treewide: remove redundant IS_ERR() before error code check
[linux/fpc-iii.git] / arch / sparc / mm / srmmu.c
blobf56c3c9a97933765d6931b7cb0654eab6bff13ec
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * srmmu.c: SRMMU specific routines for memory management.
5 * Copyright (C) 1995 David S. Miller (davem@caip.rutgers.edu)
6 * Copyright (C) 1995,2002 Pete Zaitcev (zaitcev@yahoo.com)
7 * Copyright (C) 1996 Eddie C. Dost (ecd@skynet.be)
8 * Copyright (C) 1997,1998 Jakub Jelinek (jj@sunsite.mff.cuni.cz)
9 * Copyright (C) 1999,2000 Anton Blanchard (anton@samba.org)
12 #include <linux/seq_file.h>
13 #include <linux/spinlock.h>
14 #include <linux/memblock.h>
15 #include <linux/pagemap.h>
16 #include <linux/vmalloc.h>
17 #include <linux/kdebug.h>
18 #include <linux/export.h>
19 #include <linux/kernel.h>
20 #include <linux/init.h>
21 #include <linux/log2.h>
22 #include <linux/gfp.h>
23 #include <linux/fs.h>
24 #include <linux/mm.h>
26 #include <asm/mmu_context.h>
27 #include <asm/cacheflush.h>
28 #include <asm/tlbflush.h>
29 #include <asm/io-unit.h>
30 #include <asm/pgalloc.h>
31 #include <asm/pgtable.h>
32 #include <asm/bitext.h>
33 #include <asm/vaddrs.h>
34 #include <asm/cache.h>
35 #include <asm/traps.h>
36 #include <asm/oplib.h>
37 #include <asm/mbus.h>
38 #include <asm/page.h>
39 #include <asm/asi.h>
40 #include <asm/smp.h>
41 #include <asm/io.h>
43 /* Now the cpu specific definitions. */
44 #include <asm/turbosparc.h>
45 #include <asm/tsunami.h>
46 #include <asm/viking.h>
47 #include <asm/swift.h>
48 #include <asm/leon.h>
49 #include <asm/mxcc.h>
50 #include <asm/ross.h>
52 #include "mm_32.h"
54 enum mbus_module srmmu_modtype;
55 static unsigned int hwbug_bitmask;
56 int vac_cache_size;
57 EXPORT_SYMBOL(vac_cache_size);
58 int vac_line_size;
60 extern struct resource sparc_iomap;
62 extern unsigned long last_valid_pfn;
64 static pgd_t *srmmu_swapper_pg_dir;
66 const struct sparc32_cachetlb_ops *sparc32_cachetlb_ops;
67 EXPORT_SYMBOL(sparc32_cachetlb_ops);
69 #ifdef CONFIG_SMP
70 const struct sparc32_cachetlb_ops *local_ops;
72 #define FLUSH_BEGIN(mm)
73 #define FLUSH_END
74 #else
75 #define FLUSH_BEGIN(mm) if ((mm)->context != NO_CONTEXT) {
76 #define FLUSH_END }
77 #endif
79 int flush_page_for_dma_global = 1;
81 char *srmmu_name;
83 ctxd_t *srmmu_ctx_table_phys;
84 static ctxd_t *srmmu_context_table;
86 int viking_mxcc_present;
87 static DEFINE_SPINLOCK(srmmu_context_spinlock);
89 static int is_hypersparc;
91 static int srmmu_cache_pagetables;
93 /* these will be initialized in srmmu_nocache_calcsize() */
94 static unsigned long srmmu_nocache_size;
95 static unsigned long srmmu_nocache_end;
97 /* 1 bit <=> 256 bytes of nocache <=> 64 PTEs */
98 #define SRMMU_NOCACHE_BITMAP_SHIFT (PAGE_SHIFT - 4)
100 /* The context table is a nocache user with the biggest alignment needs. */
101 #define SRMMU_NOCACHE_ALIGN_MAX (sizeof(ctxd_t)*SRMMU_MAX_CONTEXTS)
103 void *srmmu_nocache_pool;
104 static struct bit_map srmmu_nocache_map;
106 static inline int srmmu_pmd_none(pmd_t pmd)
107 { return !(pmd_val(pmd) & 0xFFFFFFF); }
109 /* XXX should we hyper_flush_whole_icache here - Anton */
110 static inline void srmmu_ctxd_set(ctxd_t *ctxp, pgd_t *pgdp)
112 pte_t pte;
114 pte = __pte((SRMMU_ET_PTD | (__nocache_pa(pgdp) >> 4)));
115 set_pte((pte_t *)ctxp, pte);
119 * Locations of MSI Registers.
121 #define MSI_MBUS_ARBEN 0xe0001008 /* MBus Arbiter Enable register */
124 * Useful bits in the MSI Registers.
126 #define MSI_ASYNC_MODE 0x80000000 /* Operate the MSI asynchronously */
128 static void msi_set_sync(void)
130 __asm__ __volatile__ ("lda [%0] %1, %%g3\n\t"
131 "andn %%g3, %2, %%g3\n\t"
132 "sta %%g3, [%0] %1\n\t" : :
133 "r" (MSI_MBUS_ARBEN),
134 "i" (ASI_M_CTL), "r" (MSI_ASYNC_MODE) : "g3");
137 void pmd_set(pmd_t *pmdp, pte_t *ptep)
139 unsigned long ptp; /* Physical address, shifted right by 4 */
140 int i;
142 ptp = __nocache_pa(ptep) >> 4;
143 for (i = 0; i < PTRS_PER_PTE/SRMMU_REAL_PTRS_PER_PTE; i++) {
144 set_pte((pte_t *)&pmdp->pmdv[i], __pte(SRMMU_ET_PTD | ptp));
145 ptp += (SRMMU_REAL_PTRS_PER_PTE * sizeof(pte_t) >> 4);
149 void pmd_populate(struct mm_struct *mm, pmd_t *pmdp, struct page *ptep)
151 unsigned long ptp; /* Physical address, shifted right by 4 */
152 int i;
154 ptp = page_to_pfn(ptep) << (PAGE_SHIFT-4); /* watch for overflow */
155 for (i = 0; i < PTRS_PER_PTE/SRMMU_REAL_PTRS_PER_PTE; i++) {
156 set_pte((pte_t *)&pmdp->pmdv[i], __pte(SRMMU_ET_PTD | ptp));
157 ptp += (SRMMU_REAL_PTRS_PER_PTE * sizeof(pte_t) >> 4);
161 /* Find an entry in the third-level page table.. */
162 pte_t *pte_offset_kernel(pmd_t *dir, unsigned long address)
164 void *pte;
166 pte = __nocache_va((dir->pmdv[0] & SRMMU_PTD_PMASK) << 4);
167 return (pte_t *) pte +
168 ((address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1));
172 * size: bytes to allocate in the nocache area.
173 * align: bytes, number to align at.
174 * Returns the virtual address of the allocated area.
176 static void *__srmmu_get_nocache(int size, int align)
178 int offset;
179 unsigned long addr;
181 if (size < SRMMU_NOCACHE_BITMAP_SHIFT) {
182 printk(KERN_ERR "Size 0x%x too small for nocache request\n",
183 size);
184 size = SRMMU_NOCACHE_BITMAP_SHIFT;
186 if (size & (SRMMU_NOCACHE_BITMAP_SHIFT - 1)) {
187 printk(KERN_ERR "Size 0x%x unaligned int nocache request\n",
188 size);
189 size += SRMMU_NOCACHE_BITMAP_SHIFT - 1;
191 BUG_ON(align > SRMMU_NOCACHE_ALIGN_MAX);
193 offset = bit_map_string_get(&srmmu_nocache_map,
194 size >> SRMMU_NOCACHE_BITMAP_SHIFT,
195 align >> SRMMU_NOCACHE_BITMAP_SHIFT);
196 if (offset == -1) {
197 printk(KERN_ERR "srmmu: out of nocache %d: %d/%d\n",
198 size, (int) srmmu_nocache_size,
199 srmmu_nocache_map.used << SRMMU_NOCACHE_BITMAP_SHIFT);
200 return NULL;
203 addr = SRMMU_NOCACHE_VADDR + (offset << SRMMU_NOCACHE_BITMAP_SHIFT);
204 return (void *)addr;
207 void *srmmu_get_nocache(int size, int align)
209 void *tmp;
211 tmp = __srmmu_get_nocache(size, align);
213 if (tmp)
214 memset(tmp, 0, size);
216 return tmp;
219 void srmmu_free_nocache(void *addr, int size)
221 unsigned long vaddr;
222 int offset;
224 vaddr = (unsigned long)addr;
225 if (vaddr < SRMMU_NOCACHE_VADDR) {
226 printk("Vaddr %lx is smaller than nocache base 0x%lx\n",
227 vaddr, (unsigned long)SRMMU_NOCACHE_VADDR);
228 BUG();
230 if (vaddr + size > srmmu_nocache_end) {
231 printk("Vaddr %lx is bigger than nocache end 0x%lx\n",
232 vaddr, srmmu_nocache_end);
233 BUG();
235 if (!is_power_of_2(size)) {
236 printk("Size 0x%x is not a power of 2\n", size);
237 BUG();
239 if (size < SRMMU_NOCACHE_BITMAP_SHIFT) {
240 printk("Size 0x%x is too small\n", size);
241 BUG();
243 if (vaddr & (size - 1)) {
244 printk("Vaddr %lx is not aligned to size 0x%x\n", vaddr, size);
245 BUG();
248 offset = (vaddr - SRMMU_NOCACHE_VADDR) >> SRMMU_NOCACHE_BITMAP_SHIFT;
249 size = size >> SRMMU_NOCACHE_BITMAP_SHIFT;
251 bit_map_clear(&srmmu_nocache_map, offset, size);
254 static void srmmu_early_allocate_ptable_skeleton(unsigned long start,
255 unsigned long end);
257 /* Return how much physical memory we have. */
258 static unsigned long __init probe_memory(void)
260 unsigned long total = 0;
261 int i;
263 for (i = 0; sp_banks[i].num_bytes; i++)
264 total += sp_banks[i].num_bytes;
266 return total;
270 * Reserve nocache dynamically proportionally to the amount of
271 * system RAM. -- Tomas Szepe <szepe@pinerecords.com>, June 2002
273 static void __init srmmu_nocache_calcsize(void)
275 unsigned long sysmemavail = probe_memory() / 1024;
276 int srmmu_nocache_npages;
278 srmmu_nocache_npages =
279 sysmemavail / SRMMU_NOCACHE_ALCRATIO / 1024 * 256;
281 /* P3 XXX The 4x overuse: corroborated by /proc/meminfo. */
282 // if (srmmu_nocache_npages < 256) srmmu_nocache_npages = 256;
283 if (srmmu_nocache_npages < SRMMU_MIN_NOCACHE_PAGES)
284 srmmu_nocache_npages = SRMMU_MIN_NOCACHE_PAGES;
286 /* anything above 1280 blows up */
287 if (srmmu_nocache_npages > SRMMU_MAX_NOCACHE_PAGES)
288 srmmu_nocache_npages = SRMMU_MAX_NOCACHE_PAGES;
290 srmmu_nocache_size = srmmu_nocache_npages * PAGE_SIZE;
291 srmmu_nocache_end = SRMMU_NOCACHE_VADDR + srmmu_nocache_size;
294 static void __init srmmu_nocache_init(void)
296 void *srmmu_nocache_bitmap;
297 unsigned int bitmap_bits;
298 pgd_t *pgd;
299 p4d_t *p4d;
300 pud_t *pud;
301 pmd_t *pmd;
302 pte_t *pte;
303 unsigned long paddr, vaddr;
304 unsigned long pteval;
306 bitmap_bits = srmmu_nocache_size >> SRMMU_NOCACHE_BITMAP_SHIFT;
308 srmmu_nocache_pool = memblock_alloc(srmmu_nocache_size,
309 SRMMU_NOCACHE_ALIGN_MAX);
310 if (!srmmu_nocache_pool)
311 panic("%s: Failed to allocate %lu bytes align=0x%x\n",
312 __func__, srmmu_nocache_size, SRMMU_NOCACHE_ALIGN_MAX);
313 memset(srmmu_nocache_pool, 0, srmmu_nocache_size);
315 srmmu_nocache_bitmap =
316 memblock_alloc(BITS_TO_LONGS(bitmap_bits) * sizeof(long),
317 SMP_CACHE_BYTES);
318 if (!srmmu_nocache_bitmap)
319 panic("%s: Failed to allocate %zu bytes\n", __func__,
320 BITS_TO_LONGS(bitmap_bits) * sizeof(long));
321 bit_map_init(&srmmu_nocache_map, srmmu_nocache_bitmap, bitmap_bits);
323 srmmu_swapper_pg_dir = __srmmu_get_nocache(SRMMU_PGD_TABLE_SIZE, SRMMU_PGD_TABLE_SIZE);
324 memset(__nocache_fix(srmmu_swapper_pg_dir), 0, SRMMU_PGD_TABLE_SIZE);
325 init_mm.pgd = srmmu_swapper_pg_dir;
327 srmmu_early_allocate_ptable_skeleton(SRMMU_NOCACHE_VADDR, srmmu_nocache_end);
329 paddr = __pa((unsigned long)srmmu_nocache_pool);
330 vaddr = SRMMU_NOCACHE_VADDR;
332 while (vaddr < srmmu_nocache_end) {
333 pgd = pgd_offset_k(vaddr);
334 p4d = p4d_offset(__nocache_fix(pgd), vaddr);
335 pud = pud_offset(__nocache_fix(p4d), vaddr);
336 pmd = pmd_offset(__nocache_fix(pgd), vaddr);
337 pte = pte_offset_kernel(__nocache_fix(pmd), vaddr);
339 pteval = ((paddr >> 4) | SRMMU_ET_PTE | SRMMU_PRIV);
341 if (srmmu_cache_pagetables)
342 pteval |= SRMMU_CACHE;
344 set_pte(__nocache_fix(pte), __pte(pteval));
346 vaddr += PAGE_SIZE;
347 paddr += PAGE_SIZE;
350 flush_cache_all();
351 flush_tlb_all();
354 pgd_t *get_pgd_fast(void)
356 pgd_t *pgd = NULL;
358 pgd = __srmmu_get_nocache(SRMMU_PGD_TABLE_SIZE, SRMMU_PGD_TABLE_SIZE);
359 if (pgd) {
360 pgd_t *init = pgd_offset_k(0);
361 memset(pgd, 0, USER_PTRS_PER_PGD * sizeof(pgd_t));
362 memcpy(pgd + USER_PTRS_PER_PGD, init + USER_PTRS_PER_PGD,
363 (PTRS_PER_PGD - USER_PTRS_PER_PGD) * sizeof(pgd_t));
366 return pgd;
370 * Hardware needs alignment to 256 only, but we align to whole page size
371 * to reduce fragmentation problems due to the buddy principle.
372 * XXX Provide actual fragmentation statistics in /proc.
374 * Alignments up to the page size are the same for physical and virtual
375 * addresses of the nocache area.
377 pgtable_t pte_alloc_one(struct mm_struct *mm)
379 unsigned long pte;
380 struct page *page;
382 if ((pte = (unsigned long)pte_alloc_one_kernel(mm)) == 0)
383 return NULL;
384 page = pfn_to_page(__nocache_pa(pte) >> PAGE_SHIFT);
385 if (!pgtable_pte_page_ctor(page)) {
386 __free_page(page);
387 return NULL;
389 return page;
392 void pte_free(struct mm_struct *mm, pgtable_t pte)
394 unsigned long p;
396 pgtable_pte_page_dtor(pte);
397 p = (unsigned long)page_address(pte); /* Cached address (for test) */
398 if (p == 0)
399 BUG();
400 p = page_to_pfn(pte) << PAGE_SHIFT; /* Physical address */
402 /* free non cached virtual address*/
403 srmmu_free_nocache(__nocache_va(p), PTE_SIZE);
406 /* context handling - a dynamically sized pool is used */
407 #define NO_CONTEXT -1
409 struct ctx_list {
410 struct ctx_list *next;
411 struct ctx_list *prev;
412 unsigned int ctx_number;
413 struct mm_struct *ctx_mm;
416 static struct ctx_list *ctx_list_pool;
417 static struct ctx_list ctx_free;
418 static struct ctx_list ctx_used;
420 /* At boot time we determine the number of contexts */
421 static int num_contexts;
423 static inline void remove_from_ctx_list(struct ctx_list *entry)
425 entry->next->prev = entry->prev;
426 entry->prev->next = entry->next;
429 static inline void add_to_ctx_list(struct ctx_list *head, struct ctx_list *entry)
431 entry->next = head;
432 (entry->prev = head->prev)->next = entry;
433 head->prev = entry;
435 #define add_to_free_ctxlist(entry) add_to_ctx_list(&ctx_free, entry)
436 #define add_to_used_ctxlist(entry) add_to_ctx_list(&ctx_used, entry)
439 static inline void alloc_context(struct mm_struct *old_mm, struct mm_struct *mm)
441 struct ctx_list *ctxp;
443 ctxp = ctx_free.next;
444 if (ctxp != &ctx_free) {
445 remove_from_ctx_list(ctxp);
446 add_to_used_ctxlist(ctxp);
447 mm->context = ctxp->ctx_number;
448 ctxp->ctx_mm = mm;
449 return;
451 ctxp = ctx_used.next;
452 if (ctxp->ctx_mm == old_mm)
453 ctxp = ctxp->next;
454 if (ctxp == &ctx_used)
455 panic("out of mmu contexts");
456 flush_cache_mm(ctxp->ctx_mm);
457 flush_tlb_mm(ctxp->ctx_mm);
458 remove_from_ctx_list(ctxp);
459 add_to_used_ctxlist(ctxp);
460 ctxp->ctx_mm->context = NO_CONTEXT;
461 ctxp->ctx_mm = mm;
462 mm->context = ctxp->ctx_number;
465 static inline void free_context(int context)
467 struct ctx_list *ctx_old;
469 ctx_old = ctx_list_pool + context;
470 remove_from_ctx_list(ctx_old);
471 add_to_free_ctxlist(ctx_old);
474 static void __init sparc_context_init(int numctx)
476 int ctx;
477 unsigned long size;
479 size = numctx * sizeof(struct ctx_list);
480 ctx_list_pool = memblock_alloc(size, SMP_CACHE_BYTES);
481 if (!ctx_list_pool)
482 panic("%s: Failed to allocate %lu bytes\n", __func__, size);
484 for (ctx = 0; ctx < numctx; ctx++) {
485 struct ctx_list *clist;
487 clist = (ctx_list_pool + ctx);
488 clist->ctx_number = ctx;
489 clist->ctx_mm = NULL;
491 ctx_free.next = ctx_free.prev = &ctx_free;
492 ctx_used.next = ctx_used.prev = &ctx_used;
493 for (ctx = 0; ctx < numctx; ctx++)
494 add_to_free_ctxlist(ctx_list_pool + ctx);
497 void switch_mm(struct mm_struct *old_mm, struct mm_struct *mm,
498 struct task_struct *tsk)
500 unsigned long flags;
502 if (mm->context == NO_CONTEXT) {
503 spin_lock_irqsave(&srmmu_context_spinlock, flags);
504 alloc_context(old_mm, mm);
505 spin_unlock_irqrestore(&srmmu_context_spinlock, flags);
506 srmmu_ctxd_set(&srmmu_context_table[mm->context], mm->pgd);
509 if (sparc_cpu_model == sparc_leon)
510 leon_switch_mm();
512 if (is_hypersparc)
513 hyper_flush_whole_icache();
515 srmmu_set_context(mm->context);
518 /* Low level IO area allocation on the SRMMU. */
519 static inline void srmmu_mapioaddr(unsigned long physaddr,
520 unsigned long virt_addr, int bus_type)
522 pgd_t *pgdp;
523 p4d_t *p4dp;
524 pud_t *pudp;
525 pmd_t *pmdp;
526 pte_t *ptep;
527 unsigned long tmp;
529 physaddr &= PAGE_MASK;
530 pgdp = pgd_offset_k(virt_addr);
531 p4dp = p4d_offset(pgdp, virt_addr);
532 pudp = pud_offset(p4dp, virt_addr);
533 pmdp = pmd_offset(pudp, virt_addr);
534 ptep = pte_offset_kernel(pmdp, virt_addr);
535 tmp = (physaddr >> 4) | SRMMU_ET_PTE;
537 /* I need to test whether this is consistent over all
538 * sun4m's. The bus_type represents the upper 4 bits of
539 * 36-bit physical address on the I/O space lines...
541 tmp |= (bus_type << 28);
542 tmp |= SRMMU_PRIV;
543 __flush_page_to_ram(virt_addr);
544 set_pte(ptep, __pte(tmp));
547 void srmmu_mapiorange(unsigned int bus, unsigned long xpa,
548 unsigned long xva, unsigned int len)
550 while (len != 0) {
551 len -= PAGE_SIZE;
552 srmmu_mapioaddr(xpa, xva, bus);
553 xva += PAGE_SIZE;
554 xpa += PAGE_SIZE;
556 flush_tlb_all();
559 static inline void srmmu_unmapioaddr(unsigned long virt_addr)
561 pgd_t *pgdp;
562 p4d_t *p4dp;
563 pud_t *pudp;
564 pmd_t *pmdp;
565 pte_t *ptep;
568 pgdp = pgd_offset_k(virt_addr);
569 p4dp = p4d_offset(pgdp, virt_addr);
570 pudp = pud_offset(p4dp, virt_addr);
571 pmdp = pmd_offset(pudp, virt_addr);
572 ptep = pte_offset_kernel(pmdp, virt_addr);
574 /* No need to flush uncacheable page. */
575 __pte_clear(ptep);
578 void srmmu_unmapiorange(unsigned long virt_addr, unsigned int len)
580 while (len != 0) {
581 len -= PAGE_SIZE;
582 srmmu_unmapioaddr(virt_addr);
583 virt_addr += PAGE_SIZE;
585 flush_tlb_all();
588 /* tsunami.S */
589 extern void tsunami_flush_cache_all(void);
590 extern void tsunami_flush_cache_mm(struct mm_struct *mm);
591 extern void tsunami_flush_cache_range(struct vm_area_struct *vma, unsigned long start, unsigned long end);
592 extern void tsunami_flush_cache_page(struct vm_area_struct *vma, unsigned long page);
593 extern void tsunami_flush_page_to_ram(unsigned long page);
594 extern void tsunami_flush_page_for_dma(unsigned long page);
595 extern void tsunami_flush_sig_insns(struct mm_struct *mm, unsigned long insn_addr);
596 extern void tsunami_flush_tlb_all(void);
597 extern void tsunami_flush_tlb_mm(struct mm_struct *mm);
598 extern void tsunami_flush_tlb_range(struct vm_area_struct *vma, unsigned long start, unsigned long end);
599 extern void tsunami_flush_tlb_page(struct vm_area_struct *vma, unsigned long page);
600 extern void tsunami_setup_blockops(void);
602 /* swift.S */
603 extern void swift_flush_cache_all(void);
604 extern void swift_flush_cache_mm(struct mm_struct *mm);
605 extern void swift_flush_cache_range(struct vm_area_struct *vma,
606 unsigned long start, unsigned long end);
607 extern void swift_flush_cache_page(struct vm_area_struct *vma, unsigned long page);
608 extern void swift_flush_page_to_ram(unsigned long page);
609 extern void swift_flush_page_for_dma(unsigned long page);
610 extern void swift_flush_sig_insns(struct mm_struct *mm, unsigned long insn_addr);
611 extern void swift_flush_tlb_all(void);
612 extern void swift_flush_tlb_mm(struct mm_struct *mm);
613 extern void swift_flush_tlb_range(struct vm_area_struct *vma,
614 unsigned long start, unsigned long end);
615 extern void swift_flush_tlb_page(struct vm_area_struct *vma, unsigned long page);
617 #if 0 /* P3: deadwood to debug precise flushes on Swift. */
618 void swift_flush_tlb_page(struct vm_area_struct *vma, unsigned long page)
620 int cctx, ctx1;
622 page &= PAGE_MASK;
623 if ((ctx1 = vma->vm_mm->context) != -1) {
624 cctx = srmmu_get_context();
625 /* Is context # ever different from current context? P3 */
626 if (cctx != ctx1) {
627 printk("flush ctx %02x curr %02x\n", ctx1, cctx);
628 srmmu_set_context(ctx1);
629 swift_flush_page(page);
630 __asm__ __volatile__("sta %%g0, [%0] %1\n\t" : :
631 "r" (page), "i" (ASI_M_FLUSH_PROBE));
632 srmmu_set_context(cctx);
633 } else {
634 /* Rm. prot. bits from virt. c. */
635 /* swift_flush_cache_all(); */
636 /* swift_flush_cache_page(vma, page); */
637 swift_flush_page(page);
639 __asm__ __volatile__("sta %%g0, [%0] %1\n\t" : :
640 "r" (page), "i" (ASI_M_FLUSH_PROBE));
641 /* same as above: srmmu_flush_tlb_page() */
645 #endif
648 * The following are all MBUS based SRMMU modules, and therefore could
649 * be found in a multiprocessor configuration. On the whole, these
650 * chips seems to be much more touchy about DVMA and page tables
651 * with respect to cache coherency.
654 /* viking.S */
655 extern void viking_flush_cache_all(void);
656 extern void viking_flush_cache_mm(struct mm_struct *mm);
657 extern void viking_flush_cache_range(struct vm_area_struct *vma, unsigned long start,
658 unsigned long end);
659 extern void viking_flush_cache_page(struct vm_area_struct *vma, unsigned long page);
660 extern void viking_flush_page_to_ram(unsigned long page);
661 extern void viking_flush_page_for_dma(unsigned long page);
662 extern void viking_flush_sig_insns(struct mm_struct *mm, unsigned long addr);
663 extern void viking_flush_page(unsigned long page);
664 extern void viking_mxcc_flush_page(unsigned long page);
665 extern void viking_flush_tlb_all(void);
666 extern void viking_flush_tlb_mm(struct mm_struct *mm);
667 extern void viking_flush_tlb_range(struct vm_area_struct *vma, unsigned long start,
668 unsigned long end);
669 extern void viking_flush_tlb_page(struct vm_area_struct *vma,
670 unsigned long page);
671 extern void sun4dsmp_flush_tlb_all(void);
672 extern void sun4dsmp_flush_tlb_mm(struct mm_struct *mm);
673 extern void sun4dsmp_flush_tlb_range(struct vm_area_struct *vma, unsigned long start,
674 unsigned long end);
675 extern void sun4dsmp_flush_tlb_page(struct vm_area_struct *vma,
676 unsigned long page);
678 /* hypersparc.S */
679 extern void hypersparc_flush_cache_all(void);
680 extern void hypersparc_flush_cache_mm(struct mm_struct *mm);
681 extern void hypersparc_flush_cache_range(struct vm_area_struct *vma, unsigned long start, unsigned long end);
682 extern void hypersparc_flush_cache_page(struct vm_area_struct *vma, unsigned long page);
683 extern void hypersparc_flush_page_to_ram(unsigned long page);
684 extern void hypersparc_flush_page_for_dma(unsigned long page);
685 extern void hypersparc_flush_sig_insns(struct mm_struct *mm, unsigned long insn_addr);
686 extern void hypersparc_flush_tlb_all(void);
687 extern void hypersparc_flush_tlb_mm(struct mm_struct *mm);
688 extern void hypersparc_flush_tlb_range(struct vm_area_struct *vma, unsigned long start, unsigned long end);
689 extern void hypersparc_flush_tlb_page(struct vm_area_struct *vma, unsigned long page);
690 extern void hypersparc_setup_blockops(void);
693 * NOTE: All of this startup code assumes the low 16mb (approx.) of
694 * kernel mappings are done with one single contiguous chunk of
695 * ram. On small ram machines (classics mainly) we only get
696 * around 8mb mapped for us.
699 static void __init early_pgtable_allocfail(char *type)
701 prom_printf("inherit_prom_mappings: Cannot alloc kernel %s.\n", type);
702 prom_halt();
705 static void __init srmmu_early_allocate_ptable_skeleton(unsigned long start,
706 unsigned long end)
708 pgd_t *pgdp;
709 p4d_t *p4dp;
710 pud_t *pudp;
711 pmd_t *pmdp;
712 pte_t *ptep;
714 while (start < end) {
715 pgdp = pgd_offset_k(start);
716 p4dp = p4d_offset(pgdp, start);
717 pudp = pud_offset(p4dp, start);
718 if (pud_none(*(pud_t *)__nocache_fix(pudp))) {
719 pmdp = __srmmu_get_nocache(
720 SRMMU_PMD_TABLE_SIZE, SRMMU_PMD_TABLE_SIZE);
721 if (pmdp == NULL)
722 early_pgtable_allocfail("pmd");
723 memset(__nocache_fix(pmdp), 0, SRMMU_PMD_TABLE_SIZE);
724 pud_set(__nocache_fix(pudp), pmdp);
726 pmdp = pmd_offset(__nocache_fix(pudp), start);
727 if (srmmu_pmd_none(*(pmd_t *)__nocache_fix(pmdp))) {
728 ptep = __srmmu_get_nocache(PTE_SIZE, PTE_SIZE);
729 if (ptep == NULL)
730 early_pgtable_allocfail("pte");
731 memset(__nocache_fix(ptep), 0, PTE_SIZE);
732 pmd_set(__nocache_fix(pmdp), ptep);
734 if (start > (0xffffffffUL - PMD_SIZE))
735 break;
736 start = (start + PMD_SIZE) & PMD_MASK;
740 static void __init srmmu_allocate_ptable_skeleton(unsigned long start,
741 unsigned long end)
743 pgd_t *pgdp;
744 p4d_t *p4dp;
745 pud_t *pudp;
746 pmd_t *pmdp;
747 pte_t *ptep;
749 while (start < end) {
750 pgdp = pgd_offset_k(start);
751 p4dp = p4d_offset(pgdp, start);
752 pudp = pud_offset(p4dp, start);
753 if (pud_none(*pudp)) {
754 pmdp = __srmmu_get_nocache(SRMMU_PMD_TABLE_SIZE, SRMMU_PMD_TABLE_SIZE);
755 if (pmdp == NULL)
756 early_pgtable_allocfail("pmd");
757 memset(pmdp, 0, SRMMU_PMD_TABLE_SIZE);
758 pud_set((pud_t *)pgdp, pmdp);
760 pmdp = pmd_offset(pudp, start);
761 if (srmmu_pmd_none(*pmdp)) {
762 ptep = __srmmu_get_nocache(PTE_SIZE,
763 PTE_SIZE);
764 if (ptep == NULL)
765 early_pgtable_allocfail("pte");
766 memset(ptep, 0, PTE_SIZE);
767 pmd_set(pmdp, ptep);
769 if (start > (0xffffffffUL - PMD_SIZE))
770 break;
771 start = (start + PMD_SIZE) & PMD_MASK;
775 /* These flush types are not available on all chips... */
776 static inline unsigned long srmmu_probe(unsigned long vaddr)
778 unsigned long retval;
780 if (sparc_cpu_model != sparc_leon) {
782 vaddr &= PAGE_MASK;
783 __asm__ __volatile__("lda [%1] %2, %0\n\t" :
784 "=r" (retval) :
785 "r" (vaddr | 0x400), "i" (ASI_M_FLUSH_PROBE));
786 } else {
787 retval = leon_swprobe(vaddr, NULL);
789 return retval;
793 * This is much cleaner than poking around physical address space
794 * looking at the prom's page table directly which is what most
795 * other OS's do. Yuck... this is much better.
797 static void __init srmmu_inherit_prom_mappings(unsigned long start,
798 unsigned long end)
800 unsigned long probed;
801 unsigned long addr;
802 pgd_t *pgdp;
803 p4d_t *p4dp;
804 pud_t *pudp;
805 pmd_t *pmdp;
806 pte_t *ptep;
807 int what; /* 0 = normal-pte, 1 = pmd-level pte, 2 = pgd-level pte */
809 while (start <= end) {
810 if (start == 0)
811 break; /* probably wrap around */
812 if (start == 0xfef00000)
813 start = KADB_DEBUGGER_BEGVM;
814 probed = srmmu_probe(start);
815 if (!probed) {
816 /* continue probing until we find an entry */
817 start += PAGE_SIZE;
818 continue;
821 /* A red snapper, see what it really is. */
822 what = 0;
823 addr = start - PAGE_SIZE;
825 if (!(start & ~(SRMMU_REAL_PMD_MASK))) {
826 if (srmmu_probe(addr + SRMMU_REAL_PMD_SIZE) == probed)
827 what = 1;
830 if (!(start & ~(SRMMU_PGDIR_MASK))) {
831 if (srmmu_probe(addr + SRMMU_PGDIR_SIZE) == probed)
832 what = 2;
835 pgdp = pgd_offset_k(start);
836 p4dp = p4d_offset(pgdp, start);
837 pudp = pud_offset(p4dp, start);
838 if (what == 2) {
839 *(pgd_t *)__nocache_fix(pgdp) = __pgd(probed);
840 start += SRMMU_PGDIR_SIZE;
841 continue;
843 if (pud_none(*(pud_t *)__nocache_fix(pudp))) {
844 pmdp = __srmmu_get_nocache(SRMMU_PMD_TABLE_SIZE,
845 SRMMU_PMD_TABLE_SIZE);
846 if (pmdp == NULL)
847 early_pgtable_allocfail("pmd");
848 memset(__nocache_fix(pmdp), 0, SRMMU_PMD_TABLE_SIZE);
849 pud_set(__nocache_fix(pudp), pmdp);
851 pmdp = pmd_offset(__nocache_fix(pgdp), start);
852 if (srmmu_pmd_none(*(pmd_t *)__nocache_fix(pmdp))) {
853 ptep = __srmmu_get_nocache(PTE_SIZE, PTE_SIZE);
854 if (ptep == NULL)
855 early_pgtable_allocfail("pte");
856 memset(__nocache_fix(ptep), 0, PTE_SIZE);
857 pmd_set(__nocache_fix(pmdp), ptep);
859 if (what == 1) {
860 /* We bend the rule where all 16 PTPs in a pmd_t point
861 * inside the same PTE page, and we leak a perfectly
862 * good hardware PTE piece. Alternatives seem worse.
864 unsigned int x; /* Index of HW PMD in soft cluster */
865 unsigned long *val;
866 x = (start >> PMD_SHIFT) & 15;
867 val = &pmdp->pmdv[x];
868 *(unsigned long *)__nocache_fix(val) = probed;
869 start += SRMMU_REAL_PMD_SIZE;
870 continue;
872 ptep = pte_offset_kernel(__nocache_fix(pmdp), start);
873 *(pte_t *)__nocache_fix(ptep) = __pte(probed);
874 start += PAGE_SIZE;
878 #define KERNEL_PTE(page_shifted) ((page_shifted)|SRMMU_CACHE|SRMMU_PRIV|SRMMU_VALID)
880 /* Create a third-level SRMMU 16MB page mapping. */
881 static void __init do_large_mapping(unsigned long vaddr, unsigned long phys_base)
883 pgd_t *pgdp = pgd_offset_k(vaddr);
884 unsigned long big_pte;
886 big_pte = KERNEL_PTE(phys_base >> 4);
887 *(pgd_t *)__nocache_fix(pgdp) = __pgd(big_pte);
890 /* Map sp_bank entry SP_ENTRY, starting at virtual address VBASE. */
891 static unsigned long __init map_spbank(unsigned long vbase, int sp_entry)
893 unsigned long pstart = (sp_banks[sp_entry].base_addr & SRMMU_PGDIR_MASK);
894 unsigned long vstart = (vbase & SRMMU_PGDIR_MASK);
895 unsigned long vend = SRMMU_PGDIR_ALIGN(vbase + sp_banks[sp_entry].num_bytes);
896 /* Map "low" memory only */
897 const unsigned long min_vaddr = PAGE_OFFSET;
898 const unsigned long max_vaddr = PAGE_OFFSET + SRMMU_MAXMEM;
900 if (vstart < min_vaddr || vstart >= max_vaddr)
901 return vstart;
903 if (vend > max_vaddr || vend < min_vaddr)
904 vend = max_vaddr;
906 while (vstart < vend) {
907 do_large_mapping(vstart, pstart);
908 vstart += SRMMU_PGDIR_SIZE; pstart += SRMMU_PGDIR_SIZE;
910 return vstart;
913 static void __init map_kernel(void)
915 int i;
917 if (phys_base > 0) {
918 do_large_mapping(PAGE_OFFSET, phys_base);
921 for (i = 0; sp_banks[i].num_bytes != 0; i++) {
922 map_spbank((unsigned long)__va(sp_banks[i].base_addr), i);
926 void (*poke_srmmu)(void) = NULL;
928 void __init srmmu_paging_init(void)
930 int i;
931 phandle cpunode;
932 char node_str[128];
933 pgd_t *pgd;
934 p4d_t *p4d;
935 pud_t *pud;
936 pmd_t *pmd;
937 pte_t *pte;
938 unsigned long pages_avail;
940 init_mm.context = (unsigned long) NO_CONTEXT;
941 sparc_iomap.start = SUN4M_IOBASE_VADDR; /* 16MB of IOSPACE on all sun4m's. */
943 if (sparc_cpu_model == sun4d)
944 num_contexts = 65536; /* We know it is Viking */
945 else {
946 /* Find the number of contexts on the srmmu. */
947 cpunode = prom_getchild(prom_root_node);
948 num_contexts = 0;
949 while (cpunode != 0) {
950 prom_getstring(cpunode, "device_type", node_str, sizeof(node_str));
951 if (!strcmp(node_str, "cpu")) {
952 num_contexts = prom_getintdefault(cpunode, "mmu-nctx", 0x8);
953 break;
955 cpunode = prom_getsibling(cpunode);
959 if (!num_contexts) {
960 prom_printf("Something wrong, can't find cpu node in paging_init.\n");
961 prom_halt();
964 pages_avail = 0;
965 last_valid_pfn = bootmem_init(&pages_avail);
967 srmmu_nocache_calcsize();
968 srmmu_nocache_init();
969 srmmu_inherit_prom_mappings(0xfe400000, (LINUX_OPPROM_ENDVM - PAGE_SIZE));
970 map_kernel();
972 /* ctx table has to be physically aligned to its size */
973 srmmu_context_table = __srmmu_get_nocache(num_contexts * sizeof(ctxd_t), num_contexts * sizeof(ctxd_t));
974 srmmu_ctx_table_phys = (ctxd_t *)__nocache_pa(srmmu_context_table);
976 for (i = 0; i < num_contexts; i++)
977 srmmu_ctxd_set((ctxd_t *)__nocache_fix(&srmmu_context_table[i]), srmmu_swapper_pg_dir);
979 flush_cache_all();
980 srmmu_set_ctable_ptr((unsigned long)srmmu_ctx_table_phys);
981 #ifdef CONFIG_SMP
982 /* Stop from hanging here... */
983 local_ops->tlb_all();
984 #else
985 flush_tlb_all();
986 #endif
987 poke_srmmu();
989 srmmu_allocate_ptable_skeleton(sparc_iomap.start, IOBASE_END);
990 srmmu_allocate_ptable_skeleton(DVMA_VADDR, DVMA_END);
992 srmmu_allocate_ptable_skeleton(
993 __fix_to_virt(__end_of_fixed_addresses - 1), FIXADDR_TOP);
994 srmmu_allocate_ptable_skeleton(PKMAP_BASE, PKMAP_END);
996 pgd = pgd_offset_k(PKMAP_BASE);
997 p4d = p4d_offset(pgd, PKMAP_BASE);
998 pud = pud_offset(p4d, PKMAP_BASE);
999 pmd = pmd_offset(pud, PKMAP_BASE);
1000 pte = pte_offset_kernel(pmd, PKMAP_BASE);
1001 pkmap_page_table = pte;
1003 flush_cache_all();
1004 flush_tlb_all();
1006 sparc_context_init(num_contexts);
1008 kmap_init();
1011 unsigned long zones_size[MAX_NR_ZONES];
1012 unsigned long zholes_size[MAX_NR_ZONES];
1013 unsigned long npages;
1014 int znum;
1016 for (znum = 0; znum < MAX_NR_ZONES; znum++)
1017 zones_size[znum] = zholes_size[znum] = 0;
1019 npages = max_low_pfn - pfn_base;
1021 zones_size[ZONE_DMA] = npages;
1022 zholes_size[ZONE_DMA] = npages - pages_avail;
1024 npages = highend_pfn - max_low_pfn;
1025 zones_size[ZONE_HIGHMEM] = npages;
1026 zholes_size[ZONE_HIGHMEM] = npages - calc_highpages();
1028 free_area_init_node(0, zones_size, pfn_base, zholes_size);
1032 void mmu_info(struct seq_file *m)
1034 seq_printf(m,
1035 "MMU type\t: %s\n"
1036 "contexts\t: %d\n"
1037 "nocache total\t: %ld\n"
1038 "nocache used\t: %d\n",
1039 srmmu_name,
1040 num_contexts,
1041 srmmu_nocache_size,
1042 srmmu_nocache_map.used << SRMMU_NOCACHE_BITMAP_SHIFT);
1045 int init_new_context(struct task_struct *tsk, struct mm_struct *mm)
1047 mm->context = NO_CONTEXT;
1048 return 0;
1051 void destroy_context(struct mm_struct *mm)
1053 unsigned long flags;
1055 if (mm->context != NO_CONTEXT) {
1056 flush_cache_mm(mm);
1057 srmmu_ctxd_set(&srmmu_context_table[mm->context], srmmu_swapper_pg_dir);
1058 flush_tlb_mm(mm);
1059 spin_lock_irqsave(&srmmu_context_spinlock, flags);
1060 free_context(mm->context);
1061 spin_unlock_irqrestore(&srmmu_context_spinlock, flags);
1062 mm->context = NO_CONTEXT;
1066 /* Init various srmmu chip types. */
1067 static void __init srmmu_is_bad(void)
1069 prom_printf("Could not determine SRMMU chip type.\n");
1070 prom_halt();
1073 static void __init init_vac_layout(void)
1075 phandle nd;
1076 int cache_lines;
1077 char node_str[128];
1078 #ifdef CONFIG_SMP
1079 int cpu = 0;
1080 unsigned long max_size = 0;
1081 unsigned long min_line_size = 0x10000000;
1082 #endif
1084 nd = prom_getchild(prom_root_node);
1085 while ((nd = prom_getsibling(nd)) != 0) {
1086 prom_getstring(nd, "device_type", node_str, sizeof(node_str));
1087 if (!strcmp(node_str, "cpu")) {
1088 vac_line_size = prom_getint(nd, "cache-line-size");
1089 if (vac_line_size == -1) {
1090 prom_printf("can't determine cache-line-size, halting.\n");
1091 prom_halt();
1093 cache_lines = prom_getint(nd, "cache-nlines");
1094 if (cache_lines == -1) {
1095 prom_printf("can't determine cache-nlines, halting.\n");
1096 prom_halt();
1099 vac_cache_size = cache_lines * vac_line_size;
1100 #ifdef CONFIG_SMP
1101 if (vac_cache_size > max_size)
1102 max_size = vac_cache_size;
1103 if (vac_line_size < min_line_size)
1104 min_line_size = vac_line_size;
1105 //FIXME: cpus not contiguous!!
1106 cpu++;
1107 if (cpu >= nr_cpu_ids || !cpu_online(cpu))
1108 break;
1109 #else
1110 break;
1111 #endif
1114 if (nd == 0) {
1115 prom_printf("No CPU nodes found, halting.\n");
1116 prom_halt();
1118 #ifdef CONFIG_SMP
1119 vac_cache_size = max_size;
1120 vac_line_size = min_line_size;
1121 #endif
1122 printk("SRMMU: Using VAC size of %d bytes, line size %d bytes.\n",
1123 (int)vac_cache_size, (int)vac_line_size);
1126 static void poke_hypersparc(void)
1128 volatile unsigned long clear;
1129 unsigned long mreg = srmmu_get_mmureg();
1131 hyper_flush_unconditional_combined();
1133 mreg &= ~(HYPERSPARC_CWENABLE);
1134 mreg |= (HYPERSPARC_CENABLE | HYPERSPARC_WBENABLE);
1135 mreg |= (HYPERSPARC_CMODE);
1137 srmmu_set_mmureg(mreg);
1139 #if 0 /* XXX I think this is bad news... -DaveM */
1140 hyper_clear_all_tags();
1141 #endif
1143 put_ross_icr(HYPERSPARC_ICCR_FTD | HYPERSPARC_ICCR_ICE);
1144 hyper_flush_whole_icache();
1145 clear = srmmu_get_faddr();
1146 clear = srmmu_get_fstatus();
1149 static const struct sparc32_cachetlb_ops hypersparc_ops = {
1150 .cache_all = hypersparc_flush_cache_all,
1151 .cache_mm = hypersparc_flush_cache_mm,
1152 .cache_page = hypersparc_flush_cache_page,
1153 .cache_range = hypersparc_flush_cache_range,
1154 .tlb_all = hypersparc_flush_tlb_all,
1155 .tlb_mm = hypersparc_flush_tlb_mm,
1156 .tlb_page = hypersparc_flush_tlb_page,
1157 .tlb_range = hypersparc_flush_tlb_range,
1158 .page_to_ram = hypersparc_flush_page_to_ram,
1159 .sig_insns = hypersparc_flush_sig_insns,
1160 .page_for_dma = hypersparc_flush_page_for_dma,
1163 static void __init init_hypersparc(void)
1165 srmmu_name = "ROSS HyperSparc";
1166 srmmu_modtype = HyperSparc;
1168 init_vac_layout();
1170 is_hypersparc = 1;
1171 sparc32_cachetlb_ops = &hypersparc_ops;
1173 poke_srmmu = poke_hypersparc;
1175 hypersparc_setup_blockops();
1178 static void poke_swift(void)
1180 unsigned long mreg;
1182 /* Clear any crap from the cache or else... */
1183 swift_flush_cache_all();
1185 /* Enable I & D caches */
1186 mreg = srmmu_get_mmureg();
1187 mreg |= (SWIFT_IE | SWIFT_DE);
1189 * The Swift branch folding logic is completely broken. At
1190 * trap time, if things are just right, if can mistakenly
1191 * think that a trap is coming from kernel mode when in fact
1192 * it is coming from user mode (it mis-executes the branch in
1193 * the trap code). So you see things like crashme completely
1194 * hosing your machine which is completely unacceptable. Turn
1195 * this shit off... nice job Fujitsu.
1197 mreg &= ~(SWIFT_BF);
1198 srmmu_set_mmureg(mreg);
1201 static const struct sparc32_cachetlb_ops swift_ops = {
1202 .cache_all = swift_flush_cache_all,
1203 .cache_mm = swift_flush_cache_mm,
1204 .cache_page = swift_flush_cache_page,
1205 .cache_range = swift_flush_cache_range,
1206 .tlb_all = swift_flush_tlb_all,
1207 .tlb_mm = swift_flush_tlb_mm,
1208 .tlb_page = swift_flush_tlb_page,
1209 .tlb_range = swift_flush_tlb_range,
1210 .page_to_ram = swift_flush_page_to_ram,
1211 .sig_insns = swift_flush_sig_insns,
1212 .page_for_dma = swift_flush_page_for_dma,
1215 #define SWIFT_MASKID_ADDR 0x10003018
1216 static void __init init_swift(void)
1218 unsigned long swift_rev;
1220 __asm__ __volatile__("lda [%1] %2, %0\n\t"
1221 "srl %0, 0x18, %0\n\t" :
1222 "=r" (swift_rev) :
1223 "r" (SWIFT_MASKID_ADDR), "i" (ASI_M_BYPASS));
1224 srmmu_name = "Fujitsu Swift";
1225 switch (swift_rev) {
1226 case 0x11:
1227 case 0x20:
1228 case 0x23:
1229 case 0x30:
1230 srmmu_modtype = Swift_lots_o_bugs;
1231 hwbug_bitmask |= (HWBUG_KERN_ACCBROKEN | HWBUG_KERN_CBITBROKEN);
1233 * Gee george, I wonder why Sun is so hush hush about
1234 * this hardware bug... really braindamage stuff going
1235 * on here. However I think we can find a way to avoid
1236 * all of the workaround overhead under Linux. Basically,
1237 * any page fault can cause kernel pages to become user
1238 * accessible (the mmu gets confused and clears some of
1239 * the ACC bits in kernel ptes). Aha, sounds pretty
1240 * horrible eh? But wait, after extensive testing it appears
1241 * that if you use pgd_t level large kernel pte's (like the
1242 * 4MB pages on the Pentium) the bug does not get tripped
1243 * at all. This avoids almost all of the major overhead.
1244 * Welcome to a world where your vendor tells you to,
1245 * "apply this kernel patch" instead of "sorry for the
1246 * broken hardware, send it back and we'll give you
1247 * properly functioning parts"
1249 break;
1250 case 0x25:
1251 case 0x31:
1252 srmmu_modtype = Swift_bad_c;
1253 hwbug_bitmask |= HWBUG_KERN_CBITBROKEN;
1255 * You see Sun allude to this hardware bug but never
1256 * admit things directly, they'll say things like,
1257 * "the Swift chip cache problems" or similar.
1259 break;
1260 default:
1261 srmmu_modtype = Swift_ok;
1262 break;
1265 sparc32_cachetlb_ops = &swift_ops;
1266 flush_page_for_dma_global = 0;
1269 * Are you now convinced that the Swift is one of the
1270 * biggest VLSI abortions of all time? Bravo Fujitsu!
1271 * Fujitsu, the !#?!%$'d up processor people. I bet if
1272 * you examined the microcode of the Swift you'd find
1273 * XXX's all over the place.
1275 poke_srmmu = poke_swift;
1278 static void turbosparc_flush_cache_all(void)
1280 flush_user_windows();
1281 turbosparc_idflash_clear();
1284 static void turbosparc_flush_cache_mm(struct mm_struct *mm)
1286 FLUSH_BEGIN(mm)
1287 flush_user_windows();
1288 turbosparc_idflash_clear();
1289 FLUSH_END
1292 static void turbosparc_flush_cache_range(struct vm_area_struct *vma, unsigned long start, unsigned long end)
1294 FLUSH_BEGIN(vma->vm_mm)
1295 flush_user_windows();
1296 turbosparc_idflash_clear();
1297 FLUSH_END
1300 static void turbosparc_flush_cache_page(struct vm_area_struct *vma, unsigned long page)
1302 FLUSH_BEGIN(vma->vm_mm)
1303 flush_user_windows();
1304 if (vma->vm_flags & VM_EXEC)
1305 turbosparc_flush_icache();
1306 turbosparc_flush_dcache();
1307 FLUSH_END
1310 /* TurboSparc is copy-back, if we turn it on, but this does not work. */
1311 static void turbosparc_flush_page_to_ram(unsigned long page)
1313 #ifdef TURBOSPARC_WRITEBACK
1314 volatile unsigned long clear;
1316 if (srmmu_probe(page))
1317 turbosparc_flush_page_cache(page);
1318 clear = srmmu_get_fstatus();
1319 #endif
1322 static void turbosparc_flush_sig_insns(struct mm_struct *mm, unsigned long insn_addr)
1326 static void turbosparc_flush_page_for_dma(unsigned long page)
1328 turbosparc_flush_dcache();
1331 static void turbosparc_flush_tlb_all(void)
1333 srmmu_flush_whole_tlb();
1336 static void turbosparc_flush_tlb_mm(struct mm_struct *mm)
1338 FLUSH_BEGIN(mm)
1339 srmmu_flush_whole_tlb();
1340 FLUSH_END
1343 static void turbosparc_flush_tlb_range(struct vm_area_struct *vma, unsigned long start, unsigned long end)
1345 FLUSH_BEGIN(vma->vm_mm)
1346 srmmu_flush_whole_tlb();
1347 FLUSH_END
1350 static void turbosparc_flush_tlb_page(struct vm_area_struct *vma, unsigned long page)
1352 FLUSH_BEGIN(vma->vm_mm)
1353 srmmu_flush_whole_tlb();
1354 FLUSH_END
1358 static void poke_turbosparc(void)
1360 unsigned long mreg = srmmu_get_mmureg();
1361 unsigned long ccreg;
1363 /* Clear any crap from the cache or else... */
1364 turbosparc_flush_cache_all();
1365 /* Temporarily disable I & D caches */
1366 mreg &= ~(TURBOSPARC_ICENABLE | TURBOSPARC_DCENABLE);
1367 mreg &= ~(TURBOSPARC_PCENABLE); /* Don't check parity */
1368 srmmu_set_mmureg(mreg);
1370 ccreg = turbosparc_get_ccreg();
1372 #ifdef TURBOSPARC_WRITEBACK
1373 ccreg |= (TURBOSPARC_SNENABLE); /* Do DVMA snooping in Dcache */
1374 ccreg &= ~(TURBOSPARC_uS2 | TURBOSPARC_WTENABLE);
1375 /* Write-back D-cache, emulate VLSI
1376 * abortion number three, not number one */
1377 #else
1378 /* For now let's play safe, optimize later */
1379 ccreg |= (TURBOSPARC_SNENABLE | TURBOSPARC_WTENABLE);
1380 /* Do DVMA snooping in Dcache, Write-thru D-cache */
1381 ccreg &= ~(TURBOSPARC_uS2);
1382 /* Emulate VLSI abortion number three, not number one */
1383 #endif
1385 switch (ccreg & 7) {
1386 case 0: /* No SE cache */
1387 case 7: /* Test mode */
1388 break;
1389 default:
1390 ccreg |= (TURBOSPARC_SCENABLE);
1392 turbosparc_set_ccreg(ccreg);
1394 mreg |= (TURBOSPARC_ICENABLE | TURBOSPARC_DCENABLE); /* I & D caches on */
1395 mreg |= (TURBOSPARC_ICSNOOP); /* Icache snooping on */
1396 srmmu_set_mmureg(mreg);
1399 static const struct sparc32_cachetlb_ops turbosparc_ops = {
1400 .cache_all = turbosparc_flush_cache_all,
1401 .cache_mm = turbosparc_flush_cache_mm,
1402 .cache_page = turbosparc_flush_cache_page,
1403 .cache_range = turbosparc_flush_cache_range,
1404 .tlb_all = turbosparc_flush_tlb_all,
1405 .tlb_mm = turbosparc_flush_tlb_mm,
1406 .tlb_page = turbosparc_flush_tlb_page,
1407 .tlb_range = turbosparc_flush_tlb_range,
1408 .page_to_ram = turbosparc_flush_page_to_ram,
1409 .sig_insns = turbosparc_flush_sig_insns,
1410 .page_for_dma = turbosparc_flush_page_for_dma,
1413 static void __init init_turbosparc(void)
1415 srmmu_name = "Fujitsu TurboSparc";
1416 srmmu_modtype = TurboSparc;
1417 sparc32_cachetlb_ops = &turbosparc_ops;
1418 poke_srmmu = poke_turbosparc;
1421 static void poke_tsunami(void)
1423 unsigned long mreg = srmmu_get_mmureg();
1425 tsunami_flush_icache();
1426 tsunami_flush_dcache();
1427 mreg &= ~TSUNAMI_ITD;
1428 mreg |= (TSUNAMI_IENAB | TSUNAMI_DENAB);
1429 srmmu_set_mmureg(mreg);
1432 static const struct sparc32_cachetlb_ops tsunami_ops = {
1433 .cache_all = tsunami_flush_cache_all,
1434 .cache_mm = tsunami_flush_cache_mm,
1435 .cache_page = tsunami_flush_cache_page,
1436 .cache_range = tsunami_flush_cache_range,
1437 .tlb_all = tsunami_flush_tlb_all,
1438 .tlb_mm = tsunami_flush_tlb_mm,
1439 .tlb_page = tsunami_flush_tlb_page,
1440 .tlb_range = tsunami_flush_tlb_range,
1441 .page_to_ram = tsunami_flush_page_to_ram,
1442 .sig_insns = tsunami_flush_sig_insns,
1443 .page_for_dma = tsunami_flush_page_for_dma,
1446 static void __init init_tsunami(void)
1449 * Tsunami's pretty sane, Sun and TI actually got it
1450 * somewhat right this time. Fujitsu should have
1451 * taken some lessons from them.
1454 srmmu_name = "TI Tsunami";
1455 srmmu_modtype = Tsunami;
1456 sparc32_cachetlb_ops = &tsunami_ops;
1457 poke_srmmu = poke_tsunami;
1459 tsunami_setup_blockops();
1462 static void poke_viking(void)
1464 unsigned long mreg = srmmu_get_mmureg();
1465 static int smp_catch;
1467 if (viking_mxcc_present) {
1468 unsigned long mxcc_control = mxcc_get_creg();
1470 mxcc_control |= (MXCC_CTL_ECE | MXCC_CTL_PRE | MXCC_CTL_MCE);
1471 mxcc_control &= ~(MXCC_CTL_RRC);
1472 mxcc_set_creg(mxcc_control);
1475 * We don't need memory parity checks.
1476 * XXX This is a mess, have to dig out later. ecd.
1477 viking_mxcc_turn_off_parity(&mreg, &mxcc_control);
1480 /* We do cache ptables on MXCC. */
1481 mreg |= VIKING_TCENABLE;
1482 } else {
1483 unsigned long bpreg;
1485 mreg &= ~(VIKING_TCENABLE);
1486 if (smp_catch++) {
1487 /* Must disable mixed-cmd mode here for other cpu's. */
1488 bpreg = viking_get_bpreg();
1489 bpreg &= ~(VIKING_ACTION_MIX);
1490 viking_set_bpreg(bpreg);
1492 /* Just in case PROM does something funny. */
1493 msi_set_sync();
1497 mreg |= VIKING_SPENABLE;
1498 mreg |= (VIKING_ICENABLE | VIKING_DCENABLE);
1499 mreg |= VIKING_SBENABLE;
1500 mreg &= ~(VIKING_ACENABLE);
1501 srmmu_set_mmureg(mreg);
1504 static struct sparc32_cachetlb_ops viking_ops __ro_after_init = {
1505 .cache_all = viking_flush_cache_all,
1506 .cache_mm = viking_flush_cache_mm,
1507 .cache_page = viking_flush_cache_page,
1508 .cache_range = viking_flush_cache_range,
1509 .tlb_all = viking_flush_tlb_all,
1510 .tlb_mm = viking_flush_tlb_mm,
1511 .tlb_page = viking_flush_tlb_page,
1512 .tlb_range = viking_flush_tlb_range,
1513 .page_to_ram = viking_flush_page_to_ram,
1514 .sig_insns = viking_flush_sig_insns,
1515 .page_for_dma = viking_flush_page_for_dma,
1518 #ifdef CONFIG_SMP
1519 /* On sun4d the cpu broadcasts local TLB flushes, so we can just
1520 * perform the local TLB flush and all the other cpus will see it.
1521 * But, unfortunately, there is a bug in the sun4d XBUS backplane
1522 * that requires that we add some synchronization to these flushes.
1524 * The bug is that the fifo which keeps track of all the pending TLB
1525 * broadcasts in the system is an entry or two too small, so if we
1526 * have too many going at once we'll overflow that fifo and lose a TLB
1527 * flush resulting in corruption.
1529 * Our workaround is to take a global spinlock around the TLB flushes,
1530 * which guarentees we won't ever have too many pending. It's a big
1531 * hammer, but a semaphore like system to make sure we only have N TLB
1532 * flushes going at once will require SMP locking anyways so there's
1533 * no real value in trying any harder than this.
1535 static struct sparc32_cachetlb_ops viking_sun4d_smp_ops __ro_after_init = {
1536 .cache_all = viking_flush_cache_all,
1537 .cache_mm = viking_flush_cache_mm,
1538 .cache_page = viking_flush_cache_page,
1539 .cache_range = viking_flush_cache_range,
1540 .tlb_all = sun4dsmp_flush_tlb_all,
1541 .tlb_mm = sun4dsmp_flush_tlb_mm,
1542 .tlb_page = sun4dsmp_flush_tlb_page,
1543 .tlb_range = sun4dsmp_flush_tlb_range,
1544 .page_to_ram = viking_flush_page_to_ram,
1545 .sig_insns = viking_flush_sig_insns,
1546 .page_for_dma = viking_flush_page_for_dma,
1548 #endif
1550 static void __init init_viking(void)
1552 unsigned long mreg = srmmu_get_mmureg();
1554 /* Ahhh, the viking. SRMMU VLSI abortion number two... */
1555 if (mreg & VIKING_MMODE) {
1556 srmmu_name = "TI Viking";
1557 viking_mxcc_present = 0;
1558 msi_set_sync();
1561 * We need this to make sure old viking takes no hits
1562 * on it's cache for dma snoops to workaround the
1563 * "load from non-cacheable memory" interrupt bug.
1564 * This is only necessary because of the new way in
1565 * which we use the IOMMU.
1567 viking_ops.page_for_dma = viking_flush_page;
1568 #ifdef CONFIG_SMP
1569 viking_sun4d_smp_ops.page_for_dma = viking_flush_page;
1570 #endif
1571 flush_page_for_dma_global = 0;
1572 } else {
1573 srmmu_name = "TI Viking/MXCC";
1574 viking_mxcc_present = 1;
1575 srmmu_cache_pagetables = 1;
1578 sparc32_cachetlb_ops = (const struct sparc32_cachetlb_ops *)
1579 &viking_ops;
1580 #ifdef CONFIG_SMP
1581 if (sparc_cpu_model == sun4d)
1582 sparc32_cachetlb_ops = (const struct sparc32_cachetlb_ops *)
1583 &viking_sun4d_smp_ops;
1584 #endif
1586 poke_srmmu = poke_viking;
1589 /* Probe for the srmmu chip version. */
1590 static void __init get_srmmu_type(void)
1592 unsigned long mreg, psr;
1593 unsigned long mod_typ, mod_rev, psr_typ, psr_vers;
1595 srmmu_modtype = SRMMU_INVAL_MOD;
1596 hwbug_bitmask = 0;
1598 mreg = srmmu_get_mmureg(); psr = get_psr();
1599 mod_typ = (mreg & 0xf0000000) >> 28;
1600 mod_rev = (mreg & 0x0f000000) >> 24;
1601 psr_typ = (psr >> 28) & 0xf;
1602 psr_vers = (psr >> 24) & 0xf;
1604 /* First, check for sparc-leon. */
1605 if (sparc_cpu_model == sparc_leon) {
1606 init_leon();
1607 return;
1610 /* Second, check for HyperSparc or Cypress. */
1611 if (mod_typ == 1) {
1612 switch (mod_rev) {
1613 case 7:
1614 /* UP or MP Hypersparc */
1615 init_hypersparc();
1616 break;
1617 case 0:
1618 case 2:
1619 case 10:
1620 case 11:
1621 case 12:
1622 case 13:
1623 case 14:
1624 case 15:
1625 default:
1626 prom_printf("Sparc-Linux Cypress support does not longer exit.\n");
1627 prom_halt();
1628 break;
1630 return;
1633 /* Now Fujitsu TurboSparc. It might happen that it is
1634 * in Swift emulation mode, so we will check later...
1636 if (psr_typ == 0 && psr_vers == 5) {
1637 init_turbosparc();
1638 return;
1641 /* Next check for Fujitsu Swift. */
1642 if (psr_typ == 0 && psr_vers == 4) {
1643 phandle cpunode;
1644 char node_str[128];
1646 /* Look if it is not a TurboSparc emulating Swift... */
1647 cpunode = prom_getchild(prom_root_node);
1648 while ((cpunode = prom_getsibling(cpunode)) != 0) {
1649 prom_getstring(cpunode, "device_type", node_str, sizeof(node_str));
1650 if (!strcmp(node_str, "cpu")) {
1651 if (!prom_getintdefault(cpunode, "psr-implementation", 1) &&
1652 prom_getintdefault(cpunode, "psr-version", 1) == 5) {
1653 init_turbosparc();
1654 return;
1656 break;
1660 init_swift();
1661 return;
1664 /* Now the Viking family of srmmu. */
1665 if (psr_typ == 4 &&
1666 ((psr_vers == 0) ||
1667 ((psr_vers == 1) && (mod_typ == 0) && (mod_rev == 0)))) {
1668 init_viking();
1669 return;
1672 /* Finally the Tsunami. */
1673 if (psr_typ == 4 && psr_vers == 1 && (mod_typ || mod_rev)) {
1674 init_tsunami();
1675 return;
1678 /* Oh well */
1679 srmmu_is_bad();
1682 #ifdef CONFIG_SMP
1683 /* Local cross-calls. */
1684 static void smp_flush_page_for_dma(unsigned long page)
1686 xc1((smpfunc_t) local_ops->page_for_dma, page);
1687 local_ops->page_for_dma(page);
1690 static void smp_flush_cache_all(void)
1692 xc0((smpfunc_t) local_ops->cache_all);
1693 local_ops->cache_all();
1696 static void smp_flush_tlb_all(void)
1698 xc0((smpfunc_t) local_ops->tlb_all);
1699 local_ops->tlb_all();
1702 static void smp_flush_cache_mm(struct mm_struct *mm)
1704 if (mm->context != NO_CONTEXT) {
1705 cpumask_t cpu_mask;
1706 cpumask_copy(&cpu_mask, mm_cpumask(mm));
1707 cpumask_clear_cpu(smp_processor_id(), &cpu_mask);
1708 if (!cpumask_empty(&cpu_mask))
1709 xc1((smpfunc_t) local_ops->cache_mm, (unsigned long) mm);
1710 local_ops->cache_mm(mm);
1714 static void smp_flush_tlb_mm(struct mm_struct *mm)
1716 if (mm->context != NO_CONTEXT) {
1717 cpumask_t cpu_mask;
1718 cpumask_copy(&cpu_mask, mm_cpumask(mm));
1719 cpumask_clear_cpu(smp_processor_id(), &cpu_mask);
1720 if (!cpumask_empty(&cpu_mask)) {
1721 xc1((smpfunc_t) local_ops->tlb_mm, (unsigned long) mm);
1722 if (atomic_read(&mm->mm_users) == 1 && current->active_mm == mm)
1723 cpumask_copy(mm_cpumask(mm),
1724 cpumask_of(smp_processor_id()));
1726 local_ops->tlb_mm(mm);
1730 static void smp_flush_cache_range(struct vm_area_struct *vma,
1731 unsigned long start,
1732 unsigned long end)
1734 struct mm_struct *mm = vma->vm_mm;
1736 if (mm->context != NO_CONTEXT) {
1737 cpumask_t cpu_mask;
1738 cpumask_copy(&cpu_mask, mm_cpumask(mm));
1739 cpumask_clear_cpu(smp_processor_id(), &cpu_mask);
1740 if (!cpumask_empty(&cpu_mask))
1741 xc3((smpfunc_t) local_ops->cache_range,
1742 (unsigned long) vma, start, end);
1743 local_ops->cache_range(vma, start, end);
1747 static void smp_flush_tlb_range(struct vm_area_struct *vma,
1748 unsigned long start,
1749 unsigned long end)
1751 struct mm_struct *mm = vma->vm_mm;
1753 if (mm->context != NO_CONTEXT) {
1754 cpumask_t cpu_mask;
1755 cpumask_copy(&cpu_mask, mm_cpumask(mm));
1756 cpumask_clear_cpu(smp_processor_id(), &cpu_mask);
1757 if (!cpumask_empty(&cpu_mask))
1758 xc3((smpfunc_t) local_ops->tlb_range,
1759 (unsigned long) vma, start, end);
1760 local_ops->tlb_range(vma, start, end);
1764 static void smp_flush_cache_page(struct vm_area_struct *vma, unsigned long page)
1766 struct mm_struct *mm = vma->vm_mm;
1768 if (mm->context != NO_CONTEXT) {
1769 cpumask_t cpu_mask;
1770 cpumask_copy(&cpu_mask, mm_cpumask(mm));
1771 cpumask_clear_cpu(smp_processor_id(), &cpu_mask);
1772 if (!cpumask_empty(&cpu_mask))
1773 xc2((smpfunc_t) local_ops->cache_page,
1774 (unsigned long) vma, page);
1775 local_ops->cache_page(vma, page);
1779 static void smp_flush_tlb_page(struct vm_area_struct *vma, unsigned long page)
1781 struct mm_struct *mm = vma->vm_mm;
1783 if (mm->context != NO_CONTEXT) {
1784 cpumask_t cpu_mask;
1785 cpumask_copy(&cpu_mask, mm_cpumask(mm));
1786 cpumask_clear_cpu(smp_processor_id(), &cpu_mask);
1787 if (!cpumask_empty(&cpu_mask))
1788 xc2((smpfunc_t) local_ops->tlb_page,
1789 (unsigned long) vma, page);
1790 local_ops->tlb_page(vma, page);
1794 static void smp_flush_page_to_ram(unsigned long page)
1796 /* Current theory is that those who call this are the one's
1797 * who have just dirtied their cache with the pages contents
1798 * in kernel space, therefore we only run this on local cpu.
1800 * XXX This experiment failed, research further... -DaveM
1802 #if 1
1803 xc1((smpfunc_t) local_ops->page_to_ram, page);
1804 #endif
1805 local_ops->page_to_ram(page);
1808 static void smp_flush_sig_insns(struct mm_struct *mm, unsigned long insn_addr)
1810 cpumask_t cpu_mask;
1811 cpumask_copy(&cpu_mask, mm_cpumask(mm));
1812 cpumask_clear_cpu(smp_processor_id(), &cpu_mask);
1813 if (!cpumask_empty(&cpu_mask))
1814 xc2((smpfunc_t) local_ops->sig_insns,
1815 (unsigned long) mm, insn_addr);
1816 local_ops->sig_insns(mm, insn_addr);
1819 static struct sparc32_cachetlb_ops smp_cachetlb_ops __ro_after_init = {
1820 .cache_all = smp_flush_cache_all,
1821 .cache_mm = smp_flush_cache_mm,
1822 .cache_page = smp_flush_cache_page,
1823 .cache_range = smp_flush_cache_range,
1824 .tlb_all = smp_flush_tlb_all,
1825 .tlb_mm = smp_flush_tlb_mm,
1826 .tlb_page = smp_flush_tlb_page,
1827 .tlb_range = smp_flush_tlb_range,
1828 .page_to_ram = smp_flush_page_to_ram,
1829 .sig_insns = smp_flush_sig_insns,
1830 .page_for_dma = smp_flush_page_for_dma,
1832 #endif
1834 /* Load up routines and constants for sun4m and sun4d mmu */
1835 void __init load_mmu(void)
1837 /* Functions */
1838 get_srmmu_type();
1840 #ifdef CONFIG_SMP
1841 /* El switcheroo... */
1842 local_ops = sparc32_cachetlb_ops;
1844 if (sparc_cpu_model == sun4d || sparc_cpu_model == sparc_leon) {
1845 smp_cachetlb_ops.tlb_all = local_ops->tlb_all;
1846 smp_cachetlb_ops.tlb_mm = local_ops->tlb_mm;
1847 smp_cachetlb_ops.tlb_range = local_ops->tlb_range;
1848 smp_cachetlb_ops.tlb_page = local_ops->tlb_page;
1851 if (poke_srmmu == poke_viking) {
1852 /* Avoid unnecessary cross calls. */
1853 smp_cachetlb_ops.cache_all = local_ops->cache_all;
1854 smp_cachetlb_ops.cache_mm = local_ops->cache_mm;
1855 smp_cachetlb_ops.cache_range = local_ops->cache_range;
1856 smp_cachetlb_ops.cache_page = local_ops->cache_page;
1858 smp_cachetlb_ops.page_to_ram = local_ops->page_to_ram;
1859 smp_cachetlb_ops.sig_insns = local_ops->sig_insns;
1860 smp_cachetlb_ops.page_for_dma = local_ops->page_for_dma;
1863 /* It really is const after this point. */
1864 sparc32_cachetlb_ops = (const struct sparc32_cachetlb_ops *)
1865 &smp_cachetlb_ops;
1866 #endif
1868 if (sparc_cpu_model == sun4d)
1869 ld_mmu_iounit();
1870 else
1871 ld_mmu_iommu();
1872 #ifdef CONFIG_SMP
1873 if (sparc_cpu_model == sun4d)
1874 sun4d_init_smp();
1875 else if (sparc_cpu_model == sparc_leon)
1876 leon_init_smp();
1877 else
1878 sun4m_init_smp();
1879 #endif