1 // SPDX-License-Identifier: GPL-2.0
3 * Functions related to setting various queue properties from drivers
5 #include <linux/kernel.h>
6 #include <linux/module.h>
7 #include <linux/init.h>
9 #include <linux/blkdev.h>
10 #include <linux/memblock.h> /* for max_pfn/max_low_pfn */
11 #include <linux/gcd.h>
12 #include <linux/lcm.h>
13 #include <linux/jiffies.h>
14 #include <linux/gfp.h>
15 #include <linux/dma-mapping.h>
20 unsigned long blk_max_low_pfn
;
21 EXPORT_SYMBOL(blk_max_low_pfn
);
23 unsigned long blk_max_pfn
;
25 void blk_queue_rq_timeout(struct request_queue
*q
, unsigned int timeout
)
27 q
->rq_timeout
= timeout
;
29 EXPORT_SYMBOL_GPL(blk_queue_rq_timeout
);
32 * blk_set_default_limits - reset limits to default values
33 * @lim: the queue_limits structure to reset
36 * Returns a queue_limit struct to its default state.
38 void blk_set_default_limits(struct queue_limits
*lim
)
40 lim
->max_segments
= BLK_MAX_SEGMENTS
;
41 lim
->max_discard_segments
= 1;
42 lim
->max_integrity_segments
= 0;
43 lim
->seg_boundary_mask
= BLK_SEG_BOUNDARY_MASK
;
44 lim
->virt_boundary_mask
= 0;
45 lim
->max_segment_size
= BLK_MAX_SEGMENT_SIZE
;
46 lim
->max_sectors
= lim
->max_hw_sectors
= BLK_SAFE_MAX_SECTORS
;
47 lim
->max_dev_sectors
= 0;
48 lim
->chunk_sectors
= 0;
49 lim
->max_write_same_sectors
= 0;
50 lim
->max_write_zeroes_sectors
= 0;
51 lim
->max_discard_sectors
= 0;
52 lim
->max_hw_discard_sectors
= 0;
53 lim
->discard_granularity
= 0;
54 lim
->discard_alignment
= 0;
55 lim
->discard_misaligned
= 0;
56 lim
->logical_block_size
= lim
->physical_block_size
= lim
->io_min
= 512;
57 lim
->bounce_pfn
= (unsigned long)(BLK_BOUNCE_ANY
>> PAGE_SHIFT
);
58 lim
->alignment_offset
= 0;
61 lim
->zoned
= BLK_ZONED_NONE
;
63 EXPORT_SYMBOL(blk_set_default_limits
);
66 * blk_set_stacking_limits - set default limits for stacking devices
67 * @lim: the queue_limits structure to reset
70 * Returns a queue_limit struct to its default state. Should be used
71 * by stacking drivers like DM that have no internal limits.
73 void blk_set_stacking_limits(struct queue_limits
*lim
)
75 blk_set_default_limits(lim
);
77 /* Inherit limits from component devices */
78 lim
->max_segments
= USHRT_MAX
;
79 lim
->max_discard_segments
= USHRT_MAX
;
80 lim
->max_hw_sectors
= UINT_MAX
;
81 lim
->max_segment_size
= UINT_MAX
;
82 lim
->max_sectors
= UINT_MAX
;
83 lim
->max_dev_sectors
= UINT_MAX
;
84 lim
->max_write_same_sectors
= UINT_MAX
;
85 lim
->max_write_zeroes_sectors
= UINT_MAX
;
87 EXPORT_SYMBOL(blk_set_stacking_limits
);
90 * blk_queue_make_request - define an alternate make_request function for a device
91 * @q: the request queue for the device to be affected
92 * @mfn: the alternate make_request function
95 * The normal way for &struct bios to be passed to a device
96 * driver is for them to be collected into requests on a request
97 * queue, and then to allow the device driver to select requests
98 * off that queue when it is ready. This works well for many block
99 * devices. However some block devices (typically virtual devices
100 * such as md or lvm) do not benefit from the processing on the
101 * request queue, and are served best by having the requests passed
102 * directly to them. This can be achieved by providing a function
103 * to blk_queue_make_request().
106 * The driver that does this *must* be able to deal appropriately
107 * with buffers in "highmemory". This can be accomplished by either calling
108 * kmap_atomic() to get a temporary kernel mapping, or by calling
109 * blk_queue_bounce() to create a buffer in normal memory.
111 void blk_queue_make_request(struct request_queue
*q
, make_request_fn
*mfn
)
116 q
->nr_requests
= BLKDEV_MAX_RQ
;
118 q
->make_request_fn
= mfn
;
119 blk_queue_dma_alignment(q
, 511);
121 blk_set_default_limits(&q
->limits
);
123 EXPORT_SYMBOL(blk_queue_make_request
);
126 * blk_queue_bounce_limit - set bounce buffer limit for queue
127 * @q: the request queue for the device
128 * @max_addr: the maximum address the device can handle
131 * Different hardware can have different requirements as to what pages
132 * it can do I/O directly to. A low level driver can call
133 * blk_queue_bounce_limit to have lower memory pages allocated as bounce
134 * buffers for doing I/O to pages residing above @max_addr.
136 void blk_queue_bounce_limit(struct request_queue
*q
, u64 max_addr
)
138 unsigned long b_pfn
= max_addr
>> PAGE_SHIFT
;
141 q
->bounce_gfp
= GFP_NOIO
;
142 #if BITS_PER_LONG == 64
144 * Assume anything <= 4GB can be handled by IOMMU. Actually
145 * some IOMMUs can handle everything, but I don't know of a
146 * way to test this here.
148 if (b_pfn
< (min_t(u64
, 0xffffffffUL
, BLK_BOUNCE_HIGH
) >> PAGE_SHIFT
))
150 q
->limits
.bounce_pfn
= max(max_low_pfn
, b_pfn
);
152 if (b_pfn
< blk_max_low_pfn
)
154 q
->limits
.bounce_pfn
= b_pfn
;
157 init_emergency_isa_pool();
158 q
->bounce_gfp
= GFP_NOIO
| GFP_DMA
;
159 q
->limits
.bounce_pfn
= b_pfn
;
162 EXPORT_SYMBOL(blk_queue_bounce_limit
);
165 * blk_queue_max_hw_sectors - set max sectors for a request for this queue
166 * @q: the request queue for the device
167 * @max_hw_sectors: max hardware sectors in the usual 512b unit
170 * Enables a low level driver to set a hard upper limit,
171 * max_hw_sectors, on the size of requests. max_hw_sectors is set by
172 * the device driver based upon the capabilities of the I/O
175 * max_dev_sectors is a hard limit imposed by the storage device for
176 * READ/WRITE requests. It is set by the disk driver.
178 * max_sectors is a soft limit imposed by the block layer for
179 * filesystem type requests. This value can be overridden on a
180 * per-device basis in /sys/block/<device>/queue/max_sectors_kb.
181 * The soft limit can not exceed max_hw_sectors.
183 void blk_queue_max_hw_sectors(struct request_queue
*q
, unsigned int max_hw_sectors
)
185 struct queue_limits
*limits
= &q
->limits
;
186 unsigned int max_sectors
;
188 if ((max_hw_sectors
<< 9) < PAGE_SIZE
) {
189 max_hw_sectors
= 1 << (PAGE_SHIFT
- 9);
190 printk(KERN_INFO
"%s: set to minimum %d\n",
191 __func__
, max_hw_sectors
);
194 limits
->max_hw_sectors
= max_hw_sectors
;
195 max_sectors
= min_not_zero(max_hw_sectors
, limits
->max_dev_sectors
);
196 max_sectors
= min_t(unsigned int, max_sectors
, BLK_DEF_MAX_SECTORS
);
197 limits
->max_sectors
= max_sectors
;
198 q
->backing_dev_info
->io_pages
= max_sectors
>> (PAGE_SHIFT
- 9);
200 EXPORT_SYMBOL(blk_queue_max_hw_sectors
);
203 * blk_queue_chunk_sectors - set size of the chunk for this queue
204 * @q: the request queue for the device
205 * @chunk_sectors: chunk sectors in the usual 512b unit
208 * If a driver doesn't want IOs to cross a given chunk size, it can set
209 * this limit and prevent merging across chunks. Note that the chunk size
210 * must currently be a power-of-2 in sectors. Also note that the block
211 * layer must accept a page worth of data at any offset. So if the
212 * crossing of chunks is a hard limitation in the driver, it must still be
213 * prepared to split single page bios.
215 void blk_queue_chunk_sectors(struct request_queue
*q
, unsigned int chunk_sectors
)
217 BUG_ON(!is_power_of_2(chunk_sectors
));
218 q
->limits
.chunk_sectors
= chunk_sectors
;
220 EXPORT_SYMBOL(blk_queue_chunk_sectors
);
223 * blk_queue_max_discard_sectors - set max sectors for a single discard
224 * @q: the request queue for the device
225 * @max_discard_sectors: maximum number of sectors to discard
227 void blk_queue_max_discard_sectors(struct request_queue
*q
,
228 unsigned int max_discard_sectors
)
230 q
->limits
.max_hw_discard_sectors
= max_discard_sectors
;
231 q
->limits
.max_discard_sectors
= max_discard_sectors
;
233 EXPORT_SYMBOL(blk_queue_max_discard_sectors
);
236 * blk_queue_max_write_same_sectors - set max sectors for a single write same
237 * @q: the request queue for the device
238 * @max_write_same_sectors: maximum number of sectors to write per command
240 void blk_queue_max_write_same_sectors(struct request_queue
*q
,
241 unsigned int max_write_same_sectors
)
243 q
->limits
.max_write_same_sectors
= max_write_same_sectors
;
245 EXPORT_SYMBOL(blk_queue_max_write_same_sectors
);
248 * blk_queue_max_write_zeroes_sectors - set max sectors for a single
250 * @q: the request queue for the device
251 * @max_write_zeroes_sectors: maximum number of sectors to write per command
253 void blk_queue_max_write_zeroes_sectors(struct request_queue
*q
,
254 unsigned int max_write_zeroes_sectors
)
256 q
->limits
.max_write_zeroes_sectors
= max_write_zeroes_sectors
;
258 EXPORT_SYMBOL(blk_queue_max_write_zeroes_sectors
);
261 * blk_queue_max_segments - set max hw segments for a request for this queue
262 * @q: the request queue for the device
263 * @max_segments: max number of segments
266 * Enables a low level driver to set an upper limit on the number of
267 * hw data segments in a request.
269 void blk_queue_max_segments(struct request_queue
*q
, unsigned short max_segments
)
273 printk(KERN_INFO
"%s: set to minimum %d\n",
274 __func__
, max_segments
);
277 q
->limits
.max_segments
= max_segments
;
279 EXPORT_SYMBOL(blk_queue_max_segments
);
282 * blk_queue_max_discard_segments - set max segments for discard requests
283 * @q: the request queue for the device
284 * @max_segments: max number of segments
287 * Enables a low level driver to set an upper limit on the number of
288 * segments in a discard request.
290 void blk_queue_max_discard_segments(struct request_queue
*q
,
291 unsigned short max_segments
)
293 q
->limits
.max_discard_segments
= max_segments
;
295 EXPORT_SYMBOL_GPL(blk_queue_max_discard_segments
);
298 * blk_queue_max_segment_size - set max segment size for blk_rq_map_sg
299 * @q: the request queue for the device
300 * @max_size: max size of segment in bytes
303 * Enables a low level driver to set an upper limit on the size of a
306 void blk_queue_max_segment_size(struct request_queue
*q
, unsigned int max_size
)
308 if (max_size
< PAGE_SIZE
) {
309 max_size
= PAGE_SIZE
;
310 printk(KERN_INFO
"%s: set to minimum %d\n",
314 /* see blk_queue_virt_boundary() for the explanation */
315 WARN_ON_ONCE(q
->limits
.virt_boundary_mask
);
317 q
->limits
.max_segment_size
= max_size
;
319 EXPORT_SYMBOL(blk_queue_max_segment_size
);
322 * blk_queue_logical_block_size - set logical block size for the queue
323 * @q: the request queue for the device
324 * @size: the logical block size, in bytes
327 * This should be set to the lowest possible block size that the
328 * storage device can address. The default of 512 covers most
331 void blk_queue_logical_block_size(struct request_queue
*q
, unsigned int size
)
333 q
->limits
.logical_block_size
= size
;
335 if (q
->limits
.physical_block_size
< size
)
336 q
->limits
.physical_block_size
= size
;
338 if (q
->limits
.io_min
< q
->limits
.physical_block_size
)
339 q
->limits
.io_min
= q
->limits
.physical_block_size
;
341 EXPORT_SYMBOL(blk_queue_logical_block_size
);
344 * blk_queue_physical_block_size - set physical block size for the queue
345 * @q: the request queue for the device
346 * @size: the physical block size, in bytes
349 * This should be set to the lowest possible sector size that the
350 * hardware can operate on without reverting to read-modify-write
353 void blk_queue_physical_block_size(struct request_queue
*q
, unsigned int size
)
355 q
->limits
.physical_block_size
= size
;
357 if (q
->limits
.physical_block_size
< q
->limits
.logical_block_size
)
358 q
->limits
.physical_block_size
= q
->limits
.logical_block_size
;
360 if (q
->limits
.io_min
< q
->limits
.physical_block_size
)
361 q
->limits
.io_min
= q
->limits
.physical_block_size
;
363 EXPORT_SYMBOL(blk_queue_physical_block_size
);
366 * blk_queue_alignment_offset - set physical block alignment offset
367 * @q: the request queue for the device
368 * @offset: alignment offset in bytes
371 * Some devices are naturally misaligned to compensate for things like
372 * the legacy DOS partition table 63-sector offset. Low-level drivers
373 * should call this function for devices whose first sector is not
376 void blk_queue_alignment_offset(struct request_queue
*q
, unsigned int offset
)
378 q
->limits
.alignment_offset
=
379 offset
& (q
->limits
.physical_block_size
- 1);
380 q
->limits
.misaligned
= 0;
382 EXPORT_SYMBOL(blk_queue_alignment_offset
);
385 * blk_limits_io_min - set minimum request size for a device
386 * @limits: the queue limits
387 * @min: smallest I/O size in bytes
390 * Some devices have an internal block size bigger than the reported
391 * hardware sector size. This function can be used to signal the
392 * smallest I/O the device can perform without incurring a performance
395 void blk_limits_io_min(struct queue_limits
*limits
, unsigned int min
)
397 limits
->io_min
= min
;
399 if (limits
->io_min
< limits
->logical_block_size
)
400 limits
->io_min
= limits
->logical_block_size
;
402 if (limits
->io_min
< limits
->physical_block_size
)
403 limits
->io_min
= limits
->physical_block_size
;
405 EXPORT_SYMBOL(blk_limits_io_min
);
408 * blk_queue_io_min - set minimum request size for the queue
409 * @q: the request queue for the device
410 * @min: smallest I/O size in bytes
413 * Storage devices may report a granularity or preferred minimum I/O
414 * size which is the smallest request the device can perform without
415 * incurring a performance penalty. For disk drives this is often the
416 * physical block size. For RAID arrays it is often the stripe chunk
417 * size. A properly aligned multiple of minimum_io_size is the
418 * preferred request size for workloads where a high number of I/O
419 * operations is desired.
421 void blk_queue_io_min(struct request_queue
*q
, unsigned int min
)
423 blk_limits_io_min(&q
->limits
, min
);
425 EXPORT_SYMBOL(blk_queue_io_min
);
428 * blk_limits_io_opt - set optimal request size for a device
429 * @limits: the queue limits
430 * @opt: smallest I/O size in bytes
433 * Storage devices may report an optimal I/O size, which is the
434 * device's preferred unit for sustained I/O. This is rarely reported
435 * for disk drives. For RAID arrays it is usually the stripe width or
436 * the internal track size. A properly aligned multiple of
437 * optimal_io_size is the preferred request size for workloads where
438 * sustained throughput is desired.
440 void blk_limits_io_opt(struct queue_limits
*limits
, unsigned int opt
)
442 limits
->io_opt
= opt
;
444 EXPORT_SYMBOL(blk_limits_io_opt
);
447 * blk_queue_io_opt - set optimal request size for the queue
448 * @q: the request queue for the device
449 * @opt: optimal request size in bytes
452 * Storage devices may report an optimal I/O size, which is the
453 * device's preferred unit for sustained I/O. This is rarely reported
454 * for disk drives. For RAID arrays it is usually the stripe width or
455 * the internal track size. A properly aligned multiple of
456 * optimal_io_size is the preferred request size for workloads where
457 * sustained throughput is desired.
459 void blk_queue_io_opt(struct request_queue
*q
, unsigned int opt
)
461 blk_limits_io_opt(&q
->limits
, opt
);
463 EXPORT_SYMBOL(blk_queue_io_opt
);
466 * blk_queue_stack_limits - inherit underlying queue limits for stacked drivers
467 * @t: the stacking driver (top)
468 * @b: the underlying device (bottom)
470 void blk_queue_stack_limits(struct request_queue
*t
, struct request_queue
*b
)
472 blk_stack_limits(&t
->limits
, &b
->limits
, 0);
474 EXPORT_SYMBOL(blk_queue_stack_limits
);
477 * blk_stack_limits - adjust queue_limits for stacked devices
478 * @t: the stacking driver limits (top device)
479 * @b: the underlying queue limits (bottom, component device)
480 * @start: first data sector within component device
483 * This function is used by stacking drivers like MD and DM to ensure
484 * that all component devices have compatible block sizes and
485 * alignments. The stacking driver must provide a queue_limits
486 * struct (top) and then iteratively call the stacking function for
487 * all component (bottom) devices. The stacking function will
488 * attempt to combine the values and ensure proper alignment.
490 * Returns 0 if the top and bottom queue_limits are compatible. The
491 * top device's block sizes and alignment offsets may be adjusted to
492 * ensure alignment with the bottom device. If no compatible sizes
493 * and alignments exist, -1 is returned and the resulting top
494 * queue_limits will have the misaligned flag set to indicate that
495 * the alignment_offset is undefined.
497 int blk_stack_limits(struct queue_limits
*t
, struct queue_limits
*b
,
500 unsigned int top
, bottom
, alignment
, ret
= 0;
502 t
->max_sectors
= min_not_zero(t
->max_sectors
, b
->max_sectors
);
503 t
->max_hw_sectors
= min_not_zero(t
->max_hw_sectors
, b
->max_hw_sectors
);
504 t
->max_dev_sectors
= min_not_zero(t
->max_dev_sectors
, b
->max_dev_sectors
);
505 t
->max_write_same_sectors
= min(t
->max_write_same_sectors
,
506 b
->max_write_same_sectors
);
507 t
->max_write_zeroes_sectors
= min(t
->max_write_zeroes_sectors
,
508 b
->max_write_zeroes_sectors
);
509 t
->bounce_pfn
= min_not_zero(t
->bounce_pfn
, b
->bounce_pfn
);
511 t
->seg_boundary_mask
= min_not_zero(t
->seg_boundary_mask
,
512 b
->seg_boundary_mask
);
513 t
->virt_boundary_mask
= min_not_zero(t
->virt_boundary_mask
,
514 b
->virt_boundary_mask
);
516 t
->max_segments
= min_not_zero(t
->max_segments
, b
->max_segments
);
517 t
->max_discard_segments
= min_not_zero(t
->max_discard_segments
,
518 b
->max_discard_segments
);
519 t
->max_integrity_segments
= min_not_zero(t
->max_integrity_segments
,
520 b
->max_integrity_segments
);
522 t
->max_segment_size
= min_not_zero(t
->max_segment_size
,
523 b
->max_segment_size
);
525 t
->misaligned
|= b
->misaligned
;
527 alignment
= queue_limit_alignment_offset(b
, start
);
529 /* Bottom device has different alignment. Check that it is
530 * compatible with the current top alignment.
532 if (t
->alignment_offset
!= alignment
) {
534 top
= max(t
->physical_block_size
, t
->io_min
)
535 + t
->alignment_offset
;
536 bottom
= max(b
->physical_block_size
, b
->io_min
) + alignment
;
538 /* Verify that top and bottom intervals line up */
539 if (max(top
, bottom
) % min(top
, bottom
)) {
545 t
->logical_block_size
= max(t
->logical_block_size
,
546 b
->logical_block_size
);
548 t
->physical_block_size
= max(t
->physical_block_size
,
549 b
->physical_block_size
);
551 t
->io_min
= max(t
->io_min
, b
->io_min
);
552 t
->io_opt
= lcm_not_zero(t
->io_opt
, b
->io_opt
);
554 /* Physical block size a multiple of the logical block size? */
555 if (t
->physical_block_size
& (t
->logical_block_size
- 1)) {
556 t
->physical_block_size
= t
->logical_block_size
;
561 /* Minimum I/O a multiple of the physical block size? */
562 if (t
->io_min
& (t
->physical_block_size
- 1)) {
563 t
->io_min
= t
->physical_block_size
;
568 /* Optimal I/O a multiple of the physical block size? */
569 if (t
->io_opt
& (t
->physical_block_size
- 1)) {
575 t
->raid_partial_stripes_expensive
=
576 max(t
->raid_partial_stripes_expensive
,
577 b
->raid_partial_stripes_expensive
);
579 /* Find lowest common alignment_offset */
580 t
->alignment_offset
= lcm_not_zero(t
->alignment_offset
, alignment
)
581 % max(t
->physical_block_size
, t
->io_min
);
583 /* Verify that new alignment_offset is on a logical block boundary */
584 if (t
->alignment_offset
& (t
->logical_block_size
- 1)) {
589 /* Discard alignment and granularity */
590 if (b
->discard_granularity
) {
591 alignment
= queue_limit_discard_alignment(b
, start
);
593 if (t
->discard_granularity
!= 0 &&
594 t
->discard_alignment
!= alignment
) {
595 top
= t
->discard_granularity
+ t
->discard_alignment
;
596 bottom
= b
->discard_granularity
+ alignment
;
598 /* Verify that top and bottom intervals line up */
599 if ((max(top
, bottom
) % min(top
, bottom
)) != 0)
600 t
->discard_misaligned
= 1;
603 t
->max_discard_sectors
= min_not_zero(t
->max_discard_sectors
,
604 b
->max_discard_sectors
);
605 t
->max_hw_discard_sectors
= min_not_zero(t
->max_hw_discard_sectors
,
606 b
->max_hw_discard_sectors
);
607 t
->discard_granularity
= max(t
->discard_granularity
,
608 b
->discard_granularity
);
609 t
->discard_alignment
= lcm_not_zero(t
->discard_alignment
, alignment
) %
610 t
->discard_granularity
;
613 if (b
->chunk_sectors
)
614 t
->chunk_sectors
= min_not_zero(t
->chunk_sectors
,
619 EXPORT_SYMBOL(blk_stack_limits
);
622 * bdev_stack_limits - adjust queue limits for stacked drivers
623 * @t: the stacking driver limits (top device)
624 * @bdev: the component block_device (bottom)
625 * @start: first data sector within component device
628 * Merges queue limits for a top device and a block_device. Returns
629 * 0 if alignment didn't change. Returns -1 if adding the bottom
630 * device caused misalignment.
632 int bdev_stack_limits(struct queue_limits
*t
, struct block_device
*bdev
,
635 struct request_queue
*bq
= bdev_get_queue(bdev
);
637 start
+= get_start_sect(bdev
);
639 return blk_stack_limits(t
, &bq
->limits
, start
);
641 EXPORT_SYMBOL(bdev_stack_limits
);
644 * disk_stack_limits - adjust queue limits for stacked drivers
645 * @disk: MD/DM gendisk (top)
646 * @bdev: the underlying block device (bottom)
647 * @offset: offset to beginning of data within component device
650 * Merges the limits for a top level gendisk and a bottom level
653 void disk_stack_limits(struct gendisk
*disk
, struct block_device
*bdev
,
656 struct request_queue
*t
= disk
->queue
;
658 if (bdev_stack_limits(&t
->limits
, bdev
, offset
>> 9) < 0) {
659 char top
[BDEVNAME_SIZE
], bottom
[BDEVNAME_SIZE
];
661 disk_name(disk
, 0, top
);
662 bdevname(bdev
, bottom
);
664 printk(KERN_NOTICE
"%s: Warning: Device %s is misaligned\n",
668 EXPORT_SYMBOL(disk_stack_limits
);
671 * blk_queue_update_dma_pad - update pad mask
672 * @q: the request queue for the device
675 * Update dma pad mask.
677 * Appending pad buffer to a request modifies the last entry of a
678 * scatter list such that it includes the pad buffer.
680 void blk_queue_update_dma_pad(struct request_queue
*q
, unsigned int mask
)
682 if (mask
> q
->dma_pad_mask
)
683 q
->dma_pad_mask
= mask
;
685 EXPORT_SYMBOL(blk_queue_update_dma_pad
);
688 * blk_queue_dma_drain - Set up a drain buffer for excess dma.
689 * @q: the request queue for the device
690 * @dma_drain_needed: fn which returns non-zero if drain is necessary
691 * @buf: physically contiguous buffer
692 * @size: size of the buffer in bytes
694 * Some devices have excess DMA problems and can't simply discard (or
695 * zero fill) the unwanted piece of the transfer. They have to have a
696 * real area of memory to transfer it into. The use case for this is
697 * ATAPI devices in DMA mode. If the packet command causes a transfer
698 * bigger than the transfer size some HBAs will lock up if there
699 * aren't DMA elements to contain the excess transfer. What this API
700 * does is adjust the queue so that the buf is always appended
701 * silently to the scatterlist.
703 * Note: This routine adjusts max_hw_segments to make room for appending
704 * the drain buffer. If you call blk_queue_max_segments() after calling
705 * this routine, you must set the limit to one fewer than your device
706 * can support otherwise there won't be room for the drain buffer.
708 int blk_queue_dma_drain(struct request_queue
*q
,
709 dma_drain_needed_fn
*dma_drain_needed
,
710 void *buf
, unsigned int size
)
712 if (queue_max_segments(q
) < 2)
714 /* make room for appending the drain */
715 blk_queue_max_segments(q
, queue_max_segments(q
) - 1);
716 q
->dma_drain_needed
= dma_drain_needed
;
717 q
->dma_drain_buffer
= buf
;
718 q
->dma_drain_size
= size
;
722 EXPORT_SYMBOL_GPL(blk_queue_dma_drain
);
725 * blk_queue_segment_boundary - set boundary rules for segment merging
726 * @q: the request queue for the device
727 * @mask: the memory boundary mask
729 void blk_queue_segment_boundary(struct request_queue
*q
, unsigned long mask
)
731 if (mask
< PAGE_SIZE
- 1) {
732 mask
= PAGE_SIZE
- 1;
733 printk(KERN_INFO
"%s: set to minimum %lx\n",
737 q
->limits
.seg_boundary_mask
= mask
;
739 EXPORT_SYMBOL(blk_queue_segment_boundary
);
742 * blk_queue_virt_boundary - set boundary rules for bio merging
743 * @q: the request queue for the device
744 * @mask: the memory boundary mask
746 void blk_queue_virt_boundary(struct request_queue
*q
, unsigned long mask
)
748 q
->limits
.virt_boundary_mask
= mask
;
751 * Devices that require a virtual boundary do not support scatter/gather
752 * I/O natively, but instead require a descriptor list entry for each
753 * page (which might not be idential to the Linux PAGE_SIZE). Because
754 * of that they are not limited by our notion of "segment size".
757 q
->limits
.max_segment_size
= UINT_MAX
;
759 EXPORT_SYMBOL(blk_queue_virt_boundary
);
762 * blk_queue_dma_alignment - set dma length and memory alignment
763 * @q: the request queue for the device
764 * @mask: alignment mask
767 * set required memory and length alignment for direct dma transactions.
768 * this is used when building direct io requests for the queue.
771 void blk_queue_dma_alignment(struct request_queue
*q
, int mask
)
773 q
->dma_alignment
= mask
;
775 EXPORT_SYMBOL(blk_queue_dma_alignment
);
778 * blk_queue_update_dma_alignment - update dma length and memory alignment
779 * @q: the request queue for the device
780 * @mask: alignment mask
783 * update required memory and length alignment for direct dma transactions.
784 * If the requested alignment is larger than the current alignment, then
785 * the current queue alignment is updated to the new value, otherwise it
786 * is left alone. The design of this is to allow multiple objects
787 * (driver, device, transport etc) to set their respective
788 * alignments without having them interfere.
791 void blk_queue_update_dma_alignment(struct request_queue
*q
, int mask
)
793 BUG_ON(mask
> PAGE_SIZE
);
795 if (mask
> q
->dma_alignment
)
796 q
->dma_alignment
= mask
;
798 EXPORT_SYMBOL(blk_queue_update_dma_alignment
);
801 * blk_set_queue_depth - tell the block layer about the device queue depth
802 * @q: the request queue for the device
803 * @depth: queue depth
806 void blk_set_queue_depth(struct request_queue
*q
, unsigned int depth
)
808 q
->queue_depth
= depth
;
809 rq_qos_queue_depth_changed(q
);
811 EXPORT_SYMBOL(blk_set_queue_depth
);
814 * blk_queue_write_cache - configure queue's write cache
815 * @q: the request queue for the device
816 * @wc: write back cache on or off
817 * @fua: device supports FUA writes, if true
819 * Tell the block layer about the write cache of @q.
821 void blk_queue_write_cache(struct request_queue
*q
, bool wc
, bool fua
)
824 blk_queue_flag_set(QUEUE_FLAG_WC
, q
);
826 blk_queue_flag_clear(QUEUE_FLAG_WC
, q
);
828 blk_queue_flag_set(QUEUE_FLAG_FUA
, q
);
830 blk_queue_flag_clear(QUEUE_FLAG_FUA
, q
);
832 wbt_set_write_cache(q
, test_bit(QUEUE_FLAG_WC
, &q
->queue_flags
));
834 EXPORT_SYMBOL_GPL(blk_queue_write_cache
);
837 * blk_queue_required_elevator_features - Set a queue required elevator features
838 * @q: the request queue for the target device
839 * @features: Required elevator features OR'ed together
841 * Tell the block layer that for the device controlled through @q, only the
842 * only elevators that can be used are those that implement at least the set of
843 * features specified by @features.
845 void blk_queue_required_elevator_features(struct request_queue
*q
,
846 unsigned int features
)
848 q
->required_elevator_features
= features
;
850 EXPORT_SYMBOL_GPL(blk_queue_required_elevator_features
);
853 * blk_queue_can_use_dma_map_merging - configure queue for merging segments.
854 * @q: the request queue for the device
855 * @dev: the device pointer for dma
857 * Tell the block layer about merging the segments by dma map of @q.
859 bool blk_queue_can_use_dma_map_merging(struct request_queue
*q
,
862 unsigned long boundary
= dma_get_merge_boundary(dev
);
867 /* No need to update max_segment_size. see blk_queue_virt_boundary() */
868 blk_queue_virt_boundary(q
, boundary
);
872 EXPORT_SYMBOL_GPL(blk_queue_can_use_dma_map_merging
);
874 static int __init
blk_settings_init(void)
876 blk_max_low_pfn
= max_low_pfn
- 1;
877 blk_max_pfn
= max_pfn
- 1;
880 subsys_initcall(blk_settings_init
);