treewide: remove redundant IS_ERR() before error code check
[linux/fpc-iii.git] / drivers / acpi / osl.c
blob41168c027a5a444d2be4b3a47f847d211c4af04d
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * acpi_osl.c - OS-dependent functions ($Revision: 83 $)
5 * Copyright (C) 2000 Andrew Henroid
6 * Copyright (C) 2001, 2002 Andy Grover <andrew.grover@intel.com>
7 * Copyright (C) 2001, 2002 Paul Diefenbaugh <paul.s.diefenbaugh@intel.com>
8 * Copyright (c) 2008 Intel Corporation
9 * Author: Matthew Wilcox <willy@linux.intel.com>
12 #include <linux/module.h>
13 #include <linux/kernel.h>
14 #include <linux/slab.h>
15 #include <linux/mm.h>
16 #include <linux/highmem.h>
17 #include <linux/lockdep.h>
18 #include <linux/pci.h>
19 #include <linux/interrupt.h>
20 #include <linux/kmod.h>
21 #include <linux/delay.h>
22 #include <linux/workqueue.h>
23 #include <linux/nmi.h>
24 #include <linux/acpi.h>
25 #include <linux/efi.h>
26 #include <linux/ioport.h>
27 #include <linux/list.h>
28 #include <linux/jiffies.h>
29 #include <linux/semaphore.h>
30 #include <linux/security.h>
32 #include <asm/io.h>
33 #include <linux/uaccess.h>
34 #include <linux/io-64-nonatomic-lo-hi.h>
36 #include "acpica/accommon.h"
37 #include "acpica/acnamesp.h"
38 #include "internal.h"
40 #define _COMPONENT ACPI_OS_SERVICES
41 ACPI_MODULE_NAME("osl");
43 struct acpi_os_dpc {
44 acpi_osd_exec_callback function;
45 void *context;
46 struct work_struct work;
49 #ifdef ENABLE_DEBUGGER
50 #include <linux/kdb.h>
52 /* stuff for debugger support */
53 int acpi_in_debugger;
54 EXPORT_SYMBOL(acpi_in_debugger);
55 #endif /*ENABLE_DEBUGGER */
57 static int (*__acpi_os_prepare_sleep)(u8 sleep_state, u32 pm1a_ctrl,
58 u32 pm1b_ctrl);
59 static int (*__acpi_os_prepare_extended_sleep)(u8 sleep_state, u32 val_a,
60 u32 val_b);
62 static acpi_osd_handler acpi_irq_handler;
63 static void *acpi_irq_context;
64 static struct workqueue_struct *kacpid_wq;
65 static struct workqueue_struct *kacpi_notify_wq;
66 static struct workqueue_struct *kacpi_hotplug_wq;
67 static bool acpi_os_initialized;
68 unsigned int acpi_sci_irq = INVALID_ACPI_IRQ;
69 bool acpi_permanent_mmap = false;
72 * This list of permanent mappings is for memory that may be accessed from
73 * interrupt context, where we can't do the ioremap().
75 struct acpi_ioremap {
76 struct list_head list;
77 void __iomem *virt;
78 acpi_physical_address phys;
79 acpi_size size;
80 unsigned long refcount;
83 static LIST_HEAD(acpi_ioremaps);
84 static DEFINE_MUTEX(acpi_ioremap_lock);
85 #define acpi_ioremap_lock_held() lock_is_held(&acpi_ioremap_lock.dep_map)
87 static void __init acpi_request_region (struct acpi_generic_address *gas,
88 unsigned int length, char *desc)
90 u64 addr;
92 /* Handle possible alignment issues */
93 memcpy(&addr, &gas->address, sizeof(addr));
94 if (!addr || !length)
95 return;
97 /* Resources are never freed */
98 if (gas->space_id == ACPI_ADR_SPACE_SYSTEM_IO)
99 request_region(addr, length, desc);
100 else if (gas->space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY)
101 request_mem_region(addr, length, desc);
104 static int __init acpi_reserve_resources(void)
106 acpi_request_region(&acpi_gbl_FADT.xpm1a_event_block, acpi_gbl_FADT.pm1_event_length,
107 "ACPI PM1a_EVT_BLK");
109 acpi_request_region(&acpi_gbl_FADT.xpm1b_event_block, acpi_gbl_FADT.pm1_event_length,
110 "ACPI PM1b_EVT_BLK");
112 acpi_request_region(&acpi_gbl_FADT.xpm1a_control_block, acpi_gbl_FADT.pm1_control_length,
113 "ACPI PM1a_CNT_BLK");
115 acpi_request_region(&acpi_gbl_FADT.xpm1b_control_block, acpi_gbl_FADT.pm1_control_length,
116 "ACPI PM1b_CNT_BLK");
118 if (acpi_gbl_FADT.pm_timer_length == 4)
119 acpi_request_region(&acpi_gbl_FADT.xpm_timer_block, 4, "ACPI PM_TMR");
121 acpi_request_region(&acpi_gbl_FADT.xpm2_control_block, acpi_gbl_FADT.pm2_control_length,
122 "ACPI PM2_CNT_BLK");
124 /* Length of GPE blocks must be a non-negative multiple of 2 */
126 if (!(acpi_gbl_FADT.gpe0_block_length & 0x1))
127 acpi_request_region(&acpi_gbl_FADT.xgpe0_block,
128 acpi_gbl_FADT.gpe0_block_length, "ACPI GPE0_BLK");
130 if (!(acpi_gbl_FADT.gpe1_block_length & 0x1))
131 acpi_request_region(&acpi_gbl_FADT.xgpe1_block,
132 acpi_gbl_FADT.gpe1_block_length, "ACPI GPE1_BLK");
134 return 0;
136 fs_initcall_sync(acpi_reserve_resources);
138 void acpi_os_printf(const char *fmt, ...)
140 va_list args;
141 va_start(args, fmt);
142 acpi_os_vprintf(fmt, args);
143 va_end(args);
145 EXPORT_SYMBOL(acpi_os_printf);
147 void acpi_os_vprintf(const char *fmt, va_list args)
149 static char buffer[512];
151 vsprintf(buffer, fmt, args);
153 #ifdef ENABLE_DEBUGGER
154 if (acpi_in_debugger) {
155 kdb_printf("%s", buffer);
156 } else {
157 if (printk_get_level(buffer))
158 printk("%s", buffer);
159 else
160 printk(KERN_CONT "%s", buffer);
162 #else
163 if (acpi_debugger_write_log(buffer) < 0) {
164 if (printk_get_level(buffer))
165 printk("%s", buffer);
166 else
167 printk(KERN_CONT "%s", buffer);
169 #endif
172 #ifdef CONFIG_KEXEC
173 static unsigned long acpi_rsdp;
174 static int __init setup_acpi_rsdp(char *arg)
176 return kstrtoul(arg, 16, &acpi_rsdp);
178 early_param("acpi_rsdp", setup_acpi_rsdp);
179 #endif
181 acpi_physical_address __init acpi_os_get_root_pointer(void)
183 acpi_physical_address pa;
185 #ifdef CONFIG_KEXEC
187 * We may have been provided with an RSDP on the command line,
188 * but if a malicious user has done so they may be pointing us
189 * at modified ACPI tables that could alter kernel behaviour -
190 * so, we check the lockdown status before making use of
191 * it. If we trust it then also stash it in an architecture
192 * specific location (if appropriate) so it can be carried
193 * over further kexec()s.
195 if (acpi_rsdp && !security_locked_down(LOCKDOWN_ACPI_TABLES)) {
196 acpi_arch_set_root_pointer(acpi_rsdp);
197 return acpi_rsdp;
199 #endif
200 pa = acpi_arch_get_root_pointer();
201 if (pa)
202 return pa;
204 if (efi_enabled(EFI_CONFIG_TABLES)) {
205 if (efi.acpi20 != EFI_INVALID_TABLE_ADDR)
206 return efi.acpi20;
207 if (efi.acpi != EFI_INVALID_TABLE_ADDR)
208 return efi.acpi;
209 pr_err(PREFIX "System description tables not found\n");
210 } else if (IS_ENABLED(CONFIG_ACPI_LEGACY_TABLES_LOOKUP)) {
211 acpi_find_root_pointer(&pa);
214 return pa;
217 /* Must be called with 'acpi_ioremap_lock' or RCU read lock held. */
218 static struct acpi_ioremap *
219 acpi_map_lookup(acpi_physical_address phys, acpi_size size)
221 struct acpi_ioremap *map;
223 list_for_each_entry_rcu(map, &acpi_ioremaps, list, acpi_ioremap_lock_held())
224 if (map->phys <= phys &&
225 phys + size <= map->phys + map->size)
226 return map;
228 return NULL;
231 /* Must be called with 'acpi_ioremap_lock' or RCU read lock held. */
232 static void __iomem *
233 acpi_map_vaddr_lookup(acpi_physical_address phys, unsigned int size)
235 struct acpi_ioremap *map;
237 map = acpi_map_lookup(phys, size);
238 if (map)
239 return map->virt + (phys - map->phys);
241 return NULL;
244 void __iomem *acpi_os_get_iomem(acpi_physical_address phys, unsigned int size)
246 struct acpi_ioremap *map;
247 void __iomem *virt = NULL;
249 mutex_lock(&acpi_ioremap_lock);
250 map = acpi_map_lookup(phys, size);
251 if (map) {
252 virt = map->virt + (phys - map->phys);
253 map->refcount++;
255 mutex_unlock(&acpi_ioremap_lock);
256 return virt;
258 EXPORT_SYMBOL_GPL(acpi_os_get_iomem);
260 /* Must be called with 'acpi_ioremap_lock' or RCU read lock held. */
261 static struct acpi_ioremap *
262 acpi_map_lookup_virt(void __iomem *virt, acpi_size size)
264 struct acpi_ioremap *map;
266 list_for_each_entry_rcu(map, &acpi_ioremaps, list, acpi_ioremap_lock_held())
267 if (map->virt <= virt &&
268 virt + size <= map->virt + map->size)
269 return map;
271 return NULL;
274 #if defined(CONFIG_IA64) || defined(CONFIG_ARM64)
275 /* ioremap will take care of cache attributes */
276 #define should_use_kmap(pfn) 0
277 #else
278 #define should_use_kmap(pfn) page_is_ram(pfn)
279 #endif
281 static void __iomem *acpi_map(acpi_physical_address pg_off, unsigned long pg_sz)
283 unsigned long pfn;
285 pfn = pg_off >> PAGE_SHIFT;
286 if (should_use_kmap(pfn)) {
287 if (pg_sz > PAGE_SIZE)
288 return NULL;
289 return (void __iomem __force *)kmap(pfn_to_page(pfn));
290 } else
291 return acpi_os_ioremap(pg_off, pg_sz);
294 static void acpi_unmap(acpi_physical_address pg_off, void __iomem *vaddr)
296 unsigned long pfn;
298 pfn = pg_off >> PAGE_SHIFT;
299 if (should_use_kmap(pfn))
300 kunmap(pfn_to_page(pfn));
301 else
302 iounmap(vaddr);
306 * acpi_os_map_iomem - Get a virtual address for a given physical address range.
307 * @phys: Start of the physical address range to map.
308 * @size: Size of the physical address range to map.
310 * Look up the given physical address range in the list of existing ACPI memory
311 * mappings. If found, get a reference to it and return a pointer to it (its
312 * virtual address). If not found, map it, add it to that list and return a
313 * pointer to it.
315 * During early init (when acpi_permanent_mmap has not been set yet) this
316 * routine simply calls __acpi_map_table() to get the job done.
318 void __iomem __ref
319 *acpi_os_map_iomem(acpi_physical_address phys, acpi_size size)
321 struct acpi_ioremap *map;
322 void __iomem *virt;
323 acpi_physical_address pg_off;
324 acpi_size pg_sz;
326 if (phys > ULONG_MAX) {
327 printk(KERN_ERR PREFIX "Cannot map memory that high\n");
328 return NULL;
331 if (!acpi_permanent_mmap)
332 return __acpi_map_table((unsigned long)phys, size);
334 mutex_lock(&acpi_ioremap_lock);
335 /* Check if there's a suitable mapping already. */
336 map = acpi_map_lookup(phys, size);
337 if (map) {
338 map->refcount++;
339 goto out;
342 map = kzalloc(sizeof(*map), GFP_KERNEL);
343 if (!map) {
344 mutex_unlock(&acpi_ioremap_lock);
345 return NULL;
348 pg_off = round_down(phys, PAGE_SIZE);
349 pg_sz = round_up(phys + size, PAGE_SIZE) - pg_off;
350 virt = acpi_map(pg_off, pg_sz);
351 if (!virt) {
352 mutex_unlock(&acpi_ioremap_lock);
353 kfree(map);
354 return NULL;
357 INIT_LIST_HEAD(&map->list);
358 map->virt = virt;
359 map->phys = pg_off;
360 map->size = pg_sz;
361 map->refcount = 1;
363 list_add_tail_rcu(&map->list, &acpi_ioremaps);
365 out:
366 mutex_unlock(&acpi_ioremap_lock);
367 return map->virt + (phys - map->phys);
369 EXPORT_SYMBOL_GPL(acpi_os_map_iomem);
371 void *__ref acpi_os_map_memory(acpi_physical_address phys, acpi_size size)
373 return (void *)acpi_os_map_iomem(phys, size);
375 EXPORT_SYMBOL_GPL(acpi_os_map_memory);
377 /* Must be called with mutex_lock(&acpi_ioremap_lock) */
378 static unsigned long acpi_os_drop_map_ref(struct acpi_ioremap *map)
380 unsigned long refcount = --map->refcount;
382 if (!refcount)
383 list_del_rcu(&map->list);
384 return refcount;
387 static void acpi_os_map_cleanup(struct acpi_ioremap *map)
389 synchronize_rcu_expedited();
390 acpi_unmap(map->phys, map->virt);
391 kfree(map);
395 * acpi_os_unmap_iomem - Drop a memory mapping reference.
396 * @virt: Start of the address range to drop a reference to.
397 * @size: Size of the address range to drop a reference to.
399 * Look up the given virtual address range in the list of existing ACPI memory
400 * mappings, drop a reference to it and unmap it if there are no more active
401 * references to it.
403 * During early init (when acpi_permanent_mmap has not been set yet) this
404 * routine simply calls __acpi_unmap_table() to get the job done. Since
405 * __acpi_unmap_table() is an __init function, the __ref annotation is needed
406 * here.
408 void __ref acpi_os_unmap_iomem(void __iomem *virt, acpi_size size)
410 struct acpi_ioremap *map;
411 unsigned long refcount;
413 if (!acpi_permanent_mmap) {
414 __acpi_unmap_table(virt, size);
415 return;
418 mutex_lock(&acpi_ioremap_lock);
419 map = acpi_map_lookup_virt(virt, size);
420 if (!map) {
421 mutex_unlock(&acpi_ioremap_lock);
422 WARN(true, PREFIX "%s: bad address %p\n", __func__, virt);
423 return;
425 refcount = acpi_os_drop_map_ref(map);
426 mutex_unlock(&acpi_ioremap_lock);
428 if (!refcount)
429 acpi_os_map_cleanup(map);
431 EXPORT_SYMBOL_GPL(acpi_os_unmap_iomem);
433 void __ref acpi_os_unmap_memory(void *virt, acpi_size size)
435 return acpi_os_unmap_iomem((void __iomem *)virt, size);
437 EXPORT_SYMBOL_GPL(acpi_os_unmap_memory);
439 int acpi_os_map_generic_address(struct acpi_generic_address *gas)
441 u64 addr;
442 void __iomem *virt;
444 if (gas->space_id != ACPI_ADR_SPACE_SYSTEM_MEMORY)
445 return 0;
447 /* Handle possible alignment issues */
448 memcpy(&addr, &gas->address, sizeof(addr));
449 if (!addr || !gas->bit_width)
450 return -EINVAL;
452 virt = acpi_os_map_iomem(addr, gas->bit_width / 8);
453 if (!virt)
454 return -EIO;
456 return 0;
458 EXPORT_SYMBOL(acpi_os_map_generic_address);
460 void acpi_os_unmap_generic_address(struct acpi_generic_address *gas)
462 u64 addr;
463 struct acpi_ioremap *map;
464 unsigned long refcount;
466 if (gas->space_id != ACPI_ADR_SPACE_SYSTEM_MEMORY)
467 return;
469 /* Handle possible alignment issues */
470 memcpy(&addr, &gas->address, sizeof(addr));
471 if (!addr || !gas->bit_width)
472 return;
474 mutex_lock(&acpi_ioremap_lock);
475 map = acpi_map_lookup(addr, gas->bit_width / 8);
476 if (!map) {
477 mutex_unlock(&acpi_ioremap_lock);
478 return;
480 refcount = acpi_os_drop_map_ref(map);
481 mutex_unlock(&acpi_ioremap_lock);
483 if (!refcount)
484 acpi_os_map_cleanup(map);
486 EXPORT_SYMBOL(acpi_os_unmap_generic_address);
488 #ifdef ACPI_FUTURE_USAGE
489 acpi_status
490 acpi_os_get_physical_address(void *virt, acpi_physical_address * phys)
492 if (!phys || !virt)
493 return AE_BAD_PARAMETER;
495 *phys = virt_to_phys(virt);
497 return AE_OK;
499 #endif
501 #ifdef CONFIG_ACPI_REV_OVERRIDE_POSSIBLE
502 static bool acpi_rev_override;
504 int __init acpi_rev_override_setup(char *str)
506 acpi_rev_override = true;
507 return 1;
509 __setup("acpi_rev_override", acpi_rev_override_setup);
510 #else
511 #define acpi_rev_override false
512 #endif
514 #define ACPI_MAX_OVERRIDE_LEN 100
516 static char acpi_os_name[ACPI_MAX_OVERRIDE_LEN];
518 acpi_status
519 acpi_os_predefined_override(const struct acpi_predefined_names *init_val,
520 acpi_string *new_val)
522 if (!init_val || !new_val)
523 return AE_BAD_PARAMETER;
525 *new_val = NULL;
526 if (!memcmp(init_val->name, "_OS_", 4) && strlen(acpi_os_name)) {
527 printk(KERN_INFO PREFIX "Overriding _OS definition to '%s'\n",
528 acpi_os_name);
529 *new_val = acpi_os_name;
532 if (!memcmp(init_val->name, "_REV", 4) && acpi_rev_override) {
533 printk(KERN_INFO PREFIX "Overriding _REV return value to 5\n");
534 *new_val = (char *)5;
537 return AE_OK;
540 static irqreturn_t acpi_irq(int irq, void *dev_id)
542 u32 handled;
544 handled = (*acpi_irq_handler) (acpi_irq_context);
546 if (handled) {
547 acpi_irq_handled++;
548 return IRQ_HANDLED;
549 } else {
550 acpi_irq_not_handled++;
551 return IRQ_NONE;
555 acpi_status
556 acpi_os_install_interrupt_handler(u32 gsi, acpi_osd_handler handler,
557 void *context)
559 unsigned int irq;
561 acpi_irq_stats_init();
564 * ACPI interrupts different from the SCI in our copy of the FADT are
565 * not supported.
567 if (gsi != acpi_gbl_FADT.sci_interrupt)
568 return AE_BAD_PARAMETER;
570 if (acpi_irq_handler)
571 return AE_ALREADY_ACQUIRED;
573 if (acpi_gsi_to_irq(gsi, &irq) < 0) {
574 printk(KERN_ERR PREFIX "SCI (ACPI GSI %d) not registered\n",
575 gsi);
576 return AE_OK;
579 acpi_irq_handler = handler;
580 acpi_irq_context = context;
581 if (request_irq(irq, acpi_irq, IRQF_SHARED, "acpi", acpi_irq)) {
582 printk(KERN_ERR PREFIX "SCI (IRQ%d) allocation failed\n", irq);
583 acpi_irq_handler = NULL;
584 return AE_NOT_ACQUIRED;
586 acpi_sci_irq = irq;
588 return AE_OK;
591 acpi_status acpi_os_remove_interrupt_handler(u32 gsi, acpi_osd_handler handler)
593 if (gsi != acpi_gbl_FADT.sci_interrupt || !acpi_sci_irq_valid())
594 return AE_BAD_PARAMETER;
596 free_irq(acpi_sci_irq, acpi_irq);
597 acpi_irq_handler = NULL;
598 acpi_sci_irq = INVALID_ACPI_IRQ;
600 return AE_OK;
604 * Running in interpreter thread context, safe to sleep
607 void acpi_os_sleep(u64 ms)
609 msleep(ms);
612 void acpi_os_stall(u32 us)
614 while (us) {
615 u32 delay = 1000;
617 if (delay > us)
618 delay = us;
619 udelay(delay);
620 touch_nmi_watchdog();
621 us -= delay;
626 * Support ACPI 3.0 AML Timer operand. Returns a 64-bit free-running,
627 * monotonically increasing timer with 100ns granularity. Do not use
628 * ktime_get() to implement this function because this function may get
629 * called after timekeeping has been suspended. Note: calling this function
630 * after timekeeping has been suspended may lead to unexpected results
631 * because when timekeeping is suspended the jiffies counter is not
632 * incremented. See also timekeeping_suspend().
634 u64 acpi_os_get_timer(void)
636 return (get_jiffies_64() - INITIAL_JIFFIES) *
637 (ACPI_100NSEC_PER_SEC / HZ);
640 acpi_status acpi_os_read_port(acpi_io_address port, u32 * value, u32 width)
642 u32 dummy;
644 if (!value)
645 value = &dummy;
647 *value = 0;
648 if (width <= 8) {
649 *(u8 *) value = inb(port);
650 } else if (width <= 16) {
651 *(u16 *) value = inw(port);
652 } else if (width <= 32) {
653 *(u32 *) value = inl(port);
654 } else {
655 BUG();
658 return AE_OK;
661 EXPORT_SYMBOL(acpi_os_read_port);
663 acpi_status acpi_os_write_port(acpi_io_address port, u32 value, u32 width)
665 if (width <= 8) {
666 outb(value, port);
667 } else if (width <= 16) {
668 outw(value, port);
669 } else if (width <= 32) {
670 outl(value, port);
671 } else {
672 BUG();
675 return AE_OK;
678 EXPORT_SYMBOL(acpi_os_write_port);
680 int acpi_os_read_iomem(void __iomem *virt_addr, u64 *value, u32 width)
683 switch (width) {
684 case 8:
685 *(u8 *) value = readb(virt_addr);
686 break;
687 case 16:
688 *(u16 *) value = readw(virt_addr);
689 break;
690 case 32:
691 *(u32 *) value = readl(virt_addr);
692 break;
693 case 64:
694 *(u64 *) value = readq(virt_addr);
695 break;
696 default:
697 return -EINVAL;
700 return 0;
703 acpi_status
704 acpi_os_read_memory(acpi_physical_address phys_addr, u64 *value, u32 width)
706 void __iomem *virt_addr;
707 unsigned int size = width / 8;
708 bool unmap = false;
709 u64 dummy;
710 int error;
712 rcu_read_lock();
713 virt_addr = acpi_map_vaddr_lookup(phys_addr, size);
714 if (!virt_addr) {
715 rcu_read_unlock();
716 virt_addr = acpi_os_ioremap(phys_addr, size);
717 if (!virt_addr)
718 return AE_BAD_ADDRESS;
719 unmap = true;
722 if (!value)
723 value = &dummy;
725 error = acpi_os_read_iomem(virt_addr, value, width);
726 BUG_ON(error);
728 if (unmap)
729 iounmap(virt_addr);
730 else
731 rcu_read_unlock();
733 return AE_OK;
736 acpi_status
737 acpi_os_write_memory(acpi_physical_address phys_addr, u64 value, u32 width)
739 void __iomem *virt_addr;
740 unsigned int size = width / 8;
741 bool unmap = false;
743 rcu_read_lock();
744 virt_addr = acpi_map_vaddr_lookup(phys_addr, size);
745 if (!virt_addr) {
746 rcu_read_unlock();
747 virt_addr = acpi_os_ioremap(phys_addr, size);
748 if (!virt_addr)
749 return AE_BAD_ADDRESS;
750 unmap = true;
753 switch (width) {
754 case 8:
755 writeb(value, virt_addr);
756 break;
757 case 16:
758 writew(value, virt_addr);
759 break;
760 case 32:
761 writel(value, virt_addr);
762 break;
763 case 64:
764 writeq(value, virt_addr);
765 break;
766 default:
767 BUG();
770 if (unmap)
771 iounmap(virt_addr);
772 else
773 rcu_read_unlock();
775 return AE_OK;
778 #ifdef CONFIG_PCI
779 acpi_status
780 acpi_os_read_pci_configuration(struct acpi_pci_id * pci_id, u32 reg,
781 u64 *value, u32 width)
783 int result, size;
784 u32 value32;
786 if (!value)
787 return AE_BAD_PARAMETER;
789 switch (width) {
790 case 8:
791 size = 1;
792 break;
793 case 16:
794 size = 2;
795 break;
796 case 32:
797 size = 4;
798 break;
799 default:
800 return AE_ERROR;
803 result = raw_pci_read(pci_id->segment, pci_id->bus,
804 PCI_DEVFN(pci_id->device, pci_id->function),
805 reg, size, &value32);
806 *value = value32;
808 return (result ? AE_ERROR : AE_OK);
811 acpi_status
812 acpi_os_write_pci_configuration(struct acpi_pci_id * pci_id, u32 reg,
813 u64 value, u32 width)
815 int result, size;
817 switch (width) {
818 case 8:
819 size = 1;
820 break;
821 case 16:
822 size = 2;
823 break;
824 case 32:
825 size = 4;
826 break;
827 default:
828 return AE_ERROR;
831 result = raw_pci_write(pci_id->segment, pci_id->bus,
832 PCI_DEVFN(pci_id->device, pci_id->function),
833 reg, size, value);
835 return (result ? AE_ERROR : AE_OK);
837 #endif
839 static void acpi_os_execute_deferred(struct work_struct *work)
841 struct acpi_os_dpc *dpc = container_of(work, struct acpi_os_dpc, work);
843 dpc->function(dpc->context);
844 kfree(dpc);
847 #ifdef CONFIG_ACPI_DEBUGGER
848 static struct acpi_debugger acpi_debugger;
849 static bool acpi_debugger_initialized;
851 int acpi_register_debugger(struct module *owner,
852 const struct acpi_debugger_ops *ops)
854 int ret = 0;
856 mutex_lock(&acpi_debugger.lock);
857 if (acpi_debugger.ops) {
858 ret = -EBUSY;
859 goto err_lock;
862 acpi_debugger.owner = owner;
863 acpi_debugger.ops = ops;
865 err_lock:
866 mutex_unlock(&acpi_debugger.lock);
867 return ret;
869 EXPORT_SYMBOL(acpi_register_debugger);
871 void acpi_unregister_debugger(const struct acpi_debugger_ops *ops)
873 mutex_lock(&acpi_debugger.lock);
874 if (ops == acpi_debugger.ops) {
875 acpi_debugger.ops = NULL;
876 acpi_debugger.owner = NULL;
878 mutex_unlock(&acpi_debugger.lock);
880 EXPORT_SYMBOL(acpi_unregister_debugger);
882 int acpi_debugger_create_thread(acpi_osd_exec_callback function, void *context)
884 int ret;
885 int (*func)(acpi_osd_exec_callback, void *);
886 struct module *owner;
888 if (!acpi_debugger_initialized)
889 return -ENODEV;
890 mutex_lock(&acpi_debugger.lock);
891 if (!acpi_debugger.ops) {
892 ret = -ENODEV;
893 goto err_lock;
895 if (!try_module_get(acpi_debugger.owner)) {
896 ret = -ENODEV;
897 goto err_lock;
899 func = acpi_debugger.ops->create_thread;
900 owner = acpi_debugger.owner;
901 mutex_unlock(&acpi_debugger.lock);
903 ret = func(function, context);
905 mutex_lock(&acpi_debugger.lock);
906 module_put(owner);
907 err_lock:
908 mutex_unlock(&acpi_debugger.lock);
909 return ret;
912 ssize_t acpi_debugger_write_log(const char *msg)
914 ssize_t ret;
915 ssize_t (*func)(const char *);
916 struct module *owner;
918 if (!acpi_debugger_initialized)
919 return -ENODEV;
920 mutex_lock(&acpi_debugger.lock);
921 if (!acpi_debugger.ops) {
922 ret = -ENODEV;
923 goto err_lock;
925 if (!try_module_get(acpi_debugger.owner)) {
926 ret = -ENODEV;
927 goto err_lock;
929 func = acpi_debugger.ops->write_log;
930 owner = acpi_debugger.owner;
931 mutex_unlock(&acpi_debugger.lock);
933 ret = func(msg);
935 mutex_lock(&acpi_debugger.lock);
936 module_put(owner);
937 err_lock:
938 mutex_unlock(&acpi_debugger.lock);
939 return ret;
942 ssize_t acpi_debugger_read_cmd(char *buffer, size_t buffer_length)
944 ssize_t ret;
945 ssize_t (*func)(char *, size_t);
946 struct module *owner;
948 if (!acpi_debugger_initialized)
949 return -ENODEV;
950 mutex_lock(&acpi_debugger.lock);
951 if (!acpi_debugger.ops) {
952 ret = -ENODEV;
953 goto err_lock;
955 if (!try_module_get(acpi_debugger.owner)) {
956 ret = -ENODEV;
957 goto err_lock;
959 func = acpi_debugger.ops->read_cmd;
960 owner = acpi_debugger.owner;
961 mutex_unlock(&acpi_debugger.lock);
963 ret = func(buffer, buffer_length);
965 mutex_lock(&acpi_debugger.lock);
966 module_put(owner);
967 err_lock:
968 mutex_unlock(&acpi_debugger.lock);
969 return ret;
972 int acpi_debugger_wait_command_ready(void)
974 int ret;
975 int (*func)(bool, char *, size_t);
976 struct module *owner;
978 if (!acpi_debugger_initialized)
979 return -ENODEV;
980 mutex_lock(&acpi_debugger.lock);
981 if (!acpi_debugger.ops) {
982 ret = -ENODEV;
983 goto err_lock;
985 if (!try_module_get(acpi_debugger.owner)) {
986 ret = -ENODEV;
987 goto err_lock;
989 func = acpi_debugger.ops->wait_command_ready;
990 owner = acpi_debugger.owner;
991 mutex_unlock(&acpi_debugger.lock);
993 ret = func(acpi_gbl_method_executing,
994 acpi_gbl_db_line_buf, ACPI_DB_LINE_BUFFER_SIZE);
996 mutex_lock(&acpi_debugger.lock);
997 module_put(owner);
998 err_lock:
999 mutex_unlock(&acpi_debugger.lock);
1000 return ret;
1003 int acpi_debugger_notify_command_complete(void)
1005 int ret;
1006 int (*func)(void);
1007 struct module *owner;
1009 if (!acpi_debugger_initialized)
1010 return -ENODEV;
1011 mutex_lock(&acpi_debugger.lock);
1012 if (!acpi_debugger.ops) {
1013 ret = -ENODEV;
1014 goto err_lock;
1016 if (!try_module_get(acpi_debugger.owner)) {
1017 ret = -ENODEV;
1018 goto err_lock;
1020 func = acpi_debugger.ops->notify_command_complete;
1021 owner = acpi_debugger.owner;
1022 mutex_unlock(&acpi_debugger.lock);
1024 ret = func();
1026 mutex_lock(&acpi_debugger.lock);
1027 module_put(owner);
1028 err_lock:
1029 mutex_unlock(&acpi_debugger.lock);
1030 return ret;
1033 int __init acpi_debugger_init(void)
1035 mutex_init(&acpi_debugger.lock);
1036 acpi_debugger_initialized = true;
1037 return 0;
1039 #endif
1041 /*******************************************************************************
1043 * FUNCTION: acpi_os_execute
1045 * PARAMETERS: Type - Type of the callback
1046 * Function - Function to be executed
1047 * Context - Function parameters
1049 * RETURN: Status
1051 * DESCRIPTION: Depending on type, either queues function for deferred execution or
1052 * immediately executes function on a separate thread.
1054 ******************************************************************************/
1056 acpi_status acpi_os_execute(acpi_execute_type type,
1057 acpi_osd_exec_callback function, void *context)
1059 acpi_status status = AE_OK;
1060 struct acpi_os_dpc *dpc;
1061 struct workqueue_struct *queue;
1062 int ret;
1063 ACPI_DEBUG_PRINT((ACPI_DB_EXEC,
1064 "Scheduling function [%p(%p)] for deferred execution.\n",
1065 function, context));
1067 if (type == OSL_DEBUGGER_MAIN_THREAD) {
1068 ret = acpi_debugger_create_thread(function, context);
1069 if (ret) {
1070 pr_err("Call to kthread_create() failed.\n");
1071 status = AE_ERROR;
1073 goto out_thread;
1077 * Allocate/initialize DPC structure. Note that this memory will be
1078 * freed by the callee. The kernel handles the work_struct list in a
1079 * way that allows us to also free its memory inside the callee.
1080 * Because we may want to schedule several tasks with different
1081 * parameters we can't use the approach some kernel code uses of
1082 * having a static work_struct.
1085 dpc = kzalloc(sizeof(struct acpi_os_dpc), GFP_ATOMIC);
1086 if (!dpc)
1087 return AE_NO_MEMORY;
1089 dpc->function = function;
1090 dpc->context = context;
1093 * To prevent lockdep from complaining unnecessarily, make sure that
1094 * there is a different static lockdep key for each workqueue by using
1095 * INIT_WORK() for each of them separately.
1097 if (type == OSL_NOTIFY_HANDLER) {
1098 queue = kacpi_notify_wq;
1099 INIT_WORK(&dpc->work, acpi_os_execute_deferred);
1100 } else if (type == OSL_GPE_HANDLER) {
1101 queue = kacpid_wq;
1102 INIT_WORK(&dpc->work, acpi_os_execute_deferred);
1103 } else {
1104 pr_err("Unsupported os_execute type %d.\n", type);
1105 status = AE_ERROR;
1108 if (ACPI_FAILURE(status))
1109 goto err_workqueue;
1112 * On some machines, a software-initiated SMI causes corruption unless
1113 * the SMI runs on CPU 0. An SMI can be initiated by any AML, but
1114 * typically it's done in GPE-related methods that are run via
1115 * workqueues, so we can avoid the known corruption cases by always
1116 * queueing on CPU 0.
1118 ret = queue_work_on(0, queue, &dpc->work);
1119 if (!ret) {
1120 printk(KERN_ERR PREFIX
1121 "Call to queue_work() failed.\n");
1122 status = AE_ERROR;
1124 err_workqueue:
1125 if (ACPI_FAILURE(status))
1126 kfree(dpc);
1127 out_thread:
1128 return status;
1130 EXPORT_SYMBOL(acpi_os_execute);
1132 void acpi_os_wait_events_complete(void)
1135 * Make sure the GPE handler or the fixed event handler is not used
1136 * on another CPU after removal.
1138 if (acpi_sci_irq_valid())
1139 synchronize_hardirq(acpi_sci_irq);
1140 flush_workqueue(kacpid_wq);
1141 flush_workqueue(kacpi_notify_wq);
1143 EXPORT_SYMBOL(acpi_os_wait_events_complete);
1145 struct acpi_hp_work {
1146 struct work_struct work;
1147 struct acpi_device *adev;
1148 u32 src;
1151 static void acpi_hotplug_work_fn(struct work_struct *work)
1153 struct acpi_hp_work *hpw = container_of(work, struct acpi_hp_work, work);
1155 acpi_os_wait_events_complete();
1156 acpi_device_hotplug(hpw->adev, hpw->src);
1157 kfree(hpw);
1160 acpi_status acpi_hotplug_schedule(struct acpi_device *adev, u32 src)
1162 struct acpi_hp_work *hpw;
1164 ACPI_DEBUG_PRINT((ACPI_DB_EXEC,
1165 "Scheduling hotplug event (%p, %u) for deferred execution.\n",
1166 adev, src));
1168 hpw = kmalloc(sizeof(*hpw), GFP_KERNEL);
1169 if (!hpw)
1170 return AE_NO_MEMORY;
1172 INIT_WORK(&hpw->work, acpi_hotplug_work_fn);
1173 hpw->adev = adev;
1174 hpw->src = src;
1176 * We can't run hotplug code in kacpid_wq/kacpid_notify_wq etc., because
1177 * the hotplug code may call driver .remove() functions, which may
1178 * invoke flush_scheduled_work()/acpi_os_wait_events_complete() to flush
1179 * these workqueues.
1181 if (!queue_work(kacpi_hotplug_wq, &hpw->work)) {
1182 kfree(hpw);
1183 return AE_ERROR;
1185 return AE_OK;
1188 bool acpi_queue_hotplug_work(struct work_struct *work)
1190 return queue_work(kacpi_hotplug_wq, work);
1193 acpi_status
1194 acpi_os_create_semaphore(u32 max_units, u32 initial_units, acpi_handle * handle)
1196 struct semaphore *sem = NULL;
1198 sem = acpi_os_allocate_zeroed(sizeof(struct semaphore));
1199 if (!sem)
1200 return AE_NO_MEMORY;
1202 sema_init(sem, initial_units);
1204 *handle = (acpi_handle *) sem;
1206 ACPI_DEBUG_PRINT((ACPI_DB_MUTEX, "Creating semaphore[%p|%d].\n",
1207 *handle, initial_units));
1209 return AE_OK;
1213 * TODO: A better way to delete semaphores? Linux doesn't have a
1214 * 'delete_semaphore()' function -- may result in an invalid
1215 * pointer dereference for non-synchronized consumers. Should
1216 * we at least check for blocked threads and signal/cancel them?
1219 acpi_status acpi_os_delete_semaphore(acpi_handle handle)
1221 struct semaphore *sem = (struct semaphore *)handle;
1223 if (!sem)
1224 return AE_BAD_PARAMETER;
1226 ACPI_DEBUG_PRINT((ACPI_DB_MUTEX, "Deleting semaphore[%p].\n", handle));
1228 BUG_ON(!list_empty(&sem->wait_list));
1229 kfree(sem);
1230 sem = NULL;
1232 return AE_OK;
1236 * TODO: Support for units > 1?
1238 acpi_status acpi_os_wait_semaphore(acpi_handle handle, u32 units, u16 timeout)
1240 acpi_status status = AE_OK;
1241 struct semaphore *sem = (struct semaphore *)handle;
1242 long jiffies;
1243 int ret = 0;
1245 if (!acpi_os_initialized)
1246 return AE_OK;
1248 if (!sem || (units < 1))
1249 return AE_BAD_PARAMETER;
1251 if (units > 1)
1252 return AE_SUPPORT;
1254 ACPI_DEBUG_PRINT((ACPI_DB_MUTEX, "Waiting for semaphore[%p|%d|%d]\n",
1255 handle, units, timeout));
1257 if (timeout == ACPI_WAIT_FOREVER)
1258 jiffies = MAX_SCHEDULE_TIMEOUT;
1259 else
1260 jiffies = msecs_to_jiffies(timeout);
1262 ret = down_timeout(sem, jiffies);
1263 if (ret)
1264 status = AE_TIME;
1266 if (ACPI_FAILURE(status)) {
1267 ACPI_DEBUG_PRINT((ACPI_DB_MUTEX,
1268 "Failed to acquire semaphore[%p|%d|%d], %s",
1269 handle, units, timeout,
1270 acpi_format_exception(status)));
1271 } else {
1272 ACPI_DEBUG_PRINT((ACPI_DB_MUTEX,
1273 "Acquired semaphore[%p|%d|%d]", handle,
1274 units, timeout));
1277 return status;
1281 * TODO: Support for units > 1?
1283 acpi_status acpi_os_signal_semaphore(acpi_handle handle, u32 units)
1285 struct semaphore *sem = (struct semaphore *)handle;
1287 if (!acpi_os_initialized)
1288 return AE_OK;
1290 if (!sem || (units < 1))
1291 return AE_BAD_PARAMETER;
1293 if (units > 1)
1294 return AE_SUPPORT;
1296 ACPI_DEBUG_PRINT((ACPI_DB_MUTEX, "Signaling semaphore[%p|%d]\n", handle,
1297 units));
1299 up(sem);
1301 return AE_OK;
1304 acpi_status acpi_os_get_line(char *buffer, u32 buffer_length, u32 *bytes_read)
1306 #ifdef ENABLE_DEBUGGER
1307 if (acpi_in_debugger) {
1308 u32 chars;
1310 kdb_read(buffer, buffer_length);
1312 /* remove the CR kdb includes */
1313 chars = strlen(buffer) - 1;
1314 buffer[chars] = '\0';
1316 #else
1317 int ret;
1319 ret = acpi_debugger_read_cmd(buffer, buffer_length);
1320 if (ret < 0)
1321 return AE_ERROR;
1322 if (bytes_read)
1323 *bytes_read = ret;
1324 #endif
1326 return AE_OK;
1328 EXPORT_SYMBOL(acpi_os_get_line);
1330 acpi_status acpi_os_wait_command_ready(void)
1332 int ret;
1334 ret = acpi_debugger_wait_command_ready();
1335 if (ret < 0)
1336 return AE_ERROR;
1337 return AE_OK;
1340 acpi_status acpi_os_notify_command_complete(void)
1342 int ret;
1344 ret = acpi_debugger_notify_command_complete();
1345 if (ret < 0)
1346 return AE_ERROR;
1347 return AE_OK;
1350 acpi_status acpi_os_signal(u32 function, void *info)
1352 switch (function) {
1353 case ACPI_SIGNAL_FATAL:
1354 printk(KERN_ERR PREFIX "Fatal opcode executed\n");
1355 break;
1356 case ACPI_SIGNAL_BREAKPOINT:
1358 * AML Breakpoint
1359 * ACPI spec. says to treat it as a NOP unless
1360 * you are debugging. So if/when we integrate
1361 * AML debugger into the kernel debugger its
1362 * hook will go here. But until then it is
1363 * not useful to print anything on breakpoints.
1365 break;
1366 default:
1367 break;
1370 return AE_OK;
1373 static int __init acpi_os_name_setup(char *str)
1375 char *p = acpi_os_name;
1376 int count = ACPI_MAX_OVERRIDE_LEN - 1;
1378 if (!str || !*str)
1379 return 0;
1381 for (; count-- && *str; str++) {
1382 if (isalnum(*str) || *str == ' ' || *str == ':')
1383 *p++ = *str;
1384 else if (*str == '\'' || *str == '"')
1385 continue;
1386 else
1387 break;
1389 *p = 0;
1391 return 1;
1395 __setup("acpi_os_name=", acpi_os_name_setup);
1398 * Disable the auto-serialization of named objects creation methods.
1400 * This feature is enabled by default. It marks the AML control methods
1401 * that contain the opcodes to create named objects as "Serialized".
1403 static int __init acpi_no_auto_serialize_setup(char *str)
1405 acpi_gbl_auto_serialize_methods = FALSE;
1406 pr_info("ACPI: auto-serialization disabled\n");
1408 return 1;
1411 __setup("acpi_no_auto_serialize", acpi_no_auto_serialize_setup);
1413 /* Check of resource interference between native drivers and ACPI
1414 * OperationRegions (SystemIO and System Memory only).
1415 * IO ports and memory declared in ACPI might be used by the ACPI subsystem
1416 * in arbitrary AML code and can interfere with legacy drivers.
1417 * acpi_enforce_resources= can be set to:
1419 * - strict (default) (2)
1420 * -> further driver trying to access the resources will not load
1421 * - lax (1)
1422 * -> further driver trying to access the resources will load, but you
1423 * get a system message that something might go wrong...
1425 * - no (0)
1426 * -> ACPI Operation Region resources will not be registered
1429 #define ENFORCE_RESOURCES_STRICT 2
1430 #define ENFORCE_RESOURCES_LAX 1
1431 #define ENFORCE_RESOURCES_NO 0
1433 static unsigned int acpi_enforce_resources = ENFORCE_RESOURCES_STRICT;
1435 static int __init acpi_enforce_resources_setup(char *str)
1437 if (str == NULL || *str == '\0')
1438 return 0;
1440 if (!strcmp("strict", str))
1441 acpi_enforce_resources = ENFORCE_RESOURCES_STRICT;
1442 else if (!strcmp("lax", str))
1443 acpi_enforce_resources = ENFORCE_RESOURCES_LAX;
1444 else if (!strcmp("no", str))
1445 acpi_enforce_resources = ENFORCE_RESOURCES_NO;
1447 return 1;
1450 __setup("acpi_enforce_resources=", acpi_enforce_resources_setup);
1452 /* Check for resource conflicts between ACPI OperationRegions and native
1453 * drivers */
1454 int acpi_check_resource_conflict(const struct resource *res)
1456 acpi_adr_space_type space_id;
1457 acpi_size length;
1458 u8 warn = 0;
1459 int clash = 0;
1461 if (acpi_enforce_resources == ENFORCE_RESOURCES_NO)
1462 return 0;
1463 if (!(res->flags & IORESOURCE_IO) && !(res->flags & IORESOURCE_MEM))
1464 return 0;
1466 if (res->flags & IORESOURCE_IO)
1467 space_id = ACPI_ADR_SPACE_SYSTEM_IO;
1468 else
1469 space_id = ACPI_ADR_SPACE_SYSTEM_MEMORY;
1471 length = resource_size(res);
1472 if (acpi_enforce_resources != ENFORCE_RESOURCES_NO)
1473 warn = 1;
1474 clash = acpi_check_address_range(space_id, res->start, length, warn);
1476 if (clash) {
1477 if (acpi_enforce_resources != ENFORCE_RESOURCES_NO) {
1478 if (acpi_enforce_resources == ENFORCE_RESOURCES_LAX)
1479 printk(KERN_NOTICE "ACPI: This conflict may"
1480 " cause random problems and system"
1481 " instability\n");
1482 printk(KERN_INFO "ACPI: If an ACPI driver is available"
1483 " for this device, you should use it instead of"
1484 " the native driver\n");
1486 if (acpi_enforce_resources == ENFORCE_RESOURCES_STRICT)
1487 return -EBUSY;
1489 return 0;
1491 EXPORT_SYMBOL(acpi_check_resource_conflict);
1493 int acpi_check_region(resource_size_t start, resource_size_t n,
1494 const char *name)
1496 struct resource res = {
1497 .start = start,
1498 .end = start + n - 1,
1499 .name = name,
1500 .flags = IORESOURCE_IO,
1503 return acpi_check_resource_conflict(&res);
1505 EXPORT_SYMBOL(acpi_check_region);
1507 static acpi_status acpi_deactivate_mem_region(acpi_handle handle, u32 level,
1508 void *_res, void **return_value)
1510 struct acpi_mem_space_context **mem_ctx;
1511 union acpi_operand_object *handler_obj;
1512 union acpi_operand_object *region_obj2;
1513 union acpi_operand_object *region_obj;
1514 struct resource *res = _res;
1515 acpi_status status;
1517 region_obj = acpi_ns_get_attached_object(handle);
1518 if (!region_obj)
1519 return AE_OK;
1521 handler_obj = region_obj->region.handler;
1522 if (!handler_obj)
1523 return AE_OK;
1525 if (region_obj->region.space_id != ACPI_ADR_SPACE_SYSTEM_MEMORY)
1526 return AE_OK;
1528 if (!(region_obj->region.flags & AOPOBJ_SETUP_COMPLETE))
1529 return AE_OK;
1531 region_obj2 = acpi_ns_get_secondary_object(region_obj);
1532 if (!region_obj2)
1533 return AE_OK;
1535 mem_ctx = (void *)&region_obj2->extra.region_context;
1537 if (!(mem_ctx[0]->address >= res->start &&
1538 mem_ctx[0]->address < res->end))
1539 return AE_OK;
1541 status = handler_obj->address_space.setup(region_obj,
1542 ACPI_REGION_DEACTIVATE,
1543 NULL, (void **)mem_ctx);
1544 if (ACPI_SUCCESS(status))
1545 region_obj->region.flags &= ~(AOPOBJ_SETUP_COMPLETE);
1547 return status;
1551 * acpi_release_memory - Release any mappings done to a memory region
1552 * @handle: Handle to namespace node
1553 * @res: Memory resource
1554 * @level: A level that terminates the search
1556 * Walks through @handle and unmaps all SystemMemory Operation Regions that
1557 * overlap with @res and that have already been activated (mapped).
1559 * This is a helper that allows drivers to place special requirements on memory
1560 * region that may overlap with operation regions, primarily allowing them to
1561 * safely map the region as non-cached memory.
1563 * The unmapped Operation Regions will be automatically remapped next time they
1564 * are called, so the drivers do not need to do anything else.
1566 acpi_status acpi_release_memory(acpi_handle handle, struct resource *res,
1567 u32 level)
1569 if (!(res->flags & IORESOURCE_MEM))
1570 return AE_TYPE;
1572 return acpi_walk_namespace(ACPI_TYPE_REGION, handle, level,
1573 acpi_deactivate_mem_region, NULL, res, NULL);
1575 EXPORT_SYMBOL_GPL(acpi_release_memory);
1578 * Let drivers know whether the resource checks are effective
1580 int acpi_resources_are_enforced(void)
1582 return acpi_enforce_resources == ENFORCE_RESOURCES_STRICT;
1584 EXPORT_SYMBOL(acpi_resources_are_enforced);
1587 * Deallocate the memory for a spinlock.
1589 void acpi_os_delete_lock(acpi_spinlock handle)
1591 ACPI_FREE(handle);
1595 * Acquire a spinlock.
1597 * handle is a pointer to the spinlock_t.
1600 acpi_cpu_flags acpi_os_acquire_lock(acpi_spinlock lockp)
1602 acpi_cpu_flags flags;
1603 spin_lock_irqsave(lockp, flags);
1604 return flags;
1608 * Release a spinlock. See above.
1611 void acpi_os_release_lock(acpi_spinlock lockp, acpi_cpu_flags flags)
1613 spin_unlock_irqrestore(lockp, flags);
1616 #ifndef ACPI_USE_LOCAL_CACHE
1618 /*******************************************************************************
1620 * FUNCTION: acpi_os_create_cache
1622 * PARAMETERS: name - Ascii name for the cache
1623 * size - Size of each cached object
1624 * depth - Maximum depth of the cache (in objects) <ignored>
1625 * cache - Where the new cache object is returned
1627 * RETURN: status
1629 * DESCRIPTION: Create a cache object
1631 ******************************************************************************/
1633 acpi_status
1634 acpi_os_create_cache(char *name, u16 size, u16 depth, acpi_cache_t ** cache)
1636 *cache = kmem_cache_create(name, size, 0, 0, NULL);
1637 if (*cache == NULL)
1638 return AE_ERROR;
1639 else
1640 return AE_OK;
1643 /*******************************************************************************
1645 * FUNCTION: acpi_os_purge_cache
1647 * PARAMETERS: Cache - Handle to cache object
1649 * RETURN: Status
1651 * DESCRIPTION: Free all objects within the requested cache.
1653 ******************************************************************************/
1655 acpi_status acpi_os_purge_cache(acpi_cache_t * cache)
1657 kmem_cache_shrink(cache);
1658 return (AE_OK);
1661 /*******************************************************************************
1663 * FUNCTION: acpi_os_delete_cache
1665 * PARAMETERS: Cache - Handle to cache object
1667 * RETURN: Status
1669 * DESCRIPTION: Free all objects within the requested cache and delete the
1670 * cache object.
1672 ******************************************************************************/
1674 acpi_status acpi_os_delete_cache(acpi_cache_t * cache)
1676 kmem_cache_destroy(cache);
1677 return (AE_OK);
1680 /*******************************************************************************
1682 * FUNCTION: acpi_os_release_object
1684 * PARAMETERS: Cache - Handle to cache object
1685 * Object - The object to be released
1687 * RETURN: None
1689 * DESCRIPTION: Release an object to the specified cache. If cache is full,
1690 * the object is deleted.
1692 ******************************************************************************/
1694 acpi_status acpi_os_release_object(acpi_cache_t * cache, void *object)
1696 kmem_cache_free(cache, object);
1697 return (AE_OK);
1699 #endif
1701 static int __init acpi_no_static_ssdt_setup(char *s)
1703 acpi_gbl_disable_ssdt_table_install = TRUE;
1704 pr_info("ACPI: static SSDT installation disabled\n");
1706 return 0;
1709 early_param("acpi_no_static_ssdt", acpi_no_static_ssdt_setup);
1711 static int __init acpi_disable_return_repair(char *s)
1713 printk(KERN_NOTICE PREFIX
1714 "ACPI: Predefined validation mechanism disabled\n");
1715 acpi_gbl_disable_auto_repair = TRUE;
1717 return 1;
1720 __setup("acpica_no_return_repair", acpi_disable_return_repair);
1722 acpi_status __init acpi_os_initialize(void)
1724 acpi_os_map_generic_address(&acpi_gbl_FADT.xpm1a_event_block);
1725 acpi_os_map_generic_address(&acpi_gbl_FADT.xpm1b_event_block);
1726 acpi_os_map_generic_address(&acpi_gbl_FADT.xgpe0_block);
1727 acpi_os_map_generic_address(&acpi_gbl_FADT.xgpe1_block);
1728 if (acpi_gbl_FADT.flags & ACPI_FADT_RESET_REGISTER) {
1730 * Use acpi_os_map_generic_address to pre-map the reset
1731 * register if it's in system memory.
1733 int rv;
1735 rv = acpi_os_map_generic_address(&acpi_gbl_FADT.reset_register);
1736 pr_debug(PREFIX "%s: map reset_reg status %d\n", __func__, rv);
1738 acpi_os_initialized = true;
1740 return AE_OK;
1743 acpi_status __init acpi_os_initialize1(void)
1745 kacpid_wq = alloc_workqueue("kacpid", 0, 1);
1746 kacpi_notify_wq = alloc_workqueue("kacpi_notify", 0, 1);
1747 kacpi_hotplug_wq = alloc_ordered_workqueue("kacpi_hotplug", 0);
1748 BUG_ON(!kacpid_wq);
1749 BUG_ON(!kacpi_notify_wq);
1750 BUG_ON(!kacpi_hotplug_wq);
1751 acpi_osi_init();
1752 return AE_OK;
1755 acpi_status acpi_os_terminate(void)
1757 if (acpi_irq_handler) {
1758 acpi_os_remove_interrupt_handler(acpi_gbl_FADT.sci_interrupt,
1759 acpi_irq_handler);
1762 acpi_os_unmap_generic_address(&acpi_gbl_FADT.xgpe1_block);
1763 acpi_os_unmap_generic_address(&acpi_gbl_FADT.xgpe0_block);
1764 acpi_os_unmap_generic_address(&acpi_gbl_FADT.xpm1b_event_block);
1765 acpi_os_unmap_generic_address(&acpi_gbl_FADT.xpm1a_event_block);
1766 if (acpi_gbl_FADT.flags & ACPI_FADT_RESET_REGISTER)
1767 acpi_os_unmap_generic_address(&acpi_gbl_FADT.reset_register);
1769 destroy_workqueue(kacpid_wq);
1770 destroy_workqueue(kacpi_notify_wq);
1771 destroy_workqueue(kacpi_hotplug_wq);
1773 return AE_OK;
1776 acpi_status acpi_os_prepare_sleep(u8 sleep_state, u32 pm1a_control,
1777 u32 pm1b_control)
1779 int rc = 0;
1780 if (__acpi_os_prepare_sleep)
1781 rc = __acpi_os_prepare_sleep(sleep_state,
1782 pm1a_control, pm1b_control);
1783 if (rc < 0)
1784 return AE_ERROR;
1785 else if (rc > 0)
1786 return AE_CTRL_TERMINATE;
1788 return AE_OK;
1791 void acpi_os_set_prepare_sleep(int (*func)(u8 sleep_state,
1792 u32 pm1a_ctrl, u32 pm1b_ctrl))
1794 __acpi_os_prepare_sleep = func;
1797 #if (ACPI_REDUCED_HARDWARE)
1798 acpi_status acpi_os_prepare_extended_sleep(u8 sleep_state, u32 val_a,
1799 u32 val_b)
1801 int rc = 0;
1802 if (__acpi_os_prepare_extended_sleep)
1803 rc = __acpi_os_prepare_extended_sleep(sleep_state,
1804 val_a, val_b);
1805 if (rc < 0)
1806 return AE_ERROR;
1807 else if (rc > 0)
1808 return AE_CTRL_TERMINATE;
1810 return AE_OK;
1812 #else
1813 acpi_status acpi_os_prepare_extended_sleep(u8 sleep_state, u32 val_a,
1814 u32 val_b)
1816 return AE_OK;
1818 #endif
1820 void acpi_os_set_prepare_extended_sleep(int (*func)(u8 sleep_state,
1821 u32 val_a, u32 val_b))
1823 __acpi_os_prepare_extended_sleep = func;
1826 acpi_status acpi_os_enter_sleep(u8 sleep_state,
1827 u32 reg_a_value, u32 reg_b_value)
1829 acpi_status status;
1831 if (acpi_gbl_reduced_hardware)
1832 status = acpi_os_prepare_extended_sleep(sleep_state,
1833 reg_a_value,
1834 reg_b_value);
1835 else
1836 status = acpi_os_prepare_sleep(sleep_state,
1837 reg_a_value, reg_b_value);
1838 return status;