treewide: remove redundant IS_ERR() before error code check
[linux/fpc-iii.git] / arch / s390 / kernel / perf_cpum_sf.c
blobb095b1c78987d9e48b33bc67a36bdad2fa31f387
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Performance event support for the System z CPU-measurement Sampling Facility
5 * Copyright IBM Corp. 2013, 2018
6 * Author(s): Hendrik Brueckner <brueckner@linux.vnet.ibm.com>
7 */
8 #define KMSG_COMPONENT "cpum_sf"
9 #define pr_fmt(fmt) KMSG_COMPONENT ": " fmt
11 #include <linux/kernel.h>
12 #include <linux/kernel_stat.h>
13 #include <linux/perf_event.h>
14 #include <linux/percpu.h>
15 #include <linux/pid.h>
16 #include <linux/notifier.h>
17 #include <linux/export.h>
18 #include <linux/slab.h>
19 #include <linux/mm.h>
20 #include <linux/moduleparam.h>
21 #include <asm/cpu_mf.h>
22 #include <asm/irq.h>
23 #include <asm/debug.h>
24 #include <asm/timex.h>
26 /* Minimum number of sample-data-block-tables:
27 * At least one table is required for the sampling buffer structure.
28 * A single table contains up to 511 pointers to sample-data-blocks.
30 #define CPUM_SF_MIN_SDBT 1
32 /* Number of sample-data-blocks per sample-data-block-table (SDBT):
33 * A table contains SDB pointers (8 bytes) and one table-link entry
34 * that points to the origin of the next SDBT.
36 #define CPUM_SF_SDB_PER_TABLE ((PAGE_SIZE - 8) / 8)
38 /* Maximum page offset for an SDBT table-link entry:
39 * If this page offset is reached, a table-link entry to the next SDBT
40 * must be added.
42 #define CPUM_SF_SDBT_TL_OFFSET (CPUM_SF_SDB_PER_TABLE * 8)
43 static inline int require_table_link(const void *sdbt)
45 return ((unsigned long) sdbt & ~PAGE_MASK) == CPUM_SF_SDBT_TL_OFFSET;
48 /* Minimum and maximum sampling buffer sizes:
50 * This number represents the maximum size of the sampling buffer taking
51 * the number of sample-data-block-tables into account. Note that these
52 * numbers apply to the basic-sampling function only.
53 * The maximum number of SDBs is increased by CPUM_SF_SDB_DIAG_FACTOR if
54 * the diagnostic-sampling function is active.
56 * Sampling buffer size Buffer characteristics
57 * ---------------------------------------------------
58 * 64KB == 16 pages (4KB per page)
59 * 1 page for SDB-tables
60 * 15 pages for SDBs
62 * 32MB == 8192 pages (4KB per page)
63 * 16 pages for SDB-tables
64 * 8176 pages for SDBs
66 static unsigned long __read_mostly CPUM_SF_MIN_SDB = 15;
67 static unsigned long __read_mostly CPUM_SF_MAX_SDB = 8176;
68 static unsigned long __read_mostly CPUM_SF_SDB_DIAG_FACTOR = 1;
70 struct sf_buffer {
71 unsigned long *sdbt; /* Sample-data-block-table origin */
72 /* buffer characteristics (required for buffer increments) */
73 unsigned long num_sdb; /* Number of sample-data-blocks */
74 unsigned long num_sdbt; /* Number of sample-data-block-tables */
75 unsigned long *tail; /* last sample-data-block-table */
78 struct aux_buffer {
79 struct sf_buffer sfb;
80 unsigned long head; /* index of SDB of buffer head */
81 unsigned long alert_mark; /* index of SDB of alert request position */
82 unsigned long empty_mark; /* mark of SDB not marked full */
83 unsigned long *sdb_index; /* SDB address for fast lookup */
84 unsigned long *sdbt_index; /* SDBT address for fast lookup */
87 struct cpu_hw_sf {
88 /* CPU-measurement sampling information block */
89 struct hws_qsi_info_block qsi;
90 /* CPU-measurement sampling control block */
91 struct hws_lsctl_request_block lsctl;
92 struct sf_buffer sfb; /* Sampling buffer */
93 unsigned int flags; /* Status flags */
94 struct perf_event *event; /* Scheduled perf event */
95 struct perf_output_handle handle; /* AUX buffer output handle */
97 static DEFINE_PER_CPU(struct cpu_hw_sf, cpu_hw_sf);
99 /* Debug feature */
100 static debug_info_t *sfdbg;
103 * sf_disable() - Switch off sampling facility
105 static int sf_disable(void)
107 struct hws_lsctl_request_block sreq;
109 memset(&sreq, 0, sizeof(sreq));
110 return lsctl(&sreq);
114 * sf_buffer_available() - Check for an allocated sampling buffer
116 static int sf_buffer_available(struct cpu_hw_sf *cpuhw)
118 return !!cpuhw->sfb.sdbt;
122 * deallocate sampling facility buffer
124 static void free_sampling_buffer(struct sf_buffer *sfb)
126 unsigned long *sdbt, *curr;
128 if (!sfb->sdbt)
129 return;
131 sdbt = sfb->sdbt;
132 curr = sdbt;
134 /* Free the SDBT after all SDBs are processed... */
135 while (1) {
136 if (!*curr || !sdbt)
137 break;
139 /* Process table-link entries */
140 if (is_link_entry(curr)) {
141 curr = get_next_sdbt(curr);
142 if (sdbt)
143 free_page((unsigned long) sdbt);
145 /* If the origin is reached, sampling buffer is freed */
146 if (curr == sfb->sdbt)
147 break;
148 else
149 sdbt = curr;
150 } else {
151 /* Process SDB pointer */
152 if (*curr) {
153 free_page(*curr);
154 curr++;
159 debug_sprintf_event(sfdbg, 5, "%s: freed sdbt %#lx\n", __func__,
160 (unsigned long)sfb->sdbt);
161 memset(sfb, 0, sizeof(*sfb));
164 static int alloc_sample_data_block(unsigned long *sdbt, gfp_t gfp_flags)
166 unsigned long sdb, *trailer;
168 /* Allocate and initialize sample-data-block */
169 sdb = get_zeroed_page(gfp_flags);
170 if (!sdb)
171 return -ENOMEM;
172 trailer = trailer_entry_ptr(sdb);
173 *trailer = SDB_TE_ALERT_REQ_MASK;
175 /* Link SDB into the sample-data-block-table */
176 *sdbt = sdb;
178 return 0;
182 * realloc_sampling_buffer() - extend sampler memory
184 * Allocates new sample-data-blocks and adds them to the specified sampling
185 * buffer memory.
187 * Important: This modifies the sampling buffer and must be called when the
188 * sampling facility is disabled.
190 * Returns zero on success, non-zero otherwise.
192 static int realloc_sampling_buffer(struct sf_buffer *sfb,
193 unsigned long num_sdb, gfp_t gfp_flags)
195 int i, rc;
196 unsigned long *new, *tail, *tail_prev = NULL;
198 if (!sfb->sdbt || !sfb->tail)
199 return -EINVAL;
201 if (!is_link_entry(sfb->tail))
202 return -EINVAL;
204 /* Append to the existing sampling buffer, overwriting the table-link
205 * register.
206 * The tail variables always points to the "tail" (last and table-link)
207 * entry in an SDB-table.
209 tail = sfb->tail;
211 /* Do a sanity check whether the table-link entry points to
212 * the sampling buffer origin.
214 if (sfb->sdbt != get_next_sdbt(tail)) {
215 debug_sprintf_event(sfdbg, 3, "%s: "
216 "sampling buffer is not linked: origin %#lx"
217 " tail %#lx\n", __func__,
218 (unsigned long)sfb->sdbt,
219 (unsigned long)tail);
220 return -EINVAL;
223 /* Allocate remaining SDBs */
224 rc = 0;
225 for (i = 0; i < num_sdb; i++) {
226 /* Allocate a new SDB-table if it is full. */
227 if (require_table_link(tail)) {
228 new = (unsigned long *) get_zeroed_page(gfp_flags);
229 if (!new) {
230 rc = -ENOMEM;
231 break;
233 sfb->num_sdbt++;
234 /* Link current page to tail of chain */
235 *tail = (unsigned long)(void *) new + 1;
236 tail_prev = tail;
237 tail = new;
240 /* Allocate a new sample-data-block.
241 * If there is not enough memory, stop the realloc process
242 * and simply use what was allocated. If this is a temporary
243 * issue, a new realloc call (if required) might succeed.
245 rc = alloc_sample_data_block(tail, gfp_flags);
246 if (rc) {
247 /* Undo last SDBT. An SDBT with no SDB at its first
248 * entry but with an SDBT entry instead can not be
249 * handled by the interrupt handler code.
250 * Avoid this situation.
252 if (tail_prev) {
253 sfb->num_sdbt--;
254 free_page((unsigned long) new);
255 tail = tail_prev;
257 break;
259 sfb->num_sdb++;
260 tail++;
261 tail_prev = new = NULL; /* Allocated at least one SBD */
264 /* Link sampling buffer to its origin */
265 *tail = (unsigned long) sfb->sdbt + 1;
266 sfb->tail = tail;
268 debug_sprintf_event(sfdbg, 4, "%s: new buffer"
269 " settings: sdbt %lu sdb %lu\n", __func__,
270 sfb->num_sdbt, sfb->num_sdb);
271 return rc;
275 * allocate_sampling_buffer() - allocate sampler memory
277 * Allocates and initializes a sampling buffer structure using the
278 * specified number of sample-data-blocks (SDB). For each allocation,
279 * a 4K page is used. The number of sample-data-block-tables (SDBT)
280 * are calculated from SDBs.
281 * Also set the ALERT_REQ mask in each SDBs trailer.
283 * Returns zero on success, non-zero otherwise.
285 static int alloc_sampling_buffer(struct sf_buffer *sfb, unsigned long num_sdb)
287 int rc;
289 if (sfb->sdbt)
290 return -EINVAL;
292 /* Allocate the sample-data-block-table origin */
293 sfb->sdbt = (unsigned long *) get_zeroed_page(GFP_KERNEL);
294 if (!sfb->sdbt)
295 return -ENOMEM;
296 sfb->num_sdb = 0;
297 sfb->num_sdbt = 1;
299 /* Link the table origin to point to itself to prepare for
300 * realloc_sampling_buffer() invocation.
302 sfb->tail = sfb->sdbt;
303 *sfb->tail = (unsigned long)(void *) sfb->sdbt + 1;
305 /* Allocate requested number of sample-data-blocks */
306 rc = realloc_sampling_buffer(sfb, num_sdb, GFP_KERNEL);
307 if (rc) {
308 free_sampling_buffer(sfb);
309 debug_sprintf_event(sfdbg, 4, "%s: "
310 "realloc_sampling_buffer failed with rc %i\n",
311 __func__, rc);
312 } else
313 debug_sprintf_event(sfdbg, 4,
314 "%s: tear %#lx dear %#lx\n", __func__,
315 (unsigned long)sfb->sdbt, (unsigned long)*sfb->sdbt);
316 return rc;
319 static void sfb_set_limits(unsigned long min, unsigned long max)
321 struct hws_qsi_info_block si;
323 CPUM_SF_MIN_SDB = min;
324 CPUM_SF_MAX_SDB = max;
326 memset(&si, 0, sizeof(si));
327 if (!qsi(&si))
328 CPUM_SF_SDB_DIAG_FACTOR = DIV_ROUND_UP(si.dsdes, si.bsdes);
331 static unsigned long sfb_max_limit(struct hw_perf_event *hwc)
333 return SAMPL_DIAG_MODE(hwc) ? CPUM_SF_MAX_SDB * CPUM_SF_SDB_DIAG_FACTOR
334 : CPUM_SF_MAX_SDB;
337 static unsigned long sfb_pending_allocs(struct sf_buffer *sfb,
338 struct hw_perf_event *hwc)
340 if (!sfb->sdbt)
341 return SFB_ALLOC_REG(hwc);
342 if (SFB_ALLOC_REG(hwc) > sfb->num_sdb)
343 return SFB_ALLOC_REG(hwc) - sfb->num_sdb;
344 return 0;
347 static int sfb_has_pending_allocs(struct sf_buffer *sfb,
348 struct hw_perf_event *hwc)
350 return sfb_pending_allocs(sfb, hwc) > 0;
353 static void sfb_account_allocs(unsigned long num, struct hw_perf_event *hwc)
355 /* Limit the number of SDBs to not exceed the maximum */
356 num = min_t(unsigned long, num, sfb_max_limit(hwc) - SFB_ALLOC_REG(hwc));
357 if (num)
358 SFB_ALLOC_REG(hwc) += num;
361 static void sfb_init_allocs(unsigned long num, struct hw_perf_event *hwc)
363 SFB_ALLOC_REG(hwc) = 0;
364 sfb_account_allocs(num, hwc);
367 static void deallocate_buffers(struct cpu_hw_sf *cpuhw)
369 if (cpuhw->sfb.sdbt)
370 free_sampling_buffer(&cpuhw->sfb);
373 static int allocate_buffers(struct cpu_hw_sf *cpuhw, struct hw_perf_event *hwc)
375 unsigned long n_sdb, freq, factor;
376 size_t sample_size;
378 /* Calculate sampling buffers using 4K pages
380 * 1. Determine the sample data size which depends on the used
381 * sampling functions, for example, basic-sampling or
382 * basic-sampling with diagnostic-sampling.
384 * 2. Use the sampling frequency as input. The sampling buffer is
385 * designed for almost one second. This can be adjusted through
386 * the "factor" variable.
387 * In any case, alloc_sampling_buffer() sets the Alert Request
388 * Control indicator to trigger a measurement-alert to harvest
389 * sample-data-blocks (sdb).
391 * 3. Compute the number of sample-data-blocks and ensure a minimum
392 * of CPUM_SF_MIN_SDB. Also ensure the upper limit does not
393 * exceed a "calculated" maximum. The symbolic maximum is
394 * designed for basic-sampling only and needs to be increased if
395 * diagnostic-sampling is active.
396 * See also the remarks for these symbolic constants.
398 * 4. Compute the number of sample-data-block-tables (SDBT) and
399 * ensure a minimum of CPUM_SF_MIN_SDBT (one table can manage up
400 * to 511 SDBs).
402 sample_size = sizeof(struct hws_basic_entry);
403 freq = sample_rate_to_freq(&cpuhw->qsi, SAMPL_RATE(hwc));
404 factor = 1;
405 n_sdb = DIV_ROUND_UP(freq, factor * ((PAGE_SIZE-64) / sample_size));
406 if (n_sdb < CPUM_SF_MIN_SDB)
407 n_sdb = CPUM_SF_MIN_SDB;
409 /* If there is already a sampling buffer allocated, it is very likely
410 * that the sampling facility is enabled too. If the event to be
411 * initialized requires a greater sampling buffer, the allocation must
412 * be postponed. Changing the sampling buffer requires the sampling
413 * facility to be in the disabled state. So, account the number of
414 * required SDBs and let cpumsf_pmu_enable() resize the buffer just
415 * before the event is started.
417 sfb_init_allocs(n_sdb, hwc);
418 if (sf_buffer_available(cpuhw))
419 return 0;
421 debug_sprintf_event(sfdbg, 3,
422 "%s: rate %lu f %lu sdb %lu/%lu"
423 " sample_size %lu cpuhw %p\n", __func__,
424 SAMPL_RATE(hwc), freq, n_sdb, sfb_max_limit(hwc),
425 sample_size, cpuhw);
427 return alloc_sampling_buffer(&cpuhw->sfb,
428 sfb_pending_allocs(&cpuhw->sfb, hwc));
431 static unsigned long min_percent(unsigned int percent, unsigned long base,
432 unsigned long min)
434 return min_t(unsigned long, min, DIV_ROUND_UP(percent * base, 100));
437 static unsigned long compute_sfb_extent(unsigned long ratio, unsigned long base)
439 /* Use a percentage-based approach to extend the sampling facility
440 * buffer. Accept up to 5% sample data loss.
441 * Vary the extents between 1% to 5% of the current number of
442 * sample-data-blocks.
444 if (ratio <= 5)
445 return 0;
446 if (ratio <= 25)
447 return min_percent(1, base, 1);
448 if (ratio <= 50)
449 return min_percent(1, base, 1);
450 if (ratio <= 75)
451 return min_percent(2, base, 2);
452 if (ratio <= 100)
453 return min_percent(3, base, 3);
454 if (ratio <= 250)
455 return min_percent(4, base, 4);
457 return min_percent(5, base, 8);
460 static void sfb_account_overflows(struct cpu_hw_sf *cpuhw,
461 struct hw_perf_event *hwc)
463 unsigned long ratio, num;
465 if (!OVERFLOW_REG(hwc))
466 return;
468 /* The sample_overflow contains the average number of sample data
469 * that has been lost because sample-data-blocks were full.
471 * Calculate the total number of sample data entries that has been
472 * discarded. Then calculate the ratio of lost samples to total samples
473 * per second in percent.
475 ratio = DIV_ROUND_UP(100 * OVERFLOW_REG(hwc) * cpuhw->sfb.num_sdb,
476 sample_rate_to_freq(&cpuhw->qsi, SAMPL_RATE(hwc)));
478 /* Compute number of sample-data-blocks */
479 num = compute_sfb_extent(ratio, cpuhw->sfb.num_sdb);
480 if (num)
481 sfb_account_allocs(num, hwc);
483 debug_sprintf_event(sfdbg, 5, "%s: overflow %llu ratio %lu num %lu\n",
484 __func__, OVERFLOW_REG(hwc), ratio, num);
485 OVERFLOW_REG(hwc) = 0;
488 /* extend_sampling_buffer() - Extend sampling buffer
489 * @sfb: Sampling buffer structure (for local CPU)
490 * @hwc: Perf event hardware structure
492 * Use this function to extend the sampling buffer based on the overflow counter
493 * and postponed allocation extents stored in the specified Perf event hardware.
495 * Important: This function disables the sampling facility in order to safely
496 * change the sampling buffer structure. Do not call this function
497 * when the PMU is active.
499 static void extend_sampling_buffer(struct sf_buffer *sfb,
500 struct hw_perf_event *hwc)
502 unsigned long num, num_old;
503 int rc;
505 num = sfb_pending_allocs(sfb, hwc);
506 if (!num)
507 return;
508 num_old = sfb->num_sdb;
510 /* Disable the sampling facility to reset any states and also
511 * clear pending measurement alerts.
513 sf_disable();
515 /* Extend the sampling buffer.
516 * This memory allocation typically happens in an atomic context when
517 * called by perf. Because this is a reallocation, it is fine if the
518 * new SDB-request cannot be satisfied immediately.
520 rc = realloc_sampling_buffer(sfb, num, GFP_ATOMIC);
521 if (rc)
522 debug_sprintf_event(sfdbg, 5, "%s: realloc failed with rc %i\n",
523 __func__, rc);
525 if (sfb_has_pending_allocs(sfb, hwc))
526 debug_sprintf_event(sfdbg, 5, "%s: "
527 "req %lu alloc %lu remaining %lu\n",
528 __func__, num, sfb->num_sdb - num_old,
529 sfb_pending_allocs(sfb, hwc));
532 /* Number of perf events counting hardware events */
533 static atomic_t num_events;
534 /* Used to avoid races in calling reserve/release_cpumf_hardware */
535 static DEFINE_MUTEX(pmc_reserve_mutex);
537 #define PMC_INIT 0
538 #define PMC_RELEASE 1
539 #define PMC_FAILURE 2
540 static void setup_pmc_cpu(void *flags)
542 int err;
543 struct cpu_hw_sf *cpusf = this_cpu_ptr(&cpu_hw_sf);
545 err = 0;
546 switch (*((int *) flags)) {
547 case PMC_INIT:
548 memset(cpusf, 0, sizeof(*cpusf));
549 err = qsi(&cpusf->qsi);
550 if (err)
551 break;
552 cpusf->flags |= PMU_F_RESERVED;
553 err = sf_disable();
554 if (err)
555 pr_err("Switching off the sampling facility failed "
556 "with rc %i\n", err);
557 debug_sprintf_event(sfdbg, 5,
558 "%s: initialized: cpuhw %p\n", __func__,
559 cpusf);
560 break;
561 case PMC_RELEASE:
562 cpusf->flags &= ~PMU_F_RESERVED;
563 err = sf_disable();
564 if (err) {
565 pr_err("Switching off the sampling facility failed "
566 "with rc %i\n", err);
567 } else
568 deallocate_buffers(cpusf);
569 debug_sprintf_event(sfdbg, 5,
570 "%s: released: cpuhw %p\n", __func__,
571 cpusf);
572 break;
574 if (err)
575 *((int *) flags) |= PMC_FAILURE;
578 static void release_pmc_hardware(void)
580 int flags = PMC_RELEASE;
582 irq_subclass_unregister(IRQ_SUBCLASS_MEASUREMENT_ALERT);
583 on_each_cpu(setup_pmc_cpu, &flags, 1);
586 static int reserve_pmc_hardware(void)
588 int flags = PMC_INIT;
590 on_each_cpu(setup_pmc_cpu, &flags, 1);
591 if (flags & PMC_FAILURE) {
592 release_pmc_hardware();
593 return -ENODEV;
595 irq_subclass_register(IRQ_SUBCLASS_MEASUREMENT_ALERT);
597 return 0;
600 static void hw_perf_event_destroy(struct perf_event *event)
602 /* Release PMC if this is the last perf event */
603 if (!atomic_add_unless(&num_events, -1, 1)) {
604 mutex_lock(&pmc_reserve_mutex);
605 if (atomic_dec_return(&num_events) == 0)
606 release_pmc_hardware();
607 mutex_unlock(&pmc_reserve_mutex);
611 static void hw_init_period(struct hw_perf_event *hwc, u64 period)
613 hwc->sample_period = period;
614 hwc->last_period = hwc->sample_period;
615 local64_set(&hwc->period_left, hwc->sample_period);
618 static unsigned long hw_limit_rate(const struct hws_qsi_info_block *si,
619 unsigned long rate)
621 return clamp_t(unsigned long, rate,
622 si->min_sampl_rate, si->max_sampl_rate);
625 static u32 cpumsf_pid_type(struct perf_event *event,
626 u32 pid, enum pid_type type)
628 struct task_struct *tsk;
630 /* Idle process */
631 if (!pid)
632 goto out;
634 tsk = find_task_by_pid_ns(pid, &init_pid_ns);
635 pid = -1;
636 if (tsk) {
638 * Only top level events contain the pid namespace in which
639 * they are created.
641 if (event->parent)
642 event = event->parent;
643 pid = __task_pid_nr_ns(tsk, type, event->ns);
645 * See also 1d953111b648
646 * "perf/core: Don't report zero PIDs for exiting tasks".
648 if (!pid && !pid_alive(tsk))
649 pid = -1;
651 out:
652 return pid;
655 static void cpumsf_output_event_pid(struct perf_event *event,
656 struct perf_sample_data *data,
657 struct pt_regs *regs)
659 u32 pid;
660 struct perf_event_header header;
661 struct perf_output_handle handle;
664 * Obtain the PID from the basic-sampling data entry and
665 * correct the data->tid_entry.pid value.
667 pid = data->tid_entry.pid;
669 /* Protect callchain buffers, tasks */
670 rcu_read_lock();
672 perf_prepare_sample(&header, data, event, regs);
673 if (perf_output_begin(&handle, event, header.size))
674 goto out;
676 /* Update the process ID (see also kernel/events/core.c) */
677 data->tid_entry.pid = cpumsf_pid_type(event, pid, PIDTYPE_TGID);
678 data->tid_entry.tid = cpumsf_pid_type(event, pid, PIDTYPE_PID);
680 perf_output_sample(&handle, &header, data, event);
681 perf_output_end(&handle);
682 out:
683 rcu_read_unlock();
686 static unsigned long getrate(bool freq, unsigned long sample,
687 struct hws_qsi_info_block *si)
689 unsigned long rate;
691 if (freq) {
692 rate = freq_to_sample_rate(si, sample);
693 rate = hw_limit_rate(si, rate);
694 } else {
695 /* The min/max sampling rates specifies the valid range
696 * of sample periods. If the specified sample period is
697 * out of range, limit the period to the range boundary.
699 rate = hw_limit_rate(si, sample);
701 /* The perf core maintains a maximum sample rate that is
702 * configurable through the sysctl interface. Ensure the
703 * sampling rate does not exceed this value. This also helps
704 * to avoid throttling when pushing samples with
705 * perf_event_overflow().
707 if (sample_rate_to_freq(si, rate) >
708 sysctl_perf_event_sample_rate) {
709 debug_sprintf_event(sfdbg, 1, "%s: "
710 "Sampling rate exceeds maximum "
711 "perf sample rate\n", __func__);
712 rate = 0;
715 return rate;
718 /* The sampling information (si) contains information about the
719 * min/max sampling intervals and the CPU speed. So calculate the
720 * correct sampling interval and avoid the whole period adjust
721 * feedback loop.
723 * Since the CPU Measurement sampling facility can not handle frequency
724 * calculate the sampling interval when frequency is specified using
725 * this formula:
726 * interval := cpu_speed * 1000000 / sample_freq
728 * Returns errno on bad input and zero on success with parameter interval
729 * set to the correct sampling rate.
731 * Note: This function turns off freq bit to avoid calling function
732 * perf_adjust_period(). This causes frequency adjustment in the common
733 * code part which causes tremendous variations in the counter values.
735 static int __hw_perf_event_init_rate(struct perf_event *event,
736 struct hws_qsi_info_block *si)
738 struct perf_event_attr *attr = &event->attr;
739 struct hw_perf_event *hwc = &event->hw;
740 unsigned long rate;
742 if (attr->freq) {
743 if (!attr->sample_freq)
744 return -EINVAL;
745 rate = getrate(attr->freq, attr->sample_freq, si);
746 attr->freq = 0; /* Don't call perf_adjust_period() */
747 SAMPL_FLAGS(hwc) |= PERF_CPUM_SF_FREQ_MODE;
748 } else {
749 rate = getrate(attr->freq, attr->sample_period, si);
750 if (!rate)
751 return -EINVAL;
753 attr->sample_period = rate;
754 SAMPL_RATE(hwc) = rate;
755 hw_init_period(hwc, SAMPL_RATE(hwc));
756 debug_sprintf_event(sfdbg, 4, "%s: cpu %d period %#llx freq %d,%#lx\n",
757 __func__, event->cpu, event->attr.sample_period,
758 event->attr.freq, SAMPLE_FREQ_MODE(hwc));
759 return 0;
762 static int __hw_perf_event_init(struct perf_event *event)
764 struct cpu_hw_sf *cpuhw;
765 struct hws_qsi_info_block si;
766 struct perf_event_attr *attr = &event->attr;
767 struct hw_perf_event *hwc = &event->hw;
768 int cpu, err;
770 /* Reserve CPU-measurement sampling facility */
771 err = 0;
772 if (!atomic_inc_not_zero(&num_events)) {
773 mutex_lock(&pmc_reserve_mutex);
774 if (atomic_read(&num_events) == 0 && reserve_pmc_hardware())
775 err = -EBUSY;
776 else
777 atomic_inc(&num_events);
778 mutex_unlock(&pmc_reserve_mutex);
780 event->destroy = hw_perf_event_destroy;
782 if (err)
783 goto out;
785 /* Access per-CPU sampling information (query sampling info) */
787 * The event->cpu value can be -1 to count on every CPU, for example,
788 * when attaching to a task. If this is specified, use the query
789 * sampling info from the current CPU, otherwise use event->cpu to
790 * retrieve the per-CPU information.
791 * Later, cpuhw indicates whether to allocate sampling buffers for a
792 * particular CPU (cpuhw!=NULL) or each online CPU (cpuw==NULL).
794 memset(&si, 0, sizeof(si));
795 cpuhw = NULL;
796 if (event->cpu == -1)
797 qsi(&si);
798 else {
799 /* Event is pinned to a particular CPU, retrieve the per-CPU
800 * sampling structure for accessing the CPU-specific QSI.
802 cpuhw = &per_cpu(cpu_hw_sf, event->cpu);
803 si = cpuhw->qsi;
806 /* Check sampling facility authorization and, if not authorized,
807 * fall back to other PMUs. It is safe to check any CPU because
808 * the authorization is identical for all configured CPUs.
810 if (!si.as) {
811 err = -ENOENT;
812 goto out;
815 if (si.ribm & CPU_MF_SF_RIBM_NOTAV) {
816 pr_warn("CPU Measurement Facility sampling is temporarily not available\n");
817 err = -EBUSY;
818 goto out;
821 /* Always enable basic sampling */
822 SAMPL_FLAGS(hwc) = PERF_CPUM_SF_BASIC_MODE;
824 /* Check if diagnostic sampling is requested. Deny if the required
825 * sampling authorization is missing.
827 if (attr->config == PERF_EVENT_CPUM_SF_DIAG) {
828 if (!si.ad) {
829 err = -EPERM;
830 goto out;
832 SAMPL_FLAGS(hwc) |= PERF_CPUM_SF_DIAG_MODE;
835 /* Check and set other sampling flags */
836 if (attr->config1 & PERF_CPUM_SF_FULL_BLOCKS)
837 SAMPL_FLAGS(hwc) |= PERF_CPUM_SF_FULL_BLOCKS;
839 err = __hw_perf_event_init_rate(event, &si);
840 if (err)
841 goto out;
843 /* Initialize sample data overflow accounting */
844 hwc->extra_reg.reg = REG_OVERFLOW;
845 OVERFLOW_REG(hwc) = 0;
847 /* Use AUX buffer. No need to allocate it by ourself */
848 if (attr->config == PERF_EVENT_CPUM_SF_DIAG)
849 return 0;
851 /* Allocate the per-CPU sampling buffer using the CPU information
852 * from the event. If the event is not pinned to a particular
853 * CPU (event->cpu == -1; or cpuhw == NULL), allocate sampling
854 * buffers for each online CPU.
856 if (cpuhw)
857 /* Event is pinned to a particular CPU */
858 err = allocate_buffers(cpuhw, hwc);
859 else {
860 /* Event is not pinned, allocate sampling buffer on
861 * each online CPU
863 for_each_online_cpu(cpu) {
864 cpuhw = &per_cpu(cpu_hw_sf, cpu);
865 err = allocate_buffers(cpuhw, hwc);
866 if (err)
867 break;
871 /* If PID/TID sampling is active, replace the default overflow
872 * handler to extract and resolve the PIDs from the basic-sampling
873 * data entries.
875 if (event->attr.sample_type & PERF_SAMPLE_TID)
876 if (is_default_overflow_handler(event))
877 event->overflow_handler = cpumsf_output_event_pid;
878 out:
879 return err;
882 static int cpumsf_pmu_event_init(struct perf_event *event)
884 int err;
886 /* No support for taken branch sampling */
887 if (has_branch_stack(event))
888 return -EOPNOTSUPP;
890 switch (event->attr.type) {
891 case PERF_TYPE_RAW:
892 if ((event->attr.config != PERF_EVENT_CPUM_SF) &&
893 (event->attr.config != PERF_EVENT_CPUM_SF_DIAG))
894 return -ENOENT;
895 break;
896 case PERF_TYPE_HARDWARE:
897 /* Support sampling of CPU cycles in addition to the
898 * counter facility. However, the counter facility
899 * is more precise and, hence, restrict this PMU to
900 * sampling events only.
902 if (event->attr.config != PERF_COUNT_HW_CPU_CYCLES)
903 return -ENOENT;
904 if (!is_sampling_event(event))
905 return -ENOENT;
906 break;
907 default:
908 return -ENOENT;
911 /* Check online status of the CPU to which the event is pinned */
912 if (event->cpu >= 0 && !cpu_online(event->cpu))
913 return -ENODEV;
915 /* Force reset of idle/hv excludes regardless of what the
916 * user requested.
918 if (event->attr.exclude_hv)
919 event->attr.exclude_hv = 0;
920 if (event->attr.exclude_idle)
921 event->attr.exclude_idle = 0;
923 err = __hw_perf_event_init(event);
924 if (unlikely(err))
925 if (event->destroy)
926 event->destroy(event);
927 return err;
930 static void cpumsf_pmu_enable(struct pmu *pmu)
932 struct cpu_hw_sf *cpuhw = this_cpu_ptr(&cpu_hw_sf);
933 struct hw_perf_event *hwc;
934 int err;
936 if (cpuhw->flags & PMU_F_ENABLED)
937 return;
939 if (cpuhw->flags & PMU_F_ERR_MASK)
940 return;
942 /* Check whether to extent the sampling buffer.
944 * Two conditions trigger an increase of the sampling buffer for a
945 * perf event:
946 * 1. Postponed buffer allocations from the event initialization.
947 * 2. Sampling overflows that contribute to pending allocations.
949 * Note that the extend_sampling_buffer() function disables the sampling
950 * facility, but it can be fully re-enabled using sampling controls that
951 * have been saved in cpumsf_pmu_disable().
953 if (cpuhw->event) {
954 hwc = &cpuhw->event->hw;
955 if (!(SAMPL_DIAG_MODE(hwc))) {
957 * Account number of overflow-designated
958 * buffer extents
960 sfb_account_overflows(cpuhw, hwc);
961 extend_sampling_buffer(&cpuhw->sfb, hwc);
963 /* Rate may be adjusted with ioctl() */
964 cpuhw->lsctl.interval = SAMPL_RATE(&cpuhw->event->hw);
967 /* (Re)enable the PMU and sampling facility */
968 cpuhw->flags |= PMU_F_ENABLED;
969 barrier();
971 err = lsctl(&cpuhw->lsctl);
972 if (err) {
973 cpuhw->flags &= ~PMU_F_ENABLED;
974 pr_err("Loading sampling controls failed: op %i err %i\n",
975 1, err);
976 return;
979 /* Load current program parameter */
980 lpp(&S390_lowcore.lpp);
982 debug_sprintf_event(sfdbg, 6, "%s: es %i cs %i ed %i cd %i "
983 "interval %#lx tear %#lx dear %#lx\n", __func__,
984 cpuhw->lsctl.es, cpuhw->lsctl.cs, cpuhw->lsctl.ed,
985 cpuhw->lsctl.cd, cpuhw->lsctl.interval,
986 cpuhw->lsctl.tear, cpuhw->lsctl.dear);
989 static void cpumsf_pmu_disable(struct pmu *pmu)
991 struct cpu_hw_sf *cpuhw = this_cpu_ptr(&cpu_hw_sf);
992 struct hws_lsctl_request_block inactive;
993 struct hws_qsi_info_block si;
994 int err;
996 if (!(cpuhw->flags & PMU_F_ENABLED))
997 return;
999 if (cpuhw->flags & PMU_F_ERR_MASK)
1000 return;
1002 /* Switch off sampling activation control */
1003 inactive = cpuhw->lsctl;
1004 inactive.cs = 0;
1005 inactive.cd = 0;
1007 err = lsctl(&inactive);
1008 if (err) {
1009 pr_err("Loading sampling controls failed: op %i err %i\n",
1010 2, err);
1011 return;
1014 /* Save state of TEAR and DEAR register contents */
1015 err = qsi(&si);
1016 if (!err) {
1017 /* TEAR/DEAR values are valid only if the sampling facility is
1018 * enabled. Note that cpumsf_pmu_disable() might be called even
1019 * for a disabled sampling facility because cpumsf_pmu_enable()
1020 * controls the enable/disable state.
1022 if (si.es) {
1023 cpuhw->lsctl.tear = si.tear;
1024 cpuhw->lsctl.dear = si.dear;
1026 } else
1027 debug_sprintf_event(sfdbg, 3, "%s: qsi() failed with err %i\n",
1028 __func__, err);
1030 cpuhw->flags &= ~PMU_F_ENABLED;
1033 /* perf_exclude_event() - Filter event
1034 * @event: The perf event
1035 * @regs: pt_regs structure
1036 * @sde_regs: Sample-data-entry (sde) regs structure
1038 * Filter perf events according to their exclude specification.
1040 * Return non-zero if the event shall be excluded.
1042 static int perf_exclude_event(struct perf_event *event, struct pt_regs *regs,
1043 struct perf_sf_sde_regs *sde_regs)
1045 if (event->attr.exclude_user && user_mode(regs))
1046 return 1;
1047 if (event->attr.exclude_kernel && !user_mode(regs))
1048 return 1;
1049 if (event->attr.exclude_guest && sde_regs->in_guest)
1050 return 1;
1051 if (event->attr.exclude_host && !sde_regs->in_guest)
1052 return 1;
1053 return 0;
1056 /* perf_push_sample() - Push samples to perf
1057 * @event: The perf event
1058 * @sample: Hardware sample data
1060 * Use the hardware sample data to create perf event sample. The sample
1061 * is the pushed to the event subsystem and the function checks for
1062 * possible event overflows. If an event overflow occurs, the PMU is
1063 * stopped.
1065 * Return non-zero if an event overflow occurred.
1067 static int perf_push_sample(struct perf_event *event,
1068 struct hws_basic_entry *basic)
1070 int overflow;
1071 struct pt_regs regs;
1072 struct perf_sf_sde_regs *sde_regs;
1073 struct perf_sample_data data;
1075 /* Setup perf sample */
1076 perf_sample_data_init(&data, 0, event->hw.last_period);
1078 /* Setup pt_regs to look like an CPU-measurement external interrupt
1079 * using the Program Request Alert code. The regs.int_parm_long
1080 * field which is unused contains additional sample-data-entry related
1081 * indicators.
1083 memset(&regs, 0, sizeof(regs));
1084 regs.int_code = 0x1407;
1085 regs.int_parm = CPU_MF_INT_SF_PRA;
1086 sde_regs = (struct perf_sf_sde_regs *) &regs.int_parm_long;
1088 psw_bits(regs.psw).ia = basic->ia;
1089 psw_bits(regs.psw).dat = basic->T;
1090 psw_bits(regs.psw).wait = basic->W;
1091 psw_bits(regs.psw).pstate = basic->P;
1092 psw_bits(regs.psw).as = basic->AS;
1095 * Use the hardware provided configuration level to decide if the
1096 * sample belongs to a guest or host. If that is not available,
1097 * fall back to the following heuristics:
1098 * A non-zero guest program parameter always indicates a guest
1099 * sample. Some early samples or samples from guests without
1100 * lpp usage would be misaccounted to the host. We use the asn
1101 * value as an addon heuristic to detect most of these guest samples.
1102 * If the value differs from 0xffff (the host value), we assume to
1103 * be a KVM guest.
1105 switch (basic->CL) {
1106 case 1: /* logical partition */
1107 sde_regs->in_guest = 0;
1108 break;
1109 case 2: /* virtual machine */
1110 sde_regs->in_guest = 1;
1111 break;
1112 default: /* old machine, use heuristics */
1113 if (basic->gpp || basic->prim_asn != 0xffff)
1114 sde_regs->in_guest = 1;
1115 break;
1119 * Store the PID value from the sample-data-entry to be
1120 * processed and resolved by cpumsf_output_event_pid().
1122 data.tid_entry.pid = basic->hpp & LPP_PID_MASK;
1124 overflow = 0;
1125 if (perf_exclude_event(event, &regs, sde_regs))
1126 goto out;
1127 if (perf_event_overflow(event, &data, &regs)) {
1128 overflow = 1;
1129 event->pmu->stop(event, 0);
1131 perf_event_update_userpage(event);
1132 out:
1133 return overflow;
1136 static void perf_event_count_update(struct perf_event *event, u64 count)
1138 local64_add(count, &event->count);
1141 /* hw_collect_samples() - Walk through a sample-data-block and collect samples
1142 * @event: The perf event
1143 * @sdbt: Sample-data-block table
1144 * @overflow: Event overflow counter
1146 * Walks through a sample-data-block and collects sampling data entries that are
1147 * then pushed to the perf event subsystem. Depending on the sampling function,
1148 * there can be either basic-sampling or combined-sampling data entries. A
1149 * combined-sampling data entry consists of a basic- and a diagnostic-sampling
1150 * data entry. The sampling function is determined by the flags in the perf
1151 * event hardware structure. The function always works with a combined-sampling
1152 * data entry but ignores the the diagnostic portion if it is not available.
1154 * Note that the implementation focuses on basic-sampling data entries and, if
1155 * such an entry is not valid, the entire combined-sampling data entry is
1156 * ignored.
1158 * The overflow variables counts the number of samples that has been discarded
1159 * due to a perf event overflow.
1161 static void hw_collect_samples(struct perf_event *event, unsigned long *sdbt,
1162 unsigned long long *overflow)
1164 struct hws_trailer_entry *te;
1165 struct hws_basic_entry *sample;
1167 te = (struct hws_trailer_entry *) trailer_entry_ptr(*sdbt);
1168 sample = (struct hws_basic_entry *) *sdbt;
1169 while ((unsigned long *) sample < (unsigned long *) te) {
1170 /* Check for an empty sample */
1171 if (!sample->def)
1172 break;
1174 /* Update perf event period */
1175 perf_event_count_update(event, SAMPL_RATE(&event->hw));
1177 /* Check whether sample is valid */
1178 if (sample->def == 0x0001) {
1179 /* If an event overflow occurred, the PMU is stopped to
1180 * throttle event delivery. Remaining sample data is
1181 * discarded.
1183 if (!*overflow) {
1184 /* Check whether sample is consistent */
1185 if (sample->I == 0 && sample->W == 0) {
1186 /* Deliver sample data to perf */
1187 *overflow = perf_push_sample(event,
1188 sample);
1190 } else
1191 /* Count discarded samples */
1192 *overflow += 1;
1193 } else {
1194 debug_sprintf_event(sfdbg, 4,
1195 "%s: Found unknown"
1196 " sampling data entry: te->f %i"
1197 " basic.def %#4x (%p)\n", __func__,
1198 te->f, sample->def, sample);
1199 /* Sample slot is not yet written or other record.
1201 * This condition can occur if the buffer was reused
1202 * from a combined basic- and diagnostic-sampling.
1203 * If only basic-sampling is then active, entries are
1204 * written into the larger diagnostic entries.
1205 * This is typically the case for sample-data-blocks
1206 * that are not full. Stop processing if the first
1207 * invalid format was detected.
1209 if (!te->f)
1210 break;
1213 /* Reset sample slot and advance to next sample */
1214 sample->def = 0;
1215 sample++;
1219 /* hw_perf_event_update() - Process sampling buffer
1220 * @event: The perf event
1221 * @flush_all: Flag to also flush partially filled sample-data-blocks
1223 * Processes the sampling buffer and create perf event samples.
1224 * The sampling buffer position are retrieved and saved in the TEAR_REG
1225 * register of the specified perf event.
1227 * Only full sample-data-blocks are processed. Specify the flash_all flag
1228 * to also walk through partially filled sample-data-blocks. It is ignored
1229 * if PERF_CPUM_SF_FULL_BLOCKS is set. The PERF_CPUM_SF_FULL_BLOCKS flag
1230 * enforces the processing of full sample-data-blocks only (trailer entries
1231 * with the block-full-indicator bit set).
1233 static void hw_perf_event_update(struct perf_event *event, int flush_all)
1235 struct hw_perf_event *hwc = &event->hw;
1236 struct hws_trailer_entry *te;
1237 unsigned long *sdbt;
1238 unsigned long long event_overflow, sampl_overflow, num_sdb, te_flags;
1239 int done;
1242 * AUX buffer is used when in diagnostic sampling mode.
1243 * No perf events/samples are created.
1245 if (SAMPL_DIAG_MODE(&event->hw))
1246 return;
1248 if (flush_all && SDB_FULL_BLOCKS(hwc))
1249 flush_all = 0;
1251 sdbt = (unsigned long *) TEAR_REG(hwc);
1252 done = event_overflow = sampl_overflow = num_sdb = 0;
1253 while (!done) {
1254 /* Get the trailer entry of the sample-data-block */
1255 te = (struct hws_trailer_entry *) trailer_entry_ptr(*sdbt);
1257 /* Leave loop if no more work to do (block full indicator) */
1258 if (!te->f) {
1259 done = 1;
1260 if (!flush_all)
1261 break;
1264 /* Check the sample overflow count */
1265 if (te->overflow)
1266 /* Account sample overflows and, if a particular limit
1267 * is reached, extend the sampling buffer.
1268 * For details, see sfb_account_overflows().
1270 sampl_overflow += te->overflow;
1272 /* Timestamps are valid for full sample-data-blocks only */
1273 debug_sprintf_event(sfdbg, 6, "%s: sdbt %#lx "
1274 "overflow %llu timestamp %#llx\n",
1275 __func__, (unsigned long)sdbt, te->overflow,
1276 (te->f) ? trailer_timestamp(te) : 0ULL);
1278 /* Collect all samples from a single sample-data-block and
1279 * flag if an (perf) event overflow happened. If so, the PMU
1280 * is stopped and remaining samples will be discarded.
1282 hw_collect_samples(event, sdbt, &event_overflow);
1283 num_sdb++;
1285 /* Reset trailer (using compare-double-and-swap) */
1286 do {
1287 te_flags = te->flags & ~SDB_TE_BUFFER_FULL_MASK;
1288 te_flags |= SDB_TE_ALERT_REQ_MASK;
1289 } while (!cmpxchg_double(&te->flags, &te->overflow,
1290 te->flags, te->overflow,
1291 te_flags, 0ULL));
1293 /* Advance to next sample-data-block */
1294 sdbt++;
1295 if (is_link_entry(sdbt))
1296 sdbt = get_next_sdbt(sdbt);
1298 /* Update event hardware registers */
1299 TEAR_REG(hwc) = (unsigned long) sdbt;
1301 /* Stop processing sample-data if all samples of the current
1302 * sample-data-block were flushed even if it was not full.
1304 if (flush_all && done)
1305 break;
1308 /* Account sample overflows in the event hardware structure */
1309 if (sampl_overflow)
1310 OVERFLOW_REG(hwc) = DIV_ROUND_UP(OVERFLOW_REG(hwc) +
1311 sampl_overflow, 1 + num_sdb);
1313 /* Perf_event_overflow() and perf_event_account_interrupt() limit
1314 * the interrupt rate to an upper limit. Roughly 1000 samples per
1315 * task tick.
1316 * Hitting this limit results in a large number
1317 * of throttled REF_REPORT_THROTTLE entries and the samples
1318 * are dropped.
1319 * Slightly increase the interval to avoid hitting this limit.
1321 if (event_overflow) {
1322 SAMPL_RATE(hwc) += DIV_ROUND_UP(SAMPL_RATE(hwc), 10);
1323 debug_sprintf_event(sfdbg, 1, "%s: rate adjustment %ld\n",
1324 __func__,
1325 DIV_ROUND_UP(SAMPL_RATE(hwc), 10));
1328 if (sampl_overflow || event_overflow)
1329 debug_sprintf_event(sfdbg, 4, "%s: "
1330 "overflows: sample %llu event %llu"
1331 " total %llu num_sdb %llu\n",
1332 __func__, sampl_overflow, event_overflow,
1333 OVERFLOW_REG(hwc), num_sdb);
1336 #define AUX_SDB_INDEX(aux, i) ((i) % aux->sfb.num_sdb)
1337 #define AUX_SDB_NUM(aux, start, end) (end >= start ? end - start + 1 : 0)
1338 #define AUX_SDB_NUM_ALERT(aux) AUX_SDB_NUM(aux, aux->head, aux->alert_mark)
1339 #define AUX_SDB_NUM_EMPTY(aux) AUX_SDB_NUM(aux, aux->head, aux->empty_mark)
1342 * Get trailer entry by index of SDB.
1344 static struct hws_trailer_entry *aux_sdb_trailer(struct aux_buffer *aux,
1345 unsigned long index)
1347 unsigned long sdb;
1349 index = AUX_SDB_INDEX(aux, index);
1350 sdb = aux->sdb_index[index];
1351 return (struct hws_trailer_entry *)trailer_entry_ptr(sdb);
1355 * Finish sampling on the cpu. Called by cpumsf_pmu_del() with pmu
1356 * disabled. Collect the full SDBs in AUX buffer which have not reached
1357 * the point of alert indicator. And ignore the SDBs which are not
1358 * full.
1360 * 1. Scan SDBs to see how much data is there and consume them.
1361 * 2. Remove alert indicator in the buffer.
1363 static void aux_output_end(struct perf_output_handle *handle)
1365 unsigned long i, range_scan, idx;
1366 struct aux_buffer *aux;
1367 struct hws_trailer_entry *te;
1369 aux = perf_get_aux(handle);
1370 if (!aux)
1371 return;
1373 range_scan = AUX_SDB_NUM_ALERT(aux);
1374 for (i = 0, idx = aux->head; i < range_scan; i++, idx++) {
1375 te = aux_sdb_trailer(aux, idx);
1376 if (!(te->flags & SDB_TE_BUFFER_FULL_MASK))
1377 break;
1379 /* i is num of SDBs which are full */
1380 perf_aux_output_end(handle, i << PAGE_SHIFT);
1382 /* Remove alert indicators in the buffer */
1383 te = aux_sdb_trailer(aux, aux->alert_mark);
1384 te->flags &= ~SDB_TE_ALERT_REQ_MASK;
1386 debug_sprintf_event(sfdbg, 6, "%s: SDBs %ld range %ld head %ld\n",
1387 __func__, i, range_scan, aux->head);
1391 * Start sampling on the CPU. Called by cpumsf_pmu_add() when an event
1392 * is first added to the CPU or rescheduled again to the CPU. It is called
1393 * with pmu disabled.
1395 * 1. Reset the trailer of SDBs to get ready for new data.
1396 * 2. Tell the hardware where to put the data by reset the SDBs buffer
1397 * head(tear/dear).
1399 static int aux_output_begin(struct perf_output_handle *handle,
1400 struct aux_buffer *aux,
1401 struct cpu_hw_sf *cpuhw)
1403 unsigned long range;
1404 unsigned long i, range_scan, idx;
1405 unsigned long head, base, offset;
1406 struct hws_trailer_entry *te;
1408 if (WARN_ON_ONCE(handle->head & ~PAGE_MASK))
1409 return -EINVAL;
1411 aux->head = handle->head >> PAGE_SHIFT;
1412 range = (handle->size + 1) >> PAGE_SHIFT;
1413 if (range <= 1)
1414 return -ENOMEM;
1417 * SDBs between aux->head and aux->empty_mark are already ready
1418 * for new data. range_scan is num of SDBs not within them.
1420 debug_sprintf_event(sfdbg, 6,
1421 "%s: range %ld head %ld alert %ld empty %ld\n",
1422 __func__, range, aux->head, aux->alert_mark,
1423 aux->empty_mark);
1424 if (range > AUX_SDB_NUM_EMPTY(aux)) {
1425 range_scan = range - AUX_SDB_NUM_EMPTY(aux);
1426 idx = aux->empty_mark + 1;
1427 for (i = 0; i < range_scan; i++, idx++) {
1428 te = aux_sdb_trailer(aux, idx);
1429 te->flags &= ~(SDB_TE_BUFFER_FULL_MASK |
1430 SDB_TE_ALERT_REQ_MASK);
1431 te->overflow = 0;
1433 /* Save the position of empty SDBs */
1434 aux->empty_mark = aux->head + range - 1;
1437 /* Set alert indicator */
1438 aux->alert_mark = aux->head + range/2 - 1;
1439 te = aux_sdb_trailer(aux, aux->alert_mark);
1440 te->flags = te->flags | SDB_TE_ALERT_REQ_MASK;
1442 /* Reset hardware buffer head */
1443 head = AUX_SDB_INDEX(aux, aux->head);
1444 base = aux->sdbt_index[head / CPUM_SF_SDB_PER_TABLE];
1445 offset = head % CPUM_SF_SDB_PER_TABLE;
1446 cpuhw->lsctl.tear = base + offset * sizeof(unsigned long);
1447 cpuhw->lsctl.dear = aux->sdb_index[head];
1449 debug_sprintf_event(sfdbg, 6, "%s: head %ld alert %ld empty %ld "
1450 "index %ld tear %#lx dear %#lx\n", __func__,
1451 aux->head, aux->alert_mark, aux->empty_mark,
1452 head / CPUM_SF_SDB_PER_TABLE,
1453 cpuhw->lsctl.tear, cpuhw->lsctl.dear);
1455 return 0;
1459 * Set alert indicator on SDB at index @alert_index while sampler is running.
1461 * Return true if successfully.
1462 * Return false if full indicator is already set by hardware sampler.
1464 static bool aux_set_alert(struct aux_buffer *aux, unsigned long alert_index,
1465 unsigned long long *overflow)
1467 unsigned long long orig_overflow, orig_flags, new_flags;
1468 struct hws_trailer_entry *te;
1470 te = aux_sdb_trailer(aux, alert_index);
1471 do {
1472 orig_flags = te->flags;
1473 *overflow = orig_overflow = te->overflow;
1474 if (orig_flags & SDB_TE_BUFFER_FULL_MASK) {
1476 * SDB is already set by hardware.
1477 * Abort and try to set somewhere
1478 * behind.
1480 return false;
1482 new_flags = orig_flags | SDB_TE_ALERT_REQ_MASK;
1483 } while (!cmpxchg_double(&te->flags, &te->overflow,
1484 orig_flags, orig_overflow,
1485 new_flags, 0ULL));
1486 return true;
1490 * aux_reset_buffer() - Scan and setup SDBs for new samples
1491 * @aux: The AUX buffer to set
1492 * @range: The range of SDBs to scan started from aux->head
1493 * @overflow: Set to overflow count
1495 * Set alert indicator on the SDB at index of aux->alert_mark. If this SDB is
1496 * marked as empty, check if it is already set full by the hardware sampler.
1497 * If yes, that means new data is already there before we can set an alert
1498 * indicator. Caller should try to set alert indicator to some position behind.
1500 * Scan the SDBs in AUX buffer from behind aux->empty_mark. They are used
1501 * previously and have already been consumed by user space. Reset these SDBs
1502 * (clear full indicator and alert indicator) for new data.
1503 * If aux->alert_mark fall in this area, just set it. Overflow count is
1504 * recorded while scanning.
1506 * SDBs between aux->head and aux->empty_mark are already reset at last time.
1507 * and ready for new samples. So scanning on this area could be skipped.
1509 * Return true if alert indicator is set successfully and false if not.
1511 static bool aux_reset_buffer(struct aux_buffer *aux, unsigned long range,
1512 unsigned long long *overflow)
1514 unsigned long long orig_overflow, orig_flags, new_flags;
1515 unsigned long i, range_scan, idx, idx_old;
1516 struct hws_trailer_entry *te;
1518 debug_sprintf_event(sfdbg, 6, "%s: range %ld head %ld alert %ld "
1519 "empty %ld\n", __func__, range, aux->head,
1520 aux->alert_mark, aux->empty_mark);
1521 if (range <= AUX_SDB_NUM_EMPTY(aux))
1523 * No need to scan. All SDBs in range are marked as empty.
1524 * Just set alert indicator. Should check race with hardware
1525 * sampler.
1527 return aux_set_alert(aux, aux->alert_mark, overflow);
1529 if (aux->alert_mark <= aux->empty_mark)
1531 * Set alert indicator on empty SDB. Should check race
1532 * with hardware sampler.
1534 if (!aux_set_alert(aux, aux->alert_mark, overflow))
1535 return false;
1538 * Scan the SDBs to clear full and alert indicator used previously.
1539 * Start scanning from one SDB behind empty_mark. If the new alert
1540 * indicator fall into this range, set it.
1542 range_scan = range - AUX_SDB_NUM_EMPTY(aux);
1543 idx_old = idx = aux->empty_mark + 1;
1544 for (i = 0; i < range_scan; i++, idx++) {
1545 te = aux_sdb_trailer(aux, idx);
1546 do {
1547 orig_flags = te->flags;
1548 orig_overflow = te->overflow;
1549 new_flags = orig_flags & ~SDB_TE_BUFFER_FULL_MASK;
1550 if (idx == aux->alert_mark)
1551 new_flags |= SDB_TE_ALERT_REQ_MASK;
1552 else
1553 new_flags &= ~SDB_TE_ALERT_REQ_MASK;
1554 } while (!cmpxchg_double(&te->flags, &te->overflow,
1555 orig_flags, orig_overflow,
1556 new_flags, 0ULL));
1557 *overflow += orig_overflow;
1560 /* Update empty_mark to new position */
1561 aux->empty_mark = aux->head + range - 1;
1563 debug_sprintf_event(sfdbg, 6, "%s: range_scan %ld idx %ld..%ld "
1564 "empty %ld\n", __func__, range_scan, idx_old,
1565 idx - 1, aux->empty_mark);
1566 return true;
1570 * Measurement alert handler for diagnostic mode sampling.
1572 static void hw_collect_aux(struct cpu_hw_sf *cpuhw)
1574 struct aux_buffer *aux;
1575 int done = 0;
1576 unsigned long range = 0, size;
1577 unsigned long long overflow = 0;
1578 struct perf_output_handle *handle = &cpuhw->handle;
1580 aux = perf_get_aux(handle);
1581 if (WARN_ON_ONCE(!aux))
1582 return;
1584 /* Inform user space new data arrived */
1585 size = AUX_SDB_NUM_ALERT(aux) << PAGE_SHIFT;
1586 debug_sprintf_event(sfdbg, 6, "%s: #alert %ld\n", __func__,
1587 size >> PAGE_SHIFT);
1588 perf_aux_output_end(handle, size);
1590 while (!done) {
1591 /* Get an output handle */
1592 aux = perf_aux_output_begin(handle, cpuhw->event);
1593 if (handle->size == 0) {
1594 pr_err("The AUX buffer with %lu pages for the "
1595 "diagnostic-sampling mode is full\n",
1596 aux->sfb.num_sdb);
1597 debug_sprintf_event(sfdbg, 1,
1598 "%s: AUX buffer used up\n",
1599 __func__);
1600 break;
1602 if (WARN_ON_ONCE(!aux))
1603 return;
1605 /* Update head and alert_mark to new position */
1606 aux->head = handle->head >> PAGE_SHIFT;
1607 range = (handle->size + 1) >> PAGE_SHIFT;
1608 if (range == 1)
1609 aux->alert_mark = aux->head;
1610 else
1611 aux->alert_mark = aux->head + range/2 - 1;
1613 if (aux_reset_buffer(aux, range, &overflow)) {
1614 if (!overflow) {
1615 done = 1;
1616 break;
1618 size = range << PAGE_SHIFT;
1619 perf_aux_output_end(&cpuhw->handle, size);
1620 pr_err("Sample data caused the AUX buffer with %lu "
1621 "pages to overflow\n", aux->sfb.num_sdb);
1622 debug_sprintf_event(sfdbg, 1, "%s: head %ld range %ld "
1623 "overflow %lld\n", __func__,
1624 aux->head, range, overflow);
1625 } else {
1626 size = AUX_SDB_NUM_ALERT(aux) << PAGE_SHIFT;
1627 perf_aux_output_end(&cpuhw->handle, size);
1628 debug_sprintf_event(sfdbg, 6, "%s: head %ld alert %ld "
1629 "already full, try another\n",
1630 __func__,
1631 aux->head, aux->alert_mark);
1635 if (done)
1636 debug_sprintf_event(sfdbg, 6, "%s: head %ld alert %ld "
1637 "empty %ld\n", __func__, aux->head,
1638 aux->alert_mark, aux->empty_mark);
1642 * Callback when freeing AUX buffers.
1644 static void aux_buffer_free(void *data)
1646 struct aux_buffer *aux = data;
1647 unsigned long i, num_sdbt;
1649 if (!aux)
1650 return;
1652 /* Free SDBT. SDB is freed by the caller */
1653 num_sdbt = aux->sfb.num_sdbt;
1654 for (i = 0; i < num_sdbt; i++)
1655 free_page(aux->sdbt_index[i]);
1657 kfree(aux->sdbt_index);
1658 kfree(aux->sdb_index);
1659 kfree(aux);
1661 debug_sprintf_event(sfdbg, 4, "%s: SDBTs %lu\n", __func__, num_sdbt);
1664 static void aux_sdb_init(unsigned long sdb)
1666 struct hws_trailer_entry *te;
1668 te = (struct hws_trailer_entry *)trailer_entry_ptr(sdb);
1670 /* Save clock base */
1671 te->clock_base = 1;
1672 memcpy(&te->progusage2, &tod_clock_base[1], 8);
1676 * aux_buffer_setup() - Setup AUX buffer for diagnostic mode sampling
1677 * @event: Event the buffer is setup for, event->cpu == -1 means current
1678 * @pages: Array of pointers to buffer pages passed from perf core
1679 * @nr_pages: Total pages
1680 * @snapshot: Flag for snapshot mode
1682 * This is the callback when setup an event using AUX buffer. Perf tool can
1683 * trigger this by an additional mmap() call on the event. Unlike the buffer
1684 * for basic samples, AUX buffer belongs to the event. It is scheduled with
1685 * the task among online cpus when it is a per-thread event.
1687 * Return the private AUX buffer structure if success or NULL if fails.
1689 static void *aux_buffer_setup(struct perf_event *event, void **pages,
1690 int nr_pages, bool snapshot)
1692 struct sf_buffer *sfb;
1693 struct aux_buffer *aux;
1694 unsigned long *new, *tail;
1695 int i, n_sdbt;
1697 if (!nr_pages || !pages)
1698 return NULL;
1700 if (nr_pages > CPUM_SF_MAX_SDB * CPUM_SF_SDB_DIAG_FACTOR) {
1701 pr_err("AUX buffer size (%i pages) is larger than the "
1702 "maximum sampling buffer limit\n",
1703 nr_pages);
1704 return NULL;
1705 } else if (nr_pages < CPUM_SF_MIN_SDB * CPUM_SF_SDB_DIAG_FACTOR) {
1706 pr_err("AUX buffer size (%i pages) is less than the "
1707 "minimum sampling buffer limit\n",
1708 nr_pages);
1709 return NULL;
1712 /* Allocate aux_buffer struct for the event */
1713 aux = kzalloc(sizeof(struct aux_buffer), GFP_KERNEL);
1714 if (!aux)
1715 goto no_aux;
1716 sfb = &aux->sfb;
1718 /* Allocate sdbt_index for fast reference */
1719 n_sdbt = DIV_ROUND_UP(nr_pages, CPUM_SF_SDB_PER_TABLE);
1720 aux->sdbt_index = kmalloc_array(n_sdbt, sizeof(void *), GFP_KERNEL);
1721 if (!aux->sdbt_index)
1722 goto no_sdbt_index;
1724 /* Allocate sdb_index for fast reference */
1725 aux->sdb_index = kmalloc_array(nr_pages, sizeof(void *), GFP_KERNEL);
1726 if (!aux->sdb_index)
1727 goto no_sdb_index;
1729 /* Allocate the first SDBT */
1730 sfb->num_sdbt = 0;
1731 sfb->sdbt = (unsigned long *) get_zeroed_page(GFP_KERNEL);
1732 if (!sfb->sdbt)
1733 goto no_sdbt;
1734 aux->sdbt_index[sfb->num_sdbt++] = (unsigned long)sfb->sdbt;
1735 tail = sfb->tail = sfb->sdbt;
1738 * Link the provided pages of AUX buffer to SDBT.
1739 * Allocate SDBT if needed.
1741 for (i = 0; i < nr_pages; i++, tail++) {
1742 if (require_table_link(tail)) {
1743 new = (unsigned long *) get_zeroed_page(GFP_KERNEL);
1744 if (!new)
1745 goto no_sdbt;
1746 aux->sdbt_index[sfb->num_sdbt++] = (unsigned long)new;
1747 /* Link current page to tail of chain */
1748 *tail = (unsigned long)(void *) new + 1;
1749 tail = new;
1751 /* Tail is the entry in a SDBT */
1752 *tail = (unsigned long)pages[i];
1753 aux->sdb_index[i] = (unsigned long)pages[i];
1754 aux_sdb_init((unsigned long)pages[i]);
1756 sfb->num_sdb = nr_pages;
1758 /* Link the last entry in the SDBT to the first SDBT */
1759 *tail = (unsigned long) sfb->sdbt + 1;
1760 sfb->tail = tail;
1763 * Initial all SDBs are zeroed. Mark it as empty.
1764 * So there is no need to clear the full indicator
1765 * when this event is first added.
1767 aux->empty_mark = sfb->num_sdb - 1;
1769 debug_sprintf_event(sfdbg, 4, "%s: SDBTs %lu SDBs %lu\n", __func__,
1770 sfb->num_sdbt, sfb->num_sdb);
1772 return aux;
1774 no_sdbt:
1775 /* SDBs (AUX buffer pages) are freed by caller */
1776 for (i = 0; i < sfb->num_sdbt; i++)
1777 free_page(aux->sdbt_index[i]);
1778 kfree(aux->sdb_index);
1779 no_sdb_index:
1780 kfree(aux->sdbt_index);
1781 no_sdbt_index:
1782 kfree(aux);
1783 no_aux:
1784 return NULL;
1787 static void cpumsf_pmu_read(struct perf_event *event)
1789 /* Nothing to do ... updates are interrupt-driven */
1792 /* Check if the new sampling period/freqeuncy is appropriate.
1794 * Return non-zero on error and zero on passed checks.
1796 static int cpumsf_pmu_check_period(struct perf_event *event, u64 value)
1798 struct hws_qsi_info_block si;
1799 unsigned long rate;
1800 bool do_freq;
1802 memset(&si, 0, sizeof(si));
1803 if (event->cpu == -1) {
1804 if (qsi(&si))
1805 return -ENODEV;
1806 } else {
1807 /* Event is pinned to a particular CPU, retrieve the per-CPU
1808 * sampling structure for accessing the CPU-specific QSI.
1810 struct cpu_hw_sf *cpuhw = &per_cpu(cpu_hw_sf, event->cpu);
1812 si = cpuhw->qsi;
1815 do_freq = !!SAMPLE_FREQ_MODE(&event->hw);
1816 rate = getrate(do_freq, value, &si);
1817 if (!rate)
1818 return -EINVAL;
1820 event->attr.sample_period = rate;
1821 SAMPL_RATE(&event->hw) = rate;
1822 hw_init_period(&event->hw, SAMPL_RATE(&event->hw));
1823 debug_sprintf_event(sfdbg, 4, "%s:"
1824 " cpu %d value %#llx period %#llx freq %d\n",
1825 __func__, event->cpu, value,
1826 event->attr.sample_period, do_freq);
1827 return 0;
1830 /* Activate sampling control.
1831 * Next call of pmu_enable() starts sampling.
1833 static void cpumsf_pmu_start(struct perf_event *event, int flags)
1835 struct cpu_hw_sf *cpuhw = this_cpu_ptr(&cpu_hw_sf);
1837 if (WARN_ON_ONCE(!(event->hw.state & PERF_HES_STOPPED)))
1838 return;
1840 if (flags & PERF_EF_RELOAD)
1841 WARN_ON_ONCE(!(event->hw.state & PERF_HES_UPTODATE));
1843 perf_pmu_disable(event->pmu);
1844 event->hw.state = 0;
1845 cpuhw->lsctl.cs = 1;
1846 if (SAMPL_DIAG_MODE(&event->hw))
1847 cpuhw->lsctl.cd = 1;
1848 perf_pmu_enable(event->pmu);
1851 /* Deactivate sampling control.
1852 * Next call of pmu_enable() stops sampling.
1854 static void cpumsf_pmu_stop(struct perf_event *event, int flags)
1856 struct cpu_hw_sf *cpuhw = this_cpu_ptr(&cpu_hw_sf);
1858 if (event->hw.state & PERF_HES_STOPPED)
1859 return;
1861 perf_pmu_disable(event->pmu);
1862 cpuhw->lsctl.cs = 0;
1863 cpuhw->lsctl.cd = 0;
1864 event->hw.state |= PERF_HES_STOPPED;
1866 if ((flags & PERF_EF_UPDATE) && !(event->hw.state & PERF_HES_UPTODATE)) {
1867 hw_perf_event_update(event, 1);
1868 event->hw.state |= PERF_HES_UPTODATE;
1870 perf_pmu_enable(event->pmu);
1873 static int cpumsf_pmu_add(struct perf_event *event, int flags)
1875 struct cpu_hw_sf *cpuhw = this_cpu_ptr(&cpu_hw_sf);
1876 struct aux_buffer *aux;
1877 int err;
1879 if (cpuhw->flags & PMU_F_IN_USE)
1880 return -EAGAIN;
1882 if (!SAMPL_DIAG_MODE(&event->hw) && !cpuhw->sfb.sdbt)
1883 return -EINVAL;
1885 err = 0;
1886 perf_pmu_disable(event->pmu);
1888 event->hw.state = PERF_HES_UPTODATE | PERF_HES_STOPPED;
1890 /* Set up sampling controls. Always program the sampling register
1891 * using the SDB-table start. Reset TEAR_REG event hardware register
1892 * that is used by hw_perf_event_update() to store the sampling buffer
1893 * position after samples have been flushed.
1895 cpuhw->lsctl.s = 0;
1896 cpuhw->lsctl.h = 1;
1897 cpuhw->lsctl.interval = SAMPL_RATE(&event->hw);
1898 if (!SAMPL_DIAG_MODE(&event->hw)) {
1899 cpuhw->lsctl.tear = (unsigned long) cpuhw->sfb.sdbt;
1900 cpuhw->lsctl.dear = *(unsigned long *) cpuhw->sfb.sdbt;
1901 TEAR_REG(&event->hw) = (unsigned long) cpuhw->sfb.sdbt;
1904 /* Ensure sampling functions are in the disabled state. If disabled,
1905 * switch on sampling enable control. */
1906 if (WARN_ON_ONCE(cpuhw->lsctl.es == 1 || cpuhw->lsctl.ed == 1)) {
1907 err = -EAGAIN;
1908 goto out;
1910 if (SAMPL_DIAG_MODE(&event->hw)) {
1911 aux = perf_aux_output_begin(&cpuhw->handle, event);
1912 if (!aux) {
1913 err = -EINVAL;
1914 goto out;
1916 err = aux_output_begin(&cpuhw->handle, aux, cpuhw);
1917 if (err)
1918 goto out;
1919 cpuhw->lsctl.ed = 1;
1921 cpuhw->lsctl.es = 1;
1923 /* Set in_use flag and store event */
1924 cpuhw->event = event;
1925 cpuhw->flags |= PMU_F_IN_USE;
1927 if (flags & PERF_EF_START)
1928 cpumsf_pmu_start(event, PERF_EF_RELOAD);
1929 out:
1930 perf_event_update_userpage(event);
1931 perf_pmu_enable(event->pmu);
1932 return err;
1935 static void cpumsf_pmu_del(struct perf_event *event, int flags)
1937 struct cpu_hw_sf *cpuhw = this_cpu_ptr(&cpu_hw_sf);
1939 perf_pmu_disable(event->pmu);
1940 cpumsf_pmu_stop(event, PERF_EF_UPDATE);
1942 cpuhw->lsctl.es = 0;
1943 cpuhw->lsctl.ed = 0;
1944 cpuhw->flags &= ~PMU_F_IN_USE;
1945 cpuhw->event = NULL;
1947 if (SAMPL_DIAG_MODE(&event->hw))
1948 aux_output_end(&cpuhw->handle);
1949 perf_event_update_userpage(event);
1950 perf_pmu_enable(event->pmu);
1953 CPUMF_EVENT_ATTR(SF, SF_CYCLES_BASIC, PERF_EVENT_CPUM_SF);
1954 CPUMF_EVENT_ATTR(SF, SF_CYCLES_BASIC_DIAG, PERF_EVENT_CPUM_SF_DIAG);
1956 /* Attribute list for CPU_SF.
1958 * The availablitiy depends on the CPU_MF sampling facility authorization
1959 * for basic + diagnositic samples. This is determined at initialization
1960 * time by the sampling facility device driver.
1961 * If the authorization for basic samples is turned off, it should be
1962 * also turned off for diagnostic sampling.
1964 * During initialization of the device driver, check the authorization
1965 * level for diagnostic sampling and installs the attribute
1966 * file for diagnostic sampling if necessary.
1968 * For now install a placeholder to reference all possible attributes:
1969 * SF_CYCLES_BASIC and SF_CYCLES_BASIC_DIAG.
1970 * Add another entry for the final NULL pointer.
1972 enum {
1973 SF_CYCLES_BASIC_ATTR_IDX = 0,
1974 SF_CYCLES_BASIC_DIAG_ATTR_IDX,
1975 SF_CYCLES_ATTR_MAX
1978 static struct attribute *cpumsf_pmu_events_attr[SF_CYCLES_ATTR_MAX + 1] = {
1979 [SF_CYCLES_BASIC_ATTR_IDX] = CPUMF_EVENT_PTR(SF, SF_CYCLES_BASIC)
1982 PMU_FORMAT_ATTR(event, "config:0-63");
1984 static struct attribute *cpumsf_pmu_format_attr[] = {
1985 &format_attr_event.attr,
1986 NULL,
1989 static struct attribute_group cpumsf_pmu_events_group = {
1990 .name = "events",
1991 .attrs = cpumsf_pmu_events_attr,
1994 static struct attribute_group cpumsf_pmu_format_group = {
1995 .name = "format",
1996 .attrs = cpumsf_pmu_format_attr,
1999 static const struct attribute_group *cpumsf_pmu_attr_groups[] = {
2000 &cpumsf_pmu_events_group,
2001 &cpumsf_pmu_format_group,
2002 NULL,
2005 static struct pmu cpumf_sampling = {
2006 .pmu_enable = cpumsf_pmu_enable,
2007 .pmu_disable = cpumsf_pmu_disable,
2009 .event_init = cpumsf_pmu_event_init,
2010 .add = cpumsf_pmu_add,
2011 .del = cpumsf_pmu_del,
2013 .start = cpumsf_pmu_start,
2014 .stop = cpumsf_pmu_stop,
2015 .read = cpumsf_pmu_read,
2017 .attr_groups = cpumsf_pmu_attr_groups,
2019 .setup_aux = aux_buffer_setup,
2020 .free_aux = aux_buffer_free,
2022 .check_period = cpumsf_pmu_check_period,
2025 static void cpumf_measurement_alert(struct ext_code ext_code,
2026 unsigned int alert, unsigned long unused)
2028 struct cpu_hw_sf *cpuhw;
2030 if (!(alert & CPU_MF_INT_SF_MASK))
2031 return;
2032 inc_irq_stat(IRQEXT_CMS);
2033 cpuhw = this_cpu_ptr(&cpu_hw_sf);
2035 /* Measurement alerts are shared and might happen when the PMU
2036 * is not reserved. Ignore these alerts in this case. */
2037 if (!(cpuhw->flags & PMU_F_RESERVED))
2038 return;
2040 /* The processing below must take care of multiple alert events that
2041 * might be indicated concurrently. */
2043 /* Program alert request */
2044 if (alert & CPU_MF_INT_SF_PRA) {
2045 if (cpuhw->flags & PMU_F_IN_USE)
2046 if (SAMPL_DIAG_MODE(&cpuhw->event->hw))
2047 hw_collect_aux(cpuhw);
2048 else
2049 hw_perf_event_update(cpuhw->event, 0);
2050 else
2051 WARN_ON_ONCE(!(cpuhw->flags & PMU_F_IN_USE));
2054 /* Report measurement alerts only for non-PRA codes */
2055 if (alert != CPU_MF_INT_SF_PRA)
2056 debug_sprintf_event(sfdbg, 6, "%s: alert %#x\n", __func__,
2057 alert);
2059 /* Sampling authorization change request */
2060 if (alert & CPU_MF_INT_SF_SACA)
2061 qsi(&cpuhw->qsi);
2063 /* Loss of sample data due to high-priority machine activities */
2064 if (alert & CPU_MF_INT_SF_LSDA) {
2065 pr_err("Sample data was lost\n");
2066 cpuhw->flags |= PMU_F_ERR_LSDA;
2067 sf_disable();
2070 /* Invalid sampling buffer entry */
2071 if (alert & (CPU_MF_INT_SF_IAE|CPU_MF_INT_SF_ISE)) {
2072 pr_err("A sampling buffer entry is incorrect (alert=0x%x)\n",
2073 alert);
2074 cpuhw->flags |= PMU_F_ERR_IBE;
2075 sf_disable();
2079 static int cpusf_pmu_setup(unsigned int cpu, int flags)
2081 /* Ignore the notification if no events are scheduled on the PMU.
2082 * This might be racy...
2084 if (!atomic_read(&num_events))
2085 return 0;
2087 local_irq_disable();
2088 setup_pmc_cpu(&flags);
2089 local_irq_enable();
2090 return 0;
2093 static int s390_pmu_sf_online_cpu(unsigned int cpu)
2095 return cpusf_pmu_setup(cpu, PMC_INIT);
2098 static int s390_pmu_sf_offline_cpu(unsigned int cpu)
2100 return cpusf_pmu_setup(cpu, PMC_RELEASE);
2103 static int param_get_sfb_size(char *buffer, const struct kernel_param *kp)
2105 if (!cpum_sf_avail())
2106 return -ENODEV;
2107 return sprintf(buffer, "%lu,%lu", CPUM_SF_MIN_SDB, CPUM_SF_MAX_SDB);
2110 static int param_set_sfb_size(const char *val, const struct kernel_param *kp)
2112 int rc;
2113 unsigned long min, max;
2115 if (!cpum_sf_avail())
2116 return -ENODEV;
2117 if (!val || !strlen(val))
2118 return -EINVAL;
2120 /* Valid parameter values: "min,max" or "max" */
2121 min = CPUM_SF_MIN_SDB;
2122 max = CPUM_SF_MAX_SDB;
2123 if (strchr(val, ','))
2124 rc = (sscanf(val, "%lu,%lu", &min, &max) == 2) ? 0 : -EINVAL;
2125 else
2126 rc = kstrtoul(val, 10, &max);
2128 if (min < 2 || min >= max || max > get_num_physpages())
2129 rc = -EINVAL;
2130 if (rc)
2131 return rc;
2133 sfb_set_limits(min, max);
2134 pr_info("The sampling buffer limits have changed to: "
2135 "min %lu max %lu (diag %lu)\n",
2136 CPUM_SF_MIN_SDB, CPUM_SF_MAX_SDB, CPUM_SF_SDB_DIAG_FACTOR);
2137 return 0;
2140 #define param_check_sfb_size(name, p) __param_check(name, p, void)
2141 static const struct kernel_param_ops param_ops_sfb_size = {
2142 .set = param_set_sfb_size,
2143 .get = param_get_sfb_size,
2146 #define RS_INIT_FAILURE_QSI 0x0001
2147 #define RS_INIT_FAILURE_BSDES 0x0002
2148 #define RS_INIT_FAILURE_ALRT 0x0003
2149 #define RS_INIT_FAILURE_PERF 0x0004
2150 static void __init pr_cpumsf_err(unsigned int reason)
2152 pr_err("Sampling facility support for perf is not available: "
2153 "reason %#x\n", reason);
2156 static int __init init_cpum_sampling_pmu(void)
2158 struct hws_qsi_info_block si;
2159 int err;
2161 if (!cpum_sf_avail())
2162 return -ENODEV;
2164 memset(&si, 0, sizeof(si));
2165 if (qsi(&si)) {
2166 pr_cpumsf_err(RS_INIT_FAILURE_QSI);
2167 return -ENODEV;
2170 if (!si.as && !si.ad)
2171 return -ENODEV;
2173 if (si.bsdes != sizeof(struct hws_basic_entry)) {
2174 pr_cpumsf_err(RS_INIT_FAILURE_BSDES);
2175 return -EINVAL;
2178 if (si.ad) {
2179 sfb_set_limits(CPUM_SF_MIN_SDB, CPUM_SF_MAX_SDB);
2180 /* Sampling of diagnostic data authorized,
2181 * install event into attribute list of PMU device.
2183 cpumsf_pmu_events_attr[SF_CYCLES_BASIC_DIAG_ATTR_IDX] =
2184 CPUMF_EVENT_PTR(SF, SF_CYCLES_BASIC_DIAG);
2187 sfdbg = debug_register(KMSG_COMPONENT, 2, 1, 80);
2188 if (!sfdbg) {
2189 pr_err("Registering for s390dbf failed\n");
2190 return -ENOMEM;
2192 debug_register_view(sfdbg, &debug_sprintf_view);
2194 err = register_external_irq(EXT_IRQ_MEASURE_ALERT,
2195 cpumf_measurement_alert);
2196 if (err) {
2197 pr_cpumsf_err(RS_INIT_FAILURE_ALRT);
2198 debug_unregister(sfdbg);
2199 goto out;
2202 err = perf_pmu_register(&cpumf_sampling, "cpum_sf", PERF_TYPE_RAW);
2203 if (err) {
2204 pr_cpumsf_err(RS_INIT_FAILURE_PERF);
2205 unregister_external_irq(EXT_IRQ_MEASURE_ALERT,
2206 cpumf_measurement_alert);
2207 debug_unregister(sfdbg);
2208 goto out;
2211 cpuhp_setup_state(CPUHP_AP_PERF_S390_SF_ONLINE, "perf/s390/sf:online",
2212 s390_pmu_sf_online_cpu, s390_pmu_sf_offline_cpu);
2213 out:
2214 return err;
2217 arch_initcall(init_cpum_sampling_pmu);
2218 core_param(cpum_sfb_size, CPUM_SF_MAX_SDB, sfb_size, 0640);