treewide: remove redundant IS_ERR() before error code check
[linux/fpc-iii.git] / drivers / acpi / numa / hmat.c
blob2c32cfb7237012a2f6b3c09ed2a4333155a43c16
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (c) 2019, Intel Corporation.
5 * Heterogeneous Memory Attributes Table (HMAT) representation
7 * This program parses and reports the platform's HMAT tables, and registers
8 * the applicable attributes with the node's interfaces.
9 */
11 #define pr_fmt(fmt) "acpi/hmat: " fmt
12 #define dev_fmt(fmt) "acpi/hmat: " fmt
14 #include <linux/acpi.h>
15 #include <linux/bitops.h>
16 #include <linux/device.h>
17 #include <linux/init.h>
18 #include <linux/list.h>
19 #include <linux/mm.h>
20 #include <linux/platform_device.h>
21 #include <linux/list_sort.h>
22 #include <linux/memregion.h>
23 #include <linux/memory.h>
24 #include <linux/mutex.h>
25 #include <linux/node.h>
26 #include <linux/sysfs.h>
28 static u8 hmat_revision;
30 static LIST_HEAD(targets);
31 static LIST_HEAD(initiators);
32 static LIST_HEAD(localities);
34 static DEFINE_MUTEX(target_lock);
37 * The defined enum order is used to prioritize attributes to break ties when
38 * selecting the best performing node.
40 enum locality_types {
41 WRITE_LATENCY,
42 READ_LATENCY,
43 WRITE_BANDWIDTH,
44 READ_BANDWIDTH,
47 static struct memory_locality *localities_types[4];
49 struct target_cache {
50 struct list_head node;
51 struct node_cache_attrs cache_attrs;
54 struct memory_target {
55 struct list_head node;
56 unsigned int memory_pxm;
57 unsigned int processor_pxm;
58 struct resource memregions;
59 struct node_hmem_attrs hmem_attrs;
60 struct list_head caches;
61 struct node_cache_attrs cache_attrs;
62 bool registered;
65 struct memory_initiator {
66 struct list_head node;
67 unsigned int processor_pxm;
70 struct memory_locality {
71 struct list_head node;
72 struct acpi_hmat_locality *hmat_loc;
75 static struct memory_initiator *find_mem_initiator(unsigned int cpu_pxm)
77 struct memory_initiator *initiator;
79 list_for_each_entry(initiator, &initiators, node)
80 if (initiator->processor_pxm == cpu_pxm)
81 return initiator;
82 return NULL;
85 static struct memory_target *find_mem_target(unsigned int mem_pxm)
87 struct memory_target *target;
89 list_for_each_entry(target, &targets, node)
90 if (target->memory_pxm == mem_pxm)
91 return target;
92 return NULL;
95 static __init void alloc_memory_initiator(unsigned int cpu_pxm)
97 struct memory_initiator *initiator;
99 if (pxm_to_node(cpu_pxm) == NUMA_NO_NODE)
100 return;
102 initiator = find_mem_initiator(cpu_pxm);
103 if (initiator)
104 return;
106 initiator = kzalloc(sizeof(*initiator), GFP_KERNEL);
107 if (!initiator)
108 return;
110 initiator->processor_pxm = cpu_pxm;
111 list_add_tail(&initiator->node, &initiators);
114 static __init void alloc_memory_target(unsigned int mem_pxm,
115 resource_size_t start, resource_size_t len)
117 struct memory_target *target;
119 target = find_mem_target(mem_pxm);
120 if (!target) {
121 target = kzalloc(sizeof(*target), GFP_KERNEL);
122 if (!target)
123 return;
124 target->memory_pxm = mem_pxm;
125 target->processor_pxm = PXM_INVAL;
126 target->memregions = (struct resource) {
127 .name = "ACPI mem",
128 .start = 0,
129 .end = -1,
130 .flags = IORESOURCE_MEM,
132 list_add_tail(&target->node, &targets);
133 INIT_LIST_HEAD(&target->caches);
137 * There are potentially multiple ranges per PXM, so record each
138 * in the per-target memregions resource tree.
140 if (!__request_region(&target->memregions, start, len, "memory target",
141 IORESOURCE_MEM))
142 pr_warn("failed to reserve %#llx - %#llx in pxm: %d\n",
143 start, start + len, mem_pxm);
146 static __init const char *hmat_data_type(u8 type)
148 switch (type) {
149 case ACPI_HMAT_ACCESS_LATENCY:
150 return "Access Latency";
151 case ACPI_HMAT_READ_LATENCY:
152 return "Read Latency";
153 case ACPI_HMAT_WRITE_LATENCY:
154 return "Write Latency";
155 case ACPI_HMAT_ACCESS_BANDWIDTH:
156 return "Access Bandwidth";
157 case ACPI_HMAT_READ_BANDWIDTH:
158 return "Read Bandwidth";
159 case ACPI_HMAT_WRITE_BANDWIDTH:
160 return "Write Bandwidth";
161 default:
162 return "Reserved";
166 static __init const char *hmat_data_type_suffix(u8 type)
168 switch (type) {
169 case ACPI_HMAT_ACCESS_LATENCY:
170 case ACPI_HMAT_READ_LATENCY:
171 case ACPI_HMAT_WRITE_LATENCY:
172 return " nsec";
173 case ACPI_HMAT_ACCESS_BANDWIDTH:
174 case ACPI_HMAT_READ_BANDWIDTH:
175 case ACPI_HMAT_WRITE_BANDWIDTH:
176 return " MB/s";
177 default:
178 return "";
182 static u32 hmat_normalize(u16 entry, u64 base, u8 type)
184 u32 value;
187 * Check for invalid and overflow values
189 if (entry == 0xffff || !entry)
190 return 0;
191 else if (base > (UINT_MAX / (entry)))
192 return 0;
195 * Divide by the base unit for version 1, convert latency from
196 * picosenonds to nanoseconds if revision 2.
198 value = entry * base;
199 if (hmat_revision == 1) {
200 if (value < 10)
201 return 0;
202 value = DIV_ROUND_UP(value, 10);
203 } else if (hmat_revision == 2) {
204 switch (type) {
205 case ACPI_HMAT_ACCESS_LATENCY:
206 case ACPI_HMAT_READ_LATENCY:
207 case ACPI_HMAT_WRITE_LATENCY:
208 value = DIV_ROUND_UP(value, 1000);
209 break;
210 default:
211 break;
214 return value;
217 static void hmat_update_target_access(struct memory_target *target,
218 u8 type, u32 value)
220 switch (type) {
221 case ACPI_HMAT_ACCESS_LATENCY:
222 target->hmem_attrs.read_latency = value;
223 target->hmem_attrs.write_latency = value;
224 break;
225 case ACPI_HMAT_READ_LATENCY:
226 target->hmem_attrs.read_latency = value;
227 break;
228 case ACPI_HMAT_WRITE_LATENCY:
229 target->hmem_attrs.write_latency = value;
230 break;
231 case ACPI_HMAT_ACCESS_BANDWIDTH:
232 target->hmem_attrs.read_bandwidth = value;
233 target->hmem_attrs.write_bandwidth = value;
234 break;
235 case ACPI_HMAT_READ_BANDWIDTH:
236 target->hmem_attrs.read_bandwidth = value;
237 break;
238 case ACPI_HMAT_WRITE_BANDWIDTH:
239 target->hmem_attrs.write_bandwidth = value;
240 break;
241 default:
242 break;
246 static __init void hmat_add_locality(struct acpi_hmat_locality *hmat_loc)
248 struct memory_locality *loc;
250 loc = kzalloc(sizeof(*loc), GFP_KERNEL);
251 if (!loc) {
252 pr_notice_once("Failed to allocate HMAT locality\n");
253 return;
256 loc->hmat_loc = hmat_loc;
257 list_add_tail(&loc->node, &localities);
259 switch (hmat_loc->data_type) {
260 case ACPI_HMAT_ACCESS_LATENCY:
261 localities_types[READ_LATENCY] = loc;
262 localities_types[WRITE_LATENCY] = loc;
263 break;
264 case ACPI_HMAT_READ_LATENCY:
265 localities_types[READ_LATENCY] = loc;
266 break;
267 case ACPI_HMAT_WRITE_LATENCY:
268 localities_types[WRITE_LATENCY] = loc;
269 break;
270 case ACPI_HMAT_ACCESS_BANDWIDTH:
271 localities_types[READ_BANDWIDTH] = loc;
272 localities_types[WRITE_BANDWIDTH] = loc;
273 break;
274 case ACPI_HMAT_READ_BANDWIDTH:
275 localities_types[READ_BANDWIDTH] = loc;
276 break;
277 case ACPI_HMAT_WRITE_BANDWIDTH:
278 localities_types[WRITE_BANDWIDTH] = loc;
279 break;
280 default:
281 break;
285 static __init int hmat_parse_locality(union acpi_subtable_headers *header,
286 const unsigned long end)
288 struct acpi_hmat_locality *hmat_loc = (void *)header;
289 struct memory_target *target;
290 unsigned int init, targ, total_size, ipds, tpds;
291 u32 *inits, *targs, value;
292 u16 *entries;
293 u8 type, mem_hier;
295 if (hmat_loc->header.length < sizeof(*hmat_loc)) {
296 pr_notice("HMAT: Unexpected locality header length: %u\n",
297 hmat_loc->header.length);
298 return -EINVAL;
301 type = hmat_loc->data_type;
302 mem_hier = hmat_loc->flags & ACPI_HMAT_MEMORY_HIERARCHY;
303 ipds = hmat_loc->number_of_initiator_Pds;
304 tpds = hmat_loc->number_of_target_Pds;
305 total_size = sizeof(*hmat_loc) + sizeof(*entries) * ipds * tpds +
306 sizeof(*inits) * ipds + sizeof(*targs) * tpds;
307 if (hmat_loc->header.length < total_size) {
308 pr_notice("HMAT: Unexpected locality header length:%u, minimum required:%u\n",
309 hmat_loc->header.length, total_size);
310 return -EINVAL;
313 pr_info("HMAT: Locality: Flags:%02x Type:%s Initiator Domains:%u Target Domains:%u Base:%lld\n",
314 hmat_loc->flags, hmat_data_type(type), ipds, tpds,
315 hmat_loc->entry_base_unit);
317 inits = (u32 *)(hmat_loc + 1);
318 targs = inits + ipds;
319 entries = (u16 *)(targs + tpds);
320 for (init = 0; init < ipds; init++) {
321 alloc_memory_initiator(inits[init]);
322 for (targ = 0; targ < tpds; targ++) {
323 value = hmat_normalize(entries[init * tpds + targ],
324 hmat_loc->entry_base_unit,
325 type);
326 pr_info(" Initiator-Target[%u-%u]:%u%s\n",
327 inits[init], targs[targ], value,
328 hmat_data_type_suffix(type));
330 if (mem_hier == ACPI_HMAT_MEMORY) {
331 target = find_mem_target(targs[targ]);
332 if (target && target->processor_pxm == inits[init])
333 hmat_update_target_access(target, type, value);
338 if (mem_hier == ACPI_HMAT_MEMORY)
339 hmat_add_locality(hmat_loc);
341 return 0;
344 static __init int hmat_parse_cache(union acpi_subtable_headers *header,
345 const unsigned long end)
347 struct acpi_hmat_cache *cache = (void *)header;
348 struct memory_target *target;
349 struct target_cache *tcache;
350 u32 attrs;
352 if (cache->header.length < sizeof(*cache)) {
353 pr_notice("HMAT: Unexpected cache header length: %u\n",
354 cache->header.length);
355 return -EINVAL;
358 attrs = cache->cache_attributes;
359 pr_info("HMAT: Cache: Domain:%u Size:%llu Attrs:%08x SMBIOS Handles:%d\n",
360 cache->memory_PD, cache->cache_size, attrs,
361 cache->number_of_SMBIOShandles);
363 target = find_mem_target(cache->memory_PD);
364 if (!target)
365 return 0;
367 tcache = kzalloc(sizeof(*tcache), GFP_KERNEL);
368 if (!tcache) {
369 pr_notice_once("Failed to allocate HMAT cache info\n");
370 return 0;
373 tcache->cache_attrs.size = cache->cache_size;
374 tcache->cache_attrs.level = (attrs & ACPI_HMAT_CACHE_LEVEL) >> 4;
375 tcache->cache_attrs.line_size = (attrs & ACPI_HMAT_CACHE_LINE_SIZE) >> 16;
377 switch ((attrs & ACPI_HMAT_CACHE_ASSOCIATIVITY) >> 8) {
378 case ACPI_HMAT_CA_DIRECT_MAPPED:
379 tcache->cache_attrs.indexing = NODE_CACHE_DIRECT_MAP;
380 break;
381 case ACPI_HMAT_CA_COMPLEX_CACHE_INDEXING:
382 tcache->cache_attrs.indexing = NODE_CACHE_INDEXED;
383 break;
384 case ACPI_HMAT_CA_NONE:
385 default:
386 tcache->cache_attrs.indexing = NODE_CACHE_OTHER;
387 break;
390 switch ((attrs & ACPI_HMAT_WRITE_POLICY) >> 12) {
391 case ACPI_HMAT_CP_WB:
392 tcache->cache_attrs.write_policy = NODE_CACHE_WRITE_BACK;
393 break;
394 case ACPI_HMAT_CP_WT:
395 tcache->cache_attrs.write_policy = NODE_CACHE_WRITE_THROUGH;
396 break;
397 case ACPI_HMAT_CP_NONE:
398 default:
399 tcache->cache_attrs.write_policy = NODE_CACHE_WRITE_OTHER;
400 break;
402 list_add_tail(&tcache->node, &target->caches);
404 return 0;
407 static int __init hmat_parse_proximity_domain(union acpi_subtable_headers *header,
408 const unsigned long end)
410 struct acpi_hmat_proximity_domain *p = (void *)header;
411 struct memory_target *target = NULL;
413 if (p->header.length != sizeof(*p)) {
414 pr_notice("HMAT: Unexpected address range header length: %u\n",
415 p->header.length);
416 return -EINVAL;
419 if (hmat_revision == 1)
420 pr_info("HMAT: Memory (%#llx length %#llx) Flags:%04x Processor Domain:%u Memory Domain:%u\n",
421 p->reserved3, p->reserved4, p->flags, p->processor_PD,
422 p->memory_PD);
423 else
424 pr_info("HMAT: Memory Flags:%04x Processor Domain:%u Memory Domain:%u\n",
425 p->flags, p->processor_PD, p->memory_PD);
427 if (p->flags & ACPI_HMAT_MEMORY_PD_VALID && hmat_revision == 1) {
428 target = find_mem_target(p->memory_PD);
429 if (!target) {
430 pr_debug("HMAT: Memory Domain missing from SRAT\n");
431 return -EINVAL;
434 if (target && p->flags & ACPI_HMAT_PROCESSOR_PD_VALID) {
435 int p_node = pxm_to_node(p->processor_PD);
437 if (p_node == NUMA_NO_NODE) {
438 pr_debug("HMAT: Invalid Processor Domain\n");
439 return -EINVAL;
441 target->processor_pxm = p->processor_PD;
444 return 0;
447 static int __init hmat_parse_subtable(union acpi_subtable_headers *header,
448 const unsigned long end)
450 struct acpi_hmat_structure *hdr = (void *)header;
452 if (!hdr)
453 return -EINVAL;
455 switch (hdr->type) {
456 case ACPI_HMAT_TYPE_PROXIMITY:
457 return hmat_parse_proximity_domain(header, end);
458 case ACPI_HMAT_TYPE_LOCALITY:
459 return hmat_parse_locality(header, end);
460 case ACPI_HMAT_TYPE_CACHE:
461 return hmat_parse_cache(header, end);
462 default:
463 return -EINVAL;
467 static __init int srat_parse_mem_affinity(union acpi_subtable_headers *header,
468 const unsigned long end)
470 struct acpi_srat_mem_affinity *ma = (void *)header;
472 if (!ma)
473 return -EINVAL;
474 if (!(ma->flags & ACPI_SRAT_MEM_ENABLED))
475 return 0;
476 alloc_memory_target(ma->proximity_domain, ma->base_address, ma->length);
477 return 0;
480 static u32 hmat_initiator_perf(struct memory_target *target,
481 struct memory_initiator *initiator,
482 struct acpi_hmat_locality *hmat_loc)
484 unsigned int ipds, tpds, i, idx = 0, tdx = 0;
485 u32 *inits, *targs;
486 u16 *entries;
488 ipds = hmat_loc->number_of_initiator_Pds;
489 tpds = hmat_loc->number_of_target_Pds;
490 inits = (u32 *)(hmat_loc + 1);
491 targs = inits + ipds;
492 entries = (u16 *)(targs + tpds);
494 for (i = 0; i < ipds; i++) {
495 if (inits[i] == initiator->processor_pxm) {
496 idx = i;
497 break;
501 if (i == ipds)
502 return 0;
504 for (i = 0; i < tpds; i++) {
505 if (targs[i] == target->memory_pxm) {
506 tdx = i;
507 break;
510 if (i == tpds)
511 return 0;
513 return hmat_normalize(entries[idx * tpds + tdx],
514 hmat_loc->entry_base_unit,
515 hmat_loc->data_type);
518 static bool hmat_update_best(u8 type, u32 value, u32 *best)
520 bool updated = false;
522 if (!value)
523 return false;
525 switch (type) {
526 case ACPI_HMAT_ACCESS_LATENCY:
527 case ACPI_HMAT_READ_LATENCY:
528 case ACPI_HMAT_WRITE_LATENCY:
529 if (!*best || *best > value) {
530 *best = value;
531 updated = true;
533 break;
534 case ACPI_HMAT_ACCESS_BANDWIDTH:
535 case ACPI_HMAT_READ_BANDWIDTH:
536 case ACPI_HMAT_WRITE_BANDWIDTH:
537 if (!*best || *best < value) {
538 *best = value;
539 updated = true;
541 break;
544 return updated;
547 static int initiator_cmp(void *priv, struct list_head *a, struct list_head *b)
549 struct memory_initiator *ia;
550 struct memory_initiator *ib;
551 unsigned long *p_nodes = priv;
553 ia = list_entry(a, struct memory_initiator, node);
554 ib = list_entry(b, struct memory_initiator, node);
556 set_bit(ia->processor_pxm, p_nodes);
557 set_bit(ib->processor_pxm, p_nodes);
559 return ia->processor_pxm - ib->processor_pxm;
562 static void hmat_register_target_initiators(struct memory_target *target)
564 static DECLARE_BITMAP(p_nodes, MAX_NUMNODES);
565 struct memory_initiator *initiator;
566 unsigned int mem_nid, cpu_nid;
567 struct memory_locality *loc = NULL;
568 u32 best = 0;
569 int i;
571 mem_nid = pxm_to_node(target->memory_pxm);
573 * If the Address Range Structure provides a local processor pxm, link
574 * only that one. Otherwise, find the best performance attributes and
575 * register all initiators that match.
577 if (target->processor_pxm != PXM_INVAL) {
578 cpu_nid = pxm_to_node(target->processor_pxm);
579 register_memory_node_under_compute_node(mem_nid, cpu_nid, 0);
580 return;
583 if (list_empty(&localities))
584 return;
587 * We need the initiator list sorted so we can use bitmap_clear for
588 * previously set initiators when we find a better memory accessor.
589 * We'll also use the sorting to prime the candidate nodes with known
590 * initiators.
592 bitmap_zero(p_nodes, MAX_NUMNODES);
593 list_sort(p_nodes, &initiators, initiator_cmp);
594 for (i = WRITE_LATENCY; i <= READ_BANDWIDTH; i++) {
595 loc = localities_types[i];
596 if (!loc)
597 continue;
599 best = 0;
600 list_for_each_entry(initiator, &initiators, node) {
601 u32 value;
603 if (!test_bit(initiator->processor_pxm, p_nodes))
604 continue;
606 value = hmat_initiator_perf(target, initiator, loc->hmat_loc);
607 if (hmat_update_best(loc->hmat_loc->data_type, value, &best))
608 bitmap_clear(p_nodes, 0, initiator->processor_pxm);
609 if (value != best)
610 clear_bit(initiator->processor_pxm, p_nodes);
612 if (best)
613 hmat_update_target_access(target, loc->hmat_loc->data_type, best);
616 for_each_set_bit(i, p_nodes, MAX_NUMNODES) {
617 cpu_nid = pxm_to_node(i);
618 register_memory_node_under_compute_node(mem_nid, cpu_nid, 0);
622 static void hmat_register_target_cache(struct memory_target *target)
624 unsigned mem_nid = pxm_to_node(target->memory_pxm);
625 struct target_cache *tcache;
627 list_for_each_entry(tcache, &target->caches, node)
628 node_add_cache(mem_nid, &tcache->cache_attrs);
631 static void hmat_register_target_perf(struct memory_target *target)
633 unsigned mem_nid = pxm_to_node(target->memory_pxm);
634 node_set_perf_attrs(mem_nid, &target->hmem_attrs, 0);
637 static void hmat_register_target_device(struct memory_target *target,
638 struct resource *r)
640 /* define a clean / non-busy resource for the platform device */
641 struct resource res = {
642 .start = r->start,
643 .end = r->end,
644 .flags = IORESOURCE_MEM,
646 struct platform_device *pdev;
647 struct memregion_info info;
648 int rc, id;
650 rc = region_intersects(res.start, resource_size(&res), IORESOURCE_MEM,
651 IORES_DESC_SOFT_RESERVED);
652 if (rc != REGION_INTERSECTS)
653 return;
655 id = memregion_alloc(GFP_KERNEL);
656 if (id < 0) {
657 pr_err("memregion allocation failure for %pr\n", &res);
658 return;
661 pdev = platform_device_alloc("hmem", id);
662 if (!pdev) {
663 pr_err("hmem device allocation failure for %pr\n", &res);
664 goto out_pdev;
667 pdev->dev.numa_node = acpi_map_pxm_to_online_node(target->memory_pxm);
668 info = (struct memregion_info) {
669 .target_node = acpi_map_pxm_to_node(target->memory_pxm),
671 rc = platform_device_add_data(pdev, &info, sizeof(info));
672 if (rc < 0) {
673 pr_err("hmem memregion_info allocation failure for %pr\n", &res);
674 goto out_pdev;
677 rc = platform_device_add_resources(pdev, &res, 1);
678 if (rc < 0) {
679 pr_err("hmem resource allocation failure for %pr\n", &res);
680 goto out_resource;
683 rc = platform_device_add(pdev);
684 if (rc < 0) {
685 dev_err(&pdev->dev, "device add failed for %pr\n", &res);
686 goto out_resource;
689 return;
691 out_resource:
692 put_device(&pdev->dev);
693 out_pdev:
694 memregion_free(id);
697 static void hmat_register_target_devices(struct memory_target *target)
699 struct resource *res;
702 * Do not bother creating devices if no driver is available to
703 * consume them.
705 if (!IS_ENABLED(CONFIG_DEV_DAX_HMEM))
706 return;
708 for (res = target->memregions.child; res; res = res->sibling)
709 hmat_register_target_device(target, res);
712 static void hmat_register_target(struct memory_target *target)
714 int nid = pxm_to_node(target->memory_pxm);
717 * Devices may belong to either an offline or online
718 * node, so unconditionally add them.
720 hmat_register_target_devices(target);
723 * Skip offline nodes. This can happen when memory
724 * marked EFI_MEMORY_SP, "specific purpose", is applied
725 * to all the memory in a promixity domain leading to
726 * the node being marked offline / unplugged, or if
727 * memory-only "hotplug" node is offline.
729 if (nid == NUMA_NO_NODE || !node_online(nid))
730 return;
732 mutex_lock(&target_lock);
733 if (!target->registered) {
734 hmat_register_target_initiators(target);
735 hmat_register_target_cache(target);
736 hmat_register_target_perf(target);
737 target->registered = true;
739 mutex_unlock(&target_lock);
742 static void hmat_register_targets(void)
744 struct memory_target *target;
746 list_for_each_entry(target, &targets, node)
747 hmat_register_target(target);
750 static int hmat_callback(struct notifier_block *self,
751 unsigned long action, void *arg)
753 struct memory_target *target;
754 struct memory_notify *mnb = arg;
755 int pxm, nid = mnb->status_change_nid;
757 if (nid == NUMA_NO_NODE || action != MEM_ONLINE)
758 return NOTIFY_OK;
760 pxm = node_to_pxm(nid);
761 target = find_mem_target(pxm);
762 if (!target)
763 return NOTIFY_OK;
765 hmat_register_target(target);
766 return NOTIFY_OK;
769 static struct notifier_block hmat_callback_nb = {
770 .notifier_call = hmat_callback,
771 .priority = 2,
774 static __init void hmat_free_structures(void)
776 struct memory_target *target, *tnext;
777 struct memory_locality *loc, *lnext;
778 struct memory_initiator *initiator, *inext;
779 struct target_cache *tcache, *cnext;
781 list_for_each_entry_safe(target, tnext, &targets, node) {
782 struct resource *res, *res_next;
784 list_for_each_entry_safe(tcache, cnext, &target->caches, node) {
785 list_del(&tcache->node);
786 kfree(tcache);
789 list_del(&target->node);
790 res = target->memregions.child;
791 while (res) {
792 res_next = res->sibling;
793 __release_region(&target->memregions, res->start,
794 resource_size(res));
795 res = res_next;
797 kfree(target);
800 list_for_each_entry_safe(initiator, inext, &initiators, node) {
801 list_del(&initiator->node);
802 kfree(initiator);
805 list_for_each_entry_safe(loc, lnext, &localities, node) {
806 list_del(&loc->node);
807 kfree(loc);
811 static __init int hmat_init(void)
813 struct acpi_table_header *tbl;
814 enum acpi_hmat_type i;
815 acpi_status status;
817 if (srat_disabled())
818 return 0;
820 status = acpi_get_table(ACPI_SIG_SRAT, 0, &tbl);
821 if (ACPI_FAILURE(status))
822 return 0;
824 if (acpi_table_parse_entries(ACPI_SIG_SRAT,
825 sizeof(struct acpi_table_srat),
826 ACPI_SRAT_TYPE_MEMORY_AFFINITY,
827 srat_parse_mem_affinity, 0) < 0)
828 goto out_put;
829 acpi_put_table(tbl);
831 status = acpi_get_table(ACPI_SIG_HMAT, 0, &tbl);
832 if (ACPI_FAILURE(status))
833 goto out_put;
835 hmat_revision = tbl->revision;
836 switch (hmat_revision) {
837 case 1:
838 case 2:
839 break;
840 default:
841 pr_notice("Ignoring HMAT: Unknown revision:%d\n", hmat_revision);
842 goto out_put;
845 for (i = ACPI_HMAT_TYPE_PROXIMITY; i < ACPI_HMAT_TYPE_RESERVED; i++) {
846 if (acpi_table_parse_entries(ACPI_SIG_HMAT,
847 sizeof(struct acpi_table_hmat), i,
848 hmat_parse_subtable, 0) < 0) {
849 pr_notice("Ignoring HMAT: Invalid table");
850 goto out_put;
853 hmat_register_targets();
855 /* Keep the table and structures if the notifier may use them */
856 if (!register_hotmemory_notifier(&hmat_callback_nb))
857 return 0;
858 out_put:
859 hmat_free_structures();
860 acpi_put_table(tbl);
861 return 0;
863 device_initcall(hmat_init);