treewide: remove redundant IS_ERR() before error code check
[linux/fpc-iii.git] / arch / x86 / kernel / fpu / core.c
blob12c70840980e4b8aacf26541ff3814cbc4ebaf11
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Copyright (C) 1994 Linus Torvalds
5 * Pentium III FXSR, SSE support
6 * General FPU state handling cleanups
7 * Gareth Hughes <gareth@valinux.com>, May 2000
8 */
9 #include <asm/fpu/internal.h>
10 #include <asm/fpu/regset.h>
11 #include <asm/fpu/signal.h>
12 #include <asm/fpu/types.h>
13 #include <asm/traps.h>
14 #include <asm/irq_regs.h>
16 #include <linux/hardirq.h>
17 #include <linux/pkeys.h>
19 #define CREATE_TRACE_POINTS
20 #include <asm/trace/fpu.h>
23 * Represents the initial FPU state. It's mostly (but not completely) zeroes,
24 * depending on the FPU hardware format:
26 union fpregs_state init_fpstate __read_mostly;
29 * Track whether the kernel is using the FPU state
30 * currently.
32 * This flag is used:
34 * - by IRQ context code to potentially use the FPU
35 * if it's unused.
37 * - to debug kernel_fpu_begin()/end() correctness
39 static DEFINE_PER_CPU(bool, in_kernel_fpu);
42 * Track which context is using the FPU on the CPU:
44 DEFINE_PER_CPU(struct fpu *, fpu_fpregs_owner_ctx);
46 static bool kernel_fpu_disabled(void)
48 return this_cpu_read(in_kernel_fpu);
51 static bool interrupted_kernel_fpu_idle(void)
53 return !kernel_fpu_disabled();
57 * Were we in user mode (or vm86 mode) when we were
58 * interrupted?
60 * Doing kernel_fpu_begin/end() is ok if we are running
61 * in an interrupt context from user mode - we'll just
62 * save the FPU state as required.
64 static bool interrupted_user_mode(void)
66 struct pt_regs *regs = get_irq_regs();
67 return regs && user_mode(regs);
71 * Can we use the FPU in kernel mode with the
72 * whole "kernel_fpu_begin/end()" sequence?
74 * It's always ok in process context (ie "not interrupt")
75 * but it is sometimes ok even from an irq.
77 bool irq_fpu_usable(void)
79 return !in_interrupt() ||
80 interrupted_user_mode() ||
81 interrupted_kernel_fpu_idle();
83 EXPORT_SYMBOL(irq_fpu_usable);
85 void kernel_fpu_begin(void)
87 preempt_disable();
89 WARN_ON_FPU(!irq_fpu_usable());
90 WARN_ON_FPU(this_cpu_read(in_kernel_fpu));
92 this_cpu_write(in_kernel_fpu, true);
94 if (!(current->flags & PF_KTHREAD) &&
95 !test_thread_flag(TIF_NEED_FPU_LOAD)) {
96 set_thread_flag(TIF_NEED_FPU_LOAD);
98 * Ignore return value -- we don't care if reg state
99 * is clobbered.
101 copy_fpregs_to_fpstate(&current->thread.fpu);
103 __cpu_invalidate_fpregs_state();
105 EXPORT_SYMBOL_GPL(kernel_fpu_begin);
107 void kernel_fpu_end(void)
109 WARN_ON_FPU(!this_cpu_read(in_kernel_fpu));
111 this_cpu_write(in_kernel_fpu, false);
112 preempt_enable();
114 EXPORT_SYMBOL_GPL(kernel_fpu_end);
117 * Save the FPU state (mark it for reload if necessary):
119 * This only ever gets called for the current task.
121 void fpu__save(struct fpu *fpu)
123 WARN_ON_FPU(fpu != &current->thread.fpu);
125 fpregs_lock();
126 trace_x86_fpu_before_save(fpu);
128 if (!test_thread_flag(TIF_NEED_FPU_LOAD)) {
129 if (!copy_fpregs_to_fpstate(fpu)) {
130 copy_kernel_to_fpregs(&fpu->state);
134 trace_x86_fpu_after_save(fpu);
135 fpregs_unlock();
139 * Legacy x87 fpstate state init:
141 static inline void fpstate_init_fstate(struct fregs_state *fp)
143 fp->cwd = 0xffff037fu;
144 fp->swd = 0xffff0000u;
145 fp->twd = 0xffffffffu;
146 fp->fos = 0xffff0000u;
149 void fpstate_init(union fpregs_state *state)
151 if (!static_cpu_has(X86_FEATURE_FPU)) {
152 fpstate_init_soft(&state->soft);
153 return;
156 memset(state, 0, fpu_kernel_xstate_size);
158 if (static_cpu_has(X86_FEATURE_XSAVES))
159 fpstate_init_xstate(&state->xsave);
160 if (static_cpu_has(X86_FEATURE_FXSR))
161 fpstate_init_fxstate(&state->fxsave);
162 else
163 fpstate_init_fstate(&state->fsave);
165 EXPORT_SYMBOL_GPL(fpstate_init);
167 int fpu__copy(struct task_struct *dst, struct task_struct *src)
169 struct fpu *dst_fpu = &dst->thread.fpu;
170 struct fpu *src_fpu = &src->thread.fpu;
172 dst_fpu->last_cpu = -1;
174 if (!static_cpu_has(X86_FEATURE_FPU))
175 return 0;
177 WARN_ON_FPU(src_fpu != &current->thread.fpu);
180 * Don't let 'init optimized' areas of the XSAVE area
181 * leak into the child task:
183 memset(&dst_fpu->state.xsave, 0, fpu_kernel_xstate_size);
186 * If the FPU registers are not current just memcpy() the state.
187 * Otherwise save current FPU registers directly into the child's FPU
188 * context, without any memory-to-memory copying.
190 * ( The function 'fails' in the FNSAVE case, which destroys
191 * register contents so we have to load them back. )
193 fpregs_lock();
194 if (test_thread_flag(TIF_NEED_FPU_LOAD))
195 memcpy(&dst_fpu->state, &src_fpu->state, fpu_kernel_xstate_size);
197 else if (!copy_fpregs_to_fpstate(dst_fpu))
198 copy_kernel_to_fpregs(&dst_fpu->state);
200 fpregs_unlock();
202 set_tsk_thread_flag(dst, TIF_NEED_FPU_LOAD);
204 trace_x86_fpu_copy_src(src_fpu);
205 trace_x86_fpu_copy_dst(dst_fpu);
207 return 0;
211 * Activate the current task's in-memory FPU context,
212 * if it has not been used before:
214 static void fpu__initialize(struct fpu *fpu)
216 WARN_ON_FPU(fpu != &current->thread.fpu);
218 set_thread_flag(TIF_NEED_FPU_LOAD);
219 fpstate_init(&fpu->state);
220 trace_x86_fpu_init_state(fpu);
224 * This function must be called before we read a task's fpstate.
226 * There's two cases where this gets called:
228 * - for the current task (when coredumping), in which case we have
229 * to save the latest FPU registers into the fpstate,
231 * - or it's called for stopped tasks (ptrace), in which case the
232 * registers were already saved by the context-switch code when
233 * the task scheduled out.
235 * If the task has used the FPU before then save it.
237 void fpu__prepare_read(struct fpu *fpu)
239 if (fpu == &current->thread.fpu)
240 fpu__save(fpu);
244 * This function must be called before we write a task's fpstate.
246 * Invalidate any cached FPU registers.
248 * After this function call, after registers in the fpstate are
249 * modified and the child task has woken up, the child task will
250 * restore the modified FPU state from the modified context. If we
251 * didn't clear its cached status here then the cached in-registers
252 * state pending on its former CPU could be restored, corrupting
253 * the modifications.
255 void fpu__prepare_write(struct fpu *fpu)
258 * Only stopped child tasks can be used to modify the FPU
259 * state in the fpstate buffer:
261 WARN_ON_FPU(fpu == &current->thread.fpu);
263 /* Invalidate any cached state: */
264 __fpu_invalidate_fpregs_state(fpu);
268 * Drops current FPU state: deactivates the fpregs and
269 * the fpstate. NOTE: it still leaves previous contents
270 * in the fpregs in the eager-FPU case.
272 * This function can be used in cases where we know that
273 * a state-restore is coming: either an explicit one,
274 * or a reschedule.
276 void fpu__drop(struct fpu *fpu)
278 preempt_disable();
280 if (fpu == &current->thread.fpu) {
281 /* Ignore delayed exceptions from user space */
282 asm volatile("1: fwait\n"
283 "2:\n"
284 _ASM_EXTABLE(1b, 2b));
285 fpregs_deactivate(fpu);
288 trace_x86_fpu_dropped(fpu);
290 preempt_enable();
294 * Clear FPU registers by setting them up from
295 * the init fpstate:
297 static inline void copy_init_fpstate_to_fpregs(void)
299 fpregs_lock();
301 if (use_xsave())
302 copy_kernel_to_xregs(&init_fpstate.xsave, -1);
303 else if (static_cpu_has(X86_FEATURE_FXSR))
304 copy_kernel_to_fxregs(&init_fpstate.fxsave);
305 else
306 copy_kernel_to_fregs(&init_fpstate.fsave);
308 if (boot_cpu_has(X86_FEATURE_OSPKE))
309 copy_init_pkru_to_fpregs();
311 fpregs_mark_activate();
312 fpregs_unlock();
316 * Clear the FPU state back to init state.
318 * Called by sys_execve(), by the signal handler code and by various
319 * error paths.
321 void fpu__clear(struct fpu *fpu)
323 WARN_ON_FPU(fpu != &current->thread.fpu); /* Almost certainly an anomaly */
325 fpu__drop(fpu);
328 * Make sure fpstate is cleared and initialized.
330 fpu__initialize(fpu);
331 if (static_cpu_has(X86_FEATURE_FPU))
332 copy_init_fpstate_to_fpregs();
336 * Load FPU context before returning to userspace.
338 void switch_fpu_return(void)
340 if (!static_cpu_has(X86_FEATURE_FPU))
341 return;
343 __fpregs_load_activate();
345 EXPORT_SYMBOL_GPL(switch_fpu_return);
347 #ifdef CONFIG_X86_DEBUG_FPU
349 * If current FPU state according to its tracking (loaded FPU context on this
350 * CPU) is not valid then we must have TIF_NEED_FPU_LOAD set so the context is
351 * loaded on return to userland.
353 void fpregs_assert_state_consistent(void)
355 struct fpu *fpu = &current->thread.fpu;
357 if (test_thread_flag(TIF_NEED_FPU_LOAD))
358 return;
360 WARN_ON_FPU(!fpregs_state_valid(fpu, smp_processor_id()));
362 EXPORT_SYMBOL_GPL(fpregs_assert_state_consistent);
363 #endif
365 void fpregs_mark_activate(void)
367 struct fpu *fpu = &current->thread.fpu;
369 fpregs_activate(fpu);
370 fpu->last_cpu = smp_processor_id();
371 clear_thread_flag(TIF_NEED_FPU_LOAD);
373 EXPORT_SYMBOL_GPL(fpregs_mark_activate);
376 * x87 math exception handling:
379 int fpu__exception_code(struct fpu *fpu, int trap_nr)
381 int err;
383 if (trap_nr == X86_TRAP_MF) {
384 unsigned short cwd, swd;
386 * (~cwd & swd) will mask out exceptions that are not set to unmasked
387 * status. 0x3f is the exception bits in these regs, 0x200 is the
388 * C1 reg you need in case of a stack fault, 0x040 is the stack
389 * fault bit. We should only be taking one exception at a time,
390 * so if this combination doesn't produce any single exception,
391 * then we have a bad program that isn't synchronizing its FPU usage
392 * and it will suffer the consequences since we won't be able to
393 * fully reproduce the context of the exception.
395 if (boot_cpu_has(X86_FEATURE_FXSR)) {
396 cwd = fpu->state.fxsave.cwd;
397 swd = fpu->state.fxsave.swd;
398 } else {
399 cwd = (unsigned short)fpu->state.fsave.cwd;
400 swd = (unsigned short)fpu->state.fsave.swd;
403 err = swd & ~cwd;
404 } else {
406 * The SIMD FPU exceptions are handled a little differently, as there
407 * is only a single status/control register. Thus, to determine which
408 * unmasked exception was caught we must mask the exception mask bits
409 * at 0x1f80, and then use these to mask the exception bits at 0x3f.
411 unsigned short mxcsr = MXCSR_DEFAULT;
413 if (boot_cpu_has(X86_FEATURE_XMM))
414 mxcsr = fpu->state.fxsave.mxcsr;
416 err = ~(mxcsr >> 7) & mxcsr;
419 if (err & 0x001) { /* Invalid op */
421 * swd & 0x240 == 0x040: Stack Underflow
422 * swd & 0x240 == 0x240: Stack Overflow
423 * User must clear the SF bit (0x40) if set
425 return FPE_FLTINV;
426 } else if (err & 0x004) { /* Divide by Zero */
427 return FPE_FLTDIV;
428 } else if (err & 0x008) { /* Overflow */
429 return FPE_FLTOVF;
430 } else if (err & 0x012) { /* Denormal, Underflow */
431 return FPE_FLTUND;
432 } else if (err & 0x020) { /* Precision */
433 return FPE_FLTRES;
437 * If we're using IRQ 13, or supposedly even some trap
438 * X86_TRAP_MF implementations, it's possible
439 * we get a spurious trap, which is not an error.
441 return 0;