFP_KERNEL
);
1726 if (!aux
->sdb_index
)
1729 /* Allocate the first SDBT */
1731 sfb
->sdbt
= (unsigned long *) get_zeroed_page(GFP_KERNEL
);
1734 aux
->sdbt_index
[sfb
->num_sdbt
++] = (unsigned long)sfb
->sdbt
;
1735 tail
= sfb
->tail
= sfb
->sdbt
;
1738 * Link the provided pages of AUX buffer to SDBT.
1739 * Allocate SDBT if needed.
1741 for (i
= 0; i
< nr_pages
; i
++, tail
++) {
1742 if (require_table_link(tail
)) {
1743 new = (unsigned long *) get_zeroed_page(GFP_KERNEL
);
1746 aux
->sdbt_index
[sfb
->num_sdbt
++] = (unsigned long)new;
1747 /* Link current page to tail of chain */
1748 *tail
= (unsigned long)(void *) new + 1;
1751 /* Tail is the entry in a SDBT */
1752 *tail
= (unsigned long)pages
[i
];
1753 aux
->sdb_index
[i
] = (unsigned long)pages
[i
];
1754 aux_sdb_init((unsigned long)pages
[i
]);
1756 sfb
->num_sdb
= nr_pages
;
1758 /* Link the last entry in the SDBT to the first SDBT */
1759 *tail
= (unsigned long) sfb
->sdbt
+ 1;
1763 * Initial all SDBs are zeroed. Mark it as empty.
1764 * So there is no need to clear the full indicator
1765 * when this event is first added.
1767 aux
->empty_mark
= sfb
->num_sdb
- 1;
1769 debug_sprintf_event(sfdbg
, 4, "%s: SDBTs %lu SDBs %lu\n", __func__
,
1770 sfb
->num_sdbt
, sfb
->num_sdb
);
1775 /* SDBs (AUX buffer pages) are freed by caller */
1776 for (i
= 0; i
< sfb
->num_sdbt
; i
++)
1777 free_page(aux
->sdbt_index
[i
]);
1778 kfree(aux
->sdb_index
);
1780 kfree(aux
->sdbt_index
);
1787 static void cpumsf_pmu_read(struct perf_event
*event
)
1789 /* Nothing to do ... updates are interrupt-driven */
1792 /* Check if the new sampling period/freqeuncy is appropriate.
1794 * Return non-zero on error and zero on passed checks.
1796 static int cpumsf_pmu_check_period(struct perf_event
*event
, u64 value
)
1798 struct hws_qsi_info_block si
;
1802 memset(&si
, 0, sizeof(si
));
1803 if (event
->cpu
== -1) {
1807 /* Event is pinned to a particular CPU, retrieve the per-CPU
1808 * sampling structure for accessing the CPU-specific QSI.
1810 struct cpu_hw_sf
*cpuhw
= &per_cpu(cpu_hw_sf
, event
->cpu
);
1815 do_freq
= !!SAMPLE_FREQ_MODE(&event
->hw
);
1816 rate
= getrate(do_freq
, value
, &si
);
1820 event
->attr
.sample_period
= rate
;
1821 SAMPL_RATE(&event
->hw
) = rate
;
1822 hw_init_period(&event
->hw
, SAMPL_RATE(&event
->hw
));
1823 debug_sprintf_event(sfdbg
, 4, "%s:"
1824 " cpu %d value %#llx period %#llx freq %d\n",
1825 __func__
, event
->cpu
, value
,
1826 event
->attr
.sample_period
, do_freq
);
1830 /* Activate sampling control.
1831 * Next call of pmu_enable() starts sampling.
1833 static void cpumsf_pmu_start(struct perf_event
*event
, int flags
)
1835 struct cpu_hw_sf
*cpuhw
= this_cpu_ptr(&cpu_hw_sf
);
1837 if (WARN_ON_ONCE(!(event
->hw
.state
& PERF_HES_STOPPED
)))
1840 if (flags
& PERF_EF_RELOAD
)
1841 WARN_ON_ONCE(!(event
->hw
.state
& PERF_HES_UPTODATE
));
1843 perf_pmu_disable(event
->pmu
);
1844 event
->hw
.state
= 0;
1845 cpuhw
->lsctl
.cs
= 1;
1846 if (SAMPL_DIAG_MODE(&event
->hw
))
1847 cpuhw
->lsctl
.cd
= 1;
1848 perf_pmu_enable(event
->pmu
);
1851 /* Deactivate sampling control.
1852 * Next call of pmu_enable() stops sampling.
1854 static void cpumsf_pmu_stop(struct perf_event
*event
, int flags
)
1856 struct cpu_hw_sf
*cpuhw
= this_cpu_ptr(&cpu_hw_sf
);
1858 if (event
->hw
.state
& PERF_HES_STOPPED
)
1861 perf_pmu_disable(event
->pmu
);
1862 cpuhw
->lsctl
.cs
= 0;
1863 cpuhw
->lsctl
.cd
= 0;
1864 event
->hw
.state
|= PERF_HES_STOPPED
;
1866 if ((flags
& PERF_EF_UPDATE
) && !(event
->hw
.state
& PERF_HES_UPTODATE
)) {
1867 hw_perf_event_update(event
, 1);
1868 event
->hw
.state
|= PERF_HES_UPTODATE
;
1870 perf_pmu_enable(event
->pmu
);
1873 static int cpumsf_pmu_add(struct perf_event
*event
, int flags
)
1875 struct cpu_hw_sf
*cpuhw
= this_cpu_ptr(&cpu_hw_sf
);
1876 struct aux_buffer
*aux
;
1879 if (cpuhw
->flags
& PMU_F_IN_USE
)
1882 if (!SAMPL_DIAG_MODE(&event
->hw
) && !cpuhw
->sfb
.sdbt
)
1886 perf_pmu_disable(event
->pmu
);
1888 event
->hw
.state
= PERF_HES_UPTODATE
| PERF_HES_STOPPED
;
1890 /* Set up sampling controls. Always program the sampling register
1891 * using the SDB-table start. Reset TEAR_REG event hardware register
1892 * that is used by hw_perf_event_update() to store the sampling buffer
1893 * position after samples have been flushed.
1897 cpuhw
->lsctl
.interval
= SAMPL_RATE(&event
->hw
);
1898 if (!SAMPL_DIAG_MODE(&event
->hw
)) {
1899 cpuhw
->lsctl
.tear
= (unsigned long) cpuhw
->sfb
.sdbt
;
1900 cpuhw
->lsctl
.dear
= *(unsigned long *) cpuhw
->sfb
.sdbt
;
1901 TEAR_REG(&event
->hw
) = (unsigned long) cpuhw
->sfb
.sdbt
;
1904 /* Ensure sampling functions are in the disabled state. If disabled,
1905 * switch on sampling enable control. */
1906 if (WARN_ON_ONCE(cpuhw
->lsctl
.es
== 1 || cpuhw
->lsctl
.ed
== 1)) {
1910 if (SAMPL_DIAG_MODE(&event
->hw
)) {
1911 aux
= perf_aux_output_begin(&cpuhw
->handle
, event
);
1916 err
= aux_output_begin(&cpuhw
->handle
, aux
, cpuhw
);
1919 cpuhw
->lsctl
.ed
= 1;
1921 cpuhw
->lsctl
.es
= 1;
1923 /* Set in_use flag and store event */
1924 cpuhw
->event
= event
;
1925 cpuhw
->flags
|= PMU_F_IN_USE
;
1927 if (flags
& PERF_EF_START
)
1928 cpumsf_pmu_start(event
, PERF_EF_RELOAD
);
1930 perf_event_update_userpage(event
);
1931 perf_pmu_enable(event
->pmu
);
1935 static void cpumsf_pmu_del(struct perf_event
*event
, int flags
)
1937 struct cpu_hw_sf
*cpuhw
= this_cpu_ptr(&cpu_hw_sf
);
1939 perf_pmu_disable(event
->pmu
);
1940 cpumsf_pmu_stop(event
, PERF_EF_UPDATE
);
1942 cpuhw
->lsctl
.es
= 0;
1943 cpuhw
->lsctl
.ed
= 0;
1944 cpuhw
->flags
&= ~PMU_F_IN_USE
;
1945 cpuhw
->event
= NULL
;
1947 if (SAMPL_DIAG_MODE(&event
->hw
))
1948 aux_output_end(&cpuhw
->handle
);
1949 perf_event_update_userpage(event
);
1950 perf_pmu_enable(event
->pmu
);
1953 CPUMF_EVENT_ATTR(SF
, SF_CYCLES_BASIC
, PERF_EVENT_CPUM_SF
);
1954 CPUMF_EVENT_ATTR(SF
, SF_CYCLES_BASIC_DIAG
, PERF_EVENT_CPUM_SF_DIAG
);
1956 /* Attribute list for CPU_SF.
1958 * The availablitiy depends on the CPU_MF sampling facility authorization
1959 * for basic + diagnositic samples. This is determined at initialization
1960 * time by the sampling facility device driver.
1961 * If the authorization for basic samples is turned off, it should be
1962 * also turned off for diagnostic sampling.
1964 * During initialization of the device driver, check the authorization
1965 * level for diagnostic sampling and installs the attribute
1966 * file for diagnostic sampling if necessary.
1968 * For now install a placeholder to reference all possible attributes:
1969 * SF_CYCLES_BASIC and SF_CYCLES_BASIC_DIAG.
1970 * Add another entry for the final NULL pointer.
1973 SF_CYCLES_BASIC_ATTR_IDX
= 0,
1974 SF_CYCLES_BASIC_DIAG_ATTR_IDX
,
1978 static struct attribute
*cpumsf_pmu_events_attr
[SF_CYCLES_ATTR_MAX
+ 1] = {
1979 [SF_CYCLES_BASIC_ATTR_IDX
] = CPUMF_EVENT_PTR(SF
, SF_CYCLES_BASIC
)
1982 PMU_FORMAT_ATTR(event
, "config:0-63");
1984 static struct attribute
*cpumsf_pmu_format_attr
[] = {
1985 &format_attr_event
.attr
,
1989 static struct attribute_group cpumsf_pmu_events_group
= {
1991 .attrs
= cpumsf_pmu_events_attr
,
1994 static struct attribute_group cpumsf_pmu_format_group
= {
1996 .attrs
= cpumsf_pmu_format_attr
,
1999 static const struct attribute_group
*cpumsf_pmu_attr_groups
[] = {
2000 &cpumsf_pmu_events_group
,
2001 &cpumsf_pmu_format_group
,
2005 static struct pmu cpumf_sampling
= {
2006 .pmu_enable
= cpumsf_pmu_enable
,
2007 .pmu_disable
= cpumsf_pmu_disable
,
2009 .event_init
= cpumsf_pmu_event_init
,
2010 .add
= cpumsf_pmu_add
,
2011 .del
= cpumsf_pmu_del
,
2013 .start
= cpumsf_pmu_start
,
2014 .stop
= cpumsf_pmu_stop
,
2015 .read
= cpumsf_pmu_read
,
2017 .attr_groups
= cpumsf_pmu_attr_groups
,
2019 .setup_aux
= aux_buffer_setup
,
2020 .free_aux
= aux_buffer_free
,
2022 .check_period
= cpumsf_pmu_check_period
,
2025 static void cpumf_measurement_alert(struct ext_code ext_code
,
2026 unsigned int alert
, unsigned long unused
)
2028 struct cpu_hw_sf
*cpuhw
;
2030 if (!(alert
& CPU_MF_INT_SF_MASK
))
2032 inc_irq_stat(IRQEXT_CMS
);
2033 cpuhw
= this_cpu_ptr(&cpu_hw_sf
);
2035 /* Measurement alerts are shared and might happen when the PMU
2036 * is not reserved. Ignore these alerts in this case. */
2037 if (!(cpuhw
->flags
& PMU_F_RESERVED
))
2040 /* The processing below must take care of multiple alert events that
2041 * might be indicated concurrently. */
2043 /* Program alert request */
2044 if (alert
& CPU_MF_INT_SF_PRA
) {
2045 if (cpuhw
->flags
& PMU_F_IN_USE
)
2046 if (SAMPL_DIAG_MODE(&cpuhw
->event
->hw
))
2047 hw_collect_aux(cpuhw
);
2049 hw_perf_event_update(cpuhw
->event
, 0);
2051 WARN_ON_ONCE(!(cpuhw
->flags
& PMU_F_IN_USE
));
2054 /* Report measurement alerts only for non-PRA codes */
2055 if (alert
!= CPU_MF_INT_SF_PRA
)
2056 debug_sprintf_event(sfdbg
, 6, "%s: alert %#x\n", __func__
,
2059 /* Sampling authorization change request */
2060 if (alert
& CPU_MF_INT_SF_SACA
)
2063 /* Loss of sample data due to high-priority machine activities */
2064 if (alert
& CPU_MF_INT_SF_LSDA
) {
2065 pr_err("Sample data was lost\n");
2066 cpuhw
->flags
|= PMU_F_ERR_LSDA
;
2070 /* Invalid sampling buffer entry */
2071 if (alert
& (CPU_MF_INT_SF_IAE
|CPU_MF_INT_SF_ISE
)) {
2072 pr_err("A sampling buffer entry is incorrect (alert=0x%x)\n",
2074 cpuhw
->flags
|= PMU_F_ERR_IBE
;
2079 static int cpusf_pmu_setup(unsigned int cpu
, int flags
)
2081 /* Ignore the notification if no events are scheduled on the PMU.
2082 * This might be racy...
2084 if (!atomic_read(&num_events
))
2087 local_irq_disable();
2088 setup_pmc_cpu(&flags
);
2093 static int s390_pmu_sf_online_cpu(unsigned int cpu
)
2095 return cpusf_pmu_setup(cpu
, PMC_INIT
);
2098 static int s390_pmu_sf_offline_cpu(unsigned int cpu
)
2100 return cpusf_pmu_setup(cpu
, PMC_RELEASE
);
2103 static int param_get_sfb_size(char *buffer
, const struct kernel_param
*kp
)
2105 if (!cpum_sf_avail())
2107 return sprintf(buffer
, "%lu,%lu", CPUM_SF_MIN_SDB
, CPUM_SF_MAX_SDB
);
2110 static int param_set_sfb_size(const char *val
, const struct kernel_param
*kp
)
2113 unsigned long min
, max
;
2115 if (!cpum_sf_avail())
2117 if (!val
|| !strlen(val
))
2120 /* Valid parameter values: "min,max" or "max" */
2121 min
= CPUM_SF_MIN_SDB
;
2122 max
= CPUM_SF_MAX_SDB
;
2123 if (strchr(val
, ','))
2124 rc
= (sscanf(val
, "%lu,%lu", &min
, &max
) == 2) ? 0 : -EINVAL
;
2126 rc
= kstrtoul(val
, 10, &max
);
2128 if (min
< 2 || min
>= max
|| max
> get_num_physpages())
2133 sfb_set_limits(min
, max
);
2134 pr_info("The sampling buffer limits have changed to: "
2135 "min %lu max %lu (diag %lu)\n",
2136 CPUM_SF_MIN_SDB
, CPUM_SF_MAX_SDB
, CPUM_SF_SDB_DIAG_FACTOR
);
2140 #define param_check_sfb_size(name, p) __param_check(name, p, void)
2141 static const struct kernel_param_ops param_ops_sfb_size
= {
2142 .set
= param_set_sfb_size
,
2143 .get
= param_get_sfb_size
,
2146 #define RS_INIT_FAILURE_QSI 0x0001
2147 #define RS_INIT_FAILURE_BSDES 0x0002
2148 #define RS_INIT_FAILURE_ALRT 0x0003
2149 #define RS_INIT_FAILURE_PERF 0x0004
2150 static void __init
pr_cpumsf_err(unsigned int reason
)
2152 pr_err("Sampling facility support for perf is not available: "
2153 "reason %#x\n", reason
);
2156 static int __init
init_cpum_sampling_pmu(void)
2158 struct hws_qsi_info_block si
;
2161 if (!cpum_sf_avail())
2164 memset(&si
, 0, sizeof(si
));
2166 pr_cpumsf_err(RS_INIT_FAILURE_QSI
);
2170 if (!si
.as
&& !si
.ad
)
2173 if (si
.bsdes
!= sizeof(struct hws_basic_entry
)) {
2174 pr_cpumsf_err(RS_INIT_FAILURE_BSDES
);
2179 sfb_set_limits(CPUM_SF_MIN_SDB
, CPUM_SF_MAX_SDB
);
2180 /* Sampling of diagnostic data authorized,
2181 * install event into attribute list of PMU device.
2183 cpumsf_pmu_events_attr
[SF_CYCLES_BASIC_DIAG_ATTR_IDX
] =
2184 CPUMF_EVENT_PTR(SF
, SF_CYCLES_BASIC_DIAG
);
2187 sfdbg
= debug_register(KMSG_COMPONENT
, 2, 1, 80);
2189 pr_err("Registering for s390dbf failed\n");
2192 debug_register_view(sfdbg
, &debug_sprintf_view
);
2194 err
= register_external_irq(EXT_IRQ_MEASURE_ALERT
,
2195 cpumf_measurement_alert
);
2197 pr_cpumsf_err(RS_INIT_FAILURE_ALRT
);
2198 debug_unregister(sfdbg
);
2202 err
= perf_pmu_register(&cpumf_sampling
, "cpum_sf", PERF_TYPE_RAW
);
2204 pr_cpumsf_err(RS_INIT_FAILURE_PERF
);
2205 unregister_external_irq(EXT_IRQ_MEASURE_ALERT
,
2206 cpumf_measurement_alert
);
2207 debug_unregister(sfdbg
);
2211 cpuhp_setup_state(CPUHP_AP_PERF_S390_SF_ONLINE
, "perf/s390/sf:online",
2212 s390_pmu_sf_online_cpu
, s390_pmu_sf_offline_cpu
);
2217 arch_initcall(init_cpum_sampling_pmu
);
2218 core_param(cpum_sfb_size
, CPUM_SF_MAX_SDB
, sfb_size
, 0640);