1 // SPDX-License-Identifier: GPL-2.0-only
3 * linux/arch/unicore32/mm/mmu.c
5 * Code specific to PKUnity SoC and UniCore ISA
7 * Copyright (C) 2001-2010 GUAN Xue-tao
9 #include <linux/module.h>
10 #include <linux/kernel.h>
11 #include <linux/errno.h>
12 #include <linux/init.h>
13 #include <linux/mman.h>
14 #include <linux/nodemask.h>
15 #include <linux/memblock.h>
19 #include <asm/cputype.h>
20 #include <asm/sections.h>
21 #include <asm/setup.h>
22 #include <linux/sizes.h>
24 #include <asm/memblock.h>
31 * empty_zero_page is a special page that is used for
32 * zero-initialized data and COW.
34 struct page
*empty_zero_page
;
35 EXPORT_SYMBOL(empty_zero_page
);
38 * The pmd table for the upper-most set of pages.
43 EXPORT_SYMBOL(pgprot_user
);
45 pgprot_t pgprot_kernel
;
46 EXPORT_SYMBOL(pgprot_kernel
);
48 static int __init
noalign_setup(char *__unused
)
50 cr_alignment
&= ~CR_A
;
51 cr_no_alignment
&= ~CR_A
;
55 __setup("noalign", noalign_setup
);
57 void adjust_cr(unsigned long mask
, unsigned long set
)
65 local_irq_save(flags
);
67 cr_no_alignment
= (cr_no_alignment
& ~mask
) | set
;
68 cr_alignment
= (cr_alignment
& ~mask
) | set
;
70 set_cr((get_cr() & ~mask
) | set
);
72 local_irq_restore(flags
);
76 unsigned long virtual;
82 #define PROT_PTE_DEVICE (PTE_PRESENT | PTE_YOUNG | \
83 PTE_DIRTY | PTE_READ | PTE_WRITE)
84 #define PROT_SECT_DEVICE (PMD_TYPE_SECT | PMD_PRESENT | \
85 PMD_SECT_READ | PMD_SECT_WRITE)
87 static struct mem_type mem_types
[] = {
88 [MT_DEVICE
] = { /* Strongly ordered */
89 .prot_pte
= PROT_PTE_DEVICE
,
90 .prot_l1
= PMD_TYPE_TABLE
| PMD_PRESENT
,
91 .prot_sect
= PROT_SECT_DEVICE
,
94 * MT_KUSER: pte for vecpage -- cacheable,
95 * and sect for unigfx mmap -- noncacheable
98 .prot_pte
= PTE_PRESENT
| PTE_YOUNG
| PTE_DIRTY
|
99 PTE_CACHEABLE
| PTE_READ
| PTE_EXEC
,
100 .prot_l1
= PMD_TYPE_TABLE
| PMD_PRESENT
,
101 .prot_sect
= PROT_SECT_DEVICE
,
103 [MT_HIGH_VECTORS
] = {
104 .prot_pte
= PTE_PRESENT
| PTE_YOUNG
| PTE_DIRTY
|
105 PTE_CACHEABLE
| PTE_READ
| PTE_WRITE
|
107 .prot_l1
= PMD_TYPE_TABLE
| PMD_PRESENT
,
110 .prot_pte
= PTE_PRESENT
| PTE_YOUNG
| PTE_DIRTY
|
111 PTE_WRITE
| PTE_EXEC
,
112 .prot_l1
= PMD_TYPE_TABLE
| PMD_PRESENT
,
113 .prot_sect
= PMD_TYPE_SECT
| PMD_PRESENT
| PMD_SECT_CACHEABLE
|
114 PMD_SECT_READ
| PMD_SECT_WRITE
| PMD_SECT_EXEC
,
117 .prot_sect
= PMD_TYPE_SECT
| PMD_PRESENT
| PMD_SECT_CACHEABLE
|
122 const struct mem_type
*get_mem_type(unsigned int type
)
124 return type
< ARRAY_SIZE(mem_types
) ? &mem_types
[type
] : NULL
;
126 EXPORT_SYMBOL(get_mem_type
);
129 * Adjust the PMD section entries according to the CPU in use.
131 static void __init
build_mem_type_table(void)
133 pgprot_user
= __pgprot(PTE_PRESENT
| PTE_YOUNG
| PTE_CACHEABLE
);
134 pgprot_kernel
= __pgprot(PTE_PRESENT
| PTE_YOUNG
|
135 PTE_DIRTY
| PTE_READ
| PTE_WRITE
|
136 PTE_EXEC
| PTE_CACHEABLE
);
139 #define vectors_base() (vectors_high() ? 0xffff0000 : 0)
141 static pte_t
* __init
early_pte_alloc(pmd_t
*pmd
, unsigned long addr
,
144 if (pmd_none(*pmd
)) {
145 size_t size
= PTRS_PER_PTE
* sizeof(pte_t
);
146 pte_t
*pte
= memblock_alloc(size
, size
);
149 panic("%s: Failed to allocate %zu bytes align=%zx\n",
150 __func__
, size
, size
);
152 __pmd_populate(pmd
, __pa(pte
) | prot
);
154 BUG_ON(pmd_bad(*pmd
));
155 return pte_offset_kernel(pmd
, addr
);
158 static void __init
alloc_init_pte(pmd_t
*pmd
, unsigned long addr
,
159 unsigned long end
, unsigned long pfn
,
160 const struct mem_type
*type
)
162 pte_t
*pte
= early_pte_alloc(pmd
, addr
, type
->prot_l1
);
164 set_pte(pte
, pfn_pte(pfn
, __pgprot(type
->prot_pte
)));
166 } while (pte
++, addr
+= PAGE_SIZE
, addr
!= end
);
169 static void __init
alloc_init_section(pgd_t
*pgd
, unsigned long addr
,
170 unsigned long end
, unsigned long phys
,
171 const struct mem_type
*type
)
173 pmd_t
*pmd
= pmd_offset((pud_t
*)pgd
, addr
);
176 * Try a section mapping - end, addr and phys must all be aligned
177 * to a section boundary.
179 if (((addr
| end
| phys
) & ~SECTION_MASK
) == 0) {
183 set_pmd(pmd
, __pmd(phys
| type
->prot_sect
));
184 phys
+= SECTION_SIZE
;
185 } while (pmd
++, addr
+= SECTION_SIZE
, addr
!= end
);
190 * No need to loop; pte's aren't interested in the
191 * individual L1 entries.
193 alloc_init_pte(pmd
, addr
, end
, __phys_to_pfn(phys
), type
);
198 * Create the page directory entries and any necessary
199 * page tables for the mapping specified by `md'. We
200 * are able to cope here with varying sizes and address
201 * offsets, and we take full advantage of sections.
203 static void __init
create_mapping(struct map_desc
*md
)
205 unsigned long phys
, addr
, length
, end
;
206 const struct mem_type
*type
;
209 if (md
->virtual != vectors_base() && md
->virtual < TASK_SIZE
) {
210 printk(KERN_WARNING
"BUG: not creating mapping for "
211 "0x%08llx at 0x%08lx in user region\n",
212 __pfn_to_phys((u64
)md
->pfn
), md
->virtual);
216 if ((md
->type
== MT_DEVICE
|| md
->type
== MT_ROM
) &&
217 md
->virtual >= PAGE_OFFSET
&& md
->virtual < VMALLOC_END
) {
218 printk(KERN_WARNING
"BUG: mapping for 0x%08llx at 0x%08lx "
219 "overlaps vmalloc space\n",
220 __pfn_to_phys((u64
)md
->pfn
), md
->virtual);
223 type
= &mem_types
[md
->type
];
225 addr
= md
->virtual & PAGE_MASK
;
226 phys
= (unsigned long)__pfn_to_phys(md
->pfn
);
227 length
= PAGE_ALIGN(md
->length
+ (md
->virtual & ~PAGE_MASK
));
229 if (type
->prot_l1
== 0 && ((addr
| phys
| length
) & ~SECTION_MASK
)) {
230 printk(KERN_WARNING
"BUG: map for 0x%08lx at 0x%08lx can not "
231 "be mapped using pages, ignoring.\n",
232 __pfn_to_phys(md
->pfn
), addr
);
236 pgd
= pgd_offset_k(addr
);
239 unsigned long next
= pgd_addr_end(addr
, end
);
241 alloc_init_section(pgd
, addr
, next
, phys
, type
);
245 } while (pgd
++, addr
!= end
);
248 static void * __initdata vmalloc_min
= (void *)(VMALLOC_END
- SZ_128M
);
251 * vmalloc=size forces the vmalloc area to be exactly 'size'
252 * bytes. This can be used to increase (or decrease) the vmalloc
253 * area - the default is 128m.
255 static int __init
early_vmalloc(char *arg
)
257 unsigned long vmalloc_reserve
= memparse(arg
, NULL
);
259 if (vmalloc_reserve
< SZ_16M
) {
260 vmalloc_reserve
= SZ_16M
;
262 "vmalloc area too small, limiting to %luMB\n",
263 vmalloc_reserve
>> 20);
266 if (vmalloc_reserve
> VMALLOC_END
- (PAGE_OFFSET
+ SZ_32M
)) {
267 vmalloc_reserve
= VMALLOC_END
- (PAGE_OFFSET
+ SZ_32M
);
269 "vmalloc area is too big, limiting to %luMB\n",
270 vmalloc_reserve
>> 20);
273 vmalloc_min
= (void *)(VMALLOC_END
- vmalloc_reserve
);
276 early_param("vmalloc", early_vmalloc
);
278 static phys_addr_t lowmem_limit __initdata
= SZ_1G
;
280 static void __init
sanity_check_meminfo(void)
284 lowmem_limit
= __pa(vmalloc_min
- 1) + 1;
285 memblock_set_current_limit(lowmem_limit
);
287 for (i
= 0, j
= 0; i
< meminfo
.nr_banks
; i
++) {
288 struct membank
*bank
= &meminfo
.bank
[j
];
289 *bank
= meminfo
.bank
[i
];
292 meminfo
.nr_banks
= j
;
295 static inline void prepare_page_table(void)
301 * Clear out all the mappings below the kernel image.
303 for (addr
= 0; addr
< MODULES_VADDR
; addr
+= PGDIR_SIZE
)
304 pmd_clear(pmd_off_k(addr
));
306 for ( ; addr
< PAGE_OFFSET
; addr
+= PGDIR_SIZE
)
307 pmd_clear(pmd_off_k(addr
));
310 * Find the end of the first block of lowmem.
312 end
= memblock
.memory
.regions
[0].base
+ memblock
.memory
.regions
[0].size
;
313 if (end
>= lowmem_limit
)
317 * Clear out all the kernel space mappings, except for the first
318 * memory bank, up to the end of the vmalloc region.
320 for (addr
= __phys_to_virt(end
);
321 addr
< VMALLOC_END
; addr
+= PGDIR_SIZE
)
322 pmd_clear(pmd_off_k(addr
));
326 * Reserve the special regions of memory
328 void __init
uc32_mm_memblock_reserve(void)
331 * Reserve the page tables. These are already in use,
332 * and can only be in node 0.
334 memblock_reserve(__pa(swapper_pg_dir
), PTRS_PER_PGD
* sizeof(pgd_t
));
338 * Set up device the mappings. Since we clear out the page tables for all
339 * mappings above VMALLOC_END, we will remove any debug device mappings.
340 * This means you have to be careful how you debug this function, or any
341 * called function. This means you can't use any function or debugging
342 * method which may touch any device, otherwise the kernel _will_ crash.
344 static void __init
devicemaps_init(void)
351 * Allocate the vector page early.
353 vectors
= memblock_alloc(PAGE_SIZE
, PAGE_SIZE
);
355 panic("%s: Failed to allocate %lu bytes align=0x%lx\n",
356 __func__
, PAGE_SIZE
, PAGE_SIZE
);
358 for (addr
= VMALLOC_END
; addr
; addr
+= PGDIR_SIZE
)
359 pmd_clear(pmd_off_k(addr
));
362 * Create a mapping for the machine vectors at the high-vectors
363 * location (0xffff0000). If we aren't using high-vectors, also
364 * create a mapping at the low-vectors virtual address.
366 map
.pfn
= __phys_to_pfn(virt_to_phys(vectors
));
367 map
.virtual = VECTORS_BASE
;
368 map
.length
= PAGE_SIZE
;
369 map
.type
= MT_HIGH_VECTORS
;
370 create_mapping(&map
);
373 * Create a mapping for the kuser page at the special
374 * location (0xbfff0000) to the same vectors location.
376 map
.pfn
= __phys_to_pfn(virt_to_phys(vectors
));
377 map
.virtual = KUSER_VECPAGE_BASE
;
378 map
.length
= PAGE_SIZE
;
380 create_mapping(&map
);
383 * Finally flush the caches and tlb to ensure that we're in a
384 * consistent state wrt the writebuffer. This also ensures that
385 * any write-allocated cache lines in the vector page are written
386 * back. After this point, we can start to touch devices again.
388 local_flush_tlb_all();
392 static void __init
map_lowmem(void)
394 struct memblock_region
*reg
;
396 /* Map all the lowmem memory banks. */
397 for_each_memblock(memory
, reg
) {
398 phys_addr_t start
= reg
->base
;
399 phys_addr_t end
= start
+ reg
->size
;
402 if (end
> lowmem_limit
)
407 map
.pfn
= __phys_to_pfn(start
);
408 map
.virtual = __phys_to_virt(start
);
409 map
.length
= end
- start
;
410 map
.type
= MT_MEMORY
;
412 create_mapping(&map
);
417 * paging_init() sets up the page tables, initialises the zone memory
418 * maps, and sets up the zero page, bad page and bad page tables.
420 void __init
paging_init(void)
424 build_mem_type_table();
425 sanity_check_meminfo();
426 prepare_page_table();
430 top_pmd
= pmd_off_k(0xffff0000);
432 /* allocate the zero page. */
433 zero_page
= memblock_alloc(PAGE_SIZE
, PAGE_SIZE
);
435 panic("%s: Failed to allocate %lu bytes align=0x%lx\n",
436 __func__
, PAGE_SIZE
, PAGE_SIZE
);
440 empty_zero_page
= virt_to_page(zero_page
);
441 __flush_dcache_page(NULL
, empty_zero_page
);
445 * In order to soft-boot, we need to insert a 1:1 mapping in place of
446 * the user-mode pages. This will then ensure that we have predictable
447 * results when turning the mmu off
449 void setup_mm_for_reboot(void)
451 unsigned long base_pmdval
;
456 * We need to access to user-mode page tables here. For kernel threads
457 * we don't have any user-mode mappings so we use the context that we
460 pgd
= current
->active_mm
->pgd
;
462 base_pmdval
= PMD_SECT_WRITE
| PMD_SECT_READ
| PMD_TYPE_SECT
;
464 for (i
= 0; i
< FIRST_USER_PGD_NR
+ USER_PTRS_PER_PGD
; i
++, pgd
++) {
465 unsigned long pmdval
= (i
<< PGDIR_SHIFT
) | base_pmdval
;
468 pmd
= pmd_off(pgd
, i
<< PGDIR_SHIFT
);
469 set_pmd(pmd
, __pmd(pmdval
));
470 flush_pmd_entry(pmd
);
473 local_flush_tlb_all();
477 * Take care of architecture specific things when placing a new PTE into
478 * a page table, or changing an existing PTE. Basically, there are two
479 * things that we need to take care of:
481 * 1. If PG_dcache_clean is not set for the page, we need to ensure
482 * that any cache entries for the kernels virtual memory
483 * range are written back to the page.
484 * 2. If we have multiple shared mappings of the same space in
485 * an object, we need to deal with the cache aliasing issues.
487 * Note that the pte lock will be held.
489 void update_mmu_cache(struct vm_area_struct
*vma
, unsigned long addr
,
492 unsigned long pfn
= pte_pfn(*ptep
);
493 struct address_space
*mapping
;
500 * The zero page is never written to, so never has any dirty
501 * cache lines, and therefore never needs to be flushed.
503 page
= pfn_to_page(pfn
);
504 if (page
== ZERO_PAGE(0))
507 mapping
= page_mapping_file(page
);
508 if (!test_and_set_bit(PG_dcache_clean
, &page
->flags
))
509 __flush_dcache_page(mapping
, page
);
511 if (vma
->vm_flags
& VM_EXEC
)
512 __flush_icache_all();