1 // SPDX-License-Identifier: GPL-2.0-only
3 * CPPC (Collaborative Processor Performance Control) methods used by CPUfreq drivers.
5 * (C) Copyright 2014, 2015 Linaro Ltd.
6 * Author: Ashwin Chaugule <ashwin.chaugule@linaro.org>
8 * CPPC describes a few methods for controlling CPU performance using
9 * information from a per CPU table called CPC. This table is described in
10 * the ACPI v5.0+ specification. The table consists of a list of
11 * registers which may be memory mapped or hardware registers and also may
12 * include some static integer values.
14 * CPU performance is on an abstract continuous scale as against a discretized
15 * P-state scale which is tied to CPU frequency only. In brief, the basic
18 * - OS makes a CPU performance request. (Can provide min and max bounds)
20 * - Platform (such as BMC) is free to optimize request within requested bounds
21 * depending on power/thermal budgets etc.
23 * - Platform conveys its decision back to OS
25 * The communication between OS and platform occurs through another medium
26 * called (PCC) Platform Communication Channel. This is a generic mailbox like
27 * mechanism which includes doorbell semantics to indicate register updates.
28 * See drivers/mailbox/pcc.c for details on PCC.
30 * Finer details about the PCC and CPPC spec are available in the ACPI v5.1 and
31 * above specifications.
34 #define pr_fmt(fmt) "ACPI CPPC: " fmt
36 #include <linux/cpufreq.h>
37 #include <linux/delay.h>
38 #include <linux/iopoll.h>
39 #include <linux/ktime.h>
40 #include <linux/rwsem.h>
41 #include <linux/wait.h>
43 #include <acpi/cppc_acpi.h>
45 struct cppc_pcc_data
{
46 struct mbox_chan
*pcc_channel
;
47 void __iomem
*pcc_comm_addr
;
48 bool pcc_channel_acquired
;
49 unsigned int deadline_us
;
50 unsigned int pcc_mpar
, pcc_mrtt
, pcc_nominal
;
52 bool pending_pcc_write_cmd
; /* Any pending/batched PCC write cmds? */
53 bool platform_owns_pcc
; /* Ownership of PCC subspace */
54 unsigned int pcc_write_cnt
; /* Running count of PCC write commands */
57 * Lock to provide controlled access to the PCC channel.
59 * For performance critical usecases(currently cppc_set_perf)
60 * We need to take read_lock and check if channel belongs to OSPM
61 * before reading or writing to PCC subspace
62 * We need to take write_lock before transferring the channel
63 * ownership to the platform via a Doorbell
64 * This allows us to batch a number of CPPC requests if they happen
65 * to originate in about the same time
67 * For non-performance critical usecases(init)
68 * Take write_lock for all purposes which gives exclusive access
70 struct rw_semaphore pcc_lock
;
72 /* Wait queue for CPUs whose requests were batched */
73 wait_queue_head_t pcc_write_wait_q
;
74 ktime_t last_cmd_cmpl_time
;
75 ktime_t last_mpar_reset
;
80 /* Array to represent the PCC channel per subspace ID */
81 static struct cppc_pcc_data
*pcc_data
[MAX_PCC_SUBSPACES
];
82 /* The cpu_pcc_subspace_idx contains per CPU subspace ID */
83 static DEFINE_PER_CPU(int, cpu_pcc_subspace_idx
);
86 * The cpc_desc structure contains the ACPI register details
87 * as described in the per CPU _CPC tables. The details
88 * include the type of register (e.g. PCC, System IO, FFH etc.)
89 * and destination addresses which lets us READ/WRITE CPU performance
90 * information using the appropriate I/O methods.
92 static DEFINE_PER_CPU(struct cpc_desc
*, cpc_desc_ptr
);
94 /* pcc mapped address + header size + offset within PCC subspace */
95 #define GET_PCC_VADDR(offs, pcc_ss_id) (pcc_data[pcc_ss_id]->pcc_comm_addr + \
98 /* Check if a CPC register is in PCC */
99 #define CPC_IN_PCC(cpc) ((cpc)->type == ACPI_TYPE_BUFFER && \
100 (cpc)->cpc_entry.reg.space_id == \
101 ACPI_ADR_SPACE_PLATFORM_COMM)
103 /* Evalutes to True if reg is a NULL register descriptor */
104 #define IS_NULL_REG(reg) ((reg)->space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY && \
105 (reg)->address == 0 && \
106 (reg)->bit_width == 0 && \
107 (reg)->bit_offset == 0 && \
108 (reg)->access_width == 0)
110 /* Evalutes to True if an optional cpc field is supported */
111 #define CPC_SUPPORTED(cpc) ((cpc)->type == ACPI_TYPE_INTEGER ? \
112 !!(cpc)->cpc_entry.int_value : \
113 !IS_NULL_REG(&(cpc)->cpc_entry.reg))
115 * Arbitrary Retries in case the remote processor is slow to respond
116 * to PCC commands. Keeping it high enough to cover emulators where
117 * the processors run painfully slow.
119 #define NUM_RETRIES 500ULL
122 struct attribute attr
;
123 ssize_t (*show
)(struct kobject
*kobj
,
124 struct attribute
*attr
, char *buf
);
125 ssize_t (*store
)(struct kobject
*kobj
,
126 struct attribute
*attr
, const char *c
, ssize_t count
);
129 #define define_one_cppc_ro(_name) \
130 static struct cppc_attr _name = \
131 __ATTR(_name, 0444, show_##_name, NULL)
133 #define to_cpc_desc(a) container_of(a, struct cpc_desc, kobj)
135 #define show_cppc_data(access_fn, struct_name, member_name) \
136 static ssize_t show_##member_name(struct kobject *kobj, \
137 struct attribute *attr, char *buf) \
139 struct cpc_desc *cpc_ptr = to_cpc_desc(kobj); \
140 struct struct_name st_name = {0}; \
143 ret = access_fn(cpc_ptr->cpu_id, &st_name); \
147 return scnprintf(buf, PAGE_SIZE, "%llu\n", \
148 (u64)st_name.member_name); \
150 define_one_cppc_ro(member_name)
152 show_cppc_data(cppc_get_perf_caps
, cppc_perf_caps
, highest_perf
);
153 show_cppc_data(cppc_get_perf_caps
, cppc_perf_caps
, lowest_perf
);
154 show_cppc_data(cppc_get_perf_caps
, cppc_perf_caps
, nominal_perf
);
155 show_cppc_data(cppc_get_perf_caps
, cppc_perf_caps
, lowest_nonlinear_perf
);
156 show_cppc_data(cppc_get_perf_caps
, cppc_perf_caps
, lowest_freq
);
157 show_cppc_data(cppc_get_perf_caps
, cppc_perf_caps
, nominal_freq
);
159 show_cppc_data(cppc_get_perf_ctrs
, cppc_perf_fb_ctrs
, reference_perf
);
160 show_cppc_data(cppc_get_perf_ctrs
, cppc_perf_fb_ctrs
, wraparound_time
);
162 static ssize_t
show_feedback_ctrs(struct kobject
*kobj
,
163 struct attribute
*attr
, char *buf
)
165 struct cpc_desc
*cpc_ptr
= to_cpc_desc(kobj
);
166 struct cppc_perf_fb_ctrs fb_ctrs
= {0};
169 ret
= cppc_get_perf_ctrs(cpc_ptr
->cpu_id
, &fb_ctrs
);
173 return scnprintf(buf
, PAGE_SIZE
, "ref:%llu del:%llu\n",
174 fb_ctrs
.reference
, fb_ctrs
.delivered
);
176 define_one_cppc_ro(feedback_ctrs
);
178 static struct attribute
*cppc_attrs
[] = {
180 &reference_perf
.attr
,
181 &wraparound_time
.attr
,
184 &lowest_nonlinear_perf
.attr
,
191 static struct kobj_type cppc_ktype
= {
192 .sysfs_ops
= &kobj_sysfs_ops
,
193 .default_attrs
= cppc_attrs
,
196 static int check_pcc_chan(int pcc_ss_id
, bool chk_err_bit
)
199 struct cppc_pcc_data
*pcc_ss_data
= pcc_data
[pcc_ss_id
];
200 struct acpi_pcct_shared_memory __iomem
*generic_comm_base
=
201 pcc_ss_data
->pcc_comm_addr
;
203 if (!pcc_ss_data
->platform_owns_pcc
)
207 * Poll PCC status register every 3us(delay_us) for maximum of
208 * deadline_us(timeout_us) until PCC command complete bit is set(cond)
210 ret
= readw_relaxed_poll_timeout(&generic_comm_base
->status
, status
,
211 status
& PCC_CMD_COMPLETE_MASK
, 3,
212 pcc_ss_data
->deadline_us
);
215 pcc_ss_data
->platform_owns_pcc
= false;
216 if (chk_err_bit
&& (status
& PCC_ERROR_MASK
))
221 pr_err("PCC check channel failed for ss: %d. ret=%d\n",
228 * This function transfers the ownership of the PCC to the platform
229 * So it must be called while holding write_lock(pcc_lock)
231 static int send_pcc_cmd(int pcc_ss_id
, u16 cmd
)
234 struct cppc_pcc_data
*pcc_ss_data
= pcc_data
[pcc_ss_id
];
235 struct acpi_pcct_shared_memory
*generic_comm_base
=
236 (struct acpi_pcct_shared_memory
*)pcc_ss_data
->pcc_comm_addr
;
237 unsigned int time_delta
;
240 * For CMD_WRITE we know for a fact the caller should have checked
241 * the channel before writing to PCC space
243 if (cmd
== CMD_READ
) {
245 * If there are pending cpc_writes, then we stole the channel
246 * before write completion, so first send a WRITE command to
249 if (pcc_ss_data
->pending_pcc_write_cmd
)
250 send_pcc_cmd(pcc_ss_id
, CMD_WRITE
);
252 ret
= check_pcc_chan(pcc_ss_id
, false);
255 } else /* CMD_WRITE */
256 pcc_ss_data
->pending_pcc_write_cmd
= FALSE
;
259 * Handle the Minimum Request Turnaround Time(MRTT)
260 * "The minimum amount of time that OSPM must wait after the completion
261 * of a command before issuing the next command, in microseconds"
263 if (pcc_ss_data
->pcc_mrtt
) {
264 time_delta
= ktime_us_delta(ktime_get(),
265 pcc_ss_data
->last_cmd_cmpl_time
);
266 if (pcc_ss_data
->pcc_mrtt
> time_delta
)
267 udelay(pcc_ss_data
->pcc_mrtt
- time_delta
);
271 * Handle the non-zero Maximum Periodic Access Rate(MPAR)
272 * "The maximum number of periodic requests that the subspace channel can
273 * support, reported in commands per minute. 0 indicates no limitation."
275 * This parameter should be ideally zero or large enough so that it can
276 * handle maximum number of requests that all the cores in the system can
277 * collectively generate. If it is not, we will follow the spec and just
278 * not send the request to the platform after hitting the MPAR limit in
281 if (pcc_ss_data
->pcc_mpar
) {
282 if (pcc_ss_data
->mpar_count
== 0) {
283 time_delta
= ktime_ms_delta(ktime_get(),
284 pcc_ss_data
->last_mpar_reset
);
285 if ((time_delta
< 60 * MSEC_PER_SEC
) && pcc_ss_data
->last_mpar_reset
) {
286 pr_debug("PCC cmd for subspace %d not sent due to MPAR limit",
291 pcc_ss_data
->last_mpar_reset
= ktime_get();
292 pcc_ss_data
->mpar_count
= pcc_ss_data
->pcc_mpar
;
294 pcc_ss_data
->mpar_count
--;
297 /* Write to the shared comm region. */
298 writew_relaxed(cmd
, &generic_comm_base
->command
);
300 /* Flip CMD COMPLETE bit */
301 writew_relaxed(0, &generic_comm_base
->status
);
303 pcc_ss_data
->platform_owns_pcc
= true;
306 ret
= mbox_send_message(pcc_ss_data
->pcc_channel
, &cmd
);
308 pr_err("Err sending PCC mbox message. ss: %d cmd:%d, ret:%d\n",
309 pcc_ss_id
, cmd
, ret
);
313 /* wait for completion and check for PCC errro bit */
314 ret
= check_pcc_chan(pcc_ss_id
, true);
316 if (pcc_ss_data
->pcc_mrtt
)
317 pcc_ss_data
->last_cmd_cmpl_time
= ktime_get();
319 if (pcc_ss_data
->pcc_channel
->mbox
->txdone_irq
)
320 mbox_chan_txdone(pcc_ss_data
->pcc_channel
, ret
);
322 mbox_client_txdone(pcc_ss_data
->pcc_channel
, ret
);
325 if (cmd
== CMD_WRITE
) {
327 for_each_possible_cpu(i
) {
328 struct cpc_desc
*desc
= per_cpu(cpc_desc_ptr
, i
);
332 if (desc
->write_cmd_id
== pcc_ss_data
->pcc_write_cnt
)
333 desc
->write_cmd_status
= ret
;
336 pcc_ss_data
->pcc_write_cnt
++;
337 wake_up_all(&pcc_ss_data
->pcc_write_wait_q
);
343 static void cppc_chan_tx_done(struct mbox_client
*cl
, void *msg
, int ret
)
346 pr_debug("TX did not complete: CMD sent:%x, ret:%d\n",
349 pr_debug("TX completed. CMD sent:%x, ret:%d\n",
353 struct mbox_client cppc_mbox_cl
= {
354 .tx_done
= cppc_chan_tx_done
,
355 .knows_txdone
= true,
358 static int acpi_get_psd(struct cpc_desc
*cpc_ptr
, acpi_handle handle
)
360 int result
= -EFAULT
;
361 acpi_status status
= AE_OK
;
362 struct acpi_buffer buffer
= {ACPI_ALLOCATE_BUFFER
, NULL
};
363 struct acpi_buffer format
= {sizeof("NNNNN"), "NNNNN"};
364 struct acpi_buffer state
= {0, NULL
};
365 union acpi_object
*psd
= NULL
;
366 struct acpi_psd_package
*pdomain
;
368 status
= acpi_evaluate_object_typed(handle
, "_PSD", NULL
,
369 &buffer
, ACPI_TYPE_PACKAGE
);
370 if (status
== AE_NOT_FOUND
) /* _PSD is optional */
372 if (ACPI_FAILURE(status
))
375 psd
= buffer
.pointer
;
376 if (!psd
|| psd
->package
.count
!= 1) {
377 pr_debug("Invalid _PSD data\n");
381 pdomain
= &(cpc_ptr
->domain_info
);
383 state
.length
= sizeof(struct acpi_psd_package
);
384 state
.pointer
= pdomain
;
386 status
= acpi_extract_package(&(psd
->package
.elements
[0]),
388 if (ACPI_FAILURE(status
)) {
389 pr_debug("Invalid _PSD data for CPU:%d\n", cpc_ptr
->cpu_id
);
393 if (pdomain
->num_entries
!= ACPI_PSD_REV0_ENTRIES
) {
394 pr_debug("Unknown _PSD:num_entries for CPU:%d\n", cpc_ptr
->cpu_id
);
398 if (pdomain
->revision
!= ACPI_PSD_REV0_REVISION
) {
399 pr_debug("Unknown _PSD:revision for CPU: %d\n", cpc_ptr
->cpu_id
);
403 if (pdomain
->coord_type
!= DOMAIN_COORD_TYPE_SW_ALL
&&
404 pdomain
->coord_type
!= DOMAIN_COORD_TYPE_SW_ANY
&&
405 pdomain
->coord_type
!= DOMAIN_COORD_TYPE_HW_ALL
) {
406 pr_debug("Invalid _PSD:coord_type for CPU:%d\n", cpc_ptr
->cpu_id
);
412 kfree(buffer
.pointer
);
417 * acpi_get_psd_map - Map the CPUs in a common freq domain.
418 * @all_cpu_data: Ptrs to CPU specific CPPC data including PSD info.
420 * Return: 0 for success or negative value for err.
422 int acpi_get_psd_map(struct cppc_cpudata
**all_cpu_data
)
427 cpumask_var_t covered_cpus
;
428 struct cppc_cpudata
*pr
, *match_pr
;
429 struct acpi_psd_package
*pdomain
;
430 struct acpi_psd_package
*match_pdomain
;
431 struct cpc_desc
*cpc_ptr
, *match_cpc_ptr
;
433 if (!zalloc_cpumask_var(&covered_cpus
, GFP_KERNEL
))
437 * Now that we have _PSD data from all CPUs, let's setup P-state
440 for_each_possible_cpu(i
) {
441 pr
= all_cpu_data
[i
];
445 if (cpumask_test_cpu(i
, covered_cpus
))
448 cpc_ptr
= per_cpu(cpc_desc_ptr
, i
);
454 pdomain
= &(cpc_ptr
->domain_info
);
455 cpumask_set_cpu(i
, pr
->shared_cpu_map
);
456 cpumask_set_cpu(i
, covered_cpus
);
457 if (pdomain
->num_processors
<= 1)
460 /* Validate the Domain info */
461 count_target
= pdomain
->num_processors
;
462 if (pdomain
->coord_type
== DOMAIN_COORD_TYPE_SW_ALL
)
463 pr
->shared_type
= CPUFREQ_SHARED_TYPE_ALL
;
464 else if (pdomain
->coord_type
== DOMAIN_COORD_TYPE_HW_ALL
)
465 pr
->shared_type
= CPUFREQ_SHARED_TYPE_HW
;
466 else if (pdomain
->coord_type
== DOMAIN_COORD_TYPE_SW_ANY
)
467 pr
->shared_type
= CPUFREQ_SHARED_TYPE_ANY
;
469 for_each_possible_cpu(j
) {
473 match_cpc_ptr
= per_cpu(cpc_desc_ptr
, j
);
474 if (!match_cpc_ptr
) {
479 match_pdomain
= &(match_cpc_ptr
->domain_info
);
480 if (match_pdomain
->domain
!= pdomain
->domain
)
483 /* Here i and j are in the same domain */
484 if (match_pdomain
->num_processors
!= count_target
) {
489 if (pdomain
->coord_type
!= match_pdomain
->coord_type
) {
494 cpumask_set_cpu(j
, covered_cpus
);
495 cpumask_set_cpu(j
, pr
->shared_cpu_map
);
498 for_each_possible_cpu(j
) {
502 match_pr
= all_cpu_data
[j
];
506 match_cpc_ptr
= per_cpu(cpc_desc_ptr
, j
);
507 if (!match_cpc_ptr
) {
512 match_pdomain
= &(match_cpc_ptr
->domain_info
);
513 if (match_pdomain
->domain
!= pdomain
->domain
)
516 match_pr
->shared_type
= pr
->shared_type
;
517 cpumask_copy(match_pr
->shared_cpu_map
,
523 for_each_possible_cpu(i
) {
524 pr
= all_cpu_data
[i
];
528 /* Assume no coordination on any error parsing domain info */
530 cpumask_clear(pr
->shared_cpu_map
);
531 cpumask_set_cpu(i
, pr
->shared_cpu_map
);
532 pr
->shared_type
= CPUFREQ_SHARED_TYPE_ALL
;
536 free_cpumask_var(covered_cpus
);
539 EXPORT_SYMBOL_GPL(acpi_get_psd_map
);
541 static int register_pcc_channel(int pcc_ss_idx
)
543 struct acpi_pcct_hw_reduced
*cppc_ss
;
546 if (pcc_ss_idx
>= 0) {
547 pcc_data
[pcc_ss_idx
]->pcc_channel
=
548 pcc_mbox_request_channel(&cppc_mbox_cl
, pcc_ss_idx
);
550 if (IS_ERR(pcc_data
[pcc_ss_idx
]->pcc_channel
)) {
551 pr_err("Failed to find PCC channel for subspace %d\n",
557 * The PCC mailbox controller driver should
558 * have parsed the PCCT (global table of all
559 * PCC channels) and stored pointers to the
560 * subspace communication region in con_priv.
562 cppc_ss
= (pcc_data
[pcc_ss_idx
]->pcc_channel
)->con_priv
;
565 pr_err("No PCC subspace found for %d CPPC\n",
571 * cppc_ss->latency is just a Nominal value. In reality
572 * the remote processor could be much slower to reply.
573 * So add an arbitrary amount of wait on top of Nominal.
575 usecs_lat
= NUM_RETRIES
* cppc_ss
->latency
;
576 pcc_data
[pcc_ss_idx
]->deadline_us
= usecs_lat
;
577 pcc_data
[pcc_ss_idx
]->pcc_mrtt
= cppc_ss
->min_turnaround_time
;
578 pcc_data
[pcc_ss_idx
]->pcc_mpar
= cppc_ss
->max_access_rate
;
579 pcc_data
[pcc_ss_idx
]->pcc_nominal
= cppc_ss
->latency
;
581 pcc_data
[pcc_ss_idx
]->pcc_comm_addr
=
582 acpi_os_ioremap(cppc_ss
->base_address
, cppc_ss
->length
);
583 if (!pcc_data
[pcc_ss_idx
]->pcc_comm_addr
) {
584 pr_err("Failed to ioremap PCC comm region mem for %d\n",
589 /* Set flag so that we don't come here for each CPU. */
590 pcc_data
[pcc_ss_idx
]->pcc_channel_acquired
= true;
597 * cpc_ffh_supported() - check if FFH reading supported
599 * Check if the architecture has support for functional fixed hardware
600 * read/write capability.
602 * Return: true for supported, false for not supported
604 bool __weak
cpc_ffh_supported(void)
610 * pcc_data_alloc() - Allocate the pcc_data memory for pcc subspace
612 * Check and allocate the cppc_pcc_data memory.
613 * In some processor configurations it is possible that same subspace
614 * is shared between multiple CPUs. This is seen especially in CPUs
615 * with hardware multi-threading support.
617 * Return: 0 for success, errno for failure
619 int pcc_data_alloc(int pcc_ss_id
)
621 if (pcc_ss_id
< 0 || pcc_ss_id
>= MAX_PCC_SUBSPACES
)
624 if (pcc_data
[pcc_ss_id
]) {
625 pcc_data
[pcc_ss_id
]->refcount
++;
627 pcc_data
[pcc_ss_id
] = kzalloc(sizeof(struct cppc_pcc_data
),
629 if (!pcc_data
[pcc_ss_id
])
631 pcc_data
[pcc_ss_id
]->refcount
++;
637 /* Check if CPPC revision + num_ent combination is supported */
638 static bool is_cppc_supported(int revision
, int num_ent
)
640 int expected_num_ent
;
644 expected_num_ent
= CPPC_V2_NUM_ENT
;
647 expected_num_ent
= CPPC_V3_NUM_ENT
;
650 pr_debug("Firmware exports unsupported CPPC revision: %d\n",
655 if (expected_num_ent
!= num_ent
) {
656 pr_debug("Firmware exports %d entries. Expected: %d for CPPC rev:%d\n",
657 num_ent
, expected_num_ent
, revision
);
665 * An example CPC table looks like the following.
667 * Name(_CPC, Package()
673 * ResourceTemplate(){Register(PCC, 32, 0, 0x120, 2)},
674 * // Highest Performance
675 * ResourceTemplate(){Register(PCC, 32, 0, 0x124, 2)},
676 * // Nominal Performance
677 * ResourceTemplate(){Register(PCC, 32, 0, 0x128, 2)},
678 * // Lowest Nonlinear Performance
679 * ResourceTemplate(){Register(PCC, 32, 0, 0x12C, 2)},
680 * // Lowest Performance
681 * ResourceTemplate(){Register(PCC, 32, 0, 0x130, 2)},
682 * // Guaranteed Performance Register
683 * ResourceTemplate(){Register(PCC, 32, 0, 0x110, 2)},
684 * // Desired Performance Register
685 * ResourceTemplate(){Register(SystemMemory, 0, 0, 0, 0)},
691 * Each Register() encodes how to access that specific register.
692 * e.g. a sample PCC entry has the following encoding:
696 * AddressSpaceKeyword
700 * //RegisterBitOffset
704 * //AccessSize (subspace ID)
711 * acpi_cppc_processor_probe - Search for per CPU _CPC objects.
712 * @pr: Ptr to acpi_processor containing this CPU's logical ID.
714 * Return: 0 for success or negative value for err.
716 int acpi_cppc_processor_probe(struct acpi_processor
*pr
)
718 struct acpi_buffer output
= {ACPI_ALLOCATE_BUFFER
, NULL
};
719 union acpi_object
*out_obj
, *cpc_obj
;
720 struct cpc_desc
*cpc_ptr
;
721 struct cpc_reg
*gas_t
;
722 struct device
*cpu_dev
;
723 acpi_handle handle
= pr
->handle
;
724 unsigned int num_ent
, i
, cpc_rev
;
725 int pcc_subspace_id
= -1;
729 /* Parse the ACPI _CPC table for this CPU. */
730 status
= acpi_evaluate_object_typed(handle
, "_CPC", NULL
, &output
,
732 if (ACPI_FAILURE(status
)) {
737 out_obj
= (union acpi_object
*) output
.pointer
;
739 cpc_ptr
= kzalloc(sizeof(struct cpc_desc
), GFP_KERNEL
);
745 /* First entry is NumEntries. */
746 cpc_obj
= &out_obj
->package
.elements
[0];
747 if (cpc_obj
->type
== ACPI_TYPE_INTEGER
) {
748 num_ent
= cpc_obj
->integer
.value
;
750 pr_debug("Unexpected entry type(%d) for NumEntries\n",
754 cpc_ptr
->num_entries
= num_ent
;
756 /* Second entry should be revision. */
757 cpc_obj
= &out_obj
->package
.elements
[1];
758 if (cpc_obj
->type
== ACPI_TYPE_INTEGER
) {
759 cpc_rev
= cpc_obj
->integer
.value
;
761 pr_debug("Unexpected entry type(%d) for Revision\n",
765 cpc_ptr
->version
= cpc_rev
;
767 if (!is_cppc_supported(cpc_rev
, num_ent
))
770 /* Iterate through remaining entries in _CPC */
771 for (i
= 2; i
< num_ent
; i
++) {
772 cpc_obj
= &out_obj
->package
.elements
[i
];
774 if (cpc_obj
->type
== ACPI_TYPE_INTEGER
) {
775 cpc_ptr
->cpc_regs
[i
-2].type
= ACPI_TYPE_INTEGER
;
776 cpc_ptr
->cpc_regs
[i
-2].cpc_entry
.int_value
= cpc_obj
->integer
.value
;
777 } else if (cpc_obj
->type
== ACPI_TYPE_BUFFER
) {
778 gas_t
= (struct cpc_reg
*)
779 cpc_obj
->buffer
.pointer
;
782 * The PCC Subspace index is encoded inside
783 * the CPC table entries. The same PCC index
784 * will be used for all the PCC entries,
785 * so extract it only once.
787 if (gas_t
->space_id
== ACPI_ADR_SPACE_PLATFORM_COMM
) {
788 if (pcc_subspace_id
< 0) {
789 pcc_subspace_id
= gas_t
->access_width
;
790 if (pcc_data_alloc(pcc_subspace_id
))
792 } else if (pcc_subspace_id
!= gas_t
->access_width
) {
793 pr_debug("Mismatched PCC ids.\n");
796 } else if (gas_t
->space_id
== ACPI_ADR_SPACE_SYSTEM_MEMORY
) {
797 if (gas_t
->address
) {
800 addr
= ioremap(gas_t
->address
, gas_t
->bit_width
/8);
803 cpc_ptr
->cpc_regs
[i
-2].sys_mem_vaddr
= addr
;
806 if (gas_t
->space_id
!= ACPI_ADR_SPACE_FIXED_HARDWARE
|| !cpc_ffh_supported()) {
807 /* Support only PCC ,SYS MEM and FFH type regs */
808 pr_debug("Unsupported register type: %d\n", gas_t
->space_id
);
813 cpc_ptr
->cpc_regs
[i
-2].type
= ACPI_TYPE_BUFFER
;
814 memcpy(&cpc_ptr
->cpc_regs
[i
-2].cpc_entry
.reg
, gas_t
, sizeof(*gas_t
));
816 pr_debug("Err in entry:%d in CPC table of CPU:%d \n", i
, pr
->id
);
820 per_cpu(cpu_pcc_subspace_idx
, pr
->id
) = pcc_subspace_id
;
823 * Initialize the remaining cpc_regs as unsupported.
824 * Example: In case FW exposes CPPC v2, the below loop will initialize
825 * LOWEST_FREQ and NOMINAL_FREQ regs as unsupported
827 for (i
= num_ent
- 2; i
< MAX_CPC_REG_ENT
; i
++) {
828 cpc_ptr
->cpc_regs
[i
].type
= ACPI_TYPE_INTEGER
;
829 cpc_ptr
->cpc_regs
[i
].cpc_entry
.int_value
= 0;
833 /* Store CPU Logical ID */
834 cpc_ptr
->cpu_id
= pr
->id
;
836 /* Parse PSD data for this CPU */
837 ret
= acpi_get_psd(cpc_ptr
, handle
);
841 /* Register PCC channel once for all PCC subspace ID. */
842 if (pcc_subspace_id
>= 0 && !pcc_data
[pcc_subspace_id
]->pcc_channel_acquired
) {
843 ret
= register_pcc_channel(pcc_subspace_id
);
847 init_rwsem(&pcc_data
[pcc_subspace_id
]->pcc_lock
);
848 init_waitqueue_head(&pcc_data
[pcc_subspace_id
]->pcc_write_wait_q
);
851 /* Everything looks okay */
852 pr_debug("Parsed CPC struct for CPU: %d\n", pr
->id
);
854 /* Add per logical CPU nodes for reading its feedback counters. */
855 cpu_dev
= get_cpu_device(pr
->id
);
861 /* Plug PSD data into this CPU's CPC descriptor. */
862 per_cpu(cpc_desc_ptr
, pr
->id
) = cpc_ptr
;
864 ret
= kobject_init_and_add(&cpc_ptr
->kobj
, &cppc_ktype
, &cpu_dev
->kobj
,
867 per_cpu(cpc_desc_ptr
, pr
->id
) = NULL
;
871 kfree(output
.pointer
);
875 /* Free all the mapped sys mem areas for this CPU */
876 for (i
= 2; i
< cpc_ptr
->num_entries
; i
++) {
877 void __iomem
*addr
= cpc_ptr
->cpc_regs
[i
-2].sys_mem_vaddr
;
885 kfree(output
.pointer
);
888 EXPORT_SYMBOL_GPL(acpi_cppc_processor_probe
);
891 * acpi_cppc_processor_exit - Cleanup CPC structs.
892 * @pr: Ptr to acpi_processor containing this CPU's logical ID.
896 void acpi_cppc_processor_exit(struct acpi_processor
*pr
)
898 struct cpc_desc
*cpc_ptr
;
901 int pcc_ss_id
= per_cpu(cpu_pcc_subspace_idx
, pr
->id
);
903 if (pcc_ss_id
>=0 && pcc_data
[pcc_ss_id
]) {
904 if (pcc_data
[pcc_ss_id
]->pcc_channel_acquired
) {
905 pcc_data
[pcc_ss_id
]->refcount
--;
906 if (!pcc_data
[pcc_ss_id
]->refcount
) {
907 pcc_mbox_free_channel(pcc_data
[pcc_ss_id
]->pcc_channel
);
908 kfree(pcc_data
[pcc_ss_id
]);
909 pcc_data
[pcc_ss_id
] = NULL
;
914 cpc_ptr
= per_cpu(cpc_desc_ptr
, pr
->id
);
918 /* Free all the mapped sys mem areas for this CPU */
919 for (i
= 2; i
< cpc_ptr
->num_entries
; i
++) {
920 addr
= cpc_ptr
->cpc_regs
[i
-2].sys_mem_vaddr
;
925 kobject_put(&cpc_ptr
->kobj
);
928 EXPORT_SYMBOL_GPL(acpi_cppc_processor_exit
);
931 * cpc_read_ffh() - Read FFH register
932 * @cpunum: CPU number to read
933 * @reg: cppc register information
934 * @val: place holder for return value
936 * Read bit_width bits from a specified address and bit_offset
938 * Return: 0 for success and error code
940 int __weak
cpc_read_ffh(int cpunum
, struct cpc_reg
*reg
, u64
*val
)
946 * cpc_write_ffh() - Write FFH register
947 * @cpunum: CPU number to write
948 * @reg: cppc register information
949 * @val: value to write
951 * Write value of bit_width bits to a specified address and bit_offset
953 * Return: 0 for success and error code
955 int __weak
cpc_write_ffh(int cpunum
, struct cpc_reg
*reg
, u64 val
)
961 * Since cpc_read and cpc_write are called while holding pcc_lock, it should be
962 * as fast as possible. We have already mapped the PCC subspace during init, so
963 * we can directly write to it.
966 static int cpc_read(int cpu
, struct cpc_register_resource
*reg_res
, u64
*val
)
969 void __iomem
*vaddr
= 0;
970 int pcc_ss_id
= per_cpu(cpu_pcc_subspace_idx
, cpu
);
971 struct cpc_reg
*reg
= ®_res
->cpc_entry
.reg
;
973 if (reg_res
->type
== ACPI_TYPE_INTEGER
) {
974 *val
= reg_res
->cpc_entry
.int_value
;
979 if (reg
->space_id
== ACPI_ADR_SPACE_PLATFORM_COMM
&& pcc_ss_id
>= 0)
980 vaddr
= GET_PCC_VADDR(reg
->address
, pcc_ss_id
);
981 else if (reg
->space_id
== ACPI_ADR_SPACE_SYSTEM_MEMORY
)
982 vaddr
= reg_res
->sys_mem_vaddr
;
983 else if (reg
->space_id
== ACPI_ADR_SPACE_FIXED_HARDWARE
)
984 return cpc_read_ffh(cpu
, reg
, val
);
986 return acpi_os_read_memory((acpi_physical_address
)reg
->address
,
987 val
, reg
->bit_width
);
989 switch (reg
->bit_width
) {
991 *val
= readb_relaxed(vaddr
);
994 *val
= readw_relaxed(vaddr
);
997 *val
= readl_relaxed(vaddr
);
1000 *val
= readq_relaxed(vaddr
);
1003 pr_debug("Error: Cannot read %u bit width from PCC for ss: %d\n",
1004 reg
->bit_width
, pcc_ss_id
);
1011 static int cpc_write(int cpu
, struct cpc_register_resource
*reg_res
, u64 val
)
1014 void __iomem
*vaddr
= 0;
1015 int pcc_ss_id
= per_cpu(cpu_pcc_subspace_idx
, cpu
);
1016 struct cpc_reg
*reg
= ®_res
->cpc_entry
.reg
;
1018 if (reg
->space_id
== ACPI_ADR_SPACE_PLATFORM_COMM
&& pcc_ss_id
>= 0)
1019 vaddr
= GET_PCC_VADDR(reg
->address
, pcc_ss_id
);
1020 else if (reg
->space_id
== ACPI_ADR_SPACE_SYSTEM_MEMORY
)
1021 vaddr
= reg_res
->sys_mem_vaddr
;
1022 else if (reg
->space_id
== ACPI_ADR_SPACE_FIXED_HARDWARE
)
1023 return cpc_write_ffh(cpu
, reg
, val
);
1025 return acpi_os_write_memory((acpi_physical_address
)reg
->address
,
1026 val
, reg
->bit_width
);
1028 switch (reg
->bit_width
) {
1030 writeb_relaxed(val
, vaddr
);
1033 writew_relaxed(val
, vaddr
);
1036 writel_relaxed(val
, vaddr
);
1039 writeq_relaxed(val
, vaddr
);
1042 pr_debug("Error: Cannot write %u bit width to PCC for ss: %d\n",
1043 reg
->bit_width
, pcc_ss_id
);
1052 * cppc_get_desired_perf - Get the value of desired performance register.
1053 * @cpunum: CPU from which to get desired performance.
1054 * @desired_perf: address of a variable to store the returned desired performance
1056 * Return: 0 for success, -EIO otherwise.
1058 int cppc_get_desired_perf(int cpunum
, u64
*desired_perf
)
1060 struct cpc_desc
*cpc_desc
= per_cpu(cpc_desc_ptr
, cpunum
);
1061 int pcc_ss_id
= per_cpu(cpu_pcc_subspace_idx
, cpunum
);
1062 struct cpc_register_resource
*desired_reg
;
1063 struct cppc_pcc_data
*pcc_ss_data
= NULL
;
1065 desired_reg
= &cpc_desc
->cpc_regs
[DESIRED_PERF
];
1067 if (CPC_IN_PCC(desired_reg
)) {
1073 pcc_ss_data
= pcc_data
[pcc_ss_id
];
1075 down_write(&pcc_ss_data
->pcc_lock
);
1077 if (send_pcc_cmd(pcc_ss_id
, CMD_READ
) >= 0)
1078 cpc_read(cpunum
, desired_reg
, desired_perf
);
1082 up_write(&pcc_ss_data
->pcc_lock
);
1087 cpc_read(cpunum
, desired_reg
, desired_perf
);
1091 EXPORT_SYMBOL_GPL(cppc_get_desired_perf
);
1094 * cppc_get_perf_caps - Get a CPU's performance capabilities.
1095 * @cpunum: CPU from which to get capabilities info.
1096 * @perf_caps: ptr to cppc_perf_caps. See cppc_acpi.h
1098 * Return: 0 for success with perf_caps populated else -ERRNO.
1100 int cppc_get_perf_caps(int cpunum
, struct cppc_perf_caps
*perf_caps
)
1102 struct cpc_desc
*cpc_desc
= per_cpu(cpc_desc_ptr
, cpunum
);
1103 struct cpc_register_resource
*highest_reg
, *lowest_reg
,
1104 *lowest_non_linear_reg
, *nominal_reg
, *guaranteed_reg
,
1105 *low_freq_reg
= NULL
, *nom_freq_reg
= NULL
;
1106 u64 high
, low
, guaranteed
, nom
, min_nonlinear
, low_f
= 0, nom_f
= 0;
1107 int pcc_ss_id
= per_cpu(cpu_pcc_subspace_idx
, cpunum
);
1108 struct cppc_pcc_data
*pcc_ss_data
= NULL
;
1109 int ret
= 0, regs_in_pcc
= 0;
1112 pr_debug("No CPC descriptor for CPU:%d\n", cpunum
);
1116 highest_reg
= &cpc_desc
->cpc_regs
[HIGHEST_PERF
];
1117 lowest_reg
= &cpc_desc
->cpc_regs
[LOWEST_PERF
];
1118 lowest_non_linear_reg
= &cpc_desc
->cpc_regs
[LOW_NON_LINEAR_PERF
];
1119 nominal_reg
= &cpc_desc
->cpc_regs
[NOMINAL_PERF
];
1120 low_freq_reg
= &cpc_desc
->cpc_regs
[LOWEST_FREQ
];
1121 nom_freq_reg
= &cpc_desc
->cpc_regs
[NOMINAL_FREQ
];
1122 guaranteed_reg
= &cpc_desc
->cpc_regs
[GUARANTEED_PERF
];
1124 /* Are any of the regs PCC ?*/
1125 if (CPC_IN_PCC(highest_reg
) || CPC_IN_PCC(lowest_reg
) ||
1126 CPC_IN_PCC(lowest_non_linear_reg
) || CPC_IN_PCC(nominal_reg
) ||
1127 CPC_IN_PCC(low_freq_reg
) || CPC_IN_PCC(nom_freq_reg
)) {
1128 if (pcc_ss_id
< 0) {
1129 pr_debug("Invalid pcc_ss_id\n");
1132 pcc_ss_data
= pcc_data
[pcc_ss_id
];
1134 down_write(&pcc_ss_data
->pcc_lock
);
1135 /* Ring doorbell once to update PCC subspace */
1136 if (send_pcc_cmd(pcc_ss_id
, CMD_READ
) < 0) {
1142 cpc_read(cpunum
, highest_reg
, &high
);
1143 perf_caps
->highest_perf
= high
;
1145 cpc_read(cpunum
, lowest_reg
, &low
);
1146 perf_caps
->lowest_perf
= low
;
1148 cpc_read(cpunum
, nominal_reg
, &nom
);
1149 perf_caps
->nominal_perf
= nom
;
1151 if (guaranteed_reg
->type
!= ACPI_TYPE_BUFFER
||
1152 IS_NULL_REG(&guaranteed_reg
->cpc_entry
.reg
)) {
1153 perf_caps
->guaranteed_perf
= 0;
1155 cpc_read(cpunum
, guaranteed_reg
, &guaranteed
);
1156 perf_caps
->guaranteed_perf
= guaranteed
;
1159 cpc_read(cpunum
, lowest_non_linear_reg
, &min_nonlinear
);
1160 perf_caps
->lowest_nonlinear_perf
= min_nonlinear
;
1162 if (!high
|| !low
|| !nom
|| !min_nonlinear
)
1165 /* Read optional lowest and nominal frequencies if present */
1166 if (CPC_SUPPORTED(low_freq_reg
))
1167 cpc_read(cpunum
, low_freq_reg
, &low_f
);
1169 if (CPC_SUPPORTED(nom_freq_reg
))
1170 cpc_read(cpunum
, nom_freq_reg
, &nom_f
);
1172 perf_caps
->lowest_freq
= low_f
;
1173 perf_caps
->nominal_freq
= nom_f
;
1178 up_write(&pcc_ss_data
->pcc_lock
);
1181 EXPORT_SYMBOL_GPL(cppc_get_perf_caps
);
1184 * cppc_get_perf_ctrs - Read a CPU's performance feedback counters.
1185 * @cpunum: CPU from which to read counters.
1186 * @perf_fb_ctrs: ptr to cppc_perf_fb_ctrs. See cppc_acpi.h
1188 * Return: 0 for success with perf_fb_ctrs populated else -ERRNO.
1190 int cppc_get_perf_ctrs(int cpunum
, struct cppc_perf_fb_ctrs
*perf_fb_ctrs
)
1192 struct cpc_desc
*cpc_desc
= per_cpu(cpc_desc_ptr
, cpunum
);
1193 struct cpc_register_resource
*delivered_reg
, *reference_reg
,
1194 *ref_perf_reg
, *ctr_wrap_reg
;
1195 int pcc_ss_id
= per_cpu(cpu_pcc_subspace_idx
, cpunum
);
1196 struct cppc_pcc_data
*pcc_ss_data
= NULL
;
1197 u64 delivered
, reference
, ref_perf
, ctr_wrap_time
;
1198 int ret
= 0, regs_in_pcc
= 0;
1201 pr_debug("No CPC descriptor for CPU:%d\n", cpunum
);
1205 delivered_reg
= &cpc_desc
->cpc_regs
[DELIVERED_CTR
];
1206 reference_reg
= &cpc_desc
->cpc_regs
[REFERENCE_CTR
];
1207 ref_perf_reg
= &cpc_desc
->cpc_regs
[REFERENCE_PERF
];
1208 ctr_wrap_reg
= &cpc_desc
->cpc_regs
[CTR_WRAP_TIME
];
1211 * If reference perf register is not supported then we should
1212 * use the nominal perf value
1214 if (!CPC_SUPPORTED(ref_perf_reg
))
1215 ref_perf_reg
= &cpc_desc
->cpc_regs
[NOMINAL_PERF
];
1217 /* Are any of the regs PCC ?*/
1218 if (CPC_IN_PCC(delivered_reg
) || CPC_IN_PCC(reference_reg
) ||
1219 CPC_IN_PCC(ctr_wrap_reg
) || CPC_IN_PCC(ref_perf_reg
)) {
1220 if (pcc_ss_id
< 0) {
1221 pr_debug("Invalid pcc_ss_id\n");
1224 pcc_ss_data
= pcc_data
[pcc_ss_id
];
1225 down_write(&pcc_ss_data
->pcc_lock
);
1227 /* Ring doorbell once to update PCC subspace */
1228 if (send_pcc_cmd(pcc_ss_id
, CMD_READ
) < 0) {
1234 cpc_read(cpunum
, delivered_reg
, &delivered
);
1235 cpc_read(cpunum
, reference_reg
, &reference
);
1236 cpc_read(cpunum
, ref_perf_reg
, &ref_perf
);
1239 * Per spec, if ctr_wrap_time optional register is unsupported, then the
1240 * performance counters are assumed to never wrap during the lifetime of
1243 ctr_wrap_time
= (u64
)(~((u64
)0));
1244 if (CPC_SUPPORTED(ctr_wrap_reg
))
1245 cpc_read(cpunum
, ctr_wrap_reg
, &ctr_wrap_time
);
1247 if (!delivered
|| !reference
|| !ref_perf
) {
1252 perf_fb_ctrs
->delivered
= delivered
;
1253 perf_fb_ctrs
->reference
= reference
;
1254 perf_fb_ctrs
->reference_perf
= ref_perf
;
1255 perf_fb_ctrs
->wraparound_time
= ctr_wrap_time
;
1258 up_write(&pcc_ss_data
->pcc_lock
);
1261 EXPORT_SYMBOL_GPL(cppc_get_perf_ctrs
);
1264 * cppc_set_perf - Set a CPU's performance controls.
1265 * @cpu: CPU for which to set performance controls.
1266 * @perf_ctrls: ptr to cppc_perf_ctrls. See cppc_acpi.h
1268 * Return: 0 for success, -ERRNO otherwise.
1270 int cppc_set_perf(int cpu
, struct cppc_perf_ctrls
*perf_ctrls
)
1272 struct cpc_desc
*cpc_desc
= per_cpu(cpc_desc_ptr
, cpu
);
1273 struct cpc_register_resource
*desired_reg
;
1274 int pcc_ss_id
= per_cpu(cpu_pcc_subspace_idx
, cpu
);
1275 struct cppc_pcc_data
*pcc_ss_data
= NULL
;
1279 pr_debug("No CPC descriptor for CPU:%d\n", cpu
);
1283 desired_reg
= &cpc_desc
->cpc_regs
[DESIRED_PERF
];
1286 * This is Phase-I where we want to write to CPC registers
1287 * -> We want all CPUs to be able to execute this phase in parallel
1289 * Since read_lock can be acquired by multiple CPUs simultaneously we
1290 * achieve that goal here
1292 if (CPC_IN_PCC(desired_reg
)) {
1293 if (pcc_ss_id
< 0) {
1294 pr_debug("Invalid pcc_ss_id\n");
1297 pcc_ss_data
= pcc_data
[pcc_ss_id
];
1298 down_read(&pcc_ss_data
->pcc_lock
); /* BEGIN Phase-I */
1299 if (pcc_ss_data
->platform_owns_pcc
) {
1300 ret
= check_pcc_chan(pcc_ss_id
, false);
1302 up_read(&pcc_ss_data
->pcc_lock
);
1307 * Update the pending_write to make sure a PCC CMD_READ will not
1308 * arrive and steal the channel during the switch to write lock
1310 pcc_ss_data
->pending_pcc_write_cmd
= true;
1311 cpc_desc
->write_cmd_id
= pcc_ss_data
->pcc_write_cnt
;
1312 cpc_desc
->write_cmd_status
= 0;
1316 * Skip writing MIN/MAX until Linux knows how to come up with
1319 cpc_write(cpu
, desired_reg
, perf_ctrls
->desired_perf
);
1321 if (CPC_IN_PCC(desired_reg
))
1322 up_read(&pcc_ss_data
->pcc_lock
); /* END Phase-I */
1324 * This is Phase-II where we transfer the ownership of PCC to Platform
1326 * Short Summary: Basically if we think of a group of cppc_set_perf
1327 * requests that happened in short overlapping interval. The last CPU to
1328 * come out of Phase-I will enter Phase-II and ring the doorbell.
1330 * We have the following requirements for Phase-II:
1331 * 1. We want to execute Phase-II only when there are no CPUs
1332 * currently executing in Phase-I
1333 * 2. Once we start Phase-II we want to avoid all other CPUs from
1335 * 3. We want only one CPU among all those who went through Phase-I
1338 * If write_trylock fails to get the lock and doesn't transfer the
1339 * PCC ownership to the platform, then one of the following will be TRUE
1340 * 1. There is at-least one CPU in Phase-I which will later execute
1341 * write_trylock, so the CPUs in Phase-I will be responsible for
1342 * executing the Phase-II.
1343 * 2. Some other CPU has beaten this CPU to successfully execute the
1344 * write_trylock and has already acquired the write_lock. We know for a
1345 * fact it (other CPU acquiring the write_lock) couldn't have happened
1346 * before this CPU's Phase-I as we held the read_lock.
1347 * 3. Some other CPU executing pcc CMD_READ has stolen the
1348 * down_write, in which case, send_pcc_cmd will check for pending
1349 * CMD_WRITE commands by checking the pending_pcc_write_cmd.
1350 * So this CPU can be certain that its request will be delivered
1351 * So in all cases, this CPU knows that its request will be delivered
1352 * by another CPU and can return
1354 * After getting the down_write we still need to check for
1355 * pending_pcc_write_cmd to take care of the following scenario
1356 * The thread running this code could be scheduled out between
1357 * Phase-I and Phase-II. Before it is scheduled back on, another CPU
1358 * could have delivered the request to Platform by triggering the
1359 * doorbell and transferred the ownership of PCC to platform. So this
1360 * avoids triggering an unnecessary doorbell and more importantly before
1361 * triggering the doorbell it makes sure that the PCC channel ownership
1362 * is still with OSPM.
1363 * pending_pcc_write_cmd can also be cleared by a different CPU, if
1364 * there was a pcc CMD_READ waiting on down_write and it steals the lock
1365 * before the pcc CMD_WRITE is completed. pcc_send_cmd checks for this
1366 * case during a CMD_READ and if there are pending writes it delivers
1367 * the write command before servicing the read command
1369 if (CPC_IN_PCC(desired_reg
)) {
1370 if (down_write_trylock(&pcc_ss_data
->pcc_lock
)) {/* BEGIN Phase-II */
1371 /* Update only if there are pending write commands */
1372 if (pcc_ss_data
->pending_pcc_write_cmd
)
1373 send_pcc_cmd(pcc_ss_id
, CMD_WRITE
);
1374 up_write(&pcc_ss_data
->pcc_lock
); /* END Phase-II */
1376 /* Wait until pcc_write_cnt is updated by send_pcc_cmd */
1377 wait_event(pcc_ss_data
->pcc_write_wait_q
,
1378 cpc_desc
->write_cmd_id
!= pcc_ss_data
->pcc_write_cnt
);
1380 /* send_pcc_cmd updates the status in case of failure */
1381 ret
= cpc_desc
->write_cmd_status
;
1385 EXPORT_SYMBOL_GPL(cppc_set_perf
);
1388 * cppc_get_transition_latency - returns frequency transition latency in ns
1390 * ACPI CPPC does not explicitly specifiy how a platform can specify the
1391 * transition latency for perfromance change requests. The closest we have
1392 * is the timing information from the PCCT tables which provides the info
1393 * on the number and frequency of PCC commands the platform can handle.
1395 unsigned int cppc_get_transition_latency(int cpu_num
)
1398 * Expected transition latency is based on the PCCT timing values
1399 * Below are definition from ACPI spec:
1400 * pcc_nominal- Expected latency to process a command, in microseconds
1401 * pcc_mpar - The maximum number of periodic requests that the subspace
1402 * channel can support, reported in commands per minute. 0
1403 * indicates no limitation.
1404 * pcc_mrtt - The minimum amount of time that OSPM must wait after the
1405 * completion of a command before issuing the next command,
1408 unsigned int latency_ns
= 0;
1409 struct cpc_desc
*cpc_desc
;
1410 struct cpc_register_resource
*desired_reg
;
1411 int pcc_ss_id
= per_cpu(cpu_pcc_subspace_idx
, cpu_num
);
1412 struct cppc_pcc_data
*pcc_ss_data
;
1414 cpc_desc
= per_cpu(cpc_desc_ptr
, cpu_num
);
1416 return CPUFREQ_ETERNAL
;
1418 desired_reg
= &cpc_desc
->cpc_regs
[DESIRED_PERF
];
1419 if (!CPC_IN_PCC(desired_reg
))
1420 return CPUFREQ_ETERNAL
;
1423 return CPUFREQ_ETERNAL
;
1425 pcc_ss_data
= pcc_data
[pcc_ss_id
];
1426 if (pcc_ss_data
->pcc_mpar
)
1427 latency_ns
= 60 * (1000 * 1000 * 1000 / pcc_ss_data
->pcc_mpar
);
1429 latency_ns
= max(latency_ns
, pcc_ss_data
->pcc_nominal
* 1000);
1430 latency_ns
= max(latency_ns
, pcc_ss_data
->pcc_mrtt
* 1000);
1434 EXPORT_SYMBOL_GPL(cppc_get_transition_latency
);