treewide: remove redundant IS_ERR() before error code check
[linux/fpc-iii.git] / block / blk-merge.c
blob1534ed736363fd807998525d3ddd828e566004f8
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Functions related to segment and merge handling
4 */
5 #include <linux/kernel.h>
6 #include <linux/module.h>
7 #include <linux/bio.h>
8 #include <linux/blkdev.h>
9 #include <linux/scatterlist.h>
11 #include <trace/events/block.h>
13 #include "blk.h"
15 static inline bool bio_will_gap(struct request_queue *q,
16 struct request *prev_rq, struct bio *prev, struct bio *next)
18 struct bio_vec pb, nb;
20 if (!bio_has_data(prev) || !queue_virt_boundary(q))
21 return false;
24 * Don't merge if the 1st bio starts with non-zero offset, otherwise it
25 * is quite difficult to respect the sg gap limit. We work hard to
26 * merge a huge number of small single bios in case of mkfs.
28 if (prev_rq)
29 bio_get_first_bvec(prev_rq->bio, &pb);
30 else
31 bio_get_first_bvec(prev, &pb);
32 if (pb.bv_offset & queue_virt_boundary(q))
33 return true;
36 * We don't need to worry about the situation that the merged segment
37 * ends in unaligned virt boundary:
39 * - if 'pb' ends aligned, the merged segment ends aligned
40 * - if 'pb' ends unaligned, the next bio must include
41 * one single bvec of 'nb', otherwise the 'nb' can't
42 * merge with 'pb'
44 bio_get_last_bvec(prev, &pb);
45 bio_get_first_bvec(next, &nb);
46 if (biovec_phys_mergeable(q, &pb, &nb))
47 return false;
48 return __bvec_gap_to_prev(q, &pb, nb.bv_offset);
51 static inline bool req_gap_back_merge(struct request *req, struct bio *bio)
53 return bio_will_gap(req->q, req, req->biotail, bio);
56 static inline bool req_gap_front_merge(struct request *req, struct bio *bio)
58 return bio_will_gap(req->q, NULL, bio, req->bio);
61 static struct bio *blk_bio_discard_split(struct request_queue *q,
62 struct bio *bio,
63 struct bio_set *bs,
64 unsigned *nsegs)
66 unsigned int max_discard_sectors, granularity;
67 int alignment;
68 sector_t tmp;
69 unsigned split_sectors;
71 *nsegs = 1;
73 /* Zero-sector (unknown) and one-sector granularities are the same. */
74 granularity = max(q->limits.discard_granularity >> 9, 1U);
76 max_discard_sectors = min(q->limits.max_discard_sectors,
77 bio_allowed_max_sectors(q));
78 max_discard_sectors -= max_discard_sectors % granularity;
80 if (unlikely(!max_discard_sectors)) {
81 /* XXX: warn */
82 return NULL;
85 if (bio_sectors(bio) <= max_discard_sectors)
86 return NULL;
88 split_sectors = max_discard_sectors;
91 * If the next starting sector would be misaligned, stop the discard at
92 * the previous aligned sector.
94 alignment = (q->limits.discard_alignment >> 9) % granularity;
96 tmp = bio->bi_iter.bi_sector + split_sectors - alignment;
97 tmp = sector_div(tmp, granularity);
99 if (split_sectors > tmp)
100 split_sectors -= tmp;
102 return bio_split(bio, split_sectors, GFP_NOIO, bs);
105 static struct bio *blk_bio_write_zeroes_split(struct request_queue *q,
106 struct bio *bio, struct bio_set *bs, unsigned *nsegs)
108 *nsegs = 0;
110 if (!q->limits.max_write_zeroes_sectors)
111 return NULL;
113 if (bio_sectors(bio) <= q->limits.max_write_zeroes_sectors)
114 return NULL;
116 return bio_split(bio, q->limits.max_write_zeroes_sectors, GFP_NOIO, bs);
119 static struct bio *blk_bio_write_same_split(struct request_queue *q,
120 struct bio *bio,
121 struct bio_set *bs,
122 unsigned *nsegs)
124 *nsegs = 1;
126 if (!q->limits.max_write_same_sectors)
127 return NULL;
129 if (bio_sectors(bio) <= q->limits.max_write_same_sectors)
130 return NULL;
132 return bio_split(bio, q->limits.max_write_same_sectors, GFP_NOIO, bs);
136 * Return the maximum number of sectors from the start of a bio that may be
137 * submitted as a single request to a block device. If enough sectors remain,
138 * align the end to the physical block size. Otherwise align the end to the
139 * logical block size. This approach minimizes the number of non-aligned
140 * requests that are submitted to a block device if the start of a bio is not
141 * aligned to a physical block boundary.
143 static inline unsigned get_max_io_size(struct request_queue *q,
144 struct bio *bio)
146 unsigned sectors = blk_max_size_offset(q, bio->bi_iter.bi_sector);
147 unsigned max_sectors = sectors;
148 unsigned pbs = queue_physical_block_size(q) >> SECTOR_SHIFT;
149 unsigned lbs = queue_logical_block_size(q) >> SECTOR_SHIFT;
150 unsigned start_offset = bio->bi_iter.bi_sector & (pbs - 1);
152 max_sectors += start_offset;
153 max_sectors &= ~(pbs - 1);
154 if (max_sectors > start_offset)
155 return max_sectors - start_offset;
157 return sectors & (lbs - 1);
160 static inline unsigned get_max_segment_size(const struct request_queue *q,
161 struct page *start_page,
162 unsigned long offset)
164 unsigned long mask = queue_segment_boundary(q);
166 offset = mask & (page_to_phys(start_page) + offset);
169 * overflow may be triggered in case of zero page physical address
170 * on 32bit arch, use queue's max segment size when that happens.
172 return min_not_zero(mask - offset + 1,
173 (unsigned long)queue_max_segment_size(q));
177 * bvec_split_segs - verify whether or not a bvec should be split in the middle
178 * @q: [in] request queue associated with the bio associated with @bv
179 * @bv: [in] bvec to examine
180 * @nsegs: [in,out] Number of segments in the bio being built. Incremented
181 * by the number of segments from @bv that may be appended to that
182 * bio without exceeding @max_segs
183 * @sectors: [in,out] Number of sectors in the bio being built. Incremented
184 * by the number of sectors from @bv that may be appended to that
185 * bio without exceeding @max_sectors
186 * @max_segs: [in] upper bound for *@nsegs
187 * @max_sectors: [in] upper bound for *@sectors
189 * When splitting a bio, it can happen that a bvec is encountered that is too
190 * big to fit in a single segment and hence that it has to be split in the
191 * middle. This function verifies whether or not that should happen. The value
192 * %true is returned if and only if appending the entire @bv to a bio with
193 * *@nsegs segments and *@sectors sectors would make that bio unacceptable for
194 * the block driver.
196 static bool bvec_split_segs(const struct request_queue *q,
197 const struct bio_vec *bv, unsigned *nsegs,
198 unsigned *sectors, unsigned max_segs,
199 unsigned max_sectors)
201 unsigned max_len = (min(max_sectors, UINT_MAX >> 9) - *sectors) << 9;
202 unsigned len = min(bv->bv_len, max_len);
203 unsigned total_len = 0;
204 unsigned seg_size = 0;
206 while (len && *nsegs < max_segs) {
207 seg_size = get_max_segment_size(q, bv->bv_page,
208 bv->bv_offset + total_len);
209 seg_size = min(seg_size, len);
211 (*nsegs)++;
212 total_len += seg_size;
213 len -= seg_size;
215 if ((bv->bv_offset + total_len) & queue_virt_boundary(q))
216 break;
219 *sectors += total_len >> 9;
221 /* tell the caller to split the bvec if it is too big to fit */
222 return len > 0 || bv->bv_len > max_len;
226 * blk_bio_segment_split - split a bio in two bios
227 * @q: [in] request queue pointer
228 * @bio: [in] bio to be split
229 * @bs: [in] bio set to allocate the clone from
230 * @segs: [out] number of segments in the bio with the first half of the sectors
232 * Clone @bio, update the bi_iter of the clone to represent the first sectors
233 * of @bio and update @bio->bi_iter to represent the remaining sectors. The
234 * following is guaranteed for the cloned bio:
235 * - That it has at most get_max_io_size(@q, @bio) sectors.
236 * - That it has at most queue_max_segments(@q) segments.
238 * Except for discard requests the cloned bio will point at the bi_io_vec of
239 * the original bio. It is the responsibility of the caller to ensure that the
240 * original bio is not freed before the cloned bio. The caller is also
241 * responsible for ensuring that @bs is only destroyed after processing of the
242 * split bio has finished.
244 static struct bio *blk_bio_segment_split(struct request_queue *q,
245 struct bio *bio,
246 struct bio_set *bs,
247 unsigned *segs)
249 struct bio_vec bv, bvprv, *bvprvp = NULL;
250 struct bvec_iter iter;
251 unsigned nsegs = 0, sectors = 0;
252 const unsigned max_sectors = get_max_io_size(q, bio);
253 const unsigned max_segs = queue_max_segments(q);
255 bio_for_each_bvec(bv, bio, iter) {
257 * If the queue doesn't support SG gaps and adding this
258 * offset would create a gap, disallow it.
260 if (bvprvp && bvec_gap_to_prev(q, bvprvp, bv.bv_offset))
261 goto split;
263 if (nsegs < max_segs &&
264 sectors + (bv.bv_len >> 9) <= max_sectors &&
265 bv.bv_offset + bv.bv_len <= PAGE_SIZE) {
266 nsegs++;
267 sectors += bv.bv_len >> 9;
268 } else if (bvec_split_segs(q, &bv, &nsegs, &sectors, max_segs,
269 max_sectors)) {
270 goto split;
273 bvprv = bv;
274 bvprvp = &bvprv;
277 *segs = nsegs;
278 return NULL;
279 split:
280 *segs = nsegs;
281 return bio_split(bio, sectors, GFP_NOIO, bs);
285 * __blk_queue_split - split a bio and submit the second half
286 * @q: [in] request queue pointer
287 * @bio: [in, out] bio to be split
288 * @nr_segs: [out] number of segments in the first bio
290 * Split a bio into two bios, chain the two bios, submit the second half and
291 * store a pointer to the first half in *@bio. If the second bio is still too
292 * big it will be split by a recursive call to this function. Since this
293 * function may allocate a new bio from @q->bio_split, it is the responsibility
294 * of the caller to ensure that @q is only released after processing of the
295 * split bio has finished.
297 void __blk_queue_split(struct request_queue *q, struct bio **bio,
298 unsigned int *nr_segs)
300 struct bio *split = NULL;
302 switch (bio_op(*bio)) {
303 case REQ_OP_DISCARD:
304 case REQ_OP_SECURE_ERASE:
305 split = blk_bio_discard_split(q, *bio, &q->bio_split, nr_segs);
306 break;
307 case REQ_OP_WRITE_ZEROES:
308 split = blk_bio_write_zeroes_split(q, *bio, &q->bio_split,
309 nr_segs);
310 break;
311 case REQ_OP_WRITE_SAME:
312 split = blk_bio_write_same_split(q, *bio, &q->bio_split,
313 nr_segs);
314 break;
315 default:
317 * All drivers must accept single-segments bios that are <=
318 * PAGE_SIZE. This is a quick and dirty check that relies on
319 * the fact that bi_io_vec[0] is always valid if a bio has data.
320 * The check might lead to occasional false negatives when bios
321 * are cloned, but compared to the performance impact of cloned
322 * bios themselves the loop below doesn't matter anyway.
324 if (!q->limits.chunk_sectors &&
325 (*bio)->bi_vcnt == 1 &&
326 ((*bio)->bi_io_vec[0].bv_len +
327 (*bio)->bi_io_vec[0].bv_offset) <= PAGE_SIZE) {
328 *nr_segs = 1;
329 break;
331 split = blk_bio_segment_split(q, *bio, &q->bio_split, nr_segs);
332 break;
335 if (split) {
336 /* there isn't chance to merge the splitted bio */
337 split->bi_opf |= REQ_NOMERGE;
340 * Since we're recursing into make_request here, ensure
341 * that we mark this bio as already having entered the queue.
342 * If not, and the queue is going away, we can get stuck
343 * forever on waiting for the queue reference to drop. But
344 * that will never happen, as we're already holding a
345 * reference to it.
347 bio_set_flag(*bio, BIO_QUEUE_ENTERED);
349 bio_chain(split, *bio);
350 trace_block_split(q, split, (*bio)->bi_iter.bi_sector);
351 generic_make_request(*bio);
352 *bio = split;
357 * blk_queue_split - split a bio and submit the second half
358 * @q: [in] request queue pointer
359 * @bio: [in, out] bio to be split
361 * Split a bio into two bios, chains the two bios, submit the second half and
362 * store a pointer to the first half in *@bio. Since this function may allocate
363 * a new bio from @q->bio_split, it is the responsibility of the caller to
364 * ensure that @q is only released after processing of the split bio has
365 * finished.
367 void blk_queue_split(struct request_queue *q, struct bio **bio)
369 unsigned int nr_segs;
371 __blk_queue_split(q, bio, &nr_segs);
373 EXPORT_SYMBOL(blk_queue_split);
375 unsigned int blk_recalc_rq_segments(struct request *rq)
377 unsigned int nr_phys_segs = 0;
378 unsigned int nr_sectors = 0;
379 struct req_iterator iter;
380 struct bio_vec bv;
382 if (!rq->bio)
383 return 0;
385 switch (bio_op(rq->bio)) {
386 case REQ_OP_DISCARD:
387 case REQ_OP_SECURE_ERASE:
388 case REQ_OP_WRITE_ZEROES:
389 return 0;
390 case REQ_OP_WRITE_SAME:
391 return 1;
394 rq_for_each_bvec(bv, rq, iter)
395 bvec_split_segs(rq->q, &bv, &nr_phys_segs, &nr_sectors,
396 UINT_MAX, UINT_MAX);
397 return nr_phys_segs;
400 static inline struct scatterlist *blk_next_sg(struct scatterlist **sg,
401 struct scatterlist *sglist)
403 if (!*sg)
404 return sglist;
407 * If the driver previously mapped a shorter list, we could see a
408 * termination bit prematurely unless it fully inits the sg table
409 * on each mapping. We KNOW that there must be more entries here
410 * or the driver would be buggy, so force clear the termination bit
411 * to avoid doing a full sg_init_table() in drivers for each command.
413 sg_unmark_end(*sg);
414 return sg_next(*sg);
417 static unsigned blk_bvec_map_sg(struct request_queue *q,
418 struct bio_vec *bvec, struct scatterlist *sglist,
419 struct scatterlist **sg)
421 unsigned nbytes = bvec->bv_len;
422 unsigned nsegs = 0, total = 0;
424 while (nbytes > 0) {
425 unsigned offset = bvec->bv_offset + total;
426 unsigned len = min(get_max_segment_size(q, bvec->bv_page,
427 offset), nbytes);
428 struct page *page = bvec->bv_page;
431 * Unfortunately a fair number of drivers barf on scatterlists
432 * that have an offset larger than PAGE_SIZE, despite other
433 * subsystems dealing with that invariant just fine. For now
434 * stick to the legacy format where we never present those from
435 * the block layer, but the code below should be removed once
436 * these offenders (mostly MMC/SD drivers) are fixed.
438 page += (offset >> PAGE_SHIFT);
439 offset &= ~PAGE_MASK;
441 *sg = blk_next_sg(sg, sglist);
442 sg_set_page(*sg, page, len, offset);
444 total += len;
445 nbytes -= len;
446 nsegs++;
449 return nsegs;
452 static inline int __blk_bvec_map_sg(struct bio_vec bv,
453 struct scatterlist *sglist, struct scatterlist **sg)
455 *sg = blk_next_sg(sg, sglist);
456 sg_set_page(*sg, bv.bv_page, bv.bv_len, bv.bv_offset);
457 return 1;
460 /* only try to merge bvecs into one sg if they are from two bios */
461 static inline bool
462 __blk_segment_map_sg_merge(struct request_queue *q, struct bio_vec *bvec,
463 struct bio_vec *bvprv, struct scatterlist **sg)
466 int nbytes = bvec->bv_len;
468 if (!*sg)
469 return false;
471 if ((*sg)->length + nbytes > queue_max_segment_size(q))
472 return false;
474 if (!biovec_phys_mergeable(q, bvprv, bvec))
475 return false;
477 (*sg)->length += nbytes;
479 return true;
482 static int __blk_bios_map_sg(struct request_queue *q, struct bio *bio,
483 struct scatterlist *sglist,
484 struct scatterlist **sg)
486 struct bio_vec uninitialized_var(bvec), bvprv = { NULL };
487 struct bvec_iter iter;
488 int nsegs = 0;
489 bool new_bio = false;
491 for_each_bio(bio) {
492 bio_for_each_bvec(bvec, bio, iter) {
494 * Only try to merge bvecs from two bios given we
495 * have done bio internal merge when adding pages
496 * to bio
498 if (new_bio &&
499 __blk_segment_map_sg_merge(q, &bvec, &bvprv, sg))
500 goto next_bvec;
502 if (bvec.bv_offset + bvec.bv_len <= PAGE_SIZE)
503 nsegs += __blk_bvec_map_sg(bvec, sglist, sg);
504 else
505 nsegs += blk_bvec_map_sg(q, &bvec, sglist, sg);
506 next_bvec:
507 new_bio = false;
509 if (likely(bio->bi_iter.bi_size)) {
510 bvprv = bvec;
511 new_bio = true;
515 return nsegs;
519 * map a request to scatterlist, return number of sg entries setup. Caller
520 * must make sure sg can hold rq->nr_phys_segments entries
522 int blk_rq_map_sg(struct request_queue *q, struct request *rq,
523 struct scatterlist *sglist)
525 struct scatterlist *sg = NULL;
526 int nsegs = 0;
528 if (rq->rq_flags & RQF_SPECIAL_PAYLOAD)
529 nsegs = __blk_bvec_map_sg(rq->special_vec, sglist, &sg);
530 else if (rq->bio && bio_op(rq->bio) == REQ_OP_WRITE_SAME)
531 nsegs = __blk_bvec_map_sg(bio_iovec(rq->bio), sglist, &sg);
532 else if (rq->bio)
533 nsegs = __blk_bios_map_sg(q, rq->bio, sglist, &sg);
535 if (unlikely(rq->rq_flags & RQF_COPY_USER) &&
536 (blk_rq_bytes(rq) & q->dma_pad_mask)) {
537 unsigned int pad_len =
538 (q->dma_pad_mask & ~blk_rq_bytes(rq)) + 1;
540 sg->length += pad_len;
541 rq->extra_len += pad_len;
544 if (q->dma_drain_size && q->dma_drain_needed(rq)) {
545 if (op_is_write(req_op(rq)))
546 memset(q->dma_drain_buffer, 0, q->dma_drain_size);
548 sg_unmark_end(sg);
549 sg = sg_next(sg);
550 sg_set_page(sg, virt_to_page(q->dma_drain_buffer),
551 q->dma_drain_size,
552 ((unsigned long)q->dma_drain_buffer) &
553 (PAGE_SIZE - 1));
554 nsegs++;
555 rq->extra_len += q->dma_drain_size;
558 if (sg)
559 sg_mark_end(sg);
562 * Something must have been wrong if the figured number of
563 * segment is bigger than number of req's physical segments
565 WARN_ON(nsegs > blk_rq_nr_phys_segments(rq));
567 return nsegs;
569 EXPORT_SYMBOL(blk_rq_map_sg);
571 static inline int ll_new_hw_segment(struct request *req, struct bio *bio,
572 unsigned int nr_phys_segs)
574 if (req->nr_phys_segments + nr_phys_segs > queue_max_segments(req->q))
575 goto no_merge;
577 if (blk_integrity_merge_bio(req->q, req, bio) == false)
578 goto no_merge;
581 * This will form the start of a new hw segment. Bump both
582 * counters.
584 req->nr_phys_segments += nr_phys_segs;
585 return 1;
587 no_merge:
588 req_set_nomerge(req->q, req);
589 return 0;
592 int ll_back_merge_fn(struct request *req, struct bio *bio, unsigned int nr_segs)
594 if (req_gap_back_merge(req, bio))
595 return 0;
596 if (blk_integrity_rq(req) &&
597 integrity_req_gap_back_merge(req, bio))
598 return 0;
599 if (blk_rq_sectors(req) + bio_sectors(bio) >
600 blk_rq_get_max_sectors(req, blk_rq_pos(req))) {
601 req_set_nomerge(req->q, req);
602 return 0;
605 return ll_new_hw_segment(req, bio, nr_segs);
608 int ll_front_merge_fn(struct request *req, struct bio *bio, unsigned int nr_segs)
610 if (req_gap_front_merge(req, bio))
611 return 0;
612 if (blk_integrity_rq(req) &&
613 integrity_req_gap_front_merge(req, bio))
614 return 0;
615 if (blk_rq_sectors(req) + bio_sectors(bio) >
616 blk_rq_get_max_sectors(req, bio->bi_iter.bi_sector)) {
617 req_set_nomerge(req->q, req);
618 return 0;
621 return ll_new_hw_segment(req, bio, nr_segs);
624 static bool req_attempt_discard_merge(struct request_queue *q, struct request *req,
625 struct request *next)
627 unsigned short segments = blk_rq_nr_discard_segments(req);
629 if (segments >= queue_max_discard_segments(q))
630 goto no_merge;
631 if (blk_rq_sectors(req) + bio_sectors(next->bio) >
632 blk_rq_get_max_sectors(req, blk_rq_pos(req)))
633 goto no_merge;
635 req->nr_phys_segments = segments + blk_rq_nr_discard_segments(next);
636 return true;
637 no_merge:
638 req_set_nomerge(q, req);
639 return false;
642 static int ll_merge_requests_fn(struct request_queue *q, struct request *req,
643 struct request *next)
645 int total_phys_segments;
647 if (req_gap_back_merge(req, next->bio))
648 return 0;
651 * Will it become too large?
653 if ((blk_rq_sectors(req) + blk_rq_sectors(next)) >
654 blk_rq_get_max_sectors(req, blk_rq_pos(req)))
655 return 0;
657 total_phys_segments = req->nr_phys_segments + next->nr_phys_segments;
658 if (total_phys_segments > queue_max_segments(q))
659 return 0;
661 if (blk_integrity_merge_rq(q, req, next) == false)
662 return 0;
664 /* Merge is OK... */
665 req->nr_phys_segments = total_phys_segments;
666 return 1;
670 * blk_rq_set_mixed_merge - mark a request as mixed merge
671 * @rq: request to mark as mixed merge
673 * Description:
674 * @rq is about to be mixed merged. Make sure the attributes
675 * which can be mixed are set in each bio and mark @rq as mixed
676 * merged.
678 void blk_rq_set_mixed_merge(struct request *rq)
680 unsigned int ff = rq->cmd_flags & REQ_FAILFAST_MASK;
681 struct bio *bio;
683 if (rq->rq_flags & RQF_MIXED_MERGE)
684 return;
687 * @rq will no longer represent mixable attributes for all the
688 * contained bios. It will just track those of the first one.
689 * Distributes the attributs to each bio.
691 for (bio = rq->bio; bio; bio = bio->bi_next) {
692 WARN_ON_ONCE((bio->bi_opf & REQ_FAILFAST_MASK) &&
693 (bio->bi_opf & REQ_FAILFAST_MASK) != ff);
694 bio->bi_opf |= ff;
696 rq->rq_flags |= RQF_MIXED_MERGE;
699 static void blk_account_io_merge(struct request *req)
701 if (blk_do_io_stat(req)) {
702 struct hd_struct *part;
704 part_stat_lock();
705 part = req->part;
707 part_dec_in_flight(req->q, part, rq_data_dir(req));
709 hd_struct_put(part);
710 part_stat_unlock();
714 * Two cases of handling DISCARD merge:
715 * If max_discard_segments > 1, the driver takes every bio
716 * as a range and send them to controller together. The ranges
717 * needn't to be contiguous.
718 * Otherwise, the bios/requests will be handled as same as
719 * others which should be contiguous.
721 static inline bool blk_discard_mergable(struct request *req)
723 if (req_op(req) == REQ_OP_DISCARD &&
724 queue_max_discard_segments(req->q) > 1)
725 return true;
726 return false;
729 static enum elv_merge blk_try_req_merge(struct request *req,
730 struct request *next)
732 if (blk_discard_mergable(req))
733 return ELEVATOR_DISCARD_MERGE;
734 else if (blk_rq_pos(req) + blk_rq_sectors(req) == blk_rq_pos(next))
735 return ELEVATOR_BACK_MERGE;
737 return ELEVATOR_NO_MERGE;
741 * For non-mq, this has to be called with the request spinlock acquired.
742 * For mq with scheduling, the appropriate queue wide lock should be held.
744 static struct request *attempt_merge(struct request_queue *q,
745 struct request *req, struct request *next)
747 if (!rq_mergeable(req) || !rq_mergeable(next))
748 return NULL;
750 if (req_op(req) != req_op(next))
751 return NULL;
753 if (rq_data_dir(req) != rq_data_dir(next)
754 || req->rq_disk != next->rq_disk)
755 return NULL;
757 if (req_op(req) == REQ_OP_WRITE_SAME &&
758 !blk_write_same_mergeable(req->bio, next->bio))
759 return NULL;
762 * Don't allow merge of different write hints, or for a hint with
763 * non-hint IO.
765 if (req->write_hint != next->write_hint)
766 return NULL;
768 if (req->ioprio != next->ioprio)
769 return NULL;
772 * If we are allowed to merge, then append bio list
773 * from next to rq and release next. merge_requests_fn
774 * will have updated segment counts, update sector
775 * counts here. Handle DISCARDs separately, as they
776 * have separate settings.
779 switch (blk_try_req_merge(req, next)) {
780 case ELEVATOR_DISCARD_MERGE:
781 if (!req_attempt_discard_merge(q, req, next))
782 return NULL;
783 break;
784 case ELEVATOR_BACK_MERGE:
785 if (!ll_merge_requests_fn(q, req, next))
786 return NULL;
787 break;
788 default:
789 return NULL;
793 * If failfast settings disagree or any of the two is already
794 * a mixed merge, mark both as mixed before proceeding. This
795 * makes sure that all involved bios have mixable attributes
796 * set properly.
798 if (((req->rq_flags | next->rq_flags) & RQF_MIXED_MERGE) ||
799 (req->cmd_flags & REQ_FAILFAST_MASK) !=
800 (next->cmd_flags & REQ_FAILFAST_MASK)) {
801 blk_rq_set_mixed_merge(req);
802 blk_rq_set_mixed_merge(next);
806 * At this point we have either done a back merge or front merge. We
807 * need the smaller start_time_ns of the merged requests to be the
808 * current request for accounting purposes.
810 if (next->start_time_ns < req->start_time_ns)
811 req->start_time_ns = next->start_time_ns;
813 req->biotail->bi_next = next->bio;
814 req->biotail = next->biotail;
816 req->__data_len += blk_rq_bytes(next);
818 if (!blk_discard_mergable(req))
819 elv_merge_requests(q, req, next);
822 * 'next' is going away, so update stats accordingly
824 blk_account_io_merge(next);
827 * ownership of bio passed from next to req, return 'next' for
828 * the caller to free
830 next->bio = NULL;
831 return next;
834 struct request *attempt_back_merge(struct request_queue *q, struct request *rq)
836 struct request *next = elv_latter_request(q, rq);
838 if (next)
839 return attempt_merge(q, rq, next);
841 return NULL;
844 struct request *attempt_front_merge(struct request_queue *q, struct request *rq)
846 struct request *prev = elv_former_request(q, rq);
848 if (prev)
849 return attempt_merge(q, prev, rq);
851 return NULL;
854 int blk_attempt_req_merge(struct request_queue *q, struct request *rq,
855 struct request *next)
857 struct request *free;
859 free = attempt_merge(q, rq, next);
860 if (free) {
861 blk_put_request(free);
862 return 1;
865 return 0;
868 bool blk_rq_merge_ok(struct request *rq, struct bio *bio)
870 if (!rq_mergeable(rq) || !bio_mergeable(bio))
871 return false;
873 if (req_op(rq) != bio_op(bio))
874 return false;
876 /* different data direction or already started, don't merge */
877 if (bio_data_dir(bio) != rq_data_dir(rq))
878 return false;
880 /* must be same device */
881 if (rq->rq_disk != bio->bi_disk)
882 return false;
884 /* only merge integrity protected bio into ditto rq */
885 if (blk_integrity_merge_bio(rq->q, rq, bio) == false)
886 return false;
888 /* must be using the same buffer */
889 if (req_op(rq) == REQ_OP_WRITE_SAME &&
890 !blk_write_same_mergeable(rq->bio, bio))
891 return false;
894 * Don't allow merge of different write hints, or for a hint with
895 * non-hint IO.
897 if (rq->write_hint != bio->bi_write_hint)
898 return false;
900 if (rq->ioprio != bio_prio(bio))
901 return false;
903 return true;
906 enum elv_merge blk_try_merge(struct request *rq, struct bio *bio)
908 if (blk_discard_mergable(rq))
909 return ELEVATOR_DISCARD_MERGE;
910 else if (blk_rq_pos(rq) + blk_rq_sectors(rq) == bio->bi_iter.bi_sector)
911 return ELEVATOR_BACK_MERGE;
912 else if (blk_rq_pos(rq) - bio_sectors(bio) == bio->bi_iter.bi_sector)
913 return ELEVATOR_FRONT_MERGE;
914 return ELEVATOR_NO_MERGE;