treewide: remove redundant IS_ERR() before error code check
[linux/fpc-iii.git] / arch / x86 / events / intel / lbr.c
blob534c76606049a4e4dfe323fff43f9a70f36e9b89
1 // SPDX-License-Identifier: GPL-2.0
2 #include <linux/perf_event.h>
3 #include <linux/types.h>
5 #include <asm/perf_event.h>
6 #include <asm/msr.h>
7 #include <asm/insn.h>
9 #include "../perf_event.h"
11 enum {
12 LBR_FORMAT_32 = 0x00,
13 LBR_FORMAT_LIP = 0x01,
14 LBR_FORMAT_EIP = 0x02,
15 LBR_FORMAT_EIP_FLAGS = 0x03,
16 LBR_FORMAT_EIP_FLAGS2 = 0x04,
17 LBR_FORMAT_INFO = 0x05,
18 LBR_FORMAT_TIME = 0x06,
19 LBR_FORMAT_MAX_KNOWN = LBR_FORMAT_TIME,
22 static const enum {
23 LBR_EIP_FLAGS = 1,
24 LBR_TSX = 2,
25 } lbr_desc[LBR_FORMAT_MAX_KNOWN + 1] = {
26 [LBR_FORMAT_EIP_FLAGS] = LBR_EIP_FLAGS,
27 [LBR_FORMAT_EIP_FLAGS2] = LBR_EIP_FLAGS | LBR_TSX,
31 * Intel LBR_SELECT bits
32 * Intel Vol3a, April 2011, Section 16.7 Table 16-10
34 * Hardware branch filter (not available on all CPUs)
36 #define LBR_KERNEL_BIT 0 /* do not capture at ring0 */
37 #define LBR_USER_BIT 1 /* do not capture at ring > 0 */
38 #define LBR_JCC_BIT 2 /* do not capture conditional branches */
39 #define LBR_REL_CALL_BIT 3 /* do not capture relative calls */
40 #define LBR_IND_CALL_BIT 4 /* do not capture indirect calls */
41 #define LBR_RETURN_BIT 5 /* do not capture near returns */
42 #define LBR_IND_JMP_BIT 6 /* do not capture indirect jumps */
43 #define LBR_REL_JMP_BIT 7 /* do not capture relative jumps */
44 #define LBR_FAR_BIT 8 /* do not capture far branches */
45 #define LBR_CALL_STACK_BIT 9 /* enable call stack */
48 * Following bit only exists in Linux; we mask it out before writing it to
49 * the actual MSR. But it helps the constraint perf code to understand
50 * that this is a separate configuration.
52 #define LBR_NO_INFO_BIT 63 /* don't read LBR_INFO. */
54 #define LBR_KERNEL (1 << LBR_KERNEL_BIT)
55 #define LBR_USER (1 << LBR_USER_BIT)
56 #define LBR_JCC (1 << LBR_JCC_BIT)
57 #define LBR_REL_CALL (1 << LBR_REL_CALL_BIT)
58 #define LBR_IND_CALL (1 << LBR_IND_CALL_BIT)
59 #define LBR_RETURN (1 << LBR_RETURN_BIT)
60 #define LBR_REL_JMP (1 << LBR_REL_JMP_BIT)
61 #define LBR_IND_JMP (1 << LBR_IND_JMP_BIT)
62 #define LBR_FAR (1 << LBR_FAR_BIT)
63 #define LBR_CALL_STACK (1 << LBR_CALL_STACK_BIT)
64 #define LBR_NO_INFO (1ULL << LBR_NO_INFO_BIT)
66 #define LBR_PLM (LBR_KERNEL | LBR_USER)
68 #define LBR_SEL_MASK 0x3ff /* valid bits in LBR_SELECT */
69 #define LBR_NOT_SUPP -1 /* LBR filter not supported */
70 #define LBR_IGN 0 /* ignored */
72 #define LBR_ANY \
73 (LBR_JCC |\
74 LBR_REL_CALL |\
75 LBR_IND_CALL |\
76 LBR_RETURN |\
77 LBR_REL_JMP |\
78 LBR_IND_JMP |\
79 LBR_FAR)
81 #define LBR_FROM_FLAG_MISPRED BIT_ULL(63)
82 #define LBR_FROM_FLAG_IN_TX BIT_ULL(62)
83 #define LBR_FROM_FLAG_ABORT BIT_ULL(61)
85 #define LBR_FROM_SIGNEXT_2MSB (BIT_ULL(60) | BIT_ULL(59))
88 * x86control flow change classification
89 * x86control flow changes include branches, interrupts, traps, faults
91 enum {
92 X86_BR_NONE = 0, /* unknown */
94 X86_BR_USER = 1 << 0, /* branch target is user */
95 X86_BR_KERNEL = 1 << 1, /* branch target is kernel */
97 X86_BR_CALL = 1 << 2, /* call */
98 X86_BR_RET = 1 << 3, /* return */
99 X86_BR_SYSCALL = 1 << 4, /* syscall */
100 X86_BR_SYSRET = 1 << 5, /* syscall return */
101 X86_BR_INT = 1 << 6, /* sw interrupt */
102 X86_BR_IRET = 1 << 7, /* return from interrupt */
103 X86_BR_JCC = 1 << 8, /* conditional */
104 X86_BR_JMP = 1 << 9, /* jump */
105 X86_BR_IRQ = 1 << 10,/* hw interrupt or trap or fault */
106 X86_BR_IND_CALL = 1 << 11,/* indirect calls */
107 X86_BR_ABORT = 1 << 12,/* transaction abort */
108 X86_BR_IN_TX = 1 << 13,/* in transaction */
109 X86_BR_NO_TX = 1 << 14,/* not in transaction */
110 X86_BR_ZERO_CALL = 1 << 15,/* zero length call */
111 X86_BR_CALL_STACK = 1 << 16,/* call stack */
112 X86_BR_IND_JMP = 1 << 17,/* indirect jump */
114 X86_BR_TYPE_SAVE = 1 << 18,/* indicate to save branch type */
118 #define X86_BR_PLM (X86_BR_USER | X86_BR_KERNEL)
119 #define X86_BR_ANYTX (X86_BR_NO_TX | X86_BR_IN_TX)
121 #define X86_BR_ANY \
122 (X86_BR_CALL |\
123 X86_BR_RET |\
124 X86_BR_SYSCALL |\
125 X86_BR_SYSRET |\
126 X86_BR_INT |\
127 X86_BR_IRET |\
128 X86_BR_JCC |\
129 X86_BR_JMP |\
130 X86_BR_IRQ |\
131 X86_BR_ABORT |\
132 X86_BR_IND_CALL |\
133 X86_BR_IND_JMP |\
134 X86_BR_ZERO_CALL)
136 #define X86_BR_ALL (X86_BR_PLM | X86_BR_ANY)
138 #define X86_BR_ANY_CALL \
139 (X86_BR_CALL |\
140 X86_BR_IND_CALL |\
141 X86_BR_ZERO_CALL |\
142 X86_BR_SYSCALL |\
143 X86_BR_IRQ |\
144 X86_BR_INT)
146 static void intel_pmu_lbr_filter(struct cpu_hw_events *cpuc);
149 * We only support LBR implementations that have FREEZE_LBRS_ON_PMI
150 * otherwise it becomes near impossible to get a reliable stack.
153 static void __intel_pmu_lbr_enable(bool pmi)
155 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
156 u64 debugctl, lbr_select = 0, orig_debugctl;
159 * No need to unfreeze manually, as v4 can do that as part
160 * of the GLOBAL_STATUS ack.
162 if (pmi && x86_pmu.version >= 4)
163 return;
166 * No need to reprogram LBR_SELECT in a PMI, as it
167 * did not change.
169 if (cpuc->lbr_sel)
170 lbr_select = cpuc->lbr_sel->config & x86_pmu.lbr_sel_mask;
171 if (!pmi && cpuc->lbr_sel)
172 wrmsrl(MSR_LBR_SELECT, lbr_select);
174 rdmsrl(MSR_IA32_DEBUGCTLMSR, debugctl);
175 orig_debugctl = debugctl;
176 debugctl |= DEBUGCTLMSR_LBR;
178 * LBR callstack does not work well with FREEZE_LBRS_ON_PMI.
179 * If FREEZE_LBRS_ON_PMI is set, PMI near call/return instructions
180 * may cause superfluous increase/decrease of LBR_TOS.
182 if (!(lbr_select & LBR_CALL_STACK))
183 debugctl |= DEBUGCTLMSR_FREEZE_LBRS_ON_PMI;
184 if (orig_debugctl != debugctl)
185 wrmsrl(MSR_IA32_DEBUGCTLMSR, debugctl);
188 static void __intel_pmu_lbr_disable(void)
190 u64 debugctl;
192 rdmsrl(MSR_IA32_DEBUGCTLMSR, debugctl);
193 debugctl &= ~(DEBUGCTLMSR_LBR | DEBUGCTLMSR_FREEZE_LBRS_ON_PMI);
194 wrmsrl(MSR_IA32_DEBUGCTLMSR, debugctl);
197 static void intel_pmu_lbr_reset_32(void)
199 int i;
201 for (i = 0; i < x86_pmu.lbr_nr; i++)
202 wrmsrl(x86_pmu.lbr_from + i, 0);
205 static void intel_pmu_lbr_reset_64(void)
207 int i;
209 for (i = 0; i < x86_pmu.lbr_nr; i++) {
210 wrmsrl(x86_pmu.lbr_from + i, 0);
211 wrmsrl(x86_pmu.lbr_to + i, 0);
212 if (x86_pmu.intel_cap.lbr_format == LBR_FORMAT_INFO)
213 wrmsrl(MSR_LBR_INFO_0 + i, 0);
217 void intel_pmu_lbr_reset(void)
219 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
221 if (!x86_pmu.lbr_nr)
222 return;
224 if (x86_pmu.intel_cap.lbr_format == LBR_FORMAT_32)
225 intel_pmu_lbr_reset_32();
226 else
227 intel_pmu_lbr_reset_64();
229 cpuc->last_task_ctx = NULL;
230 cpuc->last_log_id = 0;
234 * TOS = most recently recorded branch
236 static inline u64 intel_pmu_lbr_tos(void)
238 u64 tos;
240 rdmsrl(x86_pmu.lbr_tos, tos);
241 return tos;
244 enum {
245 LBR_NONE,
246 LBR_VALID,
250 * For formats with LBR_TSX flags (e.g. LBR_FORMAT_EIP_FLAGS2), bits 61:62 in
251 * MSR_LAST_BRANCH_FROM_x are the TSX flags when TSX is supported, but when
252 * TSX is not supported they have no consistent behavior:
254 * - For wrmsr(), bits 61:62 are considered part of the sign extension.
255 * - For HW updates (branch captures) bits 61:62 are always OFF and are not
256 * part of the sign extension.
258 * Therefore, if:
260 * 1) LBR has TSX format
261 * 2) CPU has no TSX support enabled
263 * ... then any value passed to wrmsr() must be sign extended to 63 bits and any
264 * value from rdmsr() must be converted to have a 61 bits sign extension,
265 * ignoring the TSX flags.
267 static inline bool lbr_from_signext_quirk_needed(void)
269 int lbr_format = x86_pmu.intel_cap.lbr_format;
270 bool tsx_support = boot_cpu_has(X86_FEATURE_HLE) ||
271 boot_cpu_has(X86_FEATURE_RTM);
273 return !tsx_support && (lbr_desc[lbr_format] & LBR_TSX);
276 static DEFINE_STATIC_KEY_FALSE(lbr_from_quirk_key);
278 /* If quirk is enabled, ensure sign extension is 63 bits: */
279 inline u64 lbr_from_signext_quirk_wr(u64 val)
281 if (static_branch_unlikely(&lbr_from_quirk_key)) {
283 * Sign extend into bits 61:62 while preserving bit 63.
285 * Quirk is enabled when TSX is disabled. Therefore TSX bits
286 * in val are always OFF and must be changed to be sign
287 * extension bits. Since bits 59:60 are guaranteed to be
288 * part of the sign extension bits, we can just copy them
289 * to 61:62.
291 val |= (LBR_FROM_SIGNEXT_2MSB & val) << 2;
293 return val;
297 * If quirk is needed, ensure sign extension is 61 bits:
299 static u64 lbr_from_signext_quirk_rd(u64 val)
301 if (static_branch_unlikely(&lbr_from_quirk_key)) {
303 * Quirk is on when TSX is not enabled. Therefore TSX
304 * flags must be read as OFF.
306 val &= ~(LBR_FROM_FLAG_IN_TX | LBR_FROM_FLAG_ABORT);
308 return val;
311 static inline void wrlbr_from(unsigned int idx, u64 val)
313 val = lbr_from_signext_quirk_wr(val);
314 wrmsrl(x86_pmu.lbr_from + idx, val);
317 static inline void wrlbr_to(unsigned int idx, u64 val)
319 wrmsrl(x86_pmu.lbr_to + idx, val);
322 static inline u64 rdlbr_from(unsigned int idx)
324 u64 val;
326 rdmsrl(x86_pmu.lbr_from + idx, val);
328 return lbr_from_signext_quirk_rd(val);
331 static inline u64 rdlbr_to(unsigned int idx)
333 u64 val;
335 rdmsrl(x86_pmu.lbr_to + idx, val);
337 return val;
340 static void __intel_pmu_lbr_restore(struct x86_perf_task_context *task_ctx)
342 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
343 int i;
344 unsigned lbr_idx, mask;
345 u64 tos;
347 if (task_ctx->lbr_callstack_users == 0 ||
348 task_ctx->lbr_stack_state == LBR_NONE) {
349 intel_pmu_lbr_reset();
350 return;
353 tos = task_ctx->tos;
355 * Does not restore the LBR registers, if
356 * - No one else touched them, and
357 * - Did not enter C6
359 if ((task_ctx == cpuc->last_task_ctx) &&
360 (task_ctx->log_id == cpuc->last_log_id) &&
361 rdlbr_from(tos)) {
362 task_ctx->lbr_stack_state = LBR_NONE;
363 return;
366 mask = x86_pmu.lbr_nr - 1;
367 for (i = 0; i < task_ctx->valid_lbrs; i++) {
368 lbr_idx = (tos - i) & mask;
369 wrlbr_from(lbr_idx, task_ctx->lbr_from[i]);
370 wrlbr_to (lbr_idx, task_ctx->lbr_to[i]);
372 if (x86_pmu.intel_cap.lbr_format == LBR_FORMAT_INFO)
373 wrmsrl(MSR_LBR_INFO_0 + lbr_idx, task_ctx->lbr_info[i]);
376 for (; i < x86_pmu.lbr_nr; i++) {
377 lbr_idx = (tos - i) & mask;
378 wrlbr_from(lbr_idx, 0);
379 wrlbr_to(lbr_idx, 0);
380 if (x86_pmu.intel_cap.lbr_format == LBR_FORMAT_INFO)
381 wrmsrl(MSR_LBR_INFO_0 + lbr_idx, 0);
384 wrmsrl(x86_pmu.lbr_tos, tos);
385 task_ctx->lbr_stack_state = LBR_NONE;
388 static void __intel_pmu_lbr_save(struct x86_perf_task_context *task_ctx)
390 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
391 unsigned lbr_idx, mask;
392 u64 tos, from;
393 int i;
395 if (task_ctx->lbr_callstack_users == 0) {
396 task_ctx->lbr_stack_state = LBR_NONE;
397 return;
400 mask = x86_pmu.lbr_nr - 1;
401 tos = intel_pmu_lbr_tos();
402 for (i = 0; i < x86_pmu.lbr_nr; i++) {
403 lbr_idx = (tos - i) & mask;
404 from = rdlbr_from(lbr_idx);
405 if (!from)
406 break;
407 task_ctx->lbr_from[i] = from;
408 task_ctx->lbr_to[i] = rdlbr_to(lbr_idx);
409 if (x86_pmu.intel_cap.lbr_format == LBR_FORMAT_INFO)
410 rdmsrl(MSR_LBR_INFO_0 + lbr_idx, task_ctx->lbr_info[i]);
412 task_ctx->valid_lbrs = i;
413 task_ctx->tos = tos;
414 task_ctx->lbr_stack_state = LBR_VALID;
416 cpuc->last_task_ctx = task_ctx;
417 cpuc->last_log_id = ++task_ctx->log_id;
420 void intel_pmu_lbr_swap_task_ctx(struct perf_event_context *prev,
421 struct perf_event_context *next)
423 struct x86_perf_task_context *prev_ctx_data, *next_ctx_data;
425 swap(prev->task_ctx_data, next->task_ctx_data);
428 * Architecture specific synchronization makes sense in
429 * case both prev->task_ctx_data and next->task_ctx_data
430 * pointers are allocated.
433 prev_ctx_data = next->task_ctx_data;
434 next_ctx_data = prev->task_ctx_data;
436 if (!prev_ctx_data || !next_ctx_data)
437 return;
439 swap(prev_ctx_data->lbr_callstack_users,
440 next_ctx_data->lbr_callstack_users);
443 void intel_pmu_lbr_sched_task(struct perf_event_context *ctx, bool sched_in)
445 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
446 struct x86_perf_task_context *task_ctx;
448 if (!cpuc->lbr_users)
449 return;
452 * If LBR callstack feature is enabled and the stack was saved when
453 * the task was scheduled out, restore the stack. Otherwise flush
454 * the LBR stack.
456 task_ctx = ctx ? ctx->task_ctx_data : NULL;
457 if (task_ctx) {
458 if (sched_in)
459 __intel_pmu_lbr_restore(task_ctx);
460 else
461 __intel_pmu_lbr_save(task_ctx);
462 return;
466 * Since a context switch can flip the address space and LBR entries
467 * are not tagged with an identifier, we need to wipe the LBR, even for
468 * per-cpu events. You simply cannot resolve the branches from the old
469 * address space.
471 if (sched_in)
472 intel_pmu_lbr_reset();
475 static inline bool branch_user_callstack(unsigned br_sel)
477 return (br_sel & X86_BR_USER) && (br_sel & X86_BR_CALL_STACK);
480 void intel_pmu_lbr_add(struct perf_event *event)
482 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
483 struct x86_perf_task_context *task_ctx;
485 if (!x86_pmu.lbr_nr)
486 return;
488 cpuc->br_sel = event->hw.branch_reg.reg;
490 if (branch_user_callstack(cpuc->br_sel) && event->ctx->task_ctx_data) {
491 task_ctx = event->ctx->task_ctx_data;
492 task_ctx->lbr_callstack_users++;
496 * Request pmu::sched_task() callback, which will fire inside the
497 * regular perf event scheduling, so that call will:
499 * - restore or wipe; when LBR-callstack,
500 * - wipe; otherwise,
502 * when this is from __perf_event_task_sched_in().
504 * However, if this is from perf_install_in_context(), no such callback
505 * will follow and we'll need to reset the LBR here if this is the
506 * first LBR event.
508 * The problem is, we cannot tell these cases apart... but we can
509 * exclude the biggest chunk of cases by looking at
510 * event->total_time_running. An event that has accrued runtime cannot
511 * be 'new'. Conversely, a new event can get installed through the
512 * context switch path for the first time.
514 if (x86_pmu.intel_cap.pebs_baseline && event->attr.precise_ip > 0)
515 cpuc->lbr_pebs_users++;
516 perf_sched_cb_inc(event->ctx->pmu);
517 if (!cpuc->lbr_users++ && !event->total_time_running)
518 intel_pmu_lbr_reset();
521 void intel_pmu_lbr_del(struct perf_event *event)
523 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
524 struct x86_perf_task_context *task_ctx;
526 if (!x86_pmu.lbr_nr)
527 return;
529 if (branch_user_callstack(cpuc->br_sel) &&
530 event->ctx->task_ctx_data) {
531 task_ctx = event->ctx->task_ctx_data;
532 task_ctx->lbr_callstack_users--;
535 if (x86_pmu.intel_cap.pebs_baseline && event->attr.precise_ip > 0)
536 cpuc->lbr_pebs_users--;
537 cpuc->lbr_users--;
538 WARN_ON_ONCE(cpuc->lbr_users < 0);
539 WARN_ON_ONCE(cpuc->lbr_pebs_users < 0);
540 perf_sched_cb_dec(event->ctx->pmu);
543 void intel_pmu_lbr_enable_all(bool pmi)
545 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
547 if (cpuc->lbr_users)
548 __intel_pmu_lbr_enable(pmi);
551 void intel_pmu_lbr_disable_all(void)
553 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
555 if (cpuc->lbr_users)
556 __intel_pmu_lbr_disable();
559 static void intel_pmu_lbr_read_32(struct cpu_hw_events *cpuc)
561 unsigned long mask = x86_pmu.lbr_nr - 1;
562 u64 tos = intel_pmu_lbr_tos();
563 int i;
565 for (i = 0; i < x86_pmu.lbr_nr; i++) {
566 unsigned long lbr_idx = (tos - i) & mask;
567 union {
568 struct {
569 u32 from;
570 u32 to;
572 u64 lbr;
573 } msr_lastbranch;
575 rdmsrl(x86_pmu.lbr_from + lbr_idx, msr_lastbranch.lbr);
577 cpuc->lbr_entries[i].from = msr_lastbranch.from;
578 cpuc->lbr_entries[i].to = msr_lastbranch.to;
579 cpuc->lbr_entries[i].mispred = 0;
580 cpuc->lbr_entries[i].predicted = 0;
581 cpuc->lbr_entries[i].in_tx = 0;
582 cpuc->lbr_entries[i].abort = 0;
583 cpuc->lbr_entries[i].cycles = 0;
584 cpuc->lbr_entries[i].type = 0;
585 cpuc->lbr_entries[i].reserved = 0;
587 cpuc->lbr_stack.nr = i;
591 * Due to lack of segmentation in Linux the effective address (offset)
592 * is the same as the linear address, allowing us to merge the LIP and EIP
593 * LBR formats.
595 static void intel_pmu_lbr_read_64(struct cpu_hw_events *cpuc)
597 bool need_info = false, call_stack = false;
598 unsigned long mask = x86_pmu.lbr_nr - 1;
599 int lbr_format = x86_pmu.intel_cap.lbr_format;
600 u64 tos = intel_pmu_lbr_tos();
601 int i;
602 int out = 0;
603 int num = x86_pmu.lbr_nr;
605 if (cpuc->lbr_sel) {
606 need_info = !(cpuc->lbr_sel->config & LBR_NO_INFO);
607 if (cpuc->lbr_sel->config & LBR_CALL_STACK)
608 call_stack = true;
611 for (i = 0; i < num; i++) {
612 unsigned long lbr_idx = (tos - i) & mask;
613 u64 from, to, mis = 0, pred = 0, in_tx = 0, abort = 0;
614 int skip = 0;
615 u16 cycles = 0;
616 int lbr_flags = lbr_desc[lbr_format];
618 from = rdlbr_from(lbr_idx);
619 to = rdlbr_to(lbr_idx);
622 * Read LBR call stack entries
623 * until invalid entry (0s) is detected.
625 if (call_stack && !from)
626 break;
628 if (lbr_format == LBR_FORMAT_INFO && need_info) {
629 u64 info;
631 rdmsrl(MSR_LBR_INFO_0 + lbr_idx, info);
632 mis = !!(info & LBR_INFO_MISPRED);
633 pred = !mis;
634 in_tx = !!(info & LBR_INFO_IN_TX);
635 abort = !!(info & LBR_INFO_ABORT);
636 cycles = (info & LBR_INFO_CYCLES);
639 if (lbr_format == LBR_FORMAT_TIME) {
640 mis = !!(from & LBR_FROM_FLAG_MISPRED);
641 pred = !mis;
642 skip = 1;
643 cycles = ((to >> 48) & LBR_INFO_CYCLES);
645 to = (u64)((((s64)to) << 16) >> 16);
648 if (lbr_flags & LBR_EIP_FLAGS) {
649 mis = !!(from & LBR_FROM_FLAG_MISPRED);
650 pred = !mis;
651 skip = 1;
653 if (lbr_flags & LBR_TSX) {
654 in_tx = !!(from & LBR_FROM_FLAG_IN_TX);
655 abort = !!(from & LBR_FROM_FLAG_ABORT);
656 skip = 3;
658 from = (u64)((((s64)from) << skip) >> skip);
661 * Some CPUs report duplicated abort records,
662 * with the second entry not having an abort bit set.
663 * Skip them here. This loop runs backwards,
664 * so we need to undo the previous record.
665 * If the abort just happened outside the window
666 * the extra entry cannot be removed.
668 if (abort && x86_pmu.lbr_double_abort && out > 0)
669 out--;
671 cpuc->lbr_entries[out].from = from;
672 cpuc->lbr_entries[out].to = to;
673 cpuc->lbr_entries[out].mispred = mis;
674 cpuc->lbr_entries[out].predicted = pred;
675 cpuc->lbr_entries[out].in_tx = in_tx;
676 cpuc->lbr_entries[out].abort = abort;
677 cpuc->lbr_entries[out].cycles = cycles;
678 cpuc->lbr_entries[out].type = 0;
679 cpuc->lbr_entries[out].reserved = 0;
680 out++;
682 cpuc->lbr_stack.nr = out;
685 void intel_pmu_lbr_read(void)
687 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
690 * Don't read when all LBRs users are using adaptive PEBS.
692 * This could be smarter and actually check the event,
693 * but this simple approach seems to work for now.
695 if (!cpuc->lbr_users || cpuc->lbr_users == cpuc->lbr_pebs_users)
696 return;
698 if (x86_pmu.intel_cap.lbr_format == LBR_FORMAT_32)
699 intel_pmu_lbr_read_32(cpuc);
700 else
701 intel_pmu_lbr_read_64(cpuc);
703 intel_pmu_lbr_filter(cpuc);
707 * SW filter is used:
708 * - in case there is no HW filter
709 * - in case the HW filter has errata or limitations
711 static int intel_pmu_setup_sw_lbr_filter(struct perf_event *event)
713 u64 br_type = event->attr.branch_sample_type;
714 int mask = 0;
716 if (br_type & PERF_SAMPLE_BRANCH_USER)
717 mask |= X86_BR_USER;
719 if (br_type & PERF_SAMPLE_BRANCH_KERNEL)
720 mask |= X86_BR_KERNEL;
722 /* we ignore BRANCH_HV here */
724 if (br_type & PERF_SAMPLE_BRANCH_ANY)
725 mask |= X86_BR_ANY;
727 if (br_type & PERF_SAMPLE_BRANCH_ANY_CALL)
728 mask |= X86_BR_ANY_CALL;
730 if (br_type & PERF_SAMPLE_BRANCH_ANY_RETURN)
731 mask |= X86_BR_RET | X86_BR_IRET | X86_BR_SYSRET;
733 if (br_type & PERF_SAMPLE_BRANCH_IND_CALL)
734 mask |= X86_BR_IND_CALL;
736 if (br_type & PERF_SAMPLE_BRANCH_ABORT_TX)
737 mask |= X86_BR_ABORT;
739 if (br_type & PERF_SAMPLE_BRANCH_IN_TX)
740 mask |= X86_BR_IN_TX;
742 if (br_type & PERF_SAMPLE_BRANCH_NO_TX)
743 mask |= X86_BR_NO_TX;
745 if (br_type & PERF_SAMPLE_BRANCH_COND)
746 mask |= X86_BR_JCC;
748 if (br_type & PERF_SAMPLE_BRANCH_CALL_STACK) {
749 if (!x86_pmu_has_lbr_callstack())
750 return -EOPNOTSUPP;
751 if (mask & ~(X86_BR_USER | X86_BR_KERNEL))
752 return -EINVAL;
753 mask |= X86_BR_CALL | X86_BR_IND_CALL | X86_BR_RET |
754 X86_BR_CALL_STACK;
757 if (br_type & PERF_SAMPLE_BRANCH_IND_JUMP)
758 mask |= X86_BR_IND_JMP;
760 if (br_type & PERF_SAMPLE_BRANCH_CALL)
761 mask |= X86_BR_CALL | X86_BR_ZERO_CALL;
763 if (br_type & PERF_SAMPLE_BRANCH_TYPE_SAVE)
764 mask |= X86_BR_TYPE_SAVE;
767 * stash actual user request into reg, it may
768 * be used by fixup code for some CPU
770 event->hw.branch_reg.reg = mask;
771 return 0;
775 * setup the HW LBR filter
776 * Used only when available, may not be enough to disambiguate
777 * all branches, may need the help of the SW filter
779 static int intel_pmu_setup_hw_lbr_filter(struct perf_event *event)
781 struct hw_perf_event_extra *reg;
782 u64 br_type = event->attr.branch_sample_type;
783 u64 mask = 0, v;
784 int i;
786 for (i = 0; i < PERF_SAMPLE_BRANCH_MAX_SHIFT; i++) {
787 if (!(br_type & (1ULL << i)))
788 continue;
790 v = x86_pmu.lbr_sel_map[i];
791 if (v == LBR_NOT_SUPP)
792 return -EOPNOTSUPP;
794 if (v != LBR_IGN)
795 mask |= v;
798 reg = &event->hw.branch_reg;
799 reg->idx = EXTRA_REG_LBR;
802 * The first 9 bits (LBR_SEL_MASK) in LBR_SELECT operate
803 * in suppress mode. So LBR_SELECT should be set to
804 * (~mask & LBR_SEL_MASK) | (mask & ~LBR_SEL_MASK)
805 * But the 10th bit LBR_CALL_STACK does not operate
806 * in suppress mode.
808 reg->config = mask ^ (x86_pmu.lbr_sel_mask & ~LBR_CALL_STACK);
810 if ((br_type & PERF_SAMPLE_BRANCH_NO_CYCLES) &&
811 (br_type & PERF_SAMPLE_BRANCH_NO_FLAGS) &&
812 (x86_pmu.intel_cap.lbr_format == LBR_FORMAT_INFO))
813 reg->config |= LBR_NO_INFO;
815 return 0;
818 int intel_pmu_setup_lbr_filter(struct perf_event *event)
820 int ret = 0;
823 * no LBR on this PMU
825 if (!x86_pmu.lbr_nr)
826 return -EOPNOTSUPP;
829 * setup SW LBR filter
831 ret = intel_pmu_setup_sw_lbr_filter(event);
832 if (ret)
833 return ret;
836 * setup HW LBR filter, if any
838 if (x86_pmu.lbr_sel_map)
839 ret = intel_pmu_setup_hw_lbr_filter(event);
841 return ret;
845 * return the type of control flow change at address "from"
846 * instruction is not necessarily a branch (in case of interrupt).
848 * The branch type returned also includes the priv level of the
849 * target of the control flow change (X86_BR_USER, X86_BR_KERNEL).
851 * If a branch type is unknown OR the instruction cannot be
852 * decoded (e.g., text page not present), then X86_BR_NONE is
853 * returned.
855 static int branch_type(unsigned long from, unsigned long to, int abort)
857 struct insn insn;
858 void *addr;
859 int bytes_read, bytes_left;
860 int ret = X86_BR_NONE;
861 int ext, to_plm, from_plm;
862 u8 buf[MAX_INSN_SIZE];
863 int is64 = 0;
865 to_plm = kernel_ip(to) ? X86_BR_KERNEL : X86_BR_USER;
866 from_plm = kernel_ip(from) ? X86_BR_KERNEL : X86_BR_USER;
869 * maybe zero if lbr did not fill up after a reset by the time
870 * we get a PMU interrupt
872 if (from == 0 || to == 0)
873 return X86_BR_NONE;
875 if (abort)
876 return X86_BR_ABORT | to_plm;
878 if (from_plm == X86_BR_USER) {
880 * can happen if measuring at the user level only
881 * and we interrupt in a kernel thread, e.g., idle.
883 if (!current->mm)
884 return X86_BR_NONE;
886 /* may fail if text not present */
887 bytes_left = copy_from_user_nmi(buf, (void __user *)from,
888 MAX_INSN_SIZE);
889 bytes_read = MAX_INSN_SIZE - bytes_left;
890 if (!bytes_read)
891 return X86_BR_NONE;
893 addr = buf;
894 } else {
896 * The LBR logs any address in the IP, even if the IP just
897 * faulted. This means userspace can control the from address.
898 * Ensure we don't blindy read any address by validating it is
899 * a known text address.
901 if (kernel_text_address(from)) {
902 addr = (void *)from;
904 * Assume we can get the maximum possible size
905 * when grabbing kernel data. This is not
906 * _strictly_ true since we could possibly be
907 * executing up next to a memory hole, but
908 * it is very unlikely to be a problem.
910 bytes_read = MAX_INSN_SIZE;
911 } else {
912 return X86_BR_NONE;
917 * decoder needs to know the ABI especially
918 * on 64-bit systems running 32-bit apps
920 #ifdef CONFIG_X86_64
921 is64 = kernel_ip((unsigned long)addr) || !test_thread_flag(TIF_IA32);
922 #endif
923 insn_init(&insn, addr, bytes_read, is64);
924 insn_get_opcode(&insn);
925 if (!insn.opcode.got)
926 return X86_BR_ABORT;
928 switch (insn.opcode.bytes[0]) {
929 case 0xf:
930 switch (insn.opcode.bytes[1]) {
931 case 0x05: /* syscall */
932 case 0x34: /* sysenter */
933 ret = X86_BR_SYSCALL;
934 break;
935 case 0x07: /* sysret */
936 case 0x35: /* sysexit */
937 ret = X86_BR_SYSRET;
938 break;
939 case 0x80 ... 0x8f: /* conditional */
940 ret = X86_BR_JCC;
941 break;
942 default:
943 ret = X86_BR_NONE;
945 break;
946 case 0x70 ... 0x7f: /* conditional */
947 ret = X86_BR_JCC;
948 break;
949 case 0xc2: /* near ret */
950 case 0xc3: /* near ret */
951 case 0xca: /* far ret */
952 case 0xcb: /* far ret */
953 ret = X86_BR_RET;
954 break;
955 case 0xcf: /* iret */
956 ret = X86_BR_IRET;
957 break;
958 case 0xcc ... 0xce: /* int */
959 ret = X86_BR_INT;
960 break;
961 case 0xe8: /* call near rel */
962 insn_get_immediate(&insn);
963 if (insn.immediate1.value == 0) {
964 /* zero length call */
965 ret = X86_BR_ZERO_CALL;
966 break;
968 /* fall through */
969 case 0x9a: /* call far absolute */
970 ret = X86_BR_CALL;
971 break;
972 case 0xe0 ... 0xe3: /* loop jmp */
973 ret = X86_BR_JCC;
974 break;
975 case 0xe9 ... 0xeb: /* jmp */
976 ret = X86_BR_JMP;
977 break;
978 case 0xff: /* call near absolute, call far absolute ind */
979 insn_get_modrm(&insn);
980 ext = (insn.modrm.bytes[0] >> 3) & 0x7;
981 switch (ext) {
982 case 2: /* near ind call */
983 case 3: /* far ind call */
984 ret = X86_BR_IND_CALL;
985 break;
986 case 4:
987 case 5:
988 ret = X86_BR_IND_JMP;
989 break;
991 break;
992 default:
993 ret = X86_BR_NONE;
996 * interrupts, traps, faults (and thus ring transition) may
997 * occur on any instructions. Thus, to classify them correctly,
998 * we need to first look at the from and to priv levels. If they
999 * are different and to is in the kernel, then it indicates
1000 * a ring transition. If the from instruction is not a ring
1001 * transition instr (syscall, systenter, int), then it means
1002 * it was a irq, trap or fault.
1004 * we have no way of detecting kernel to kernel faults.
1006 if (from_plm == X86_BR_USER && to_plm == X86_BR_KERNEL
1007 && ret != X86_BR_SYSCALL && ret != X86_BR_INT)
1008 ret = X86_BR_IRQ;
1011 * branch priv level determined by target as
1012 * is done by HW when LBR_SELECT is implemented
1014 if (ret != X86_BR_NONE)
1015 ret |= to_plm;
1017 return ret;
1020 #define X86_BR_TYPE_MAP_MAX 16
1022 static int branch_map[X86_BR_TYPE_MAP_MAX] = {
1023 PERF_BR_CALL, /* X86_BR_CALL */
1024 PERF_BR_RET, /* X86_BR_RET */
1025 PERF_BR_SYSCALL, /* X86_BR_SYSCALL */
1026 PERF_BR_SYSRET, /* X86_BR_SYSRET */
1027 PERF_BR_UNKNOWN, /* X86_BR_INT */
1028 PERF_BR_UNKNOWN, /* X86_BR_IRET */
1029 PERF_BR_COND, /* X86_BR_JCC */
1030 PERF_BR_UNCOND, /* X86_BR_JMP */
1031 PERF_BR_UNKNOWN, /* X86_BR_IRQ */
1032 PERF_BR_IND_CALL, /* X86_BR_IND_CALL */
1033 PERF_BR_UNKNOWN, /* X86_BR_ABORT */
1034 PERF_BR_UNKNOWN, /* X86_BR_IN_TX */
1035 PERF_BR_UNKNOWN, /* X86_BR_NO_TX */
1036 PERF_BR_CALL, /* X86_BR_ZERO_CALL */
1037 PERF_BR_UNKNOWN, /* X86_BR_CALL_STACK */
1038 PERF_BR_IND, /* X86_BR_IND_JMP */
1041 static int
1042 common_branch_type(int type)
1044 int i;
1046 type >>= 2; /* skip X86_BR_USER and X86_BR_KERNEL */
1048 if (type) {
1049 i = __ffs(type);
1050 if (i < X86_BR_TYPE_MAP_MAX)
1051 return branch_map[i];
1054 return PERF_BR_UNKNOWN;
1058 * implement actual branch filter based on user demand.
1059 * Hardware may not exactly satisfy that request, thus
1060 * we need to inspect opcodes. Mismatched branches are
1061 * discarded. Therefore, the number of branches returned
1062 * in PERF_SAMPLE_BRANCH_STACK sample may vary.
1064 static void
1065 intel_pmu_lbr_filter(struct cpu_hw_events *cpuc)
1067 u64 from, to;
1068 int br_sel = cpuc->br_sel;
1069 int i, j, type;
1070 bool compress = false;
1072 /* if sampling all branches, then nothing to filter */
1073 if (((br_sel & X86_BR_ALL) == X86_BR_ALL) &&
1074 ((br_sel & X86_BR_TYPE_SAVE) != X86_BR_TYPE_SAVE))
1075 return;
1077 for (i = 0; i < cpuc->lbr_stack.nr; i++) {
1079 from = cpuc->lbr_entries[i].from;
1080 to = cpuc->lbr_entries[i].to;
1082 type = branch_type(from, to, cpuc->lbr_entries[i].abort);
1083 if (type != X86_BR_NONE && (br_sel & X86_BR_ANYTX)) {
1084 if (cpuc->lbr_entries[i].in_tx)
1085 type |= X86_BR_IN_TX;
1086 else
1087 type |= X86_BR_NO_TX;
1090 /* if type does not correspond, then discard */
1091 if (type == X86_BR_NONE || (br_sel & type) != type) {
1092 cpuc->lbr_entries[i].from = 0;
1093 compress = true;
1096 if ((br_sel & X86_BR_TYPE_SAVE) == X86_BR_TYPE_SAVE)
1097 cpuc->lbr_entries[i].type = common_branch_type(type);
1100 if (!compress)
1101 return;
1103 /* remove all entries with from=0 */
1104 for (i = 0; i < cpuc->lbr_stack.nr; ) {
1105 if (!cpuc->lbr_entries[i].from) {
1106 j = i;
1107 while (++j < cpuc->lbr_stack.nr)
1108 cpuc->lbr_entries[j-1] = cpuc->lbr_entries[j];
1109 cpuc->lbr_stack.nr--;
1110 if (!cpuc->lbr_entries[i].from)
1111 continue;
1113 i++;
1117 void intel_pmu_store_pebs_lbrs(struct pebs_lbr *lbr)
1119 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1120 int i;
1122 cpuc->lbr_stack.nr = x86_pmu.lbr_nr;
1123 for (i = 0; i < x86_pmu.lbr_nr; i++) {
1124 u64 info = lbr->lbr[i].info;
1125 struct perf_branch_entry *e = &cpuc->lbr_entries[i];
1127 e->from = lbr->lbr[i].from;
1128 e->to = lbr->lbr[i].to;
1129 e->mispred = !!(info & LBR_INFO_MISPRED);
1130 e->predicted = !(info & LBR_INFO_MISPRED);
1131 e->in_tx = !!(info & LBR_INFO_IN_TX);
1132 e->abort = !!(info & LBR_INFO_ABORT);
1133 e->cycles = info & LBR_INFO_CYCLES;
1134 e->reserved = 0;
1136 intel_pmu_lbr_filter(cpuc);
1140 * Map interface branch filters onto LBR filters
1142 static const int nhm_lbr_sel_map[PERF_SAMPLE_BRANCH_MAX_SHIFT] = {
1143 [PERF_SAMPLE_BRANCH_ANY_SHIFT] = LBR_ANY,
1144 [PERF_SAMPLE_BRANCH_USER_SHIFT] = LBR_USER,
1145 [PERF_SAMPLE_BRANCH_KERNEL_SHIFT] = LBR_KERNEL,
1146 [PERF_SAMPLE_BRANCH_HV_SHIFT] = LBR_IGN,
1147 [PERF_SAMPLE_BRANCH_ANY_RETURN_SHIFT] = LBR_RETURN | LBR_REL_JMP
1148 | LBR_IND_JMP | LBR_FAR,
1150 * NHM/WSM erratum: must include REL_JMP+IND_JMP to get CALL branches
1152 [PERF_SAMPLE_BRANCH_ANY_CALL_SHIFT] =
1153 LBR_REL_CALL | LBR_IND_CALL | LBR_REL_JMP | LBR_IND_JMP | LBR_FAR,
1155 * NHM/WSM erratum: must include IND_JMP to capture IND_CALL
1157 [PERF_SAMPLE_BRANCH_IND_CALL_SHIFT] = LBR_IND_CALL | LBR_IND_JMP,
1158 [PERF_SAMPLE_BRANCH_COND_SHIFT] = LBR_JCC,
1159 [PERF_SAMPLE_BRANCH_IND_JUMP_SHIFT] = LBR_IND_JMP,
1162 static const int snb_lbr_sel_map[PERF_SAMPLE_BRANCH_MAX_SHIFT] = {
1163 [PERF_SAMPLE_BRANCH_ANY_SHIFT] = LBR_ANY,
1164 [PERF_SAMPLE_BRANCH_USER_SHIFT] = LBR_USER,
1165 [PERF_SAMPLE_BRANCH_KERNEL_SHIFT] = LBR_KERNEL,
1166 [PERF_SAMPLE_BRANCH_HV_SHIFT] = LBR_IGN,
1167 [PERF_SAMPLE_BRANCH_ANY_RETURN_SHIFT] = LBR_RETURN | LBR_FAR,
1168 [PERF_SAMPLE_BRANCH_ANY_CALL_SHIFT] = LBR_REL_CALL | LBR_IND_CALL
1169 | LBR_FAR,
1170 [PERF_SAMPLE_BRANCH_IND_CALL_SHIFT] = LBR_IND_CALL,
1171 [PERF_SAMPLE_BRANCH_COND_SHIFT] = LBR_JCC,
1172 [PERF_SAMPLE_BRANCH_IND_JUMP_SHIFT] = LBR_IND_JMP,
1173 [PERF_SAMPLE_BRANCH_CALL_SHIFT] = LBR_REL_CALL,
1176 static const int hsw_lbr_sel_map[PERF_SAMPLE_BRANCH_MAX_SHIFT] = {
1177 [PERF_SAMPLE_BRANCH_ANY_SHIFT] = LBR_ANY,
1178 [PERF_SAMPLE_BRANCH_USER_SHIFT] = LBR_USER,
1179 [PERF_SAMPLE_BRANCH_KERNEL_SHIFT] = LBR_KERNEL,
1180 [PERF_SAMPLE_BRANCH_HV_SHIFT] = LBR_IGN,
1181 [PERF_SAMPLE_BRANCH_ANY_RETURN_SHIFT] = LBR_RETURN | LBR_FAR,
1182 [PERF_SAMPLE_BRANCH_ANY_CALL_SHIFT] = LBR_REL_CALL | LBR_IND_CALL
1183 | LBR_FAR,
1184 [PERF_SAMPLE_BRANCH_IND_CALL_SHIFT] = LBR_IND_CALL,
1185 [PERF_SAMPLE_BRANCH_COND_SHIFT] = LBR_JCC,
1186 [PERF_SAMPLE_BRANCH_CALL_STACK_SHIFT] = LBR_REL_CALL | LBR_IND_CALL
1187 | LBR_RETURN | LBR_CALL_STACK,
1188 [PERF_SAMPLE_BRANCH_IND_JUMP_SHIFT] = LBR_IND_JMP,
1189 [PERF_SAMPLE_BRANCH_CALL_SHIFT] = LBR_REL_CALL,
1192 /* core */
1193 void __init intel_pmu_lbr_init_core(void)
1195 x86_pmu.lbr_nr = 4;
1196 x86_pmu.lbr_tos = MSR_LBR_TOS;
1197 x86_pmu.lbr_from = MSR_LBR_CORE_FROM;
1198 x86_pmu.lbr_to = MSR_LBR_CORE_TO;
1201 * SW branch filter usage:
1202 * - compensate for lack of HW filter
1206 /* nehalem/westmere */
1207 void __init intel_pmu_lbr_init_nhm(void)
1209 x86_pmu.lbr_nr = 16;
1210 x86_pmu.lbr_tos = MSR_LBR_TOS;
1211 x86_pmu.lbr_from = MSR_LBR_NHM_FROM;
1212 x86_pmu.lbr_to = MSR_LBR_NHM_TO;
1214 x86_pmu.lbr_sel_mask = LBR_SEL_MASK;
1215 x86_pmu.lbr_sel_map = nhm_lbr_sel_map;
1218 * SW branch filter usage:
1219 * - workaround LBR_SEL errata (see above)
1220 * - support syscall, sysret capture.
1221 * That requires LBR_FAR but that means far
1222 * jmp need to be filtered out
1226 /* sandy bridge */
1227 void __init intel_pmu_lbr_init_snb(void)
1229 x86_pmu.lbr_nr = 16;
1230 x86_pmu.lbr_tos = MSR_LBR_TOS;
1231 x86_pmu.lbr_from = MSR_LBR_NHM_FROM;
1232 x86_pmu.lbr_to = MSR_LBR_NHM_TO;
1234 x86_pmu.lbr_sel_mask = LBR_SEL_MASK;
1235 x86_pmu.lbr_sel_map = snb_lbr_sel_map;
1238 * SW branch filter usage:
1239 * - support syscall, sysret capture.
1240 * That requires LBR_FAR but that means far
1241 * jmp need to be filtered out
1245 /* haswell */
1246 void intel_pmu_lbr_init_hsw(void)
1248 x86_pmu.lbr_nr = 16;
1249 x86_pmu.lbr_tos = MSR_LBR_TOS;
1250 x86_pmu.lbr_from = MSR_LBR_NHM_FROM;
1251 x86_pmu.lbr_to = MSR_LBR_NHM_TO;
1253 x86_pmu.lbr_sel_mask = LBR_SEL_MASK;
1254 x86_pmu.lbr_sel_map = hsw_lbr_sel_map;
1256 if (lbr_from_signext_quirk_needed())
1257 static_branch_enable(&lbr_from_quirk_key);
1260 /* skylake */
1261 __init void intel_pmu_lbr_init_skl(void)
1263 x86_pmu.lbr_nr = 32;
1264 x86_pmu.lbr_tos = MSR_LBR_TOS;
1265 x86_pmu.lbr_from = MSR_LBR_NHM_FROM;
1266 x86_pmu.lbr_to = MSR_LBR_NHM_TO;
1268 x86_pmu.lbr_sel_mask = LBR_SEL_MASK;
1269 x86_pmu.lbr_sel_map = hsw_lbr_sel_map;
1272 * SW branch filter usage:
1273 * - support syscall, sysret capture.
1274 * That requires LBR_FAR but that means far
1275 * jmp need to be filtered out
1279 /* atom */
1280 void __init intel_pmu_lbr_init_atom(void)
1283 * only models starting at stepping 10 seems
1284 * to have an operational LBR which can freeze
1285 * on PMU interrupt
1287 if (boot_cpu_data.x86_model == 28
1288 && boot_cpu_data.x86_stepping < 10) {
1289 pr_cont("LBR disabled due to erratum");
1290 return;
1293 x86_pmu.lbr_nr = 8;
1294 x86_pmu.lbr_tos = MSR_LBR_TOS;
1295 x86_pmu.lbr_from = MSR_LBR_CORE_FROM;
1296 x86_pmu.lbr_to = MSR_LBR_CORE_TO;
1299 * SW branch filter usage:
1300 * - compensate for lack of HW filter
1304 /* slm */
1305 void __init intel_pmu_lbr_init_slm(void)
1307 x86_pmu.lbr_nr = 8;
1308 x86_pmu.lbr_tos = MSR_LBR_TOS;
1309 x86_pmu.lbr_from = MSR_LBR_CORE_FROM;
1310 x86_pmu.lbr_to = MSR_LBR_CORE_TO;
1312 x86_pmu.lbr_sel_mask = LBR_SEL_MASK;
1313 x86_pmu.lbr_sel_map = nhm_lbr_sel_map;
1316 * SW branch filter usage:
1317 * - compensate for lack of HW filter
1319 pr_cont("8-deep LBR, ");
1322 /* Knights Landing */
1323 void intel_pmu_lbr_init_knl(void)
1325 x86_pmu.lbr_nr = 8;
1326 x86_pmu.lbr_tos = MSR_LBR_TOS;
1327 x86_pmu.lbr_from = MSR_LBR_NHM_FROM;
1328 x86_pmu.lbr_to = MSR_LBR_NHM_TO;
1330 x86_pmu.lbr_sel_mask = LBR_SEL_MASK;
1331 x86_pmu.lbr_sel_map = snb_lbr_sel_map;
1333 /* Knights Landing does have MISPREDICT bit */
1334 if (x86_pmu.intel_cap.lbr_format == LBR_FORMAT_LIP)
1335 x86_pmu.intel_cap.lbr_format = LBR_FORMAT_EIP_FLAGS;