treewide: remove redundant IS_ERR() before error code check
[linux/fpc-iii.git] / arch / x86 / kernel / alternative.c
blob15ac0d5f4b40f50ad76b8574858176c558479b48
1 // SPDX-License-Identifier: GPL-2.0-only
2 #define pr_fmt(fmt) "SMP alternatives: " fmt
4 #include <linux/module.h>
5 #include <linux/sched.h>
6 #include <linux/mutex.h>
7 #include <linux/list.h>
8 #include <linux/stringify.h>
9 #include <linux/mm.h>
10 #include <linux/vmalloc.h>
11 #include <linux/memory.h>
12 #include <linux/stop_machine.h>
13 #include <linux/slab.h>
14 #include <linux/kdebug.h>
15 #include <linux/kprobes.h>
16 #include <linux/mmu_context.h>
17 #include <linux/bsearch.h>
18 #include <asm/text-patching.h>
19 #include <asm/alternative.h>
20 #include <asm/sections.h>
21 #include <asm/pgtable.h>
22 #include <asm/mce.h>
23 #include <asm/nmi.h>
24 #include <asm/cacheflush.h>
25 #include <asm/tlbflush.h>
26 #include <asm/insn.h>
27 #include <asm/io.h>
28 #include <asm/fixmap.h>
30 int __read_mostly alternatives_patched;
32 EXPORT_SYMBOL_GPL(alternatives_patched);
34 #define MAX_PATCH_LEN (255-1)
36 static int __initdata_or_module debug_alternative;
38 static int __init debug_alt(char *str)
40 debug_alternative = 1;
41 return 1;
43 __setup("debug-alternative", debug_alt);
45 static int noreplace_smp;
47 static int __init setup_noreplace_smp(char *str)
49 noreplace_smp = 1;
50 return 1;
52 __setup("noreplace-smp", setup_noreplace_smp);
54 #define DPRINTK(fmt, args...) \
55 do { \
56 if (debug_alternative) \
57 printk(KERN_DEBUG "%s: " fmt "\n", __func__, ##args); \
58 } while (0)
60 #define DUMP_BYTES(buf, len, fmt, args...) \
61 do { \
62 if (unlikely(debug_alternative)) { \
63 int j; \
65 if (!(len)) \
66 break; \
68 printk(KERN_DEBUG fmt, ##args); \
69 for (j = 0; j < (len) - 1; j++) \
70 printk(KERN_CONT "%02hhx ", buf[j]); \
71 printk(KERN_CONT "%02hhx\n", buf[j]); \
72 } \
73 } while (0)
76 * Each GENERIC_NOPX is of X bytes, and defined as an array of bytes
77 * that correspond to that nop. Getting from one nop to the next, we
78 * add to the array the offset that is equal to the sum of all sizes of
79 * nops preceding the one we are after.
81 * Note: The GENERIC_NOP5_ATOMIC is at the end, as it breaks the
82 * nice symmetry of sizes of the previous nops.
84 #if defined(GENERIC_NOP1) && !defined(CONFIG_X86_64)
85 static const unsigned char intelnops[] =
87 GENERIC_NOP1,
88 GENERIC_NOP2,
89 GENERIC_NOP3,
90 GENERIC_NOP4,
91 GENERIC_NOP5,
92 GENERIC_NOP6,
93 GENERIC_NOP7,
94 GENERIC_NOP8,
95 GENERIC_NOP5_ATOMIC
97 static const unsigned char * const intel_nops[ASM_NOP_MAX+2] =
99 NULL,
100 intelnops,
101 intelnops + 1,
102 intelnops + 1 + 2,
103 intelnops + 1 + 2 + 3,
104 intelnops + 1 + 2 + 3 + 4,
105 intelnops + 1 + 2 + 3 + 4 + 5,
106 intelnops + 1 + 2 + 3 + 4 + 5 + 6,
107 intelnops + 1 + 2 + 3 + 4 + 5 + 6 + 7,
108 intelnops + 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8,
110 #endif
112 #ifdef K8_NOP1
113 static const unsigned char k8nops[] =
115 K8_NOP1,
116 K8_NOP2,
117 K8_NOP3,
118 K8_NOP4,
119 K8_NOP5,
120 K8_NOP6,
121 K8_NOP7,
122 K8_NOP8,
123 K8_NOP5_ATOMIC
125 static const unsigned char * const k8_nops[ASM_NOP_MAX+2] =
127 NULL,
128 k8nops,
129 k8nops + 1,
130 k8nops + 1 + 2,
131 k8nops + 1 + 2 + 3,
132 k8nops + 1 + 2 + 3 + 4,
133 k8nops + 1 + 2 + 3 + 4 + 5,
134 k8nops + 1 + 2 + 3 + 4 + 5 + 6,
135 k8nops + 1 + 2 + 3 + 4 + 5 + 6 + 7,
136 k8nops + 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8,
138 #endif
140 #if defined(K7_NOP1) && !defined(CONFIG_X86_64)
141 static const unsigned char k7nops[] =
143 K7_NOP1,
144 K7_NOP2,
145 K7_NOP3,
146 K7_NOP4,
147 K7_NOP5,
148 K7_NOP6,
149 K7_NOP7,
150 K7_NOP8,
151 K7_NOP5_ATOMIC
153 static const unsigned char * const k7_nops[ASM_NOP_MAX+2] =
155 NULL,
156 k7nops,
157 k7nops + 1,
158 k7nops + 1 + 2,
159 k7nops + 1 + 2 + 3,
160 k7nops + 1 + 2 + 3 + 4,
161 k7nops + 1 + 2 + 3 + 4 + 5,
162 k7nops + 1 + 2 + 3 + 4 + 5 + 6,
163 k7nops + 1 + 2 + 3 + 4 + 5 + 6 + 7,
164 k7nops + 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8,
166 #endif
168 #ifdef P6_NOP1
169 static const unsigned char p6nops[] =
171 P6_NOP1,
172 P6_NOP2,
173 P6_NOP3,
174 P6_NOP4,
175 P6_NOP5,
176 P6_NOP6,
177 P6_NOP7,
178 P6_NOP8,
179 P6_NOP5_ATOMIC
181 static const unsigned char * const p6_nops[ASM_NOP_MAX+2] =
183 NULL,
184 p6nops,
185 p6nops + 1,
186 p6nops + 1 + 2,
187 p6nops + 1 + 2 + 3,
188 p6nops + 1 + 2 + 3 + 4,
189 p6nops + 1 + 2 + 3 + 4 + 5,
190 p6nops + 1 + 2 + 3 + 4 + 5 + 6,
191 p6nops + 1 + 2 + 3 + 4 + 5 + 6 + 7,
192 p6nops + 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8,
194 #endif
196 /* Initialize these to a safe default */
197 #ifdef CONFIG_X86_64
198 const unsigned char * const *ideal_nops = p6_nops;
199 #else
200 const unsigned char * const *ideal_nops = intel_nops;
201 #endif
203 void __init arch_init_ideal_nops(void)
205 switch (boot_cpu_data.x86_vendor) {
206 case X86_VENDOR_INTEL:
208 * Due to a decoder implementation quirk, some
209 * specific Intel CPUs actually perform better with
210 * the "k8_nops" than with the SDM-recommended NOPs.
212 if (boot_cpu_data.x86 == 6 &&
213 boot_cpu_data.x86_model >= 0x0f &&
214 boot_cpu_data.x86_model != 0x1c &&
215 boot_cpu_data.x86_model != 0x26 &&
216 boot_cpu_data.x86_model != 0x27 &&
217 boot_cpu_data.x86_model < 0x30) {
218 ideal_nops = k8_nops;
219 } else if (boot_cpu_has(X86_FEATURE_NOPL)) {
220 ideal_nops = p6_nops;
221 } else {
222 #ifdef CONFIG_X86_64
223 ideal_nops = k8_nops;
224 #else
225 ideal_nops = intel_nops;
226 #endif
228 break;
230 case X86_VENDOR_HYGON:
231 ideal_nops = p6_nops;
232 return;
234 case X86_VENDOR_AMD:
235 if (boot_cpu_data.x86 > 0xf) {
236 ideal_nops = p6_nops;
237 return;
240 /* fall through */
242 default:
243 #ifdef CONFIG_X86_64
244 ideal_nops = k8_nops;
245 #else
246 if (boot_cpu_has(X86_FEATURE_K8))
247 ideal_nops = k8_nops;
248 else if (boot_cpu_has(X86_FEATURE_K7))
249 ideal_nops = k7_nops;
250 else
251 ideal_nops = intel_nops;
252 #endif
256 /* Use this to add nops to a buffer, then text_poke the whole buffer. */
257 static void __init_or_module add_nops(void *insns, unsigned int len)
259 while (len > 0) {
260 unsigned int noplen = len;
261 if (noplen > ASM_NOP_MAX)
262 noplen = ASM_NOP_MAX;
263 memcpy(insns, ideal_nops[noplen], noplen);
264 insns += noplen;
265 len -= noplen;
269 extern struct alt_instr __alt_instructions[], __alt_instructions_end[];
270 extern s32 __smp_locks[], __smp_locks_end[];
271 void text_poke_early(void *addr, const void *opcode, size_t len);
274 * Are we looking at a near JMP with a 1 or 4-byte displacement.
276 static inline bool is_jmp(const u8 opcode)
278 return opcode == 0xeb || opcode == 0xe9;
281 static void __init_or_module
282 recompute_jump(struct alt_instr *a, u8 *orig_insn, u8 *repl_insn, u8 *insn_buff)
284 u8 *next_rip, *tgt_rip;
285 s32 n_dspl, o_dspl;
286 int repl_len;
288 if (a->replacementlen != 5)
289 return;
291 o_dspl = *(s32 *)(insn_buff + 1);
293 /* next_rip of the replacement JMP */
294 next_rip = repl_insn + a->replacementlen;
295 /* target rip of the replacement JMP */
296 tgt_rip = next_rip + o_dspl;
297 n_dspl = tgt_rip - orig_insn;
299 DPRINTK("target RIP: %px, new_displ: 0x%x", tgt_rip, n_dspl);
301 if (tgt_rip - orig_insn >= 0) {
302 if (n_dspl - 2 <= 127)
303 goto two_byte_jmp;
304 else
305 goto five_byte_jmp;
306 /* negative offset */
307 } else {
308 if (((n_dspl - 2) & 0xff) == (n_dspl - 2))
309 goto two_byte_jmp;
310 else
311 goto five_byte_jmp;
314 two_byte_jmp:
315 n_dspl -= 2;
317 insn_buff[0] = 0xeb;
318 insn_buff[1] = (s8)n_dspl;
319 add_nops(insn_buff + 2, 3);
321 repl_len = 2;
322 goto done;
324 five_byte_jmp:
325 n_dspl -= 5;
327 insn_buff[0] = 0xe9;
328 *(s32 *)&insn_buff[1] = n_dspl;
330 repl_len = 5;
332 done:
334 DPRINTK("final displ: 0x%08x, JMP 0x%lx",
335 n_dspl, (unsigned long)orig_insn + n_dspl + repl_len);
339 * "noinline" to cause control flow change and thus invalidate I$ and
340 * cause refetch after modification.
342 static void __init_or_module noinline optimize_nops(struct alt_instr *a, u8 *instr)
344 unsigned long flags;
345 int i;
347 for (i = 0; i < a->padlen; i++) {
348 if (instr[i] != 0x90)
349 return;
352 local_irq_save(flags);
353 add_nops(instr + (a->instrlen - a->padlen), a->padlen);
354 local_irq_restore(flags);
356 DUMP_BYTES(instr, a->instrlen, "%px: [%d:%d) optimized NOPs: ",
357 instr, a->instrlen - a->padlen, a->padlen);
361 * Replace instructions with better alternatives for this CPU type. This runs
362 * before SMP is initialized to avoid SMP problems with self modifying code.
363 * This implies that asymmetric systems where APs have less capabilities than
364 * the boot processor are not handled. Tough. Make sure you disable such
365 * features by hand.
367 * Marked "noinline" to cause control flow change and thus insn cache
368 * to refetch changed I$ lines.
370 void __init_or_module noinline apply_alternatives(struct alt_instr *start,
371 struct alt_instr *end)
373 struct alt_instr *a;
374 u8 *instr, *replacement;
375 u8 insn_buff[MAX_PATCH_LEN];
377 DPRINTK("alt table %px, -> %px", start, end);
379 * The scan order should be from start to end. A later scanned
380 * alternative code can overwrite previously scanned alternative code.
381 * Some kernel functions (e.g. memcpy, memset, etc) use this order to
382 * patch code.
384 * So be careful if you want to change the scan order to any other
385 * order.
387 for (a = start; a < end; a++) {
388 int insn_buff_sz = 0;
390 instr = (u8 *)&a->instr_offset + a->instr_offset;
391 replacement = (u8 *)&a->repl_offset + a->repl_offset;
392 BUG_ON(a->instrlen > sizeof(insn_buff));
393 BUG_ON(a->cpuid >= (NCAPINTS + NBUGINTS) * 32);
394 if (!boot_cpu_has(a->cpuid)) {
395 if (a->padlen > 1)
396 optimize_nops(a, instr);
398 continue;
401 DPRINTK("feat: %d*32+%d, old: (%pS (%px) len: %d), repl: (%px, len: %d), pad: %d",
402 a->cpuid >> 5,
403 a->cpuid & 0x1f,
404 instr, instr, a->instrlen,
405 replacement, a->replacementlen, a->padlen);
407 DUMP_BYTES(instr, a->instrlen, "%px: old_insn: ", instr);
408 DUMP_BYTES(replacement, a->replacementlen, "%px: rpl_insn: ", replacement);
410 memcpy(insn_buff, replacement, a->replacementlen);
411 insn_buff_sz = a->replacementlen;
414 * 0xe8 is a relative jump; fix the offset.
416 * Instruction length is checked before the opcode to avoid
417 * accessing uninitialized bytes for zero-length replacements.
419 if (a->replacementlen == 5 && *insn_buff == 0xe8) {
420 *(s32 *)(insn_buff + 1) += replacement - instr;
421 DPRINTK("Fix CALL offset: 0x%x, CALL 0x%lx",
422 *(s32 *)(insn_buff + 1),
423 (unsigned long)instr + *(s32 *)(insn_buff + 1) + 5);
426 if (a->replacementlen && is_jmp(replacement[0]))
427 recompute_jump(a, instr, replacement, insn_buff);
429 if (a->instrlen > a->replacementlen) {
430 add_nops(insn_buff + a->replacementlen,
431 a->instrlen - a->replacementlen);
432 insn_buff_sz += a->instrlen - a->replacementlen;
434 DUMP_BYTES(insn_buff, insn_buff_sz, "%px: final_insn: ", instr);
436 text_poke_early(instr, insn_buff, insn_buff_sz);
440 #ifdef CONFIG_SMP
441 static void alternatives_smp_lock(const s32 *start, const s32 *end,
442 u8 *text, u8 *text_end)
444 const s32 *poff;
446 for (poff = start; poff < end; poff++) {
447 u8 *ptr = (u8 *)poff + *poff;
449 if (!*poff || ptr < text || ptr >= text_end)
450 continue;
451 /* turn DS segment override prefix into lock prefix */
452 if (*ptr == 0x3e)
453 text_poke(ptr, ((unsigned char []){0xf0}), 1);
457 static void alternatives_smp_unlock(const s32 *start, const s32 *end,
458 u8 *text, u8 *text_end)
460 const s32 *poff;
462 for (poff = start; poff < end; poff++) {
463 u8 *ptr = (u8 *)poff + *poff;
465 if (!*poff || ptr < text || ptr >= text_end)
466 continue;
467 /* turn lock prefix into DS segment override prefix */
468 if (*ptr == 0xf0)
469 text_poke(ptr, ((unsigned char []){0x3E}), 1);
473 struct smp_alt_module {
474 /* what is this ??? */
475 struct module *mod;
476 char *name;
478 /* ptrs to lock prefixes */
479 const s32 *locks;
480 const s32 *locks_end;
482 /* .text segment, needed to avoid patching init code ;) */
483 u8 *text;
484 u8 *text_end;
486 struct list_head next;
488 static LIST_HEAD(smp_alt_modules);
489 static bool uniproc_patched = false; /* protected by text_mutex */
491 void __init_or_module alternatives_smp_module_add(struct module *mod,
492 char *name,
493 void *locks, void *locks_end,
494 void *text, void *text_end)
496 struct smp_alt_module *smp;
498 mutex_lock(&text_mutex);
499 if (!uniproc_patched)
500 goto unlock;
502 if (num_possible_cpus() == 1)
503 /* Don't bother remembering, we'll never have to undo it. */
504 goto smp_unlock;
506 smp = kzalloc(sizeof(*smp), GFP_KERNEL);
507 if (NULL == smp)
508 /* we'll run the (safe but slow) SMP code then ... */
509 goto unlock;
511 smp->mod = mod;
512 smp->name = name;
513 smp->locks = locks;
514 smp->locks_end = locks_end;
515 smp->text = text;
516 smp->text_end = text_end;
517 DPRINTK("locks %p -> %p, text %p -> %p, name %s\n",
518 smp->locks, smp->locks_end,
519 smp->text, smp->text_end, smp->name);
521 list_add_tail(&smp->next, &smp_alt_modules);
522 smp_unlock:
523 alternatives_smp_unlock(locks, locks_end, text, text_end);
524 unlock:
525 mutex_unlock(&text_mutex);
528 void __init_or_module alternatives_smp_module_del(struct module *mod)
530 struct smp_alt_module *item;
532 mutex_lock(&text_mutex);
533 list_for_each_entry(item, &smp_alt_modules, next) {
534 if (mod != item->mod)
535 continue;
536 list_del(&item->next);
537 kfree(item);
538 break;
540 mutex_unlock(&text_mutex);
543 void alternatives_enable_smp(void)
545 struct smp_alt_module *mod;
547 /* Why bother if there are no other CPUs? */
548 BUG_ON(num_possible_cpus() == 1);
550 mutex_lock(&text_mutex);
552 if (uniproc_patched) {
553 pr_info("switching to SMP code\n");
554 BUG_ON(num_online_cpus() != 1);
555 clear_cpu_cap(&boot_cpu_data, X86_FEATURE_UP);
556 clear_cpu_cap(&cpu_data(0), X86_FEATURE_UP);
557 list_for_each_entry(mod, &smp_alt_modules, next)
558 alternatives_smp_lock(mod->locks, mod->locks_end,
559 mod->text, mod->text_end);
560 uniproc_patched = false;
562 mutex_unlock(&text_mutex);
566 * Return 1 if the address range is reserved for SMP-alternatives.
567 * Must hold text_mutex.
569 int alternatives_text_reserved(void *start, void *end)
571 struct smp_alt_module *mod;
572 const s32 *poff;
573 u8 *text_start = start;
574 u8 *text_end = end;
576 lockdep_assert_held(&text_mutex);
578 list_for_each_entry(mod, &smp_alt_modules, next) {
579 if (mod->text > text_end || mod->text_end < text_start)
580 continue;
581 for (poff = mod->locks; poff < mod->locks_end; poff++) {
582 const u8 *ptr = (const u8 *)poff + *poff;
584 if (text_start <= ptr && text_end > ptr)
585 return 1;
589 return 0;
591 #endif /* CONFIG_SMP */
593 #ifdef CONFIG_PARAVIRT
594 void __init_or_module apply_paravirt(struct paravirt_patch_site *start,
595 struct paravirt_patch_site *end)
597 struct paravirt_patch_site *p;
598 char insn_buff[MAX_PATCH_LEN];
600 for (p = start; p < end; p++) {
601 unsigned int used;
603 BUG_ON(p->len > MAX_PATCH_LEN);
604 /* prep the buffer with the original instructions */
605 memcpy(insn_buff, p->instr, p->len);
606 used = pv_ops.init.patch(p->type, insn_buff, (unsigned long)p->instr, p->len);
608 BUG_ON(used > p->len);
610 /* Pad the rest with nops */
611 add_nops(insn_buff + used, p->len - used);
612 text_poke_early(p->instr, insn_buff, p->len);
615 extern struct paravirt_patch_site __start_parainstructions[],
616 __stop_parainstructions[];
617 #endif /* CONFIG_PARAVIRT */
620 * Self-test for the INT3 based CALL emulation code.
622 * This exercises int3_emulate_call() to make sure INT3 pt_regs are set up
623 * properly and that there is a stack gap between the INT3 frame and the
624 * previous context. Without this gap doing a virtual PUSH on the interrupted
625 * stack would corrupt the INT3 IRET frame.
627 * See entry_{32,64}.S for more details.
631 * We define the int3_magic() function in assembly to control the calling
632 * convention such that we can 'call' it from assembly.
635 extern void int3_magic(unsigned int *ptr); /* defined in asm */
637 asm (
638 " .pushsection .init.text, \"ax\", @progbits\n"
639 " .type int3_magic, @function\n"
640 "int3_magic:\n"
641 " movl $1, (%" _ASM_ARG1 ")\n"
642 " ret\n"
643 " .size int3_magic, .-int3_magic\n"
644 " .popsection\n"
647 extern __initdata unsigned long int3_selftest_ip; /* defined in asm below */
649 static int __init
650 int3_exception_notify(struct notifier_block *self, unsigned long val, void *data)
652 struct die_args *args = data;
653 struct pt_regs *regs = args->regs;
655 if (!regs || user_mode(regs))
656 return NOTIFY_DONE;
658 if (val != DIE_INT3)
659 return NOTIFY_DONE;
661 if (regs->ip - INT3_INSN_SIZE != int3_selftest_ip)
662 return NOTIFY_DONE;
664 int3_emulate_call(regs, (unsigned long)&int3_magic);
665 return NOTIFY_STOP;
668 static void __init int3_selftest(void)
670 static __initdata struct notifier_block int3_exception_nb = {
671 .notifier_call = int3_exception_notify,
672 .priority = INT_MAX-1, /* last */
674 unsigned int val = 0;
676 BUG_ON(register_die_notifier(&int3_exception_nb));
679 * Basically: int3_magic(&val); but really complicated :-)
681 * Stick the address of the INT3 instruction into int3_selftest_ip,
682 * then trigger the INT3, padded with NOPs to match a CALL instruction
683 * length.
685 asm volatile ("1: int3; nop; nop; nop; nop\n\t"
686 ".pushsection .init.data,\"aw\"\n\t"
687 ".align " __ASM_SEL(4, 8) "\n\t"
688 ".type int3_selftest_ip, @object\n\t"
689 ".size int3_selftest_ip, " __ASM_SEL(4, 8) "\n\t"
690 "int3_selftest_ip:\n\t"
691 __ASM_SEL(.long, .quad) " 1b\n\t"
692 ".popsection\n\t"
693 : ASM_CALL_CONSTRAINT
694 : __ASM_SEL_RAW(a, D) (&val)
695 : "memory");
697 BUG_ON(val != 1);
699 unregister_die_notifier(&int3_exception_nb);
702 void __init alternative_instructions(void)
704 int3_selftest();
707 * The patching is not fully atomic, so try to avoid local
708 * interruptions that might execute the to be patched code.
709 * Other CPUs are not running.
711 stop_nmi();
714 * Don't stop machine check exceptions while patching.
715 * MCEs only happen when something got corrupted and in this
716 * case we must do something about the corruption.
717 * Ignoring it is worse than an unlikely patching race.
718 * Also machine checks tend to be broadcast and if one CPU
719 * goes into machine check the others follow quickly, so we don't
720 * expect a machine check to cause undue problems during to code
721 * patching.
724 apply_alternatives(__alt_instructions, __alt_instructions_end);
726 #ifdef CONFIG_SMP
727 /* Patch to UP if other cpus not imminent. */
728 if (!noreplace_smp && (num_present_cpus() == 1 || setup_max_cpus <= 1)) {
729 uniproc_patched = true;
730 alternatives_smp_module_add(NULL, "core kernel",
731 __smp_locks, __smp_locks_end,
732 _text, _etext);
735 if (!uniproc_patched || num_possible_cpus() == 1) {
736 free_init_pages("SMP alternatives",
737 (unsigned long)__smp_locks,
738 (unsigned long)__smp_locks_end);
740 #endif
742 apply_paravirt(__parainstructions, __parainstructions_end);
744 restart_nmi();
745 alternatives_patched = 1;
749 * text_poke_early - Update instructions on a live kernel at boot time
750 * @addr: address to modify
751 * @opcode: source of the copy
752 * @len: length to copy
754 * When you use this code to patch more than one byte of an instruction
755 * you need to make sure that other CPUs cannot execute this code in parallel.
756 * Also no thread must be currently preempted in the middle of these
757 * instructions. And on the local CPU you need to be protected against NMI or
758 * MCE handlers seeing an inconsistent instruction while you patch.
760 void __init_or_module text_poke_early(void *addr, const void *opcode,
761 size_t len)
763 unsigned long flags;
765 if (boot_cpu_has(X86_FEATURE_NX) &&
766 is_module_text_address((unsigned long)addr)) {
768 * Modules text is marked initially as non-executable, so the
769 * code cannot be running and speculative code-fetches are
770 * prevented. Just change the code.
772 memcpy(addr, opcode, len);
773 } else {
774 local_irq_save(flags);
775 memcpy(addr, opcode, len);
776 local_irq_restore(flags);
777 sync_core();
780 * Could also do a CLFLUSH here to speed up CPU recovery; but
781 * that causes hangs on some VIA CPUs.
786 __ro_after_init struct mm_struct *poking_mm;
787 __ro_after_init unsigned long poking_addr;
789 static void *__text_poke(void *addr, const void *opcode, size_t len)
791 bool cross_page_boundary = offset_in_page(addr) + len > PAGE_SIZE;
792 struct page *pages[2] = {NULL};
793 temp_mm_state_t prev;
794 unsigned long flags;
795 pte_t pte, *ptep;
796 spinlock_t *ptl;
797 pgprot_t pgprot;
800 * While boot memory allocator is running we cannot use struct pages as
801 * they are not yet initialized. There is no way to recover.
803 BUG_ON(!after_bootmem);
805 if (!core_kernel_text((unsigned long)addr)) {
806 pages[0] = vmalloc_to_page(addr);
807 if (cross_page_boundary)
808 pages[1] = vmalloc_to_page(addr + PAGE_SIZE);
809 } else {
810 pages[0] = virt_to_page(addr);
811 WARN_ON(!PageReserved(pages[0]));
812 if (cross_page_boundary)
813 pages[1] = virt_to_page(addr + PAGE_SIZE);
816 * If something went wrong, crash and burn since recovery paths are not
817 * implemented.
819 BUG_ON(!pages[0] || (cross_page_boundary && !pages[1]));
821 local_irq_save(flags);
824 * Map the page without the global bit, as TLB flushing is done with
825 * flush_tlb_mm_range(), which is intended for non-global PTEs.
827 pgprot = __pgprot(pgprot_val(PAGE_KERNEL) & ~_PAGE_GLOBAL);
830 * The lock is not really needed, but this allows to avoid open-coding.
832 ptep = get_locked_pte(poking_mm, poking_addr, &ptl);
835 * This must not fail; preallocated in poking_init().
837 VM_BUG_ON(!ptep);
839 pte = mk_pte(pages[0], pgprot);
840 set_pte_at(poking_mm, poking_addr, ptep, pte);
842 if (cross_page_boundary) {
843 pte = mk_pte(pages[1], pgprot);
844 set_pte_at(poking_mm, poking_addr + PAGE_SIZE, ptep + 1, pte);
848 * Loading the temporary mm behaves as a compiler barrier, which
849 * guarantees that the PTE will be set at the time memcpy() is done.
851 prev = use_temporary_mm(poking_mm);
853 kasan_disable_current();
854 memcpy((u8 *)poking_addr + offset_in_page(addr), opcode, len);
855 kasan_enable_current();
858 * Ensure that the PTE is only cleared after the instructions of memcpy
859 * were issued by using a compiler barrier.
861 barrier();
863 pte_clear(poking_mm, poking_addr, ptep);
864 if (cross_page_boundary)
865 pte_clear(poking_mm, poking_addr + PAGE_SIZE, ptep + 1);
868 * Loading the previous page-table hierarchy requires a serializing
869 * instruction that already allows the core to see the updated version.
870 * Xen-PV is assumed to serialize execution in a similar manner.
872 unuse_temporary_mm(prev);
875 * Flushing the TLB might involve IPIs, which would require enabled
876 * IRQs, but not if the mm is not used, as it is in this point.
878 flush_tlb_mm_range(poking_mm, poking_addr, poking_addr +
879 (cross_page_boundary ? 2 : 1) * PAGE_SIZE,
880 PAGE_SHIFT, false);
883 * If the text does not match what we just wrote then something is
884 * fundamentally screwy; there's nothing we can really do about that.
886 BUG_ON(memcmp(addr, opcode, len));
888 pte_unmap_unlock(ptep, ptl);
889 local_irq_restore(flags);
890 return addr;
894 * text_poke - Update instructions on a live kernel
895 * @addr: address to modify
896 * @opcode: source of the copy
897 * @len: length to copy
899 * Only atomic text poke/set should be allowed when not doing early patching.
900 * It means the size must be writable atomically and the address must be aligned
901 * in a way that permits an atomic write. It also makes sure we fit on a single
902 * page.
904 * Note that the caller must ensure that if the modified code is part of a
905 * module, the module would not be removed during poking. This can be achieved
906 * by registering a module notifier, and ordering module removal and patching
907 * trough a mutex.
909 void *text_poke(void *addr, const void *opcode, size_t len)
911 lockdep_assert_held(&text_mutex);
913 return __text_poke(addr, opcode, len);
917 * text_poke_kgdb - Update instructions on a live kernel by kgdb
918 * @addr: address to modify
919 * @opcode: source of the copy
920 * @len: length to copy
922 * Only atomic text poke/set should be allowed when not doing early patching.
923 * It means the size must be writable atomically and the address must be aligned
924 * in a way that permits an atomic write. It also makes sure we fit on a single
925 * page.
927 * Context: should only be used by kgdb, which ensures no other core is running,
928 * despite the fact it does not hold the text_mutex.
930 void *text_poke_kgdb(void *addr, const void *opcode, size_t len)
932 return __text_poke(addr, opcode, len);
935 static void do_sync_core(void *info)
937 sync_core();
940 void text_poke_sync(void)
942 on_each_cpu(do_sync_core, NULL, 1);
945 struct text_poke_loc {
946 s32 rel_addr; /* addr := _stext + rel_addr */
947 s32 rel32;
948 u8 opcode;
949 const u8 text[POKE_MAX_OPCODE_SIZE];
952 struct bp_patching_desc {
953 struct text_poke_loc *vec;
954 int nr_entries;
955 atomic_t refs;
958 static struct bp_patching_desc *bp_desc;
960 static inline struct bp_patching_desc *try_get_desc(struct bp_patching_desc **descp)
962 struct bp_patching_desc *desc = READ_ONCE(*descp); /* rcu_dereference */
964 if (!desc || !atomic_inc_not_zero(&desc->refs))
965 return NULL;
967 return desc;
970 static inline void put_desc(struct bp_patching_desc *desc)
972 smp_mb__before_atomic();
973 atomic_dec(&desc->refs);
976 static inline void *text_poke_addr(struct text_poke_loc *tp)
978 return _stext + tp->rel_addr;
981 static int notrace patch_cmp(const void *key, const void *elt)
983 struct text_poke_loc *tp = (struct text_poke_loc *) elt;
985 if (key < text_poke_addr(tp))
986 return -1;
987 if (key > text_poke_addr(tp))
988 return 1;
989 return 0;
991 NOKPROBE_SYMBOL(patch_cmp);
993 int notrace poke_int3_handler(struct pt_regs *regs)
995 struct bp_patching_desc *desc;
996 struct text_poke_loc *tp;
997 int len, ret = 0;
998 void *ip;
1000 if (user_mode(regs))
1001 return 0;
1004 * Having observed our INT3 instruction, we now must observe
1005 * bp_desc:
1007 * bp_desc = desc INT3
1008 * WMB RMB
1009 * write INT3 if (desc)
1011 smp_rmb();
1013 desc = try_get_desc(&bp_desc);
1014 if (!desc)
1015 return 0;
1018 * Discount the INT3. See text_poke_bp_batch().
1020 ip = (void *) regs->ip - INT3_INSN_SIZE;
1023 * Skip the binary search if there is a single member in the vector.
1025 if (unlikely(desc->nr_entries > 1)) {
1026 tp = bsearch(ip, desc->vec, desc->nr_entries,
1027 sizeof(struct text_poke_loc),
1028 patch_cmp);
1029 if (!tp)
1030 goto out_put;
1031 } else {
1032 tp = desc->vec;
1033 if (text_poke_addr(tp) != ip)
1034 goto out_put;
1037 len = text_opcode_size(tp->opcode);
1038 ip += len;
1040 switch (tp->opcode) {
1041 case INT3_INSN_OPCODE:
1043 * Someone poked an explicit INT3, they'll want to handle it,
1044 * do not consume.
1046 goto out_put;
1048 case CALL_INSN_OPCODE:
1049 int3_emulate_call(regs, (long)ip + tp->rel32);
1050 break;
1052 case JMP32_INSN_OPCODE:
1053 case JMP8_INSN_OPCODE:
1054 int3_emulate_jmp(regs, (long)ip + tp->rel32);
1055 break;
1057 default:
1058 BUG();
1061 ret = 1;
1063 out_put:
1064 put_desc(desc);
1065 return ret;
1067 NOKPROBE_SYMBOL(poke_int3_handler);
1069 #define TP_VEC_MAX (PAGE_SIZE / sizeof(struct text_poke_loc))
1070 static struct text_poke_loc tp_vec[TP_VEC_MAX];
1071 static int tp_vec_nr;
1074 * text_poke_bp_batch() -- update instructions on live kernel on SMP
1075 * @tp: vector of instructions to patch
1076 * @nr_entries: number of entries in the vector
1078 * Modify multi-byte instruction by using int3 breakpoint on SMP.
1079 * We completely avoid stop_machine() here, and achieve the
1080 * synchronization using int3 breakpoint.
1082 * The way it is done:
1083 * - For each entry in the vector:
1084 * - add a int3 trap to the address that will be patched
1085 * - sync cores
1086 * - For each entry in the vector:
1087 * - update all but the first byte of the patched range
1088 * - sync cores
1089 * - For each entry in the vector:
1090 * - replace the first byte (int3) by the first byte of
1091 * replacing opcode
1092 * - sync cores
1094 static void text_poke_bp_batch(struct text_poke_loc *tp, unsigned int nr_entries)
1096 struct bp_patching_desc desc = {
1097 .vec = tp,
1098 .nr_entries = nr_entries,
1099 .refs = ATOMIC_INIT(1),
1101 unsigned char int3 = INT3_INSN_OPCODE;
1102 unsigned int i;
1103 int do_sync;
1105 lockdep_assert_held(&text_mutex);
1107 smp_store_release(&bp_desc, &desc); /* rcu_assign_pointer */
1110 * Corresponding read barrier in int3 notifier for making sure the
1111 * nr_entries and handler are correctly ordered wrt. patching.
1113 smp_wmb();
1116 * First step: add a int3 trap to the address that will be patched.
1118 for (i = 0; i < nr_entries; i++)
1119 text_poke(text_poke_addr(&tp[i]), &int3, INT3_INSN_SIZE);
1121 text_poke_sync();
1124 * Second step: update all but the first byte of the patched range.
1126 for (do_sync = 0, i = 0; i < nr_entries; i++) {
1127 int len = text_opcode_size(tp[i].opcode);
1129 if (len - INT3_INSN_SIZE > 0) {
1130 text_poke(text_poke_addr(&tp[i]) + INT3_INSN_SIZE,
1131 (const char *)tp[i].text + INT3_INSN_SIZE,
1132 len - INT3_INSN_SIZE);
1133 do_sync++;
1137 if (do_sync) {
1139 * According to Intel, this core syncing is very likely
1140 * not necessary and we'd be safe even without it. But
1141 * better safe than sorry (plus there's not only Intel).
1143 text_poke_sync();
1147 * Third step: replace the first byte (int3) by the first byte of
1148 * replacing opcode.
1150 for (do_sync = 0, i = 0; i < nr_entries; i++) {
1151 if (tp[i].text[0] == INT3_INSN_OPCODE)
1152 continue;
1154 text_poke(text_poke_addr(&tp[i]), tp[i].text, INT3_INSN_SIZE);
1155 do_sync++;
1158 if (do_sync)
1159 text_poke_sync();
1162 * Remove and synchronize_rcu(), except we have a very primitive
1163 * refcount based completion.
1165 WRITE_ONCE(bp_desc, NULL); /* RCU_INIT_POINTER */
1166 if (!atomic_dec_and_test(&desc.refs))
1167 atomic_cond_read_acquire(&desc.refs, !VAL);
1170 void text_poke_loc_init(struct text_poke_loc *tp, void *addr,
1171 const void *opcode, size_t len, const void *emulate)
1173 struct insn insn;
1175 memcpy((void *)tp->text, opcode, len);
1176 if (!emulate)
1177 emulate = opcode;
1179 kernel_insn_init(&insn, emulate, MAX_INSN_SIZE);
1180 insn_get_length(&insn);
1182 BUG_ON(!insn_complete(&insn));
1183 BUG_ON(len != insn.length);
1185 tp->rel_addr = addr - (void *)_stext;
1186 tp->opcode = insn.opcode.bytes[0];
1188 switch (tp->opcode) {
1189 case INT3_INSN_OPCODE:
1190 break;
1192 case CALL_INSN_OPCODE:
1193 case JMP32_INSN_OPCODE:
1194 case JMP8_INSN_OPCODE:
1195 tp->rel32 = insn.immediate.value;
1196 break;
1198 default: /* assume NOP */
1199 switch (len) {
1200 case 2: /* NOP2 -- emulate as JMP8+0 */
1201 BUG_ON(memcmp(emulate, ideal_nops[len], len));
1202 tp->opcode = JMP8_INSN_OPCODE;
1203 tp->rel32 = 0;
1204 break;
1206 case 5: /* NOP5 -- emulate as JMP32+0 */
1207 BUG_ON(memcmp(emulate, ideal_nops[NOP_ATOMIC5], len));
1208 tp->opcode = JMP32_INSN_OPCODE;
1209 tp->rel32 = 0;
1210 break;
1212 default: /* unknown instruction */
1213 BUG();
1215 break;
1220 * We hard rely on the tp_vec being ordered; ensure this is so by flushing
1221 * early if needed.
1223 static bool tp_order_fail(void *addr)
1225 struct text_poke_loc *tp;
1227 if (!tp_vec_nr)
1228 return false;
1230 if (!addr) /* force */
1231 return true;
1233 tp = &tp_vec[tp_vec_nr - 1];
1234 if ((unsigned long)text_poke_addr(tp) > (unsigned long)addr)
1235 return true;
1237 return false;
1240 static void text_poke_flush(void *addr)
1242 if (tp_vec_nr == TP_VEC_MAX || tp_order_fail(addr)) {
1243 text_poke_bp_batch(tp_vec, tp_vec_nr);
1244 tp_vec_nr = 0;
1248 void text_poke_finish(void)
1250 text_poke_flush(NULL);
1253 void __ref text_poke_queue(void *addr, const void *opcode, size_t len, const void *emulate)
1255 struct text_poke_loc *tp;
1257 if (unlikely(system_state == SYSTEM_BOOTING)) {
1258 text_poke_early(addr, opcode, len);
1259 return;
1262 text_poke_flush(addr);
1264 tp = &tp_vec[tp_vec_nr++];
1265 text_poke_loc_init(tp, addr, opcode, len, emulate);
1269 * text_poke_bp() -- update instructions on live kernel on SMP
1270 * @addr: address to patch
1271 * @opcode: opcode of new instruction
1272 * @len: length to copy
1273 * @handler: address to jump to when the temporary breakpoint is hit
1275 * Update a single instruction with the vector in the stack, avoiding
1276 * dynamically allocated memory. This function should be used when it is
1277 * not possible to allocate memory.
1279 void __ref text_poke_bp(void *addr, const void *opcode, size_t len, const void *emulate)
1281 struct text_poke_loc tp;
1283 if (unlikely(system_state == SYSTEM_BOOTING)) {
1284 text_poke_early(addr, opcode, len);
1285 return;
1288 text_poke_loc_init(&tp, addr, opcode, len, emulate);
1289 text_poke_bp_batch(&tp, 1);