1 // SPDX-License-Identifier: GPL-2.0
3 * Copyright (C) 2017 - Cambridge Greys Ltd
4 * Copyright (C) 2011 - 2014 Cisco Systems Inc
5 * Copyright (C) 2000 - 2007 Jeff Dike (jdike@{addtoit,linux.intel}.com)
6 * Derived (i.e. mostly copied) from arch/i386/kernel/irq.c:
7 * Copyright (C) 1992, 1998 Linus Torvalds, Ingo Molnar
10 #include <linux/cpumask.h>
11 #include <linux/hardirq.h>
12 #include <linux/interrupt.h>
13 #include <linux/kernel_stat.h>
14 #include <linux/module.h>
15 #include <linux/sched.h>
16 #include <linux/seq_file.h>
17 #include <linux/slab.h>
18 #include <as-layout.h>
19 #include <kern_util.h>
24 extern void free_irqs(void);
26 /* When epoll triggers we do not know why it did so
27 * we can also have different IRQs for read and write.
28 * This is why we keep a small irq_fd array for each fd -
29 * one entry per IRQ type
33 struct irq_entry
*next
;
35 struct irq_fd
*irq_array
[MAX_IRQ_TYPE
+ 1];
38 static struct irq_entry
*active_fds
;
40 static DEFINE_SPINLOCK(irq_lock
);
42 static void irq_io_loop(struct irq_fd
*irq
, struct uml_pt_regs
*regs
)
45 * irq->active guards against reentry
46 * irq->pending accumulates pending requests
47 * if pending is raised the irq_handler is re-run
48 * until pending is cleared
54 do_IRQ(irq
->irq
, regs
);
55 } while (irq
->pending
&& (!irq
->purge
));
63 void sigio_handler(int sig
, struct siginfo
*unused_si
, struct uml_pt_regs
*regs
)
65 struct irq_entry
*irq_entry
;
71 /* This is now lockless - epoll keeps back-referencesto the irqs
72 * which have trigger it so there is no need to walk the irq
73 * list and lock it every time. We avoid locking by turning off
74 * IO for a specific fd by executing os_del_epoll_fd(fd) before
75 * we do any changes to the actual data structures
77 n
= os_waiting_for_events_epoll();
86 for (i
= 0; i
< n
; i
++) {
87 /* Epoll back reference is the entry with 3 irq_fd
88 * leaves - one for each irq type.
90 irq_entry
= (struct irq_entry
*)
91 os_epoll_get_data_pointer(i
);
92 for (j
= 0; j
< MAX_IRQ_TYPE
; j
++) {
93 irq
= irq_entry
->irq_array
[j
];
96 if (os_epoll_triggered(i
, irq
->events
) > 0)
97 irq_io_loop(irq
, regs
);
99 irq_entry
->irq_array
[j
] = NULL
;
109 static int assign_epoll_events_to_irq(struct irq_entry
*irq_entry
)
115 for (i
= 0; i
< MAX_IRQ_TYPE
; i
++) {
116 irq
= irq_entry
->irq_array
[i
];
118 events
= irq
->events
| events
;
121 /* os_add_epoll will call os_mod_epoll if this already exists */
122 return os_add_epoll_fd(events
, irq_entry
->fd
, irq_entry
);
124 /* No events - delete */
125 return os_del_epoll_fd(irq_entry
->fd
);
130 static int activate_fd(int irq
, int fd
, int type
, void *dev_id
)
132 struct irq_fd
*new_fd
;
133 struct irq_entry
*irq_entry
;
137 err
= os_set_fd_async(fd
);
141 spin_lock_irqsave(&irq_lock
, flags
);
143 /* Check if we have an entry for this fd */
146 for (irq_entry
= active_fds
;
147 irq_entry
!= NULL
; irq_entry
= irq_entry
->next
) {
148 if (irq_entry
->fd
== fd
)
152 if (irq_entry
== NULL
) {
153 /* This needs to be atomic as it may be called from an
156 irq_entry
= kmalloc(sizeof(struct irq_entry
), GFP_ATOMIC
);
157 if (irq_entry
== NULL
) {
159 "Failed to allocate new IRQ entry\n");
163 for (i
= 0; i
< MAX_IRQ_TYPE
; i
++)
164 irq_entry
->irq_array
[i
] = NULL
;
165 irq_entry
->next
= active_fds
;
166 active_fds
= irq_entry
;
169 /* Check if we are trying to re-register an interrupt for a
173 if (irq_entry
->irq_array
[type
] != NULL
) {
175 "Trying to reregister IRQ %d FD %d TYPE %d ID %p\n",
176 irq
, fd
, type
, dev_id
180 /* New entry for this fd */
183 new_fd
= kmalloc(sizeof(struct irq_fd
), GFP_ATOMIC
);
187 events
= os_event_mask(type
);
189 *new_fd
= ((struct irq_fd
) {
198 /* Turn off any IO on this fd - allows us to
199 * avoid locking the IRQ loop
201 os_del_epoll_fd(irq_entry
->fd
);
202 irq_entry
->irq_array
[type
] = new_fd
;
205 /* Turn back IO on with the correct (new) IO event mask */
206 assign_epoll_events_to_irq(irq_entry
);
207 spin_unlock_irqrestore(&irq_lock
, flags
);
208 maybe_sigio_broken(fd
, (type
!= IRQ_NONE
));
212 spin_unlock_irqrestore(&irq_lock
, flags
);
218 * Walk the IRQ list and dispose of any unused entries.
219 * Should be done under irq_lock.
222 static void garbage_collect_irq_entries(void)
226 struct irq_entry
*walk
;
227 struct irq_entry
*previous
= NULL
;
228 struct irq_entry
*to_free
;
230 if (active_fds
== NULL
)
233 while (walk
!= NULL
) {
235 for (i
= 0; i
< MAX_IRQ_TYPE
; i
++) {
236 if (walk
->irq_array
[i
] != NULL
) {
242 if (previous
== NULL
)
243 active_fds
= walk
->next
;
245 previous
->next
= walk
->next
;
256 * Walk the IRQ list and get the descriptor for our FD
259 static struct irq_entry
*get_irq_entry_by_fd(int fd
)
261 struct irq_entry
*walk
= active_fds
;
263 while (walk
!= NULL
) {
273 * Walk the IRQ list and dispose of an entry for a specific
274 * device, fd and number. Note - if sharing an IRQ for read
275 * and writefor the same FD it will be disposed in either case.
276 * If this behaviour is undesirable use different IRQ ids.
280 #define IGNORE_DEV (1<<1)
282 static void do_free_by_irq_and_dev(
283 struct irq_entry
*irq_entry
,
290 struct irq_fd
*to_free
;
292 for (i
= 0; i
< MAX_IRQ_TYPE
; i
++) {
293 if (irq_entry
->irq_array
[i
] != NULL
) {
295 ((flags
& IGNORE_IRQ
) ||
296 (irq_entry
->irq_array
[i
]->irq
== irq
)) &&
297 ((flags
& IGNORE_DEV
) ||
298 (irq_entry
->irq_array
[i
]->id
== dev
))
300 /* Turn off any IO on this fd - allows us to
301 * avoid locking the IRQ loop
303 os_del_epoll_fd(irq_entry
->fd
);
304 to_free
= irq_entry
->irq_array
[i
];
305 irq_entry
->irq_array
[i
] = NULL
;
306 assign_epoll_events_to_irq(irq_entry
);
308 to_free
->purge
= true;
316 void free_irq_by_fd(int fd
)
318 struct irq_entry
*to_free
;
321 spin_lock_irqsave(&irq_lock
, flags
);
322 to_free
= get_irq_entry_by_fd(fd
);
323 if (to_free
!= NULL
) {
324 do_free_by_irq_and_dev(
328 IGNORE_IRQ
| IGNORE_DEV
331 garbage_collect_irq_entries();
332 spin_unlock_irqrestore(&irq_lock
, flags
);
334 EXPORT_SYMBOL(free_irq_by_fd
);
336 static void free_irq_by_irq_and_dev(unsigned int irq
, void *dev
)
338 struct irq_entry
*to_free
;
341 spin_lock_irqsave(&irq_lock
, flags
);
342 to_free
= active_fds
;
343 while (to_free
!= NULL
) {
344 do_free_by_irq_and_dev(
350 to_free
= to_free
->next
;
352 garbage_collect_irq_entries();
353 spin_unlock_irqrestore(&irq_lock
, flags
);
357 void deactivate_fd(int fd
, int irqnum
)
359 struct irq_entry
*to_free
;
363 spin_lock_irqsave(&irq_lock
, flags
);
364 to_free
= get_irq_entry_by_fd(fd
);
365 if (to_free
!= NULL
) {
366 do_free_by_irq_and_dev(
373 garbage_collect_irq_entries();
374 spin_unlock_irqrestore(&irq_lock
, flags
);
377 EXPORT_SYMBOL(deactivate_fd
);
380 * Called just before shutdown in order to provide a clean exec
381 * environment in case the system is rebooting. No locking because
382 * that would cause a pointless shutdown hang if something hadn't
385 int deactivate_all_fds(void)
387 struct irq_entry
*to_free
;
389 /* Stop IO. The IRQ loop has no lock so this is our
390 * only way of making sure we are safe to dispose
391 * of all IRQ handlers
394 to_free
= active_fds
;
395 while (to_free
!= NULL
) {
396 do_free_by_irq_and_dev(
400 IGNORE_IRQ
| IGNORE_DEV
402 to_free
= to_free
->next
;
404 /* don't garbage collect - we can no longer call kfree() here */
410 * do_IRQ handles all normal device IRQs (the special
411 * SMP cross-CPU interrupts have their own specific
414 unsigned int do_IRQ(int irq
, struct uml_pt_regs
*regs
)
416 struct pt_regs
*old_regs
= set_irq_regs((struct pt_regs
*)regs
);
418 generic_handle_irq(irq
);
420 set_irq_regs(old_regs
);
424 void um_free_irq(unsigned int irq
, void *dev
)
426 free_irq_by_irq_and_dev(irq
, dev
);
429 EXPORT_SYMBOL(um_free_irq
);
431 int um_request_irq(unsigned int irq
, int fd
, int type
,
432 irq_handler_t handler
,
433 unsigned long irqflags
, const char * devname
,
439 err
= activate_fd(irq
, fd
, type
, dev_id
);
444 return request_irq(irq
, handler
, irqflags
, devname
, dev_id
);
447 EXPORT_SYMBOL(um_request_irq
);
450 * irq_chip must define at least enable/disable and ack when
451 * the edge handler is used.
453 static void dummy(struct irq_data
*d
)
457 /* This is used for everything else than the timer. */
458 static struct irq_chip normal_irq_type
= {
460 .irq_disable
= dummy
,
467 static struct irq_chip SIGVTALRM_irq_type
= {
469 .irq_disable
= dummy
,
476 void __init
init_IRQ(void)
480 irq_set_chip_and_handler(TIMER_IRQ
, &SIGVTALRM_irq_type
, handle_edge_irq
);
483 for (i
= 1; i
<= LAST_IRQ
; i
++)
484 irq_set_chip_and_handler(i
, &normal_irq_type
, handle_edge_irq
);
485 /* Initialize EPOLL Loop */
490 * IRQ stack entry and exit:
492 * Unlike i386, UML doesn't receive IRQs on the normal kernel stack
493 * and switch over to the IRQ stack after some preparation. We use
494 * sigaltstack to receive signals on a separate stack from the start.
495 * These two functions make sure the rest of the kernel won't be too
496 * upset by being on a different stack. The IRQ stack has a
497 * thread_info structure at the bottom so that current et al continue
500 * to_irq_stack copies the current task's thread_info to the IRQ stack
501 * thread_info and sets the tasks's stack to point to the IRQ stack.
503 * from_irq_stack copies the thread_info struct back (flags may have
504 * been modified) and resets the task's stack pointer.
508 * What happens when two signals race each other? UML doesn't block
509 * signals with sigprocmask, SA_DEFER, or sa_mask, so a second signal
510 * could arrive while a previous one is still setting up the
513 * There are three cases -
514 * The first interrupt on the stack - sets up the thread_info and
515 * handles the interrupt
516 * A nested interrupt interrupting the copying of the thread_info -
517 * can't handle the interrupt, as the stack is in an unknown state
518 * A nested interrupt not interrupting the copying of the
519 * thread_info - doesn't do any setup, just handles the interrupt
521 * The first job is to figure out whether we interrupted stack setup.
522 * This is done by xchging the signal mask with thread_info->pending.
523 * If the value that comes back is zero, then there is no setup in
524 * progress, and the interrupt can be handled. If the value is
525 * non-zero, then there is stack setup in progress. In order to have
526 * the interrupt handled, we leave our signal in the mask, and it will
527 * be handled by the upper handler after it has set up the stack.
529 * Next is to figure out whether we are the outer handler or a nested
530 * one. As part of setting up the stack, thread_info->real_thread is
531 * set to non-NULL (and is reset to NULL on exit). This is the
532 * nesting indicator. If it is non-NULL, then the stack is already
533 * set up and the handler can run.
536 static unsigned long pending_mask
;
538 unsigned long to_irq_stack(unsigned long *mask_out
)
540 struct thread_info
*ti
;
541 unsigned long mask
, old
;
544 mask
= xchg(&pending_mask
, *mask_out
);
547 * If any interrupts come in at this point, we want to
548 * make sure that their bits aren't lost by our
549 * putting our bit in. So, this loop accumulates bits
550 * until xchg returns the same value that we put in.
551 * When that happens, there were no new interrupts,
552 * and pending_mask contains a bit for each interrupt
558 mask
= xchg(&pending_mask
, old
);
559 } while (mask
!= old
);
563 ti
= current_thread_info();
564 nested
= (ti
->real_thread
!= NULL
);
566 struct task_struct
*task
;
567 struct thread_info
*tti
;
569 task
= cpu_tasks
[ti
->cpu
].task
;
570 tti
= task_thread_info(task
);
573 ti
->real_thread
= tti
;
577 mask
= xchg(&pending_mask
, 0);
578 *mask_out
|= mask
| nested
;
582 unsigned long from_irq_stack(int nested
)
584 struct thread_info
*ti
, *to
;
587 ti
= current_thread_info();
591 to
= ti
->real_thread
;
593 ti
->real_thread
= NULL
;
596 mask
= xchg(&pending_mask
, 0);