treewide: remove redundant IS_ERR() before error code check
[linux/fpc-iii.git] / arch / s390 / mm / fault.c
blob7b0bb475c166496ff054f18a780748a25c028a1c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * S390 version
4 * Copyright IBM Corp. 1999
5 * Author(s): Hartmut Penner (hp@de.ibm.com)
6 * Ulrich Weigand (uweigand@de.ibm.com)
8 * Derived from "arch/i386/mm/fault.c"
9 * Copyright (C) 1995 Linus Torvalds
12 #include <linux/kernel_stat.h>
13 #include <linux/perf_event.h>
14 #include <linux/signal.h>
15 #include <linux/sched.h>
16 #include <linux/sched/debug.h>
17 #include <linux/kernel.h>
18 #include <linux/errno.h>
19 #include <linux/string.h>
20 #include <linux/types.h>
21 #include <linux/ptrace.h>
22 #include <linux/mman.h>
23 #include <linux/mm.h>
24 #include <linux/compat.h>
25 #include <linux/smp.h>
26 #include <linux/kdebug.h>
27 #include <linux/init.h>
28 #include <linux/console.h>
29 #include <linux/extable.h>
30 #include <linux/hardirq.h>
31 #include <linux/kprobes.h>
32 #include <linux/uaccess.h>
33 #include <linux/hugetlb.h>
34 #include <asm/asm-offsets.h>
35 #include <asm/diag.h>
36 #include <asm/pgtable.h>
37 #include <asm/gmap.h>
38 #include <asm/irq.h>
39 #include <asm/mmu_context.h>
40 #include <asm/facility.h>
41 #include "../kernel/entry.h"
43 #define __FAIL_ADDR_MASK -4096L
44 #define __SUBCODE_MASK 0x0600
45 #define __PF_RES_FIELD 0x8000000000000000ULL
47 #define VM_FAULT_BADCONTEXT 0x010000
48 #define VM_FAULT_BADMAP 0x020000
49 #define VM_FAULT_BADACCESS 0x040000
50 #define VM_FAULT_SIGNAL 0x080000
51 #define VM_FAULT_PFAULT 0x100000
53 enum fault_type {
54 KERNEL_FAULT,
55 USER_FAULT,
56 VDSO_FAULT,
57 GMAP_FAULT,
60 static unsigned long store_indication __read_mostly;
62 static int __init fault_init(void)
64 if (test_facility(75))
65 store_indication = 0xc00;
66 return 0;
68 early_initcall(fault_init);
71 * Find out which address space caused the exception.
73 static enum fault_type get_fault_type(struct pt_regs *regs)
75 unsigned long trans_exc_code;
77 trans_exc_code = regs->int_parm_long & 3;
78 if (likely(trans_exc_code == 0)) {
79 /* primary space exception */
80 if (IS_ENABLED(CONFIG_PGSTE) &&
81 test_pt_regs_flag(regs, PIF_GUEST_FAULT))
82 return GMAP_FAULT;
83 if (current->thread.mm_segment == USER_DS)
84 return USER_FAULT;
85 return KERNEL_FAULT;
87 if (trans_exc_code == 2) {
88 /* secondary space exception */
89 if (current->thread.mm_segment & 1) {
90 if (current->thread.mm_segment == USER_DS_SACF)
91 return USER_FAULT;
92 return KERNEL_FAULT;
94 return VDSO_FAULT;
96 if (trans_exc_code == 1) {
97 /* access register mode, not used in the kernel */
98 return USER_FAULT;
100 /* home space exception -> access via kernel ASCE */
101 return KERNEL_FAULT;
104 static int bad_address(void *p)
106 unsigned long dummy;
108 return probe_kernel_address((unsigned long *)p, dummy);
111 static void dump_pagetable(unsigned long asce, unsigned long address)
113 unsigned long *table = __va(asce & _ASCE_ORIGIN);
115 pr_alert("AS:%016lx ", asce);
116 switch (asce & _ASCE_TYPE_MASK) {
117 case _ASCE_TYPE_REGION1:
118 table += (address & _REGION1_INDEX) >> _REGION1_SHIFT;
119 if (bad_address(table))
120 goto bad;
121 pr_cont("R1:%016lx ", *table);
122 if (*table & _REGION_ENTRY_INVALID)
123 goto out;
124 table = (unsigned long *)(*table & _REGION_ENTRY_ORIGIN);
125 /* fallthrough */
126 case _ASCE_TYPE_REGION2:
127 table += (address & _REGION2_INDEX) >> _REGION2_SHIFT;
128 if (bad_address(table))
129 goto bad;
130 pr_cont("R2:%016lx ", *table);
131 if (*table & _REGION_ENTRY_INVALID)
132 goto out;
133 table = (unsigned long *)(*table & _REGION_ENTRY_ORIGIN);
134 /* fallthrough */
135 case _ASCE_TYPE_REGION3:
136 table += (address & _REGION3_INDEX) >> _REGION3_SHIFT;
137 if (bad_address(table))
138 goto bad;
139 pr_cont("R3:%016lx ", *table);
140 if (*table & (_REGION_ENTRY_INVALID | _REGION3_ENTRY_LARGE))
141 goto out;
142 table = (unsigned long *)(*table & _REGION_ENTRY_ORIGIN);
143 /* fallthrough */
144 case _ASCE_TYPE_SEGMENT:
145 table += (address & _SEGMENT_INDEX) >> _SEGMENT_SHIFT;
146 if (bad_address(table))
147 goto bad;
148 pr_cont("S:%016lx ", *table);
149 if (*table & (_SEGMENT_ENTRY_INVALID | _SEGMENT_ENTRY_LARGE))
150 goto out;
151 table = (unsigned long *)(*table & _SEGMENT_ENTRY_ORIGIN);
153 table += (address & _PAGE_INDEX) >> _PAGE_SHIFT;
154 if (bad_address(table))
155 goto bad;
156 pr_cont("P:%016lx ", *table);
157 out:
158 pr_cont("\n");
159 return;
160 bad:
161 pr_cont("BAD\n");
164 static void dump_fault_info(struct pt_regs *regs)
166 unsigned long asce;
168 pr_alert("Failing address: %016lx TEID: %016lx\n",
169 regs->int_parm_long & __FAIL_ADDR_MASK, regs->int_parm_long);
170 pr_alert("Fault in ");
171 switch (regs->int_parm_long & 3) {
172 case 3:
173 pr_cont("home space ");
174 break;
175 case 2:
176 pr_cont("secondary space ");
177 break;
178 case 1:
179 pr_cont("access register ");
180 break;
181 case 0:
182 pr_cont("primary space ");
183 break;
185 pr_cont("mode while using ");
186 switch (get_fault_type(regs)) {
187 case USER_FAULT:
188 asce = S390_lowcore.user_asce;
189 pr_cont("user ");
190 break;
191 case VDSO_FAULT:
192 asce = S390_lowcore.vdso_asce;
193 pr_cont("vdso ");
194 break;
195 case GMAP_FAULT:
196 asce = ((struct gmap *) S390_lowcore.gmap)->asce;
197 pr_cont("gmap ");
198 break;
199 case KERNEL_FAULT:
200 asce = S390_lowcore.kernel_asce;
201 pr_cont("kernel ");
202 break;
203 default:
204 unreachable();
206 pr_cont("ASCE.\n");
207 dump_pagetable(asce, regs->int_parm_long & __FAIL_ADDR_MASK);
210 int show_unhandled_signals = 1;
212 void report_user_fault(struct pt_regs *regs, long signr, int is_mm_fault)
214 if ((task_pid_nr(current) > 1) && !show_unhandled_signals)
215 return;
216 if (!unhandled_signal(current, signr))
217 return;
218 if (!printk_ratelimit())
219 return;
220 printk(KERN_ALERT "User process fault: interruption code %04x ilc:%d ",
221 regs->int_code & 0xffff, regs->int_code >> 17);
222 print_vma_addr(KERN_CONT "in ", regs->psw.addr);
223 printk(KERN_CONT "\n");
224 if (is_mm_fault)
225 dump_fault_info(regs);
226 show_regs(regs);
230 * Send SIGSEGV to task. This is an external routine
231 * to keep the stack usage of do_page_fault small.
233 static noinline void do_sigsegv(struct pt_regs *regs, int si_code)
235 report_user_fault(regs, SIGSEGV, 1);
236 force_sig_fault(SIGSEGV, si_code,
237 (void __user *)(regs->int_parm_long & __FAIL_ADDR_MASK));
240 const struct exception_table_entry *s390_search_extables(unsigned long addr)
242 const struct exception_table_entry *fixup;
244 fixup = search_extable(__start_dma_ex_table,
245 __stop_dma_ex_table - __start_dma_ex_table,
246 addr);
247 if (!fixup)
248 fixup = search_exception_tables(addr);
249 return fixup;
252 static noinline void do_no_context(struct pt_regs *regs)
254 const struct exception_table_entry *fixup;
256 /* Are we prepared to handle this kernel fault? */
257 fixup = s390_search_extables(regs->psw.addr);
258 if (fixup) {
259 regs->psw.addr = extable_fixup(fixup);
260 return;
264 * Oops. The kernel tried to access some bad page. We'll have to
265 * terminate things with extreme prejudice.
267 if (get_fault_type(regs) == KERNEL_FAULT)
268 printk(KERN_ALERT "Unable to handle kernel pointer dereference"
269 " in virtual kernel address space\n");
270 else
271 printk(KERN_ALERT "Unable to handle kernel paging request"
272 " in virtual user address space\n");
273 dump_fault_info(regs);
274 die(regs, "Oops");
275 do_exit(SIGKILL);
278 static noinline void do_low_address(struct pt_regs *regs)
280 /* Low-address protection hit in kernel mode means
281 NULL pointer write access in kernel mode. */
282 if (regs->psw.mask & PSW_MASK_PSTATE) {
283 /* Low-address protection hit in user mode 'cannot happen'. */
284 die (regs, "Low-address protection");
285 do_exit(SIGKILL);
288 do_no_context(regs);
291 static noinline void do_sigbus(struct pt_regs *regs)
294 * Send a sigbus, regardless of whether we were in kernel
295 * or user mode.
297 force_sig_fault(SIGBUS, BUS_ADRERR,
298 (void __user *)(regs->int_parm_long & __FAIL_ADDR_MASK));
301 static noinline int signal_return(struct pt_regs *regs)
303 u16 instruction;
304 int rc;
306 rc = __get_user(instruction, (u16 __user *) regs->psw.addr);
307 if (rc)
308 return rc;
309 if (instruction == 0x0a77) {
310 set_pt_regs_flag(regs, PIF_SYSCALL);
311 regs->int_code = 0x00040077;
312 return 0;
313 } else if (instruction == 0x0aad) {
314 set_pt_regs_flag(regs, PIF_SYSCALL);
315 regs->int_code = 0x000400ad;
316 return 0;
318 return -EACCES;
321 static noinline void do_fault_error(struct pt_regs *regs, int access,
322 vm_fault_t fault)
324 int si_code;
326 switch (fault) {
327 case VM_FAULT_BADACCESS:
328 if (access == VM_EXEC && signal_return(regs) == 0)
329 break;
330 /* fallthrough */
331 case VM_FAULT_BADMAP:
332 /* Bad memory access. Check if it is kernel or user space. */
333 if (user_mode(regs)) {
334 /* User mode accesses just cause a SIGSEGV */
335 si_code = (fault == VM_FAULT_BADMAP) ?
336 SEGV_MAPERR : SEGV_ACCERR;
337 do_sigsegv(regs, si_code);
338 break;
340 /* fallthrough */
341 case VM_FAULT_BADCONTEXT:
342 /* fallthrough */
343 case VM_FAULT_PFAULT:
344 do_no_context(regs);
345 break;
346 case VM_FAULT_SIGNAL:
347 if (!user_mode(regs))
348 do_no_context(regs);
349 break;
350 default: /* fault & VM_FAULT_ERROR */
351 if (fault & VM_FAULT_OOM) {
352 if (!user_mode(regs))
353 do_no_context(regs);
354 else
355 pagefault_out_of_memory();
356 } else if (fault & VM_FAULT_SIGSEGV) {
357 /* Kernel mode? Handle exceptions or die */
358 if (!user_mode(regs))
359 do_no_context(regs);
360 else
361 do_sigsegv(regs, SEGV_MAPERR);
362 } else if (fault & VM_FAULT_SIGBUS) {
363 /* Kernel mode? Handle exceptions or die */
364 if (!user_mode(regs))
365 do_no_context(regs);
366 else
367 do_sigbus(regs);
368 } else
369 BUG();
370 break;
375 * This routine handles page faults. It determines the address,
376 * and the problem, and then passes it off to one of the appropriate
377 * routines.
379 * interruption code (int_code):
380 * 04 Protection -> Write-Protection (suprression)
381 * 10 Segment translation -> Not present (nullification)
382 * 11 Page translation -> Not present (nullification)
383 * 3b Region third trans. -> Not present (nullification)
385 static inline vm_fault_t do_exception(struct pt_regs *regs, int access)
387 struct gmap *gmap;
388 struct task_struct *tsk;
389 struct mm_struct *mm;
390 struct vm_area_struct *vma;
391 enum fault_type type;
392 unsigned long trans_exc_code;
393 unsigned long address;
394 unsigned int flags;
395 vm_fault_t fault;
397 tsk = current;
399 * The instruction that caused the program check has
400 * been nullified. Don't signal single step via SIGTRAP.
402 clear_pt_regs_flag(regs, PIF_PER_TRAP);
404 if (kprobe_page_fault(regs, 14))
405 return 0;
407 mm = tsk->mm;
408 trans_exc_code = regs->int_parm_long;
411 * Verify that the fault happened in user space, that
412 * we are not in an interrupt and that there is a
413 * user context.
415 fault = VM_FAULT_BADCONTEXT;
416 type = get_fault_type(regs);
417 switch (type) {
418 case KERNEL_FAULT:
419 goto out;
420 case VDSO_FAULT:
421 fault = VM_FAULT_BADMAP;
422 goto out;
423 case USER_FAULT:
424 case GMAP_FAULT:
425 if (faulthandler_disabled() || !mm)
426 goto out;
427 break;
430 address = trans_exc_code & __FAIL_ADDR_MASK;
431 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS, 1, regs, address);
432 flags = FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE;
433 if (user_mode(regs))
434 flags |= FAULT_FLAG_USER;
435 if (access == VM_WRITE || (trans_exc_code & store_indication) == 0x400)
436 flags |= FAULT_FLAG_WRITE;
437 down_read(&mm->mmap_sem);
439 gmap = NULL;
440 if (IS_ENABLED(CONFIG_PGSTE) && type == GMAP_FAULT) {
441 gmap = (struct gmap *) S390_lowcore.gmap;
442 current->thread.gmap_addr = address;
443 current->thread.gmap_write_flag = !!(flags & FAULT_FLAG_WRITE);
444 current->thread.gmap_int_code = regs->int_code & 0xffff;
445 address = __gmap_translate(gmap, address);
446 if (address == -EFAULT) {
447 fault = VM_FAULT_BADMAP;
448 goto out_up;
450 if (gmap->pfault_enabled)
451 flags |= FAULT_FLAG_RETRY_NOWAIT;
454 retry:
455 fault = VM_FAULT_BADMAP;
456 vma = find_vma(mm, address);
457 if (!vma)
458 goto out_up;
460 if (unlikely(vma->vm_start > address)) {
461 if (!(vma->vm_flags & VM_GROWSDOWN))
462 goto out_up;
463 if (expand_stack(vma, address))
464 goto out_up;
468 * Ok, we have a good vm_area for this memory access, so
469 * we can handle it..
471 fault = VM_FAULT_BADACCESS;
472 if (unlikely(!(vma->vm_flags & access)))
473 goto out_up;
475 if (is_vm_hugetlb_page(vma))
476 address &= HPAGE_MASK;
478 * If for any reason at all we couldn't handle the fault,
479 * make sure we exit gracefully rather than endlessly redo
480 * the fault.
482 fault = handle_mm_fault(vma, address, flags);
483 /* No reason to continue if interrupted by SIGKILL. */
484 if ((fault & VM_FAULT_RETRY) && fatal_signal_pending(current)) {
485 fault = VM_FAULT_SIGNAL;
486 if (flags & FAULT_FLAG_RETRY_NOWAIT)
487 goto out_up;
488 goto out;
490 if (unlikely(fault & VM_FAULT_ERROR))
491 goto out_up;
494 * Major/minor page fault accounting is only done on the
495 * initial attempt. If we go through a retry, it is extremely
496 * likely that the page will be found in page cache at that point.
498 if (flags & FAULT_FLAG_ALLOW_RETRY) {
499 if (fault & VM_FAULT_MAJOR) {
500 tsk->maj_flt++;
501 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ, 1,
502 regs, address);
503 } else {
504 tsk->min_flt++;
505 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN, 1,
506 regs, address);
508 if (fault & VM_FAULT_RETRY) {
509 if (IS_ENABLED(CONFIG_PGSTE) && gmap &&
510 (flags & FAULT_FLAG_RETRY_NOWAIT)) {
511 /* FAULT_FLAG_RETRY_NOWAIT has been set,
512 * mmap_sem has not been released */
513 current->thread.gmap_pfault = 1;
514 fault = VM_FAULT_PFAULT;
515 goto out_up;
517 /* Clear FAULT_FLAG_ALLOW_RETRY to avoid any risk
518 * of starvation. */
519 flags &= ~(FAULT_FLAG_ALLOW_RETRY |
520 FAULT_FLAG_RETRY_NOWAIT);
521 flags |= FAULT_FLAG_TRIED;
522 down_read(&mm->mmap_sem);
523 goto retry;
526 if (IS_ENABLED(CONFIG_PGSTE) && gmap) {
527 address = __gmap_link(gmap, current->thread.gmap_addr,
528 address);
529 if (address == -EFAULT) {
530 fault = VM_FAULT_BADMAP;
531 goto out_up;
533 if (address == -ENOMEM) {
534 fault = VM_FAULT_OOM;
535 goto out_up;
538 fault = 0;
539 out_up:
540 up_read(&mm->mmap_sem);
541 out:
542 return fault;
545 void do_protection_exception(struct pt_regs *regs)
547 unsigned long trans_exc_code;
548 int access;
549 vm_fault_t fault;
551 trans_exc_code = regs->int_parm_long;
553 * Protection exceptions are suppressing, decrement psw address.
554 * The exception to this rule are aborted transactions, for these
555 * the PSW already points to the correct location.
557 if (!(regs->int_code & 0x200))
558 regs->psw.addr = __rewind_psw(regs->psw, regs->int_code >> 16);
560 * Check for low-address protection. This needs to be treated
561 * as a special case because the translation exception code
562 * field is not guaranteed to contain valid data in this case.
564 if (unlikely(!(trans_exc_code & 4))) {
565 do_low_address(regs);
566 return;
568 if (unlikely(MACHINE_HAS_NX && (trans_exc_code & 0x80))) {
569 regs->int_parm_long = (trans_exc_code & ~PAGE_MASK) |
570 (regs->psw.addr & PAGE_MASK);
571 access = VM_EXEC;
572 fault = VM_FAULT_BADACCESS;
573 } else {
574 access = VM_WRITE;
575 fault = do_exception(regs, access);
577 if (unlikely(fault))
578 do_fault_error(regs, access, fault);
580 NOKPROBE_SYMBOL(do_protection_exception);
582 void do_dat_exception(struct pt_regs *regs)
584 int access;
585 vm_fault_t fault;
587 access = VM_READ | VM_EXEC | VM_WRITE;
588 fault = do_exception(regs, access);
589 if (unlikely(fault))
590 do_fault_error(regs, access, fault);
592 NOKPROBE_SYMBOL(do_dat_exception);
594 #ifdef CONFIG_PFAULT
596 * 'pfault' pseudo page faults routines.
598 static int pfault_disable;
600 static int __init nopfault(char *str)
602 pfault_disable = 1;
603 return 1;
606 __setup("nopfault", nopfault);
608 struct pfault_refbk {
609 u16 refdiagc;
610 u16 reffcode;
611 u16 refdwlen;
612 u16 refversn;
613 u64 refgaddr;
614 u64 refselmk;
615 u64 refcmpmk;
616 u64 reserved;
617 } __attribute__ ((packed, aligned(8)));
619 static struct pfault_refbk pfault_init_refbk = {
620 .refdiagc = 0x258,
621 .reffcode = 0,
622 .refdwlen = 5,
623 .refversn = 2,
624 .refgaddr = __LC_LPP,
625 .refselmk = 1ULL << 48,
626 .refcmpmk = 1ULL << 48,
627 .reserved = __PF_RES_FIELD
630 int pfault_init(void)
632 int rc;
634 if (pfault_disable)
635 return -1;
636 diag_stat_inc(DIAG_STAT_X258);
637 asm volatile(
638 " diag %1,%0,0x258\n"
639 "0: j 2f\n"
640 "1: la %0,8\n"
641 "2:\n"
642 EX_TABLE(0b,1b)
643 : "=d" (rc)
644 : "a" (&pfault_init_refbk), "m" (pfault_init_refbk) : "cc");
645 return rc;
648 static struct pfault_refbk pfault_fini_refbk = {
649 .refdiagc = 0x258,
650 .reffcode = 1,
651 .refdwlen = 5,
652 .refversn = 2,
655 void pfault_fini(void)
658 if (pfault_disable)
659 return;
660 diag_stat_inc(DIAG_STAT_X258);
661 asm volatile(
662 " diag %0,0,0x258\n"
663 "0: nopr %%r7\n"
664 EX_TABLE(0b,0b)
665 : : "a" (&pfault_fini_refbk), "m" (pfault_fini_refbk) : "cc");
668 static DEFINE_SPINLOCK(pfault_lock);
669 static LIST_HEAD(pfault_list);
671 #define PF_COMPLETE 0x0080
674 * The mechanism of our pfault code: if Linux is running as guest, runs a user
675 * space process and the user space process accesses a page that the host has
676 * paged out we get a pfault interrupt.
678 * This allows us, within the guest, to schedule a different process. Without
679 * this mechanism the host would have to suspend the whole virtual cpu until
680 * the page has been paged in.
682 * So when we get such an interrupt then we set the state of the current task
683 * to uninterruptible and also set the need_resched flag. Both happens within
684 * interrupt context(!). If we later on want to return to user space we
685 * recognize the need_resched flag and then call schedule(). It's not very
686 * obvious how this works...
688 * Of course we have a lot of additional fun with the completion interrupt (->
689 * host signals that a page of a process has been paged in and the process can
690 * continue to run). This interrupt can arrive on any cpu and, since we have
691 * virtual cpus, actually appear before the interrupt that signals that a page
692 * is missing.
694 static void pfault_interrupt(struct ext_code ext_code,
695 unsigned int param32, unsigned long param64)
697 struct task_struct *tsk;
698 __u16 subcode;
699 pid_t pid;
702 * Get the external interruption subcode & pfault initial/completion
703 * signal bit. VM stores this in the 'cpu address' field associated
704 * with the external interrupt.
706 subcode = ext_code.subcode;
707 if ((subcode & 0xff00) != __SUBCODE_MASK)
708 return;
709 inc_irq_stat(IRQEXT_PFL);
710 /* Get the token (= pid of the affected task). */
711 pid = param64 & LPP_PID_MASK;
712 rcu_read_lock();
713 tsk = find_task_by_pid_ns(pid, &init_pid_ns);
714 if (tsk)
715 get_task_struct(tsk);
716 rcu_read_unlock();
717 if (!tsk)
718 return;
719 spin_lock(&pfault_lock);
720 if (subcode & PF_COMPLETE) {
721 /* signal bit is set -> a page has been swapped in by VM */
722 if (tsk->thread.pfault_wait == 1) {
723 /* Initial interrupt was faster than the completion
724 * interrupt. pfault_wait is valid. Set pfault_wait
725 * back to zero and wake up the process. This can
726 * safely be done because the task is still sleeping
727 * and can't produce new pfaults. */
728 tsk->thread.pfault_wait = 0;
729 list_del(&tsk->thread.list);
730 wake_up_process(tsk);
731 put_task_struct(tsk);
732 } else {
733 /* Completion interrupt was faster than initial
734 * interrupt. Set pfault_wait to -1 so the initial
735 * interrupt doesn't put the task to sleep.
736 * If the task is not running, ignore the completion
737 * interrupt since it must be a leftover of a PFAULT
738 * CANCEL operation which didn't remove all pending
739 * completion interrupts. */
740 if (tsk->state == TASK_RUNNING)
741 tsk->thread.pfault_wait = -1;
743 } else {
744 /* signal bit not set -> a real page is missing. */
745 if (WARN_ON_ONCE(tsk != current))
746 goto out;
747 if (tsk->thread.pfault_wait == 1) {
748 /* Already on the list with a reference: put to sleep */
749 goto block;
750 } else if (tsk->thread.pfault_wait == -1) {
751 /* Completion interrupt was faster than the initial
752 * interrupt (pfault_wait == -1). Set pfault_wait
753 * back to zero and exit. */
754 tsk->thread.pfault_wait = 0;
755 } else {
756 /* Initial interrupt arrived before completion
757 * interrupt. Let the task sleep.
758 * An extra task reference is needed since a different
759 * cpu may set the task state to TASK_RUNNING again
760 * before the scheduler is reached. */
761 get_task_struct(tsk);
762 tsk->thread.pfault_wait = 1;
763 list_add(&tsk->thread.list, &pfault_list);
764 block:
765 /* Since this must be a userspace fault, there
766 * is no kernel task state to trample. Rely on the
767 * return to userspace schedule() to block. */
768 __set_current_state(TASK_UNINTERRUPTIBLE);
769 set_tsk_need_resched(tsk);
770 set_preempt_need_resched();
773 out:
774 spin_unlock(&pfault_lock);
775 put_task_struct(tsk);
778 static int pfault_cpu_dead(unsigned int cpu)
780 struct thread_struct *thread, *next;
781 struct task_struct *tsk;
783 spin_lock_irq(&pfault_lock);
784 list_for_each_entry_safe(thread, next, &pfault_list, list) {
785 thread->pfault_wait = 0;
786 list_del(&thread->list);
787 tsk = container_of(thread, struct task_struct, thread);
788 wake_up_process(tsk);
789 put_task_struct(tsk);
791 spin_unlock_irq(&pfault_lock);
792 return 0;
795 static int __init pfault_irq_init(void)
797 int rc;
799 rc = register_external_irq(EXT_IRQ_CP_SERVICE, pfault_interrupt);
800 if (rc)
801 goto out_extint;
802 rc = pfault_init() == 0 ? 0 : -EOPNOTSUPP;
803 if (rc)
804 goto out_pfault;
805 irq_subclass_register(IRQ_SUBCLASS_SERVICE_SIGNAL);
806 cpuhp_setup_state_nocalls(CPUHP_S390_PFAULT_DEAD, "s390/pfault:dead",
807 NULL, pfault_cpu_dead);
808 return 0;
810 out_pfault:
811 unregister_external_irq(EXT_IRQ_CP_SERVICE, pfault_interrupt);
812 out_extint:
813 pfault_disable = 1;
814 return rc;
816 early_initcall(pfault_irq_init);
818 #endif /* CONFIG_PFAULT */