treewide: remove redundant IS_ERR() before error code check
[linux/fpc-iii.git] / arch / sparc / kernel / pci_sabre.c
blob3c38ca40a22bace28681258759f98f38b334c4bf
1 // SPDX-License-Identifier: GPL-2.0
2 /* pci_sabre.c: Sabre specific PCI controller support.
4 * Copyright (C) 1997, 1998, 1999, 2007 David S. Miller (davem@davemloft.net)
5 * Copyright (C) 1998, 1999 Eddie C. Dost (ecd@skynet.be)
6 * Copyright (C) 1999 Jakub Jelinek (jakub@redhat.com)
7 */
9 #include <linux/kernel.h>
10 #include <linux/types.h>
11 #include <linux/pci.h>
12 #include <linux/init.h>
13 #include <linux/export.h>
14 #include <linux/slab.h>
15 #include <linux/interrupt.h>
16 #include <linux/of_device.h>
18 #include <asm/apb.h>
19 #include <asm/iommu.h>
20 #include <asm/irq.h>
21 #include <asm/prom.h>
22 #include <asm/upa.h>
24 #include "pci_impl.h"
25 #include "iommu_common.h"
26 #include "psycho_common.h"
28 #define DRIVER_NAME "sabre"
29 #define PFX DRIVER_NAME ": "
31 /* SABRE PCI controller register offsets and definitions. */
32 #define SABRE_UE_AFSR 0x0030UL
33 #define SABRE_UEAFSR_PDRD 0x4000000000000000UL /* Primary PCI DMA Read */
34 #define SABRE_UEAFSR_PDWR 0x2000000000000000UL /* Primary PCI DMA Write */
35 #define SABRE_UEAFSR_SDRD 0x0800000000000000UL /* Secondary PCI DMA Read */
36 #define SABRE_UEAFSR_SDWR 0x0400000000000000UL /* Secondary PCI DMA Write */
37 #define SABRE_UEAFSR_SDTE 0x0200000000000000UL /* Secondary DMA Translation Error */
38 #define SABRE_UEAFSR_PDTE 0x0100000000000000UL /* Primary DMA Translation Error */
39 #define SABRE_UEAFSR_BMSK 0x0000ffff00000000UL /* Bytemask */
40 #define SABRE_UEAFSR_OFF 0x00000000e0000000UL /* Offset (AFAR bits [5:3] */
41 #define SABRE_UEAFSR_BLK 0x0000000000800000UL /* Was block operation */
42 #define SABRE_UECE_AFAR 0x0038UL
43 #define SABRE_CE_AFSR 0x0040UL
44 #define SABRE_CEAFSR_PDRD 0x4000000000000000UL /* Primary PCI DMA Read */
45 #define SABRE_CEAFSR_PDWR 0x2000000000000000UL /* Primary PCI DMA Write */
46 #define SABRE_CEAFSR_SDRD 0x0800000000000000UL /* Secondary PCI DMA Read */
47 #define SABRE_CEAFSR_SDWR 0x0400000000000000UL /* Secondary PCI DMA Write */
48 #define SABRE_CEAFSR_ESYND 0x00ff000000000000UL /* ECC Syndrome */
49 #define SABRE_CEAFSR_BMSK 0x0000ffff00000000UL /* Bytemask */
50 #define SABRE_CEAFSR_OFF 0x00000000e0000000UL /* Offset */
51 #define SABRE_CEAFSR_BLK 0x0000000000800000UL /* Was block operation */
52 #define SABRE_UECE_AFAR_ALIAS 0x0048UL /* Aliases to 0x0038 */
53 #define SABRE_IOMMU_CONTROL 0x0200UL
54 #define SABRE_IOMMUCTRL_ERRSTS 0x0000000006000000UL /* Error status bits */
55 #define SABRE_IOMMUCTRL_ERR 0x0000000001000000UL /* Error present in IOTLB */
56 #define SABRE_IOMMUCTRL_LCKEN 0x0000000000800000UL /* IOTLB lock enable */
57 #define SABRE_IOMMUCTRL_LCKPTR 0x0000000000780000UL /* IOTLB lock pointer */
58 #define SABRE_IOMMUCTRL_TSBSZ 0x0000000000070000UL /* TSB Size */
59 #define SABRE_IOMMU_TSBSZ_1K 0x0000000000000000
60 #define SABRE_IOMMU_TSBSZ_2K 0x0000000000010000
61 #define SABRE_IOMMU_TSBSZ_4K 0x0000000000020000
62 #define SABRE_IOMMU_TSBSZ_8K 0x0000000000030000
63 #define SABRE_IOMMU_TSBSZ_16K 0x0000000000040000
64 #define SABRE_IOMMU_TSBSZ_32K 0x0000000000050000
65 #define SABRE_IOMMU_TSBSZ_64K 0x0000000000060000
66 #define SABRE_IOMMU_TSBSZ_128K 0x0000000000070000
67 #define SABRE_IOMMUCTRL_TBWSZ 0x0000000000000004UL /* TSB assumed page size */
68 #define SABRE_IOMMUCTRL_DENAB 0x0000000000000002UL /* Diagnostic Mode Enable */
69 #define SABRE_IOMMUCTRL_ENAB 0x0000000000000001UL /* IOMMU Enable */
70 #define SABRE_IOMMU_TSBBASE 0x0208UL
71 #define SABRE_IOMMU_FLUSH 0x0210UL
72 #define SABRE_IMAP_A_SLOT0 0x0c00UL
73 #define SABRE_IMAP_B_SLOT0 0x0c20UL
74 #define SABRE_IMAP_SCSI 0x1000UL
75 #define SABRE_IMAP_ETH 0x1008UL
76 #define SABRE_IMAP_BPP 0x1010UL
77 #define SABRE_IMAP_AU_REC 0x1018UL
78 #define SABRE_IMAP_AU_PLAY 0x1020UL
79 #define SABRE_IMAP_PFAIL 0x1028UL
80 #define SABRE_IMAP_KMS 0x1030UL
81 #define SABRE_IMAP_FLPY 0x1038UL
82 #define SABRE_IMAP_SHW 0x1040UL
83 #define SABRE_IMAP_KBD 0x1048UL
84 #define SABRE_IMAP_MS 0x1050UL
85 #define SABRE_IMAP_SER 0x1058UL
86 #define SABRE_IMAP_UE 0x1070UL
87 #define SABRE_IMAP_CE 0x1078UL
88 #define SABRE_IMAP_PCIERR 0x1080UL
89 #define SABRE_IMAP_GFX 0x1098UL
90 #define SABRE_IMAP_EUPA 0x10a0UL
91 #define SABRE_ICLR_A_SLOT0 0x1400UL
92 #define SABRE_ICLR_B_SLOT0 0x1480UL
93 #define SABRE_ICLR_SCSI 0x1800UL
94 #define SABRE_ICLR_ETH 0x1808UL
95 #define SABRE_ICLR_BPP 0x1810UL
96 #define SABRE_ICLR_AU_REC 0x1818UL
97 #define SABRE_ICLR_AU_PLAY 0x1820UL
98 #define SABRE_ICLR_PFAIL 0x1828UL
99 #define SABRE_ICLR_KMS 0x1830UL
100 #define SABRE_ICLR_FLPY 0x1838UL
101 #define SABRE_ICLR_SHW 0x1840UL
102 #define SABRE_ICLR_KBD 0x1848UL
103 #define SABRE_ICLR_MS 0x1850UL
104 #define SABRE_ICLR_SER 0x1858UL
105 #define SABRE_ICLR_UE 0x1870UL
106 #define SABRE_ICLR_CE 0x1878UL
107 #define SABRE_ICLR_PCIERR 0x1880UL
108 #define SABRE_WRSYNC 0x1c20UL
109 #define SABRE_PCICTRL 0x2000UL
110 #define SABRE_PCICTRL_MRLEN 0x0000001000000000UL /* Use MemoryReadLine for block loads/stores */
111 #define SABRE_PCICTRL_SERR 0x0000000400000000UL /* Set when SERR asserted on PCI bus */
112 #define SABRE_PCICTRL_ARBPARK 0x0000000000200000UL /* Bus Parking 0=Ultra-IIi 1=prev-bus-owner */
113 #define SABRE_PCICTRL_CPUPRIO 0x0000000000100000UL /* Ultra-IIi granted every other bus cycle */
114 #define SABRE_PCICTRL_ARBPRIO 0x00000000000f0000UL /* Slot which is granted every other bus cycle */
115 #define SABRE_PCICTRL_ERREN 0x0000000000000100UL /* PCI Error Interrupt Enable */
116 #define SABRE_PCICTRL_RTRYWE 0x0000000000000080UL /* DMA Flow Control 0=wait-if-possible 1=retry */
117 #define SABRE_PCICTRL_AEN 0x000000000000000fUL /* Slot PCI arbitration enables */
118 #define SABRE_PIOAFSR 0x2010UL
119 #define SABRE_PIOAFSR_PMA 0x8000000000000000UL /* Primary Master Abort */
120 #define SABRE_PIOAFSR_PTA 0x4000000000000000UL /* Primary Target Abort */
121 #define SABRE_PIOAFSR_PRTRY 0x2000000000000000UL /* Primary Excessive Retries */
122 #define SABRE_PIOAFSR_PPERR 0x1000000000000000UL /* Primary Parity Error */
123 #define SABRE_PIOAFSR_SMA 0x0800000000000000UL /* Secondary Master Abort */
124 #define SABRE_PIOAFSR_STA 0x0400000000000000UL /* Secondary Target Abort */
125 #define SABRE_PIOAFSR_SRTRY 0x0200000000000000UL /* Secondary Excessive Retries */
126 #define SABRE_PIOAFSR_SPERR 0x0100000000000000UL /* Secondary Parity Error */
127 #define SABRE_PIOAFSR_BMSK 0x0000ffff00000000UL /* Byte Mask */
128 #define SABRE_PIOAFSR_BLK 0x0000000080000000UL /* Was Block Operation */
129 #define SABRE_PIOAFAR 0x2018UL
130 #define SABRE_PCIDIAG 0x2020UL
131 #define SABRE_PCIDIAG_DRTRY 0x0000000000000040UL /* Disable PIO Retry Limit */
132 #define SABRE_PCIDIAG_IPAPAR 0x0000000000000008UL /* Invert PIO Address Parity */
133 #define SABRE_PCIDIAG_IPDPAR 0x0000000000000004UL /* Invert PIO Data Parity */
134 #define SABRE_PCIDIAG_IDDPAR 0x0000000000000002UL /* Invert DMA Data Parity */
135 #define SABRE_PCIDIAG_ELPBK 0x0000000000000001UL /* Loopback Enable - not supported */
136 #define SABRE_PCITASR 0x2028UL
137 #define SABRE_PCITASR_EF 0x0000000000000080UL /* Respond to 0xe0000000-0xffffffff */
138 #define SABRE_PCITASR_CD 0x0000000000000040UL /* Respond to 0xc0000000-0xdfffffff */
139 #define SABRE_PCITASR_AB 0x0000000000000020UL /* Respond to 0xa0000000-0xbfffffff */
140 #define SABRE_PCITASR_89 0x0000000000000010UL /* Respond to 0x80000000-0x9fffffff */
141 #define SABRE_PCITASR_67 0x0000000000000008UL /* Respond to 0x60000000-0x7fffffff */
142 #define SABRE_PCITASR_45 0x0000000000000004UL /* Respond to 0x40000000-0x5fffffff */
143 #define SABRE_PCITASR_23 0x0000000000000002UL /* Respond to 0x20000000-0x3fffffff */
144 #define SABRE_PCITASR_01 0x0000000000000001UL /* Respond to 0x00000000-0x1fffffff */
145 #define SABRE_PIOBUF_DIAG 0x5000UL
146 #define SABRE_DMABUF_DIAGLO 0x5100UL
147 #define SABRE_DMABUF_DIAGHI 0x51c0UL
148 #define SABRE_IMAP_GFX_ALIAS 0x6000UL /* Aliases to 0x1098 */
149 #define SABRE_IMAP_EUPA_ALIAS 0x8000UL /* Aliases to 0x10a0 */
150 #define SABRE_IOMMU_VADIAG 0xa400UL
151 #define SABRE_IOMMU_TCDIAG 0xa408UL
152 #define SABRE_IOMMU_TAG 0xa580UL
153 #define SABRE_IOMMUTAG_ERRSTS 0x0000000001800000UL /* Error status bits */
154 #define SABRE_IOMMUTAG_ERR 0x0000000000400000UL /* Error present */
155 #define SABRE_IOMMUTAG_WRITE 0x0000000000200000UL /* Page is writable */
156 #define SABRE_IOMMUTAG_STREAM 0x0000000000100000UL /* Streamable bit - unused */
157 #define SABRE_IOMMUTAG_SIZE 0x0000000000080000UL /* 0=8k 1=16k */
158 #define SABRE_IOMMUTAG_VPN 0x000000000007ffffUL /* Virtual Page Number [31:13] */
159 #define SABRE_IOMMU_DATA 0xa600UL
160 #define SABRE_IOMMUDATA_VALID 0x0000000040000000UL /* Valid */
161 #define SABRE_IOMMUDATA_USED 0x0000000020000000UL /* Used (for LRU algorithm) */
162 #define SABRE_IOMMUDATA_CACHE 0x0000000010000000UL /* Cacheable */
163 #define SABRE_IOMMUDATA_PPN 0x00000000001fffffUL /* Physical Page Number [33:13] */
164 #define SABRE_PCI_IRQSTATE 0xa800UL
165 #define SABRE_OBIO_IRQSTATE 0xa808UL
166 #define SABRE_FFBCFG 0xf000UL
167 #define SABRE_FFBCFG_SPRQS 0x000000000f000000 /* Slave P_RQST queue size */
168 #define SABRE_FFBCFG_ONEREAD 0x0000000000004000 /* Slave supports one outstanding read */
169 #define SABRE_MCCTRL0 0xf010UL
170 #define SABRE_MCCTRL0_RENAB 0x0000000080000000 /* Refresh Enable */
171 #define SABRE_MCCTRL0_EENAB 0x0000000010000000 /* Enable all ECC functions */
172 #define SABRE_MCCTRL0_11BIT 0x0000000000001000 /* Enable 11-bit column addressing */
173 #define SABRE_MCCTRL0_DPP 0x0000000000000f00 /* DIMM Pair Present Bits */
174 #define SABRE_MCCTRL0_RINTVL 0x00000000000000ff /* Refresh Interval */
175 #define SABRE_MCCTRL1 0xf018UL
176 #define SABRE_MCCTRL1_AMDC 0x0000000038000000 /* Advance Memdata Clock */
177 #define SABRE_MCCTRL1_ARDC 0x0000000007000000 /* Advance DRAM Read Data Clock */
178 #define SABRE_MCCTRL1_CSR 0x0000000000e00000 /* CAS to RAS delay for CBR refresh */
179 #define SABRE_MCCTRL1_CASRW 0x00000000001c0000 /* CAS length for read/write */
180 #define SABRE_MCCTRL1_RCD 0x0000000000038000 /* RAS to CAS delay */
181 #define SABRE_MCCTRL1_CP 0x0000000000007000 /* CAS Precharge */
182 #define SABRE_MCCTRL1_RP 0x0000000000000e00 /* RAS Precharge */
183 #define SABRE_MCCTRL1_RAS 0x00000000000001c0 /* Length of RAS for refresh */
184 #define SABRE_MCCTRL1_CASRW2 0x0000000000000038 /* Must be same as CASRW */
185 #define SABRE_MCCTRL1_RSC 0x0000000000000007 /* RAS after CAS hold time */
186 #define SABRE_RESETCTRL 0xf020UL
188 #define SABRE_CONFIGSPACE 0x001000000UL
189 #define SABRE_IOSPACE 0x002000000UL
190 #define SABRE_IOSPACE_SIZE 0x000ffffffUL
191 #define SABRE_MEMSPACE 0x100000000UL
192 #define SABRE_MEMSPACE_SIZE 0x07fffffffUL
194 static int hummingbird_p;
195 static struct pci_bus *sabre_root_bus;
197 static irqreturn_t sabre_ue_intr(int irq, void *dev_id)
199 struct pci_pbm_info *pbm = dev_id;
200 unsigned long afsr_reg = pbm->controller_regs + SABRE_UE_AFSR;
201 unsigned long afar_reg = pbm->controller_regs + SABRE_UECE_AFAR;
202 unsigned long afsr, afar, error_bits;
203 int reported;
205 /* Latch uncorrectable error status. */
206 afar = upa_readq(afar_reg);
207 afsr = upa_readq(afsr_reg);
209 /* Clear the primary/secondary error status bits. */
210 error_bits = afsr &
211 (SABRE_UEAFSR_PDRD | SABRE_UEAFSR_PDWR |
212 SABRE_UEAFSR_SDRD | SABRE_UEAFSR_SDWR |
213 SABRE_UEAFSR_SDTE | SABRE_UEAFSR_PDTE);
214 if (!error_bits)
215 return IRQ_NONE;
216 upa_writeq(error_bits, afsr_reg);
218 /* Log the error. */
219 printk("%s: Uncorrectable Error, primary error type[%s%s]\n",
220 pbm->name,
221 ((error_bits & SABRE_UEAFSR_PDRD) ?
222 "DMA Read" :
223 ((error_bits & SABRE_UEAFSR_PDWR) ?
224 "DMA Write" : "???")),
225 ((error_bits & SABRE_UEAFSR_PDTE) ?
226 ":Translation Error" : ""));
227 printk("%s: bytemask[%04lx] dword_offset[%lx] was_block(%d)\n",
228 pbm->name,
229 (afsr & SABRE_UEAFSR_BMSK) >> 32UL,
230 (afsr & SABRE_UEAFSR_OFF) >> 29UL,
231 ((afsr & SABRE_UEAFSR_BLK) ? 1 : 0));
232 printk("%s: UE AFAR [%016lx]\n", pbm->name, afar);
233 printk("%s: UE Secondary errors [", pbm->name);
234 reported = 0;
235 if (afsr & SABRE_UEAFSR_SDRD) {
236 reported++;
237 printk("(DMA Read)");
239 if (afsr & SABRE_UEAFSR_SDWR) {
240 reported++;
241 printk("(DMA Write)");
243 if (afsr & SABRE_UEAFSR_SDTE) {
244 reported++;
245 printk("(Translation Error)");
247 if (!reported)
248 printk("(none)");
249 printk("]\n");
251 /* Interrogate IOMMU for error status. */
252 psycho_check_iommu_error(pbm, afsr, afar, UE_ERR);
254 return IRQ_HANDLED;
257 static irqreturn_t sabre_ce_intr(int irq, void *dev_id)
259 struct pci_pbm_info *pbm = dev_id;
260 unsigned long afsr_reg = pbm->controller_regs + SABRE_CE_AFSR;
261 unsigned long afar_reg = pbm->controller_regs + SABRE_UECE_AFAR;
262 unsigned long afsr, afar, error_bits;
263 int reported;
265 /* Latch error status. */
266 afar = upa_readq(afar_reg);
267 afsr = upa_readq(afsr_reg);
269 /* Clear primary/secondary error status bits. */
270 error_bits = afsr &
271 (SABRE_CEAFSR_PDRD | SABRE_CEAFSR_PDWR |
272 SABRE_CEAFSR_SDRD | SABRE_CEAFSR_SDWR);
273 if (!error_bits)
274 return IRQ_NONE;
275 upa_writeq(error_bits, afsr_reg);
277 /* Log the error. */
278 printk("%s: Correctable Error, primary error type[%s]\n",
279 pbm->name,
280 ((error_bits & SABRE_CEAFSR_PDRD) ?
281 "DMA Read" :
282 ((error_bits & SABRE_CEAFSR_PDWR) ?
283 "DMA Write" : "???")));
285 /* XXX Use syndrome and afar to print out module string just like
286 * XXX UDB CE trap handler does... -DaveM
288 printk("%s: syndrome[%02lx] bytemask[%04lx] dword_offset[%lx] "
289 "was_block(%d)\n",
290 pbm->name,
291 (afsr & SABRE_CEAFSR_ESYND) >> 48UL,
292 (afsr & SABRE_CEAFSR_BMSK) >> 32UL,
293 (afsr & SABRE_CEAFSR_OFF) >> 29UL,
294 ((afsr & SABRE_CEAFSR_BLK) ? 1 : 0));
295 printk("%s: CE AFAR [%016lx]\n", pbm->name, afar);
296 printk("%s: CE Secondary errors [", pbm->name);
297 reported = 0;
298 if (afsr & SABRE_CEAFSR_SDRD) {
299 reported++;
300 printk("(DMA Read)");
302 if (afsr & SABRE_CEAFSR_SDWR) {
303 reported++;
304 printk("(DMA Write)");
306 if (!reported)
307 printk("(none)");
308 printk("]\n");
310 return IRQ_HANDLED;
313 static void sabre_register_error_handlers(struct pci_pbm_info *pbm)
315 struct device_node *dp = pbm->op->dev.of_node;
316 struct platform_device *op;
317 unsigned long base = pbm->controller_regs;
318 u64 tmp;
319 int err;
321 if (pbm->chip_type == PBM_CHIP_TYPE_SABRE)
322 dp = dp->parent;
324 op = of_find_device_by_node(dp);
325 if (!op)
326 return;
328 /* Sabre/Hummingbird IRQ property layout is:
329 * 0: PCI ERR
330 * 1: UE ERR
331 * 2: CE ERR
332 * 3: POWER FAIL
334 if (op->archdata.num_irqs < 4)
335 return;
337 /* We clear the error bits in the appropriate AFSR before
338 * registering the handler so that we don't get spurious
339 * interrupts.
341 upa_writeq((SABRE_UEAFSR_PDRD | SABRE_UEAFSR_PDWR |
342 SABRE_UEAFSR_SDRD | SABRE_UEAFSR_SDWR |
343 SABRE_UEAFSR_SDTE | SABRE_UEAFSR_PDTE),
344 base + SABRE_UE_AFSR);
346 err = request_irq(op->archdata.irqs[1], sabre_ue_intr, 0, "SABRE_UE", pbm);
347 if (err)
348 printk(KERN_WARNING "%s: Couldn't register UE, err=%d.\n",
349 pbm->name, err);
351 upa_writeq((SABRE_CEAFSR_PDRD | SABRE_CEAFSR_PDWR |
352 SABRE_CEAFSR_SDRD | SABRE_CEAFSR_SDWR),
353 base + SABRE_CE_AFSR);
356 err = request_irq(op->archdata.irqs[2], sabre_ce_intr, 0, "SABRE_CE", pbm);
357 if (err)
358 printk(KERN_WARNING "%s: Couldn't register CE, err=%d.\n",
359 pbm->name, err);
360 err = request_irq(op->archdata.irqs[0], psycho_pcierr_intr, 0,
361 "SABRE_PCIERR", pbm);
362 if (err)
363 printk(KERN_WARNING "%s: Couldn't register PCIERR, err=%d.\n",
364 pbm->name, err);
366 tmp = upa_readq(base + SABRE_PCICTRL);
367 tmp |= SABRE_PCICTRL_ERREN;
368 upa_writeq(tmp, base + SABRE_PCICTRL);
371 static void apb_init(struct pci_bus *sabre_bus)
373 struct pci_dev *pdev;
375 list_for_each_entry(pdev, &sabre_bus->devices, bus_list) {
376 if (pdev->vendor == PCI_VENDOR_ID_SUN &&
377 pdev->device == PCI_DEVICE_ID_SUN_SIMBA) {
378 u16 word16;
380 pci_read_config_word(pdev, PCI_COMMAND, &word16);
381 word16 |= PCI_COMMAND_SERR | PCI_COMMAND_PARITY |
382 PCI_COMMAND_MASTER | PCI_COMMAND_MEMORY |
383 PCI_COMMAND_IO;
384 pci_write_config_word(pdev, PCI_COMMAND, word16);
386 /* Status register bits are "write 1 to clear". */
387 pci_write_config_word(pdev, PCI_STATUS, 0xffff);
388 pci_write_config_word(pdev, PCI_SEC_STATUS, 0xffff);
390 /* Use a primary/seconday latency timer value
391 * of 64.
393 pci_write_config_byte(pdev, PCI_LATENCY_TIMER, 64);
394 pci_write_config_byte(pdev, PCI_SEC_LATENCY_TIMER, 64);
396 /* Enable reporting/forwarding of master aborts,
397 * parity, and SERR.
399 pci_write_config_byte(pdev, PCI_BRIDGE_CONTROL,
400 (PCI_BRIDGE_CTL_PARITY |
401 PCI_BRIDGE_CTL_SERR |
402 PCI_BRIDGE_CTL_MASTER_ABORT));
407 static void sabre_scan_bus(struct pci_pbm_info *pbm, struct device *parent)
409 static int once;
411 /* The APB bridge speaks to the Sabre host PCI bridge
412 * at 66Mhz, but the front side of APB runs at 33Mhz
413 * for both segments.
415 * Hummingbird systems do not use APB, so they run
416 * at 66MHZ.
418 if (hummingbird_p)
419 pbm->is_66mhz_capable = 1;
420 else
421 pbm->is_66mhz_capable = 0;
423 /* This driver has not been verified to handle
424 * multiple SABREs yet, so trap this.
426 * Also note that the SABRE host bridge is hardwired
427 * to live at bus 0.
429 if (once != 0) {
430 printk(KERN_ERR PFX "Multiple controllers unsupported.\n");
431 return;
433 once++;
435 pbm->pci_bus = pci_scan_one_pbm(pbm, parent);
436 if (!pbm->pci_bus)
437 return;
439 sabre_root_bus = pbm->pci_bus;
441 apb_init(pbm->pci_bus);
443 sabre_register_error_handlers(pbm);
446 static void sabre_pbm_init(struct pci_pbm_info *pbm,
447 struct platform_device *op)
449 psycho_pbm_init_common(pbm, op, "SABRE", PBM_CHIP_TYPE_SABRE);
450 pbm->pci_afsr = pbm->controller_regs + SABRE_PIOAFSR;
451 pbm->pci_afar = pbm->controller_regs + SABRE_PIOAFAR;
452 pbm->pci_csr = pbm->controller_regs + SABRE_PCICTRL;
453 sabre_scan_bus(pbm, &op->dev);
456 static const struct of_device_id sabre_match[];
457 static int sabre_probe(struct platform_device *op)
459 const struct of_device_id *match;
460 const struct linux_prom64_registers *pr_regs;
461 struct device_node *dp = op->dev.of_node;
462 struct pci_pbm_info *pbm;
463 u32 upa_portid, dma_mask;
464 struct iommu *iommu;
465 int tsbsize, err;
466 const u32 *vdma;
467 u64 clear_irq;
469 match = of_match_device(sabre_match, &op->dev);
470 hummingbird_p = match && (match->data != NULL);
471 if (!hummingbird_p) {
472 struct device_node *cpu_dp;
474 /* Of course, Sun has to encode things a thousand
475 * different ways, inconsistently.
477 for_each_node_by_type(cpu_dp, "cpu") {
478 if (of_node_name_eq(cpu_dp, "SUNW,UltraSPARC-IIe"))
479 hummingbird_p = 1;
483 err = -ENOMEM;
484 pbm = kzalloc(sizeof(*pbm), GFP_KERNEL);
485 if (!pbm) {
486 printk(KERN_ERR PFX "Cannot allocate pci_pbm_info.\n");
487 goto out_err;
490 iommu = kzalloc(sizeof(*iommu), GFP_KERNEL);
491 if (!iommu) {
492 printk(KERN_ERR PFX "Cannot allocate PBM iommu.\n");
493 goto out_free_controller;
496 pbm->iommu = iommu;
498 upa_portid = of_getintprop_default(dp, "upa-portid", 0xff);
500 pbm->portid = upa_portid;
503 * Map in SABRE register set and report the presence of this SABRE.
506 pr_regs = of_get_property(dp, "reg", NULL);
507 err = -ENODEV;
508 if (!pr_regs) {
509 printk(KERN_ERR PFX "No reg property\n");
510 goto out_free_iommu;
514 * First REG in property is base of entire SABRE register space.
516 pbm->controller_regs = pr_regs[0].phys_addr;
518 /* Clear interrupts */
520 /* PCI first */
521 for (clear_irq = SABRE_ICLR_A_SLOT0; clear_irq < SABRE_ICLR_B_SLOT0 + 0x80; clear_irq += 8)
522 upa_writeq(0x0UL, pbm->controller_regs + clear_irq);
524 /* Then OBIO */
525 for (clear_irq = SABRE_ICLR_SCSI; clear_irq < SABRE_ICLR_SCSI + 0x80; clear_irq += 8)
526 upa_writeq(0x0UL, pbm->controller_regs + clear_irq);
528 /* Error interrupts are enabled later after the bus scan. */
529 upa_writeq((SABRE_PCICTRL_MRLEN | SABRE_PCICTRL_SERR |
530 SABRE_PCICTRL_ARBPARK | SABRE_PCICTRL_AEN),
531 pbm->controller_regs + SABRE_PCICTRL);
533 /* Now map in PCI config space for entire SABRE. */
534 pbm->config_space = pbm->controller_regs + SABRE_CONFIGSPACE;
536 vdma = of_get_property(dp, "virtual-dma", NULL);
537 if (!vdma) {
538 printk(KERN_ERR PFX "No virtual-dma property\n");
539 goto out_free_iommu;
542 dma_mask = vdma[0];
543 switch(vdma[1]) {
544 case 0x20000000:
545 dma_mask |= 0x1fffffff;
546 tsbsize = 64;
547 break;
548 case 0x40000000:
549 dma_mask |= 0x3fffffff;
550 tsbsize = 128;
551 break;
553 case 0x80000000:
554 dma_mask |= 0x7fffffff;
555 tsbsize = 128;
556 break;
557 default:
558 printk(KERN_ERR PFX "Strange virtual-dma size.\n");
559 goto out_free_iommu;
562 err = psycho_iommu_init(pbm, tsbsize, vdma[0], dma_mask, SABRE_WRSYNC);
563 if (err)
564 goto out_free_iommu;
567 * Look for APB underneath.
569 sabre_pbm_init(pbm, op);
571 pbm->next = pci_pbm_root;
572 pci_pbm_root = pbm;
574 dev_set_drvdata(&op->dev, pbm);
576 return 0;
578 out_free_iommu:
579 kfree(pbm->iommu);
581 out_free_controller:
582 kfree(pbm);
584 out_err:
585 return err;
588 static const struct of_device_id sabre_match[] = {
590 .name = "pci",
591 .compatible = "pci108e,a001",
592 .data = (void *) 1,
595 .name = "pci",
596 .compatible = "pci108e,a000",
601 static struct platform_driver sabre_driver = {
602 .driver = {
603 .name = DRIVER_NAME,
604 .of_match_table = sabre_match,
606 .probe = sabre_probe,
609 static int __init sabre_init(void)
611 return platform_driver_register(&sabre_driver);
614 subsys_initcall(sabre_init);