1 // SPDX-License-Identifier: GPL-2.0
3 * Functions to sequence PREFLUSH and FUA writes.
5 * Copyright (C) 2011 Max Planck Institute for Gravitational Physics
6 * Copyright (C) 2011 Tejun Heo <tj@kernel.org>
8 * REQ_{PREFLUSH|FUA} requests are decomposed to sequences consisted of three
9 * optional steps - PREFLUSH, DATA and POSTFLUSH - according to the request
10 * properties and hardware capability.
12 * If a request doesn't have data, only REQ_PREFLUSH makes sense, which
13 * indicates a simple flush request. If there is data, REQ_PREFLUSH indicates
14 * that the device cache should be flushed before the data is executed, and
15 * REQ_FUA means that the data must be on non-volatile media on request
18 * If the device doesn't have writeback cache, PREFLUSH and FUA don't make any
19 * difference. The requests are either completed immediately if there's no data
20 * or executed as normal requests otherwise.
22 * If the device has writeback cache and supports FUA, REQ_PREFLUSH is
23 * translated to PREFLUSH but REQ_FUA is passed down directly with DATA.
25 * If the device has writeback cache and doesn't support FUA, REQ_PREFLUSH
26 * is translated to PREFLUSH and REQ_FUA to POSTFLUSH.
28 * The actual execution of flush is double buffered. Whenever a request
29 * needs to execute PRE or POSTFLUSH, it queues at
30 * fq->flush_queue[fq->flush_pending_idx]. Once certain criteria are met, a
31 * REQ_OP_FLUSH is issued and the pending_idx is toggled. When the flush
32 * completes, all the requests which were pending are proceeded to the next
33 * step. This allows arbitrary merging of different types of PREFLUSH/FUA
36 * Currently, the following conditions are used to determine when to issue
39 * C1. At any given time, only one flush shall be in progress. This makes
40 * double buffering sufficient.
42 * C2. Flush is deferred if any request is executing DATA of its sequence.
43 * This avoids issuing separate POSTFLUSHes for requests which shared
46 * C3. The second condition is ignored if there is a request which has
47 * waited longer than FLUSH_PENDING_TIMEOUT. This is to avoid
48 * starvation in the unlikely case where there are continuous stream of
49 * FUA (without PREFLUSH) requests.
51 * For devices which support FUA, it isn't clear whether C2 (and thus C3)
54 * Note that a sequenced PREFLUSH/FUA request with DATA is completed twice.
55 * Once while executing DATA and again after the whole sequence is
56 * complete. The first completion updates the contained bio but doesn't
57 * finish it so that the bio submitter is notified only after the whole
58 * sequence is complete. This is implemented by testing RQF_FLUSH_SEQ in
61 * The above peculiarity requires that each PREFLUSH/FUA request has only one
62 * bio attached to it, which is guaranteed as they aren't allowed to be
63 * merged in the usual way.
66 #include <linux/kernel.h>
67 #include <linux/module.h>
68 #include <linux/bio.h>
69 #include <linux/blkdev.h>
70 #include <linux/gfp.h>
71 #include <linux/blk-mq.h>
72 #include <linux/lockdep.h>
76 #include "blk-mq-tag.h"
77 #include "blk-mq-sched.h"
79 /* PREFLUSH/FUA sequences */
81 REQ_FSEQ_PREFLUSH
= (1 << 0), /* pre-flushing in progress */
82 REQ_FSEQ_DATA
= (1 << 1), /* data write in progress */
83 REQ_FSEQ_POSTFLUSH
= (1 << 2), /* post-flushing in progress */
84 REQ_FSEQ_DONE
= (1 << 3),
86 REQ_FSEQ_ACTIONS
= REQ_FSEQ_PREFLUSH
| REQ_FSEQ_DATA
|
90 * If flush has been pending longer than the following timeout,
91 * it's issued even if flush_data requests are still in flight.
93 FLUSH_PENDING_TIMEOUT
= 5 * HZ
,
96 static void blk_kick_flush(struct request_queue
*q
,
97 struct blk_flush_queue
*fq
, unsigned int flags
);
99 static unsigned int blk_flush_policy(unsigned long fflags
, struct request
*rq
)
101 unsigned int policy
= 0;
103 if (blk_rq_sectors(rq
))
104 policy
|= REQ_FSEQ_DATA
;
106 if (fflags
& (1UL << QUEUE_FLAG_WC
)) {
107 if (rq
->cmd_flags
& REQ_PREFLUSH
)
108 policy
|= REQ_FSEQ_PREFLUSH
;
109 if (!(fflags
& (1UL << QUEUE_FLAG_FUA
)) &&
110 (rq
->cmd_flags
& REQ_FUA
))
111 policy
|= REQ_FSEQ_POSTFLUSH
;
116 static unsigned int blk_flush_cur_seq(struct request
*rq
)
118 return 1 << ffz(rq
->flush
.seq
);
121 static void blk_flush_restore_request(struct request
*rq
)
124 * After flush data completion, @rq->bio is %NULL but we need to
125 * complete the bio again. @rq->biotail is guaranteed to equal the
126 * original @rq->bio. Restore it.
128 rq
->bio
= rq
->biotail
;
130 /* make @rq a normal request */
131 rq
->rq_flags
&= ~RQF_FLUSH_SEQ
;
132 rq
->end_io
= rq
->flush
.saved_end_io
;
135 static void blk_flush_queue_rq(struct request
*rq
, bool add_front
)
137 blk_mq_add_to_requeue_list(rq
, add_front
, true);
140 static void blk_account_io_flush(struct request
*rq
)
142 struct hd_struct
*part
= &rq
->rq_disk
->part0
;
145 part_stat_inc(part
, ios
[STAT_FLUSH
]);
146 part_stat_add(part
, nsecs
[STAT_FLUSH
],
147 ktime_get_ns() - rq
->start_time_ns
);
152 * blk_flush_complete_seq - complete flush sequence
153 * @rq: PREFLUSH/FUA request being sequenced
155 * @seq: sequences to complete (mask of %REQ_FSEQ_*, can be zero)
156 * @error: whether an error occurred
158 * @rq just completed @seq part of its flush sequence, record the
159 * completion and trigger the next step.
162 * spin_lock_irq(fq->mq_flush_lock)
165 * %true if requests were added to the dispatch queue, %false otherwise.
167 static void blk_flush_complete_seq(struct request
*rq
,
168 struct blk_flush_queue
*fq
,
169 unsigned int seq
, blk_status_t error
)
171 struct request_queue
*q
= rq
->q
;
172 struct list_head
*pending
= &fq
->flush_queue
[fq
->flush_pending_idx
];
173 unsigned int cmd_flags
;
175 BUG_ON(rq
->flush
.seq
& seq
);
176 rq
->flush
.seq
|= seq
;
177 cmd_flags
= rq
->cmd_flags
;
180 seq
= blk_flush_cur_seq(rq
);
185 case REQ_FSEQ_PREFLUSH
:
186 case REQ_FSEQ_POSTFLUSH
:
187 /* queue for flush */
188 if (list_empty(pending
))
189 fq
->flush_pending_since
= jiffies
;
190 list_move_tail(&rq
->flush
.list
, pending
);
194 list_move_tail(&rq
->flush
.list
, &fq
->flush_data_in_flight
);
195 blk_flush_queue_rq(rq
, true);
200 * @rq was previously adjusted by blk_insert_flush() for
201 * flush sequencing and may already have gone through the
202 * flush data request completion path. Restore @rq for
203 * normal completion and end it.
205 BUG_ON(!list_empty(&rq
->queuelist
));
206 list_del_init(&rq
->flush
.list
);
207 blk_flush_restore_request(rq
);
208 blk_mq_end_request(rq
, error
);
215 blk_kick_flush(q
, fq
, cmd_flags
);
218 static void flush_end_io(struct request
*flush_rq
, blk_status_t error
)
220 struct request_queue
*q
= flush_rq
->q
;
221 struct list_head
*running
;
222 struct request
*rq
, *n
;
223 unsigned long flags
= 0;
224 struct blk_flush_queue
*fq
= blk_get_flush_queue(q
, flush_rq
->mq_ctx
);
225 struct blk_mq_hw_ctx
*hctx
;
227 blk_account_io_flush(flush_rq
);
229 /* release the tag's ownership to the req cloned from */
230 spin_lock_irqsave(&fq
->mq_flush_lock
, flags
);
232 if (!refcount_dec_and_test(&flush_rq
->ref
)) {
233 fq
->rq_status
= error
;
234 spin_unlock_irqrestore(&fq
->mq_flush_lock
, flags
);
238 if (fq
->rq_status
!= BLK_STS_OK
)
239 error
= fq
->rq_status
;
241 hctx
= flush_rq
->mq_hctx
;
243 blk_mq_tag_set_rq(hctx
, flush_rq
->tag
, fq
->orig_rq
);
246 blk_mq_put_driver_tag(flush_rq
);
247 flush_rq
->internal_tag
= -1;
250 running
= &fq
->flush_queue
[fq
->flush_running_idx
];
251 BUG_ON(fq
->flush_pending_idx
== fq
->flush_running_idx
);
253 /* account completion of the flush request */
254 fq
->flush_running_idx
^= 1;
256 /* and push the waiting requests to the next stage */
257 list_for_each_entry_safe(rq
, n
, running
, flush
.list
) {
258 unsigned int seq
= blk_flush_cur_seq(rq
);
260 BUG_ON(seq
!= REQ_FSEQ_PREFLUSH
&& seq
!= REQ_FSEQ_POSTFLUSH
);
261 blk_flush_complete_seq(rq
, fq
, seq
, error
);
264 fq
->flush_queue_delayed
= 0;
265 spin_unlock_irqrestore(&fq
->mq_flush_lock
, flags
);
269 * blk_kick_flush - consider issuing flush request
270 * @q: request_queue being kicked
272 * @flags: cmd_flags of the original request
274 * Flush related states of @q have changed, consider issuing flush request.
275 * Please read the comment at the top of this file for more info.
278 * spin_lock_irq(fq->mq_flush_lock)
281 static void blk_kick_flush(struct request_queue
*q
, struct blk_flush_queue
*fq
,
284 struct list_head
*pending
= &fq
->flush_queue
[fq
->flush_pending_idx
];
285 struct request
*first_rq
=
286 list_first_entry(pending
, struct request
, flush
.list
);
287 struct request
*flush_rq
= fq
->flush_rq
;
289 /* C1 described at the top of this file */
290 if (fq
->flush_pending_idx
!= fq
->flush_running_idx
|| list_empty(pending
))
295 * For blk-mq + scheduling, we can risk having all driver tags
296 * assigned to empty flushes, and we deadlock if we are expecting
297 * other requests to make progress. Don't defer for that case.
299 if (!list_empty(&fq
->flush_data_in_flight
) && q
->elevator
&&
301 fq
->flush_pending_since
+ FLUSH_PENDING_TIMEOUT
))
305 * Issue flush and toggle pending_idx. This makes pending_idx
306 * different from running_idx, which means flush is in flight.
308 fq
->flush_pending_idx
^= 1;
310 blk_rq_init(q
, flush_rq
);
313 * In case of none scheduler, borrow tag from the first request
314 * since they can't be in flight at the same time. And acquire
315 * the tag's ownership for flush req.
317 * In case of IO scheduler, flush rq need to borrow scheduler tag
318 * just for cheating put/get driver tag.
320 flush_rq
->mq_ctx
= first_rq
->mq_ctx
;
321 flush_rq
->mq_hctx
= first_rq
->mq_hctx
;
324 fq
->orig_rq
= first_rq
;
325 flush_rq
->tag
= first_rq
->tag
;
326 blk_mq_tag_set_rq(flush_rq
->mq_hctx
, first_rq
->tag
, flush_rq
);
328 flush_rq
->internal_tag
= first_rq
->internal_tag
;
331 flush_rq
->cmd_flags
= REQ_OP_FLUSH
| REQ_PREFLUSH
;
332 flush_rq
->cmd_flags
|= (flags
& REQ_DRV
) | (flags
& REQ_FAILFAST_MASK
);
333 flush_rq
->rq_flags
|= RQF_FLUSH_SEQ
;
334 flush_rq
->rq_disk
= first_rq
->rq_disk
;
335 flush_rq
->end_io
= flush_end_io
;
337 blk_flush_queue_rq(flush_rq
, false);
340 static void mq_flush_data_end_io(struct request
*rq
, blk_status_t error
)
342 struct request_queue
*q
= rq
->q
;
343 struct blk_mq_hw_ctx
*hctx
= rq
->mq_hctx
;
344 struct blk_mq_ctx
*ctx
= rq
->mq_ctx
;
346 struct blk_flush_queue
*fq
= blk_get_flush_queue(q
, ctx
);
349 WARN_ON(rq
->tag
< 0);
350 blk_mq_put_driver_tag(rq
);
354 * After populating an empty queue, kick it to avoid stall. Read
355 * the comment in flush_end_io().
357 spin_lock_irqsave(&fq
->mq_flush_lock
, flags
);
358 blk_flush_complete_seq(rq
, fq
, REQ_FSEQ_DATA
, error
);
359 spin_unlock_irqrestore(&fq
->mq_flush_lock
, flags
);
361 blk_mq_sched_restart(hctx
);
365 * blk_insert_flush - insert a new PREFLUSH/FUA request
366 * @rq: request to insert
368 * To be called from __elv_add_request() for %ELEVATOR_INSERT_FLUSH insertions.
369 * or __blk_mq_run_hw_queue() to dispatch request.
370 * @rq is being submitted. Analyze what needs to be done and put it on the
373 void blk_insert_flush(struct request
*rq
)
375 struct request_queue
*q
= rq
->q
;
376 unsigned long fflags
= q
->queue_flags
; /* may change, cache */
377 unsigned int policy
= blk_flush_policy(fflags
, rq
);
378 struct blk_flush_queue
*fq
= blk_get_flush_queue(q
, rq
->mq_ctx
);
381 * @policy now records what operations need to be done. Adjust
382 * REQ_PREFLUSH and FUA for the driver.
384 rq
->cmd_flags
&= ~REQ_PREFLUSH
;
385 if (!(fflags
& (1UL << QUEUE_FLAG_FUA
)))
386 rq
->cmd_flags
&= ~REQ_FUA
;
389 * REQ_PREFLUSH|REQ_FUA implies REQ_SYNC, so if we clear any
390 * of those flags, we have to set REQ_SYNC to avoid skewing
391 * the request accounting.
393 rq
->cmd_flags
|= REQ_SYNC
;
396 * An empty flush handed down from a stacking driver may
397 * translate into nothing if the underlying device does not
398 * advertise a write-back cache. In this case, simply
399 * complete the request.
402 blk_mq_end_request(rq
, 0);
406 BUG_ON(rq
->bio
!= rq
->biotail
); /*assumes zero or single bio rq */
409 * If there's data but flush is not necessary, the request can be
410 * processed directly without going through flush machinery. Queue
411 * for normal execution.
413 if ((policy
& REQ_FSEQ_DATA
) &&
414 !(policy
& (REQ_FSEQ_PREFLUSH
| REQ_FSEQ_POSTFLUSH
))) {
415 blk_mq_request_bypass_insert(rq
, false);
420 * @rq should go through flush machinery. Mark it part of flush
421 * sequence and submit for further processing.
423 memset(&rq
->flush
, 0, sizeof(rq
->flush
));
424 INIT_LIST_HEAD(&rq
->flush
.list
);
425 rq
->rq_flags
|= RQF_FLUSH_SEQ
;
426 rq
->flush
.saved_end_io
= rq
->end_io
; /* Usually NULL */
428 rq
->end_io
= mq_flush_data_end_io
;
430 spin_lock_irq(&fq
->mq_flush_lock
);
431 blk_flush_complete_seq(rq
, fq
, REQ_FSEQ_ACTIONS
& ~policy
, 0);
432 spin_unlock_irq(&fq
->mq_flush_lock
);
436 * blkdev_issue_flush - queue a flush
437 * @bdev: blockdev to issue flush for
438 * @gfp_mask: memory allocation flags (for bio_alloc)
439 * @error_sector: error sector
442 * Issue a flush for the block device in question. Caller can supply
443 * room for storing the error offset in case of a flush error, if they
446 int blkdev_issue_flush(struct block_device
*bdev
, gfp_t gfp_mask
,
447 sector_t
*error_sector
)
449 struct request_queue
*q
;
453 if (bdev
->bd_disk
== NULL
)
456 q
= bdev_get_queue(bdev
);
461 * some block devices may not have their queue correctly set up here
462 * (e.g. loop device without a backing file) and so issuing a flush
463 * here will panic. Ensure there is a request function before issuing
466 if (!q
->make_request_fn
)
469 bio
= bio_alloc(gfp_mask
, 0);
470 bio_set_dev(bio
, bdev
);
471 bio
->bi_opf
= REQ_OP_WRITE
| REQ_PREFLUSH
;
473 ret
= submit_bio_wait(bio
);
476 * The driver must store the error location in ->bi_sector, if
477 * it supports it. For non-stacked drivers, this should be
478 * copied from blk_rq_pos(rq).
481 *error_sector
= bio
->bi_iter
.bi_sector
;
486 EXPORT_SYMBOL(blkdev_issue_flush
);
488 struct blk_flush_queue
*blk_alloc_flush_queue(struct request_queue
*q
,
489 int node
, int cmd_size
, gfp_t flags
)
491 struct blk_flush_queue
*fq
;
492 int rq_sz
= sizeof(struct request
);
494 fq
= kzalloc_node(sizeof(*fq
), flags
, node
);
498 spin_lock_init(&fq
->mq_flush_lock
);
500 rq_sz
= round_up(rq_sz
+ cmd_size
, cache_line_size());
501 fq
->flush_rq
= kzalloc_node(rq_sz
, flags
, node
);
505 INIT_LIST_HEAD(&fq
->flush_queue
[0]);
506 INIT_LIST_HEAD(&fq
->flush_queue
[1]);
507 INIT_LIST_HEAD(&fq
->flush_data_in_flight
);
509 lockdep_register_key(&fq
->key
);
510 lockdep_set_class(&fq
->mq_flush_lock
, &fq
->key
);
520 void blk_free_flush_queue(struct blk_flush_queue
*fq
)
522 /* bio based request queue hasn't flush queue */
526 lockdep_unregister_key(&fq
->key
);