1 // SPDX-License-Identifier: GPL-2.0-or-later
3 * libata-core.c - helper library for ATA
5 * Maintained by: Tejun Heo <tj@kernel.org>
6 * Please ALWAYS copy linux-ide@vger.kernel.org
9 * Copyright 2003-2004 Red Hat, Inc. All rights reserved.
10 * Copyright 2003-2004 Jeff Garzik
12 * libata documentation is available via 'make {ps|pdf}docs',
13 * as Documentation/driver-api/libata.rst
15 * Hardware documentation available from http://www.t13.org/ and
16 * http://www.sata-io.org/
18 * Standards documents from:
19 * http://www.t13.org (ATA standards, PCI DMA IDE spec)
20 * http://www.t10.org (SCSI MMC - for ATAPI MMC)
21 * http://www.sata-io.org (SATA)
22 * http://www.compactflash.org (CF)
23 * http://www.qic.org (QIC157 - Tape and DSC)
24 * http://www.ce-ata.org (CE-ATA: not supported)
27 #include <linux/kernel.h>
28 #include <linux/module.h>
29 #include <linux/pci.h>
30 #include <linux/init.h>
31 #include <linux/list.h>
33 #include <linux/spinlock.h>
34 #include <linux/blkdev.h>
35 #include <linux/delay.h>
36 #include <linux/timer.h>
37 #include <linux/time.h>
38 #include <linux/interrupt.h>
39 #include <linux/completion.h>
40 #include <linux/suspend.h>
41 #include <linux/workqueue.h>
42 #include <linux/scatterlist.h>
44 #include <linux/async.h>
45 #include <linux/log2.h>
46 #include <linux/slab.h>
47 #include <linux/glob.h>
48 #include <scsi/scsi.h>
49 #include <scsi/scsi_cmnd.h>
50 #include <scsi/scsi_host.h>
51 #include <linux/libata.h>
52 #include <asm/byteorder.h>
53 #include <asm/unaligned.h>
54 #include <linux/cdrom.h>
55 #include <linux/ratelimit.h>
56 #include <linux/leds.h>
57 #include <linux/pm_runtime.h>
58 #include <linux/platform_device.h>
60 #define CREATE_TRACE_POINTS
61 #include <trace/events/libata.h>
64 #include "libata-transport.h"
66 /* debounce timing parameters in msecs { interval, duration, timeout } */
67 const unsigned long sata_deb_timing_normal
[] = { 5, 100, 2000 };
68 const unsigned long sata_deb_timing_hotplug
[] = { 25, 500, 2000 };
69 const unsigned long sata_deb_timing_long
[] = { 100, 2000, 5000 };
71 const struct ata_port_operations ata_base_port_ops
= {
72 .prereset
= ata_std_prereset
,
73 .postreset
= ata_std_postreset
,
74 .error_handler
= ata_std_error_handler
,
75 .sched_eh
= ata_std_sched_eh
,
76 .end_eh
= ata_std_end_eh
,
79 const struct ata_port_operations sata_port_ops
= {
80 .inherits
= &ata_base_port_ops
,
82 .qc_defer
= ata_std_qc_defer
,
83 .hardreset
= sata_std_hardreset
,
86 static unsigned int ata_dev_init_params(struct ata_device
*dev
,
87 u16 heads
, u16 sectors
);
88 static unsigned int ata_dev_set_xfermode(struct ata_device
*dev
);
89 static void ata_dev_xfermask(struct ata_device
*dev
);
90 static unsigned long ata_dev_blacklisted(const struct ata_device
*dev
);
92 atomic_t ata_print_id
= ATOMIC_INIT(0);
94 struct ata_force_param
{
98 unsigned long xfer_mask
;
99 unsigned int horkage_on
;
100 unsigned int horkage_off
;
104 struct ata_force_ent
{
107 struct ata_force_param param
;
110 static struct ata_force_ent
*ata_force_tbl
;
111 static int ata_force_tbl_size
;
113 static char ata_force_param_buf
[PAGE_SIZE
] __initdata
;
114 /* param_buf is thrown away after initialization, disallow read */
115 module_param_string(force
, ata_force_param_buf
, sizeof(ata_force_param_buf
), 0);
116 MODULE_PARM_DESC(force
, "Force ATA configurations including cable type, link speed and transfer mode (see Documentation/admin-guide/kernel-parameters.rst for details)");
118 static int atapi_enabled
= 1;
119 module_param(atapi_enabled
, int, 0444);
120 MODULE_PARM_DESC(atapi_enabled
, "Enable discovery of ATAPI devices (0=off, 1=on [default])");
122 static int atapi_dmadir
= 0;
123 module_param(atapi_dmadir
, int, 0444);
124 MODULE_PARM_DESC(atapi_dmadir
, "Enable ATAPI DMADIR bridge support (0=off [default], 1=on)");
126 int atapi_passthru16
= 1;
127 module_param(atapi_passthru16
, int, 0444);
128 MODULE_PARM_DESC(atapi_passthru16
, "Enable ATA_16 passthru for ATAPI devices (0=off, 1=on [default])");
131 module_param_named(fua
, libata_fua
, int, 0444);
132 MODULE_PARM_DESC(fua
, "FUA support (0=off [default], 1=on)");
134 static int ata_ignore_hpa
;
135 module_param_named(ignore_hpa
, ata_ignore_hpa
, int, 0644);
136 MODULE_PARM_DESC(ignore_hpa
, "Ignore HPA limit (0=keep BIOS limits, 1=ignore limits, using full disk)");
138 static int libata_dma_mask
= ATA_DMA_MASK_ATA
|ATA_DMA_MASK_ATAPI
|ATA_DMA_MASK_CFA
;
139 module_param_named(dma
, libata_dma_mask
, int, 0444);
140 MODULE_PARM_DESC(dma
, "DMA enable/disable (0x1==ATA, 0x2==ATAPI, 0x4==CF)");
142 static int ata_probe_timeout
;
143 module_param(ata_probe_timeout
, int, 0444);
144 MODULE_PARM_DESC(ata_probe_timeout
, "Set ATA probing timeout (seconds)");
146 int libata_noacpi
= 0;
147 module_param_named(noacpi
, libata_noacpi
, int, 0444);
148 MODULE_PARM_DESC(noacpi
, "Disable the use of ACPI in probe/suspend/resume (0=off [default], 1=on)");
150 int libata_allow_tpm
= 0;
151 module_param_named(allow_tpm
, libata_allow_tpm
, int, 0444);
152 MODULE_PARM_DESC(allow_tpm
, "Permit the use of TPM commands (0=off [default], 1=on)");
155 module_param(atapi_an
, int, 0444);
156 MODULE_PARM_DESC(atapi_an
, "Enable ATAPI AN media presence notification (0=0ff [default], 1=on)");
158 MODULE_AUTHOR("Jeff Garzik");
159 MODULE_DESCRIPTION("Library module for ATA devices");
160 MODULE_LICENSE("GPL");
161 MODULE_VERSION(DRV_VERSION
);
164 static bool ata_sstatus_online(u32 sstatus
)
166 return (sstatus
& 0xf) == 0x3;
170 * ata_link_next - link iteration helper
171 * @link: the previous link, NULL to start
172 * @ap: ATA port containing links to iterate
173 * @mode: iteration mode, one of ATA_LITER_*
176 * Host lock or EH context.
179 * Pointer to the next link.
181 struct ata_link
*ata_link_next(struct ata_link
*link
, struct ata_port
*ap
,
182 enum ata_link_iter_mode mode
)
184 BUG_ON(mode
!= ATA_LITER_EDGE
&&
185 mode
!= ATA_LITER_PMP_FIRST
&& mode
!= ATA_LITER_HOST_FIRST
);
187 /* NULL link indicates start of iteration */
191 case ATA_LITER_PMP_FIRST
:
192 if (sata_pmp_attached(ap
))
195 case ATA_LITER_HOST_FIRST
:
199 /* we just iterated over the host link, what's next? */
200 if (link
== &ap
->link
)
202 case ATA_LITER_HOST_FIRST
:
203 if (sata_pmp_attached(ap
))
206 case ATA_LITER_PMP_FIRST
:
207 if (unlikely(ap
->slave_link
))
208 return ap
->slave_link
;
214 /* slave_link excludes PMP */
215 if (unlikely(link
== ap
->slave_link
))
218 /* we were over a PMP link */
219 if (++link
< ap
->pmp_link
+ ap
->nr_pmp_links
)
222 if (mode
== ATA_LITER_PMP_FIRST
)
229 * ata_dev_next - device iteration helper
230 * @dev: the previous device, NULL to start
231 * @link: ATA link containing devices to iterate
232 * @mode: iteration mode, one of ATA_DITER_*
235 * Host lock or EH context.
238 * Pointer to the next device.
240 struct ata_device
*ata_dev_next(struct ata_device
*dev
, struct ata_link
*link
,
241 enum ata_dev_iter_mode mode
)
243 BUG_ON(mode
!= ATA_DITER_ENABLED
&& mode
!= ATA_DITER_ENABLED_REVERSE
&&
244 mode
!= ATA_DITER_ALL
&& mode
!= ATA_DITER_ALL_REVERSE
);
246 /* NULL dev indicates start of iteration */
249 case ATA_DITER_ENABLED
:
253 case ATA_DITER_ENABLED_REVERSE
:
254 case ATA_DITER_ALL_REVERSE
:
255 dev
= link
->device
+ ata_link_max_devices(link
) - 1;
260 /* move to the next one */
262 case ATA_DITER_ENABLED
:
264 if (++dev
< link
->device
+ ata_link_max_devices(link
))
267 case ATA_DITER_ENABLED_REVERSE
:
268 case ATA_DITER_ALL_REVERSE
:
269 if (--dev
>= link
->device
)
275 if ((mode
== ATA_DITER_ENABLED
|| mode
== ATA_DITER_ENABLED_REVERSE
) &&
276 !ata_dev_enabled(dev
))
282 * ata_dev_phys_link - find physical link for a device
283 * @dev: ATA device to look up physical link for
285 * Look up physical link which @dev is attached to. Note that
286 * this is different from @dev->link only when @dev is on slave
287 * link. For all other cases, it's the same as @dev->link.
293 * Pointer to the found physical link.
295 struct ata_link
*ata_dev_phys_link(struct ata_device
*dev
)
297 struct ata_port
*ap
= dev
->link
->ap
;
303 return ap
->slave_link
;
307 * ata_force_cbl - force cable type according to libata.force
308 * @ap: ATA port of interest
310 * Force cable type according to libata.force and whine about it.
311 * The last entry which has matching port number is used, so it
312 * can be specified as part of device force parameters. For
313 * example, both "a:40c,1.00:udma4" and "1.00:40c,udma4" have the
319 void ata_force_cbl(struct ata_port
*ap
)
323 for (i
= ata_force_tbl_size
- 1; i
>= 0; i
--) {
324 const struct ata_force_ent
*fe
= &ata_force_tbl
[i
];
326 if (fe
->port
!= -1 && fe
->port
!= ap
->print_id
)
329 if (fe
->param
.cbl
== ATA_CBL_NONE
)
332 ap
->cbl
= fe
->param
.cbl
;
333 ata_port_notice(ap
, "FORCE: cable set to %s\n", fe
->param
.name
);
339 * ata_force_link_limits - force link limits according to libata.force
340 * @link: ATA link of interest
342 * Force link flags and SATA spd limit according to libata.force
343 * and whine about it. When only the port part is specified
344 * (e.g. 1:), the limit applies to all links connected to both
345 * the host link and all fan-out ports connected via PMP. If the
346 * device part is specified as 0 (e.g. 1.00:), it specifies the
347 * first fan-out link not the host link. Device number 15 always
348 * points to the host link whether PMP is attached or not. If the
349 * controller has slave link, device number 16 points to it.
354 static void ata_force_link_limits(struct ata_link
*link
)
356 bool did_spd
= false;
357 int linkno
= link
->pmp
;
360 if (ata_is_host_link(link
))
363 for (i
= ata_force_tbl_size
- 1; i
>= 0; i
--) {
364 const struct ata_force_ent
*fe
= &ata_force_tbl
[i
];
366 if (fe
->port
!= -1 && fe
->port
!= link
->ap
->print_id
)
369 if (fe
->device
!= -1 && fe
->device
!= linkno
)
372 /* only honor the first spd limit */
373 if (!did_spd
&& fe
->param
.spd_limit
) {
374 link
->hw_sata_spd_limit
= (1 << fe
->param
.spd_limit
) - 1;
375 ata_link_notice(link
, "FORCE: PHY spd limit set to %s\n",
380 /* let lflags stack */
381 if (fe
->param
.lflags
) {
382 link
->flags
|= fe
->param
.lflags
;
383 ata_link_notice(link
,
384 "FORCE: link flag 0x%x forced -> 0x%x\n",
385 fe
->param
.lflags
, link
->flags
);
391 * ata_force_xfermask - force xfermask according to libata.force
392 * @dev: ATA device of interest
394 * Force xfer_mask according to libata.force and whine about it.
395 * For consistency with link selection, device number 15 selects
396 * the first device connected to the host link.
401 static void ata_force_xfermask(struct ata_device
*dev
)
403 int devno
= dev
->link
->pmp
+ dev
->devno
;
404 int alt_devno
= devno
;
407 /* allow n.15/16 for devices attached to host port */
408 if (ata_is_host_link(dev
->link
))
411 for (i
= ata_force_tbl_size
- 1; i
>= 0; i
--) {
412 const struct ata_force_ent
*fe
= &ata_force_tbl
[i
];
413 unsigned long pio_mask
, mwdma_mask
, udma_mask
;
415 if (fe
->port
!= -1 && fe
->port
!= dev
->link
->ap
->print_id
)
418 if (fe
->device
!= -1 && fe
->device
!= devno
&&
419 fe
->device
!= alt_devno
)
422 if (!fe
->param
.xfer_mask
)
425 ata_unpack_xfermask(fe
->param
.xfer_mask
,
426 &pio_mask
, &mwdma_mask
, &udma_mask
);
428 dev
->udma_mask
= udma_mask
;
429 else if (mwdma_mask
) {
431 dev
->mwdma_mask
= mwdma_mask
;
435 dev
->pio_mask
= pio_mask
;
438 ata_dev_notice(dev
, "FORCE: xfer_mask set to %s\n",
445 * ata_force_horkage - force horkage according to libata.force
446 * @dev: ATA device of interest
448 * Force horkage according to libata.force and whine about it.
449 * For consistency with link selection, device number 15 selects
450 * the first device connected to the host link.
455 static void ata_force_horkage(struct ata_device
*dev
)
457 int devno
= dev
->link
->pmp
+ dev
->devno
;
458 int alt_devno
= devno
;
461 /* allow n.15/16 for devices attached to host port */
462 if (ata_is_host_link(dev
->link
))
465 for (i
= 0; i
< ata_force_tbl_size
; i
++) {
466 const struct ata_force_ent
*fe
= &ata_force_tbl
[i
];
468 if (fe
->port
!= -1 && fe
->port
!= dev
->link
->ap
->print_id
)
471 if (fe
->device
!= -1 && fe
->device
!= devno
&&
472 fe
->device
!= alt_devno
)
475 if (!(~dev
->horkage
& fe
->param
.horkage_on
) &&
476 !(dev
->horkage
& fe
->param
.horkage_off
))
479 dev
->horkage
|= fe
->param
.horkage_on
;
480 dev
->horkage
&= ~fe
->param
.horkage_off
;
482 ata_dev_notice(dev
, "FORCE: horkage modified (%s)\n",
488 * atapi_cmd_type - Determine ATAPI command type from SCSI opcode
489 * @opcode: SCSI opcode
491 * Determine ATAPI command type from @opcode.
497 * ATAPI_{READ|WRITE|READ_CD|PASS_THRU|MISC}
499 int atapi_cmd_type(u8 opcode
)
508 case GPCMD_WRITE_AND_VERIFY_10
:
512 case GPCMD_READ_CD_MSF
:
513 return ATAPI_READ_CD
;
517 if (atapi_passthru16
)
518 return ATAPI_PASS_THRU
;
526 * ata_tf_to_fis - Convert ATA taskfile to SATA FIS structure
527 * @tf: Taskfile to convert
528 * @pmp: Port multiplier port
529 * @is_cmd: This FIS is for command
530 * @fis: Buffer into which data will output
532 * Converts a standard ATA taskfile to a Serial ATA
533 * FIS structure (Register - Host to Device).
536 * Inherited from caller.
538 void ata_tf_to_fis(const struct ata_taskfile
*tf
, u8 pmp
, int is_cmd
, u8
*fis
)
540 fis
[0] = 0x27; /* Register - Host to Device FIS */
541 fis
[1] = pmp
& 0xf; /* Port multiplier number*/
543 fis
[1] |= (1 << 7); /* bit 7 indicates Command FIS */
545 fis
[2] = tf
->command
;
546 fis
[3] = tf
->feature
;
553 fis
[8] = tf
->hob_lbal
;
554 fis
[9] = tf
->hob_lbam
;
555 fis
[10] = tf
->hob_lbah
;
556 fis
[11] = tf
->hob_feature
;
559 fis
[13] = tf
->hob_nsect
;
563 fis
[16] = tf
->auxiliary
& 0xff;
564 fis
[17] = (tf
->auxiliary
>> 8) & 0xff;
565 fis
[18] = (tf
->auxiliary
>> 16) & 0xff;
566 fis
[19] = (tf
->auxiliary
>> 24) & 0xff;
570 * ata_tf_from_fis - Convert SATA FIS to ATA taskfile
571 * @fis: Buffer from which data will be input
572 * @tf: Taskfile to output
574 * Converts a serial ATA FIS structure to a standard ATA taskfile.
577 * Inherited from caller.
580 void ata_tf_from_fis(const u8
*fis
, struct ata_taskfile
*tf
)
582 tf
->command
= fis
[2]; /* status */
583 tf
->feature
= fis
[3]; /* error */
590 tf
->hob_lbal
= fis
[8];
591 tf
->hob_lbam
= fis
[9];
592 tf
->hob_lbah
= fis
[10];
595 tf
->hob_nsect
= fis
[13];
598 static const u8 ata_rw_cmds
[] = {
602 ATA_CMD_READ_MULTI_EXT
,
603 ATA_CMD_WRITE_MULTI_EXT
,
607 ATA_CMD_WRITE_MULTI_FUA_EXT
,
611 ATA_CMD_PIO_READ_EXT
,
612 ATA_CMD_PIO_WRITE_EXT
,
625 ATA_CMD_WRITE_FUA_EXT
629 * ata_rwcmd_protocol - set taskfile r/w commands and protocol
630 * @tf: command to examine and configure
631 * @dev: device tf belongs to
633 * Examine the device configuration and tf->flags to calculate
634 * the proper read/write commands and protocol to use.
639 static int ata_rwcmd_protocol(struct ata_taskfile
*tf
, struct ata_device
*dev
)
643 int index
, fua
, lba48
, write
;
645 fua
= (tf
->flags
& ATA_TFLAG_FUA
) ? 4 : 0;
646 lba48
= (tf
->flags
& ATA_TFLAG_LBA48
) ? 2 : 0;
647 write
= (tf
->flags
& ATA_TFLAG_WRITE
) ? 1 : 0;
649 if (dev
->flags
& ATA_DFLAG_PIO
) {
650 tf
->protocol
= ATA_PROT_PIO
;
651 index
= dev
->multi_count
? 0 : 8;
652 } else if (lba48
&& (dev
->link
->ap
->flags
& ATA_FLAG_PIO_LBA48
)) {
653 /* Unable to use DMA due to host limitation */
654 tf
->protocol
= ATA_PROT_PIO
;
655 index
= dev
->multi_count
? 0 : 8;
657 tf
->protocol
= ATA_PROT_DMA
;
661 cmd
= ata_rw_cmds
[index
+ fua
+ lba48
+ write
];
670 * ata_tf_read_block - Read block address from ATA taskfile
671 * @tf: ATA taskfile of interest
672 * @dev: ATA device @tf belongs to
677 * Read block address from @tf. This function can handle all
678 * three address formats - LBA, LBA48 and CHS. tf->protocol and
679 * flags select the address format to use.
682 * Block address read from @tf.
684 u64
ata_tf_read_block(const struct ata_taskfile
*tf
, struct ata_device
*dev
)
688 if (tf
->flags
& ATA_TFLAG_LBA
) {
689 if (tf
->flags
& ATA_TFLAG_LBA48
) {
690 block
|= (u64
)tf
->hob_lbah
<< 40;
691 block
|= (u64
)tf
->hob_lbam
<< 32;
692 block
|= (u64
)tf
->hob_lbal
<< 24;
694 block
|= (tf
->device
& 0xf) << 24;
696 block
|= tf
->lbah
<< 16;
697 block
|= tf
->lbam
<< 8;
702 cyl
= tf
->lbam
| (tf
->lbah
<< 8);
703 head
= tf
->device
& 0xf;
708 "device reported invalid CHS sector 0\n");
712 block
= (cyl
* dev
->heads
+ head
) * dev
->sectors
+ sect
- 1;
719 * ata_build_rw_tf - Build ATA taskfile for given read/write request
720 * @tf: Target ATA taskfile
721 * @dev: ATA device @tf belongs to
722 * @block: Block address
723 * @n_block: Number of blocks
724 * @tf_flags: RW/FUA etc...
726 * @class: IO priority class
731 * Build ATA taskfile @tf for read/write request described by
732 * @block, @n_block, @tf_flags and @tag on @dev.
736 * 0 on success, -ERANGE if the request is too large for @dev,
737 * -EINVAL if the request is invalid.
739 int ata_build_rw_tf(struct ata_taskfile
*tf
, struct ata_device
*dev
,
740 u64 block
, u32 n_block
, unsigned int tf_flags
,
741 unsigned int tag
, int class)
743 tf
->flags
|= ATA_TFLAG_ISADDR
| ATA_TFLAG_DEVICE
;
744 tf
->flags
|= tf_flags
;
746 if (ata_ncq_enabled(dev
) && !ata_tag_internal(tag
)) {
748 if (!lba_48_ok(block
, n_block
))
751 tf
->protocol
= ATA_PROT_NCQ
;
752 tf
->flags
|= ATA_TFLAG_LBA
| ATA_TFLAG_LBA48
;
754 if (tf
->flags
& ATA_TFLAG_WRITE
)
755 tf
->command
= ATA_CMD_FPDMA_WRITE
;
757 tf
->command
= ATA_CMD_FPDMA_READ
;
759 tf
->nsect
= tag
<< 3;
760 tf
->hob_feature
= (n_block
>> 8) & 0xff;
761 tf
->feature
= n_block
& 0xff;
763 tf
->hob_lbah
= (block
>> 40) & 0xff;
764 tf
->hob_lbam
= (block
>> 32) & 0xff;
765 tf
->hob_lbal
= (block
>> 24) & 0xff;
766 tf
->lbah
= (block
>> 16) & 0xff;
767 tf
->lbam
= (block
>> 8) & 0xff;
768 tf
->lbal
= block
& 0xff;
770 tf
->device
= ATA_LBA
;
771 if (tf
->flags
& ATA_TFLAG_FUA
)
772 tf
->device
|= 1 << 7;
774 if (dev
->flags
& ATA_DFLAG_NCQ_PRIO
) {
775 if (class == IOPRIO_CLASS_RT
)
776 tf
->hob_nsect
|= ATA_PRIO_HIGH
<<
779 } else if (dev
->flags
& ATA_DFLAG_LBA
) {
780 tf
->flags
|= ATA_TFLAG_LBA
;
782 if (lba_28_ok(block
, n_block
)) {
784 tf
->device
|= (block
>> 24) & 0xf;
785 } else if (lba_48_ok(block
, n_block
)) {
786 if (!(dev
->flags
& ATA_DFLAG_LBA48
))
790 tf
->flags
|= ATA_TFLAG_LBA48
;
792 tf
->hob_nsect
= (n_block
>> 8) & 0xff;
794 tf
->hob_lbah
= (block
>> 40) & 0xff;
795 tf
->hob_lbam
= (block
>> 32) & 0xff;
796 tf
->hob_lbal
= (block
>> 24) & 0xff;
798 /* request too large even for LBA48 */
801 if (unlikely(ata_rwcmd_protocol(tf
, dev
) < 0))
804 tf
->nsect
= n_block
& 0xff;
806 tf
->lbah
= (block
>> 16) & 0xff;
807 tf
->lbam
= (block
>> 8) & 0xff;
808 tf
->lbal
= block
& 0xff;
810 tf
->device
|= ATA_LBA
;
813 u32 sect
, head
, cyl
, track
;
815 /* The request -may- be too large for CHS addressing. */
816 if (!lba_28_ok(block
, n_block
))
819 if (unlikely(ata_rwcmd_protocol(tf
, dev
) < 0))
822 /* Convert LBA to CHS */
823 track
= (u32
)block
/ dev
->sectors
;
824 cyl
= track
/ dev
->heads
;
825 head
= track
% dev
->heads
;
826 sect
= (u32
)block
% dev
->sectors
+ 1;
828 DPRINTK("block %u track %u cyl %u head %u sect %u\n",
829 (u32
)block
, track
, cyl
, head
, sect
);
831 /* Check whether the converted CHS can fit.
835 if ((cyl
>> 16) || (head
>> 4) || (sect
>> 8) || (!sect
))
838 tf
->nsect
= n_block
& 0xff; /* Sector count 0 means 256 sectors */
849 * ata_pack_xfermask - Pack pio, mwdma and udma masks into xfer_mask
850 * @pio_mask: pio_mask
851 * @mwdma_mask: mwdma_mask
852 * @udma_mask: udma_mask
854 * Pack @pio_mask, @mwdma_mask and @udma_mask into a single
855 * unsigned int xfer_mask.
863 unsigned long ata_pack_xfermask(unsigned long pio_mask
,
864 unsigned long mwdma_mask
,
865 unsigned long udma_mask
)
867 return ((pio_mask
<< ATA_SHIFT_PIO
) & ATA_MASK_PIO
) |
868 ((mwdma_mask
<< ATA_SHIFT_MWDMA
) & ATA_MASK_MWDMA
) |
869 ((udma_mask
<< ATA_SHIFT_UDMA
) & ATA_MASK_UDMA
);
873 * ata_unpack_xfermask - Unpack xfer_mask into pio, mwdma and udma masks
874 * @xfer_mask: xfer_mask to unpack
875 * @pio_mask: resulting pio_mask
876 * @mwdma_mask: resulting mwdma_mask
877 * @udma_mask: resulting udma_mask
879 * Unpack @xfer_mask into @pio_mask, @mwdma_mask and @udma_mask.
880 * Any NULL destination masks will be ignored.
882 void ata_unpack_xfermask(unsigned long xfer_mask
, unsigned long *pio_mask
,
883 unsigned long *mwdma_mask
, unsigned long *udma_mask
)
886 *pio_mask
= (xfer_mask
& ATA_MASK_PIO
) >> ATA_SHIFT_PIO
;
888 *mwdma_mask
= (xfer_mask
& ATA_MASK_MWDMA
) >> ATA_SHIFT_MWDMA
;
890 *udma_mask
= (xfer_mask
& ATA_MASK_UDMA
) >> ATA_SHIFT_UDMA
;
893 static const struct ata_xfer_ent
{
897 { ATA_SHIFT_PIO
, ATA_NR_PIO_MODES
, XFER_PIO_0
},
898 { ATA_SHIFT_MWDMA
, ATA_NR_MWDMA_MODES
, XFER_MW_DMA_0
},
899 { ATA_SHIFT_UDMA
, ATA_NR_UDMA_MODES
, XFER_UDMA_0
},
904 * ata_xfer_mask2mode - Find matching XFER_* for the given xfer_mask
905 * @xfer_mask: xfer_mask of interest
907 * Return matching XFER_* value for @xfer_mask. Only the highest
908 * bit of @xfer_mask is considered.
914 * Matching XFER_* value, 0xff if no match found.
916 u8
ata_xfer_mask2mode(unsigned long xfer_mask
)
918 int highbit
= fls(xfer_mask
) - 1;
919 const struct ata_xfer_ent
*ent
;
921 for (ent
= ata_xfer_tbl
; ent
->shift
>= 0; ent
++)
922 if (highbit
>= ent
->shift
&& highbit
< ent
->shift
+ ent
->bits
)
923 return ent
->base
+ highbit
- ent
->shift
;
928 * ata_xfer_mode2mask - Find matching xfer_mask for XFER_*
929 * @xfer_mode: XFER_* of interest
931 * Return matching xfer_mask for @xfer_mode.
937 * Matching xfer_mask, 0 if no match found.
939 unsigned long ata_xfer_mode2mask(u8 xfer_mode
)
941 const struct ata_xfer_ent
*ent
;
943 for (ent
= ata_xfer_tbl
; ent
->shift
>= 0; ent
++)
944 if (xfer_mode
>= ent
->base
&& xfer_mode
< ent
->base
+ ent
->bits
)
945 return ((2 << (ent
->shift
+ xfer_mode
- ent
->base
)) - 1)
946 & ~((1 << ent
->shift
) - 1);
951 * ata_xfer_mode2shift - Find matching xfer_shift for XFER_*
952 * @xfer_mode: XFER_* of interest
954 * Return matching xfer_shift for @xfer_mode.
960 * Matching xfer_shift, -1 if no match found.
962 int ata_xfer_mode2shift(unsigned long xfer_mode
)
964 const struct ata_xfer_ent
*ent
;
966 for (ent
= ata_xfer_tbl
; ent
->shift
>= 0; ent
++)
967 if (xfer_mode
>= ent
->base
&& xfer_mode
< ent
->base
+ ent
->bits
)
973 * ata_mode_string - convert xfer_mask to string
974 * @xfer_mask: mask of bits supported; only highest bit counts.
976 * Determine string which represents the highest speed
977 * (highest bit in @modemask).
983 * Constant C string representing highest speed listed in
984 * @mode_mask, or the constant C string "<n/a>".
986 const char *ata_mode_string(unsigned long xfer_mask
)
988 static const char * const xfer_mode_str
[] = {
1012 highbit
= fls(xfer_mask
) - 1;
1013 if (highbit
>= 0 && highbit
< ARRAY_SIZE(xfer_mode_str
))
1014 return xfer_mode_str
[highbit
];
1018 const char *sata_spd_string(unsigned int spd
)
1020 static const char * const spd_str
[] = {
1026 if (spd
== 0 || (spd
- 1) >= ARRAY_SIZE(spd_str
))
1028 return spd_str
[spd
- 1];
1032 * ata_dev_classify - determine device type based on ATA-spec signature
1033 * @tf: ATA taskfile register set for device to be identified
1035 * Determine from taskfile register contents whether a device is
1036 * ATA or ATAPI, as per "Signature and persistence" section
1037 * of ATA/PI spec (volume 1, sect 5.14).
1043 * Device type, %ATA_DEV_ATA, %ATA_DEV_ATAPI, %ATA_DEV_PMP,
1044 * %ATA_DEV_ZAC, or %ATA_DEV_UNKNOWN the event of failure.
1046 unsigned int ata_dev_classify(const struct ata_taskfile
*tf
)
1048 /* Apple's open source Darwin code hints that some devices only
1049 * put a proper signature into the LBA mid/high registers,
1050 * So, we only check those. It's sufficient for uniqueness.
1052 * ATA/ATAPI-7 (d1532v1r1: Feb. 19, 2003) specified separate
1053 * signatures for ATA and ATAPI devices attached on SerialATA,
1054 * 0x3c/0xc3 and 0x69/0x96 respectively. However, SerialATA
1055 * spec has never mentioned about using different signatures
1056 * for ATA/ATAPI devices. Then, Serial ATA II: Port
1057 * Multiplier specification began to use 0x69/0x96 to identify
1058 * port multpliers and 0x3c/0xc3 to identify SEMB device.
1059 * ATA/ATAPI-7 dropped descriptions about 0x3c/0xc3 and
1060 * 0x69/0x96 shortly and described them as reserved for
1063 * We follow the current spec and consider that 0x69/0x96
1064 * identifies a port multiplier and 0x3c/0xc3 a SEMB device.
1065 * Unfortunately, WDC WD1600JS-62MHB5 (a hard drive) reports
1066 * SEMB signature. This is worked around in
1067 * ata_dev_read_id().
1069 if ((tf
->lbam
== 0) && (tf
->lbah
== 0)) {
1070 DPRINTK("found ATA device by sig\n");
1074 if ((tf
->lbam
== 0x14) && (tf
->lbah
== 0xeb)) {
1075 DPRINTK("found ATAPI device by sig\n");
1076 return ATA_DEV_ATAPI
;
1079 if ((tf
->lbam
== 0x69) && (tf
->lbah
== 0x96)) {
1080 DPRINTK("found PMP device by sig\n");
1084 if ((tf
->lbam
== 0x3c) && (tf
->lbah
== 0xc3)) {
1085 DPRINTK("found SEMB device by sig (could be ATA device)\n");
1086 return ATA_DEV_SEMB
;
1089 if ((tf
->lbam
== 0xcd) && (tf
->lbah
== 0xab)) {
1090 DPRINTK("found ZAC device by sig\n");
1094 DPRINTK("unknown device\n");
1095 return ATA_DEV_UNKNOWN
;
1099 * ata_id_string - Convert IDENTIFY DEVICE page into string
1100 * @id: IDENTIFY DEVICE results we will examine
1101 * @s: string into which data is output
1102 * @ofs: offset into identify device page
1103 * @len: length of string to return. must be an even number.
1105 * The strings in the IDENTIFY DEVICE page are broken up into
1106 * 16-bit chunks. Run through the string, and output each
1107 * 8-bit chunk linearly, regardless of platform.
1113 void ata_id_string(const u16
*id
, unsigned char *s
,
1114 unsigned int ofs
, unsigned int len
)
1135 * ata_id_c_string - Convert IDENTIFY DEVICE page into C string
1136 * @id: IDENTIFY DEVICE results we will examine
1137 * @s: string into which data is output
1138 * @ofs: offset into identify device page
1139 * @len: length of string to return. must be an odd number.
1141 * This function is identical to ata_id_string except that it
1142 * trims trailing spaces and terminates the resulting string with
1143 * null. @len must be actual maximum length (even number) + 1.
1148 void ata_id_c_string(const u16
*id
, unsigned char *s
,
1149 unsigned int ofs
, unsigned int len
)
1153 ata_id_string(id
, s
, ofs
, len
- 1);
1155 p
= s
+ strnlen(s
, len
- 1);
1156 while (p
> s
&& p
[-1] == ' ')
1161 static u64
ata_id_n_sectors(const u16
*id
)
1163 if (ata_id_has_lba(id
)) {
1164 if (ata_id_has_lba48(id
))
1165 return ata_id_u64(id
, ATA_ID_LBA_CAPACITY_2
);
1167 return ata_id_u32(id
, ATA_ID_LBA_CAPACITY
);
1169 if (ata_id_current_chs_valid(id
))
1170 return id
[ATA_ID_CUR_CYLS
] * id
[ATA_ID_CUR_HEADS
] *
1171 id
[ATA_ID_CUR_SECTORS
];
1173 return id
[ATA_ID_CYLS
] * id
[ATA_ID_HEADS
] *
1178 u64
ata_tf_to_lba48(const struct ata_taskfile
*tf
)
1182 sectors
|= ((u64
)(tf
->hob_lbah
& 0xff)) << 40;
1183 sectors
|= ((u64
)(tf
->hob_lbam
& 0xff)) << 32;
1184 sectors
|= ((u64
)(tf
->hob_lbal
& 0xff)) << 24;
1185 sectors
|= (tf
->lbah
& 0xff) << 16;
1186 sectors
|= (tf
->lbam
& 0xff) << 8;
1187 sectors
|= (tf
->lbal
& 0xff);
1192 u64
ata_tf_to_lba(const struct ata_taskfile
*tf
)
1196 sectors
|= (tf
->device
& 0x0f) << 24;
1197 sectors
|= (tf
->lbah
& 0xff) << 16;
1198 sectors
|= (tf
->lbam
& 0xff) << 8;
1199 sectors
|= (tf
->lbal
& 0xff);
1205 * ata_read_native_max_address - Read native max address
1206 * @dev: target device
1207 * @max_sectors: out parameter for the result native max address
1209 * Perform an LBA48 or LBA28 native size query upon the device in
1213 * 0 on success, -EACCES if command is aborted by the drive.
1214 * -EIO on other errors.
1216 static int ata_read_native_max_address(struct ata_device
*dev
, u64
*max_sectors
)
1218 unsigned int err_mask
;
1219 struct ata_taskfile tf
;
1220 int lba48
= ata_id_has_lba48(dev
->id
);
1222 ata_tf_init(dev
, &tf
);
1224 /* always clear all address registers */
1225 tf
.flags
|= ATA_TFLAG_DEVICE
| ATA_TFLAG_ISADDR
;
1228 tf
.command
= ATA_CMD_READ_NATIVE_MAX_EXT
;
1229 tf
.flags
|= ATA_TFLAG_LBA48
;
1231 tf
.command
= ATA_CMD_READ_NATIVE_MAX
;
1233 tf
.protocol
= ATA_PROT_NODATA
;
1234 tf
.device
|= ATA_LBA
;
1236 err_mask
= ata_exec_internal(dev
, &tf
, NULL
, DMA_NONE
, NULL
, 0, 0);
1239 "failed to read native max address (err_mask=0x%x)\n",
1241 if (err_mask
== AC_ERR_DEV
&& (tf
.feature
& ATA_ABORTED
))
1247 *max_sectors
= ata_tf_to_lba48(&tf
) + 1;
1249 *max_sectors
= ata_tf_to_lba(&tf
) + 1;
1250 if (dev
->horkage
& ATA_HORKAGE_HPA_SIZE
)
1256 * ata_set_max_sectors - Set max sectors
1257 * @dev: target device
1258 * @new_sectors: new max sectors value to set for the device
1260 * Set max sectors of @dev to @new_sectors.
1263 * 0 on success, -EACCES if command is aborted or denied (due to
1264 * previous non-volatile SET_MAX) by the drive. -EIO on other
1267 static int ata_set_max_sectors(struct ata_device
*dev
, u64 new_sectors
)
1269 unsigned int err_mask
;
1270 struct ata_taskfile tf
;
1271 int lba48
= ata_id_has_lba48(dev
->id
);
1275 ata_tf_init(dev
, &tf
);
1277 tf
.flags
|= ATA_TFLAG_DEVICE
| ATA_TFLAG_ISADDR
;
1280 tf
.command
= ATA_CMD_SET_MAX_EXT
;
1281 tf
.flags
|= ATA_TFLAG_LBA48
;
1283 tf
.hob_lbal
= (new_sectors
>> 24) & 0xff;
1284 tf
.hob_lbam
= (new_sectors
>> 32) & 0xff;
1285 tf
.hob_lbah
= (new_sectors
>> 40) & 0xff;
1287 tf
.command
= ATA_CMD_SET_MAX
;
1289 tf
.device
|= (new_sectors
>> 24) & 0xf;
1292 tf
.protocol
= ATA_PROT_NODATA
;
1293 tf
.device
|= ATA_LBA
;
1295 tf
.lbal
= (new_sectors
>> 0) & 0xff;
1296 tf
.lbam
= (new_sectors
>> 8) & 0xff;
1297 tf
.lbah
= (new_sectors
>> 16) & 0xff;
1299 err_mask
= ata_exec_internal(dev
, &tf
, NULL
, DMA_NONE
, NULL
, 0, 0);
1302 "failed to set max address (err_mask=0x%x)\n",
1304 if (err_mask
== AC_ERR_DEV
&&
1305 (tf
.feature
& (ATA_ABORTED
| ATA_IDNF
)))
1314 * ata_hpa_resize - Resize a device with an HPA set
1315 * @dev: Device to resize
1317 * Read the size of an LBA28 or LBA48 disk with HPA features and resize
1318 * it if required to the full size of the media. The caller must check
1319 * the drive has the HPA feature set enabled.
1322 * 0 on success, -errno on failure.
1324 static int ata_hpa_resize(struct ata_device
*dev
)
1326 struct ata_eh_context
*ehc
= &dev
->link
->eh_context
;
1327 int print_info
= ehc
->i
.flags
& ATA_EHI_PRINTINFO
;
1328 bool unlock_hpa
= ata_ignore_hpa
|| dev
->flags
& ATA_DFLAG_UNLOCK_HPA
;
1329 u64 sectors
= ata_id_n_sectors(dev
->id
);
1333 /* do we need to do it? */
1334 if ((dev
->class != ATA_DEV_ATA
&& dev
->class != ATA_DEV_ZAC
) ||
1335 !ata_id_has_lba(dev
->id
) || !ata_id_hpa_enabled(dev
->id
) ||
1336 (dev
->horkage
& ATA_HORKAGE_BROKEN_HPA
))
1339 /* read native max address */
1340 rc
= ata_read_native_max_address(dev
, &native_sectors
);
1342 /* If device aborted the command or HPA isn't going to
1343 * be unlocked, skip HPA resizing.
1345 if (rc
== -EACCES
|| !unlock_hpa
) {
1347 "HPA support seems broken, skipping HPA handling\n");
1348 dev
->horkage
|= ATA_HORKAGE_BROKEN_HPA
;
1350 /* we can continue if device aborted the command */
1357 dev
->n_native_sectors
= native_sectors
;
1359 /* nothing to do? */
1360 if (native_sectors
<= sectors
|| !unlock_hpa
) {
1361 if (!print_info
|| native_sectors
== sectors
)
1364 if (native_sectors
> sectors
)
1366 "HPA detected: current %llu, native %llu\n",
1367 (unsigned long long)sectors
,
1368 (unsigned long long)native_sectors
);
1369 else if (native_sectors
< sectors
)
1371 "native sectors (%llu) is smaller than sectors (%llu)\n",
1372 (unsigned long long)native_sectors
,
1373 (unsigned long long)sectors
);
1377 /* let's unlock HPA */
1378 rc
= ata_set_max_sectors(dev
, native_sectors
);
1379 if (rc
== -EACCES
) {
1380 /* if device aborted the command, skip HPA resizing */
1382 "device aborted resize (%llu -> %llu), skipping HPA handling\n",
1383 (unsigned long long)sectors
,
1384 (unsigned long long)native_sectors
);
1385 dev
->horkage
|= ATA_HORKAGE_BROKEN_HPA
;
1390 /* re-read IDENTIFY data */
1391 rc
= ata_dev_reread_id(dev
, 0);
1394 "failed to re-read IDENTIFY data after HPA resizing\n");
1399 u64 new_sectors
= ata_id_n_sectors(dev
->id
);
1401 "HPA unlocked: %llu -> %llu, native %llu\n",
1402 (unsigned long long)sectors
,
1403 (unsigned long long)new_sectors
,
1404 (unsigned long long)native_sectors
);
1411 * ata_dump_id - IDENTIFY DEVICE info debugging output
1412 * @id: IDENTIFY DEVICE page to dump
1414 * Dump selected 16-bit words from the given IDENTIFY DEVICE
1421 static inline void ata_dump_id(const u16
*id
)
1423 DPRINTK("49==0x%04x "
1433 DPRINTK("80==0x%04x "
1443 DPRINTK("88==0x%04x "
1450 * ata_id_xfermask - Compute xfermask from the given IDENTIFY data
1451 * @id: IDENTIFY data to compute xfer mask from
1453 * Compute the xfermask for this device. This is not as trivial
1454 * as it seems if we must consider early devices correctly.
1456 * FIXME: pre IDE drive timing (do we care ?).
1464 unsigned long ata_id_xfermask(const u16
*id
)
1466 unsigned long pio_mask
, mwdma_mask
, udma_mask
;
1468 /* Usual case. Word 53 indicates word 64 is valid */
1469 if (id
[ATA_ID_FIELD_VALID
] & (1 << 1)) {
1470 pio_mask
= id
[ATA_ID_PIO_MODES
] & 0x03;
1474 /* If word 64 isn't valid then Word 51 high byte holds
1475 * the PIO timing number for the maximum. Turn it into
1478 u8 mode
= (id
[ATA_ID_OLD_PIO_MODES
] >> 8) & 0xFF;
1479 if (mode
< 5) /* Valid PIO range */
1480 pio_mask
= (2 << mode
) - 1;
1484 /* But wait.. there's more. Design your standards by
1485 * committee and you too can get a free iordy field to
1486 * process. However its the speeds not the modes that
1487 * are supported... Note drivers using the timing API
1488 * will get this right anyway
1492 mwdma_mask
= id
[ATA_ID_MWDMA_MODES
] & 0x07;
1494 if (ata_id_is_cfa(id
)) {
1496 * Process compact flash extended modes
1498 int pio
= (id
[ATA_ID_CFA_MODES
] >> 0) & 0x7;
1499 int dma
= (id
[ATA_ID_CFA_MODES
] >> 3) & 0x7;
1502 pio_mask
|= (1 << 5);
1504 pio_mask
|= (1 << 6);
1506 mwdma_mask
|= (1 << 3);
1508 mwdma_mask
|= (1 << 4);
1512 if (id
[ATA_ID_FIELD_VALID
] & (1 << 2))
1513 udma_mask
= id
[ATA_ID_UDMA_MODES
] & 0xff;
1515 return ata_pack_xfermask(pio_mask
, mwdma_mask
, udma_mask
);
1518 static void ata_qc_complete_internal(struct ata_queued_cmd
*qc
)
1520 struct completion
*waiting
= qc
->private_data
;
1526 * ata_exec_internal_sg - execute libata internal command
1527 * @dev: Device to which the command is sent
1528 * @tf: Taskfile registers for the command and the result
1529 * @cdb: CDB for packet command
1530 * @dma_dir: Data transfer direction of the command
1531 * @sgl: sg list for the data buffer of the command
1532 * @n_elem: Number of sg entries
1533 * @timeout: Timeout in msecs (0 for default)
1535 * Executes libata internal command with timeout. @tf contains
1536 * command on entry and result on return. Timeout and error
1537 * conditions are reported via return value. No recovery action
1538 * is taken after a command times out. It's caller's duty to
1539 * clean up after timeout.
1542 * None. Should be called with kernel context, might sleep.
1545 * Zero on success, AC_ERR_* mask on failure
1547 unsigned ata_exec_internal_sg(struct ata_device
*dev
,
1548 struct ata_taskfile
*tf
, const u8
*cdb
,
1549 int dma_dir
, struct scatterlist
*sgl
,
1550 unsigned int n_elem
, unsigned long timeout
)
1552 struct ata_link
*link
= dev
->link
;
1553 struct ata_port
*ap
= link
->ap
;
1554 u8 command
= tf
->command
;
1555 int auto_timeout
= 0;
1556 struct ata_queued_cmd
*qc
;
1557 unsigned int preempted_tag
;
1558 u32 preempted_sactive
;
1559 u64 preempted_qc_active
;
1560 int preempted_nr_active_links
;
1561 DECLARE_COMPLETION_ONSTACK(wait
);
1562 unsigned long flags
;
1563 unsigned int err_mask
;
1566 spin_lock_irqsave(ap
->lock
, flags
);
1568 /* no internal command while frozen */
1569 if (ap
->pflags
& ATA_PFLAG_FROZEN
) {
1570 spin_unlock_irqrestore(ap
->lock
, flags
);
1571 return AC_ERR_SYSTEM
;
1574 /* initialize internal qc */
1575 qc
= __ata_qc_from_tag(ap
, ATA_TAG_INTERNAL
);
1577 qc
->tag
= ATA_TAG_INTERNAL
;
1584 preempted_tag
= link
->active_tag
;
1585 preempted_sactive
= link
->sactive
;
1586 preempted_qc_active
= ap
->qc_active
;
1587 preempted_nr_active_links
= ap
->nr_active_links
;
1588 link
->active_tag
= ATA_TAG_POISON
;
1591 ap
->nr_active_links
= 0;
1593 /* prepare & issue qc */
1596 memcpy(qc
->cdb
, cdb
, ATAPI_CDB_LEN
);
1598 /* some SATA bridges need us to indicate data xfer direction */
1599 if (tf
->protocol
== ATAPI_PROT_DMA
&& (dev
->flags
& ATA_DFLAG_DMADIR
) &&
1600 dma_dir
== DMA_FROM_DEVICE
)
1601 qc
->tf
.feature
|= ATAPI_DMADIR
;
1603 qc
->flags
|= ATA_QCFLAG_RESULT_TF
;
1604 qc
->dma_dir
= dma_dir
;
1605 if (dma_dir
!= DMA_NONE
) {
1606 unsigned int i
, buflen
= 0;
1607 struct scatterlist
*sg
;
1609 for_each_sg(sgl
, sg
, n_elem
, i
)
1610 buflen
+= sg
->length
;
1612 ata_sg_init(qc
, sgl
, n_elem
);
1613 qc
->nbytes
= buflen
;
1616 qc
->private_data
= &wait
;
1617 qc
->complete_fn
= ata_qc_complete_internal
;
1621 spin_unlock_irqrestore(ap
->lock
, flags
);
1624 if (ata_probe_timeout
)
1625 timeout
= ata_probe_timeout
* 1000;
1627 timeout
= ata_internal_cmd_timeout(dev
, command
);
1632 if (ap
->ops
->error_handler
)
1635 rc
= wait_for_completion_timeout(&wait
, msecs_to_jiffies(timeout
));
1637 if (ap
->ops
->error_handler
)
1640 ata_sff_flush_pio_task(ap
);
1643 spin_lock_irqsave(ap
->lock
, flags
);
1645 /* We're racing with irq here. If we lose, the
1646 * following test prevents us from completing the qc
1647 * twice. If we win, the port is frozen and will be
1648 * cleaned up by ->post_internal_cmd().
1650 if (qc
->flags
& ATA_QCFLAG_ACTIVE
) {
1651 qc
->err_mask
|= AC_ERR_TIMEOUT
;
1653 if (ap
->ops
->error_handler
)
1654 ata_port_freeze(ap
);
1656 ata_qc_complete(qc
);
1658 if (ata_msg_warn(ap
))
1659 ata_dev_warn(dev
, "qc timeout (cmd 0x%x)\n",
1663 spin_unlock_irqrestore(ap
->lock
, flags
);
1666 /* do post_internal_cmd */
1667 if (ap
->ops
->post_internal_cmd
)
1668 ap
->ops
->post_internal_cmd(qc
);
1670 /* perform minimal error analysis */
1671 if (qc
->flags
& ATA_QCFLAG_FAILED
) {
1672 if (qc
->result_tf
.command
& (ATA_ERR
| ATA_DF
))
1673 qc
->err_mask
|= AC_ERR_DEV
;
1676 qc
->err_mask
|= AC_ERR_OTHER
;
1678 if (qc
->err_mask
& ~AC_ERR_OTHER
)
1679 qc
->err_mask
&= ~AC_ERR_OTHER
;
1680 } else if (qc
->tf
.command
== ATA_CMD_REQ_SENSE_DATA
) {
1681 qc
->result_tf
.command
|= ATA_SENSE
;
1685 spin_lock_irqsave(ap
->lock
, flags
);
1687 *tf
= qc
->result_tf
;
1688 err_mask
= qc
->err_mask
;
1691 link
->active_tag
= preempted_tag
;
1692 link
->sactive
= preempted_sactive
;
1693 ap
->qc_active
= preempted_qc_active
;
1694 ap
->nr_active_links
= preempted_nr_active_links
;
1696 spin_unlock_irqrestore(ap
->lock
, flags
);
1698 if ((err_mask
& AC_ERR_TIMEOUT
) && auto_timeout
)
1699 ata_internal_cmd_timed_out(dev
, command
);
1705 * ata_exec_internal - execute libata internal command
1706 * @dev: Device to which the command is sent
1707 * @tf: Taskfile registers for the command and the result
1708 * @cdb: CDB for packet command
1709 * @dma_dir: Data transfer direction of the command
1710 * @buf: Data buffer of the command
1711 * @buflen: Length of data buffer
1712 * @timeout: Timeout in msecs (0 for default)
1714 * Wrapper around ata_exec_internal_sg() which takes simple
1715 * buffer instead of sg list.
1718 * None. Should be called with kernel context, might sleep.
1721 * Zero on success, AC_ERR_* mask on failure
1723 unsigned ata_exec_internal(struct ata_device
*dev
,
1724 struct ata_taskfile
*tf
, const u8
*cdb
,
1725 int dma_dir
, void *buf
, unsigned int buflen
,
1726 unsigned long timeout
)
1728 struct scatterlist
*psg
= NULL
, sg
;
1729 unsigned int n_elem
= 0;
1731 if (dma_dir
!= DMA_NONE
) {
1733 sg_init_one(&sg
, buf
, buflen
);
1738 return ata_exec_internal_sg(dev
, tf
, cdb
, dma_dir
, psg
, n_elem
,
1743 * ata_pio_need_iordy - check if iordy needed
1746 * Check if the current speed of the device requires IORDY. Used
1747 * by various controllers for chip configuration.
1749 unsigned int ata_pio_need_iordy(const struct ata_device
*adev
)
1751 /* Don't set IORDY if we're preparing for reset. IORDY may
1752 * lead to controller lock up on certain controllers if the
1753 * port is not occupied. See bko#11703 for details.
1755 if (adev
->link
->ap
->pflags
& ATA_PFLAG_RESETTING
)
1757 /* Controller doesn't support IORDY. Probably a pointless
1758 * check as the caller should know this.
1760 if (adev
->link
->ap
->flags
& ATA_FLAG_NO_IORDY
)
1762 /* CF spec. r4.1 Table 22 says no iordy on PIO5 and PIO6. */
1763 if (ata_id_is_cfa(adev
->id
)
1764 && (adev
->pio_mode
== XFER_PIO_5
|| adev
->pio_mode
== XFER_PIO_6
))
1766 /* PIO3 and higher it is mandatory */
1767 if (adev
->pio_mode
> XFER_PIO_2
)
1769 /* We turn it on when possible */
1770 if (ata_id_has_iordy(adev
->id
))
1776 * ata_pio_mask_no_iordy - Return the non IORDY mask
1779 * Compute the highest mode possible if we are not using iordy. Return
1780 * -1 if no iordy mode is available.
1782 static u32
ata_pio_mask_no_iordy(const struct ata_device
*adev
)
1784 /* If we have no drive specific rule, then PIO 2 is non IORDY */
1785 if (adev
->id
[ATA_ID_FIELD_VALID
] & 2) { /* EIDE */
1786 u16 pio
= adev
->id
[ATA_ID_EIDE_PIO
];
1787 /* Is the speed faster than the drive allows non IORDY ? */
1789 /* This is cycle times not frequency - watch the logic! */
1790 if (pio
> 240) /* PIO2 is 240nS per cycle */
1791 return 3 << ATA_SHIFT_PIO
;
1792 return 7 << ATA_SHIFT_PIO
;
1795 return 3 << ATA_SHIFT_PIO
;
1799 * ata_do_dev_read_id - default ID read method
1801 * @tf: proposed taskfile
1804 * Issue the identify taskfile and hand back the buffer containing
1805 * identify data. For some RAID controllers and for pre ATA devices
1806 * this function is wrapped or replaced by the driver
1808 unsigned int ata_do_dev_read_id(struct ata_device
*dev
,
1809 struct ata_taskfile
*tf
, u16
*id
)
1811 return ata_exec_internal(dev
, tf
, NULL
, DMA_FROM_DEVICE
,
1812 id
, sizeof(id
[0]) * ATA_ID_WORDS
, 0);
1816 * ata_dev_read_id - Read ID data from the specified device
1817 * @dev: target device
1818 * @p_class: pointer to class of the target device (may be changed)
1819 * @flags: ATA_READID_* flags
1820 * @id: buffer to read IDENTIFY data into
1822 * Read ID data from the specified device. ATA_CMD_ID_ATA is
1823 * performed on ATA devices and ATA_CMD_ID_ATAPI on ATAPI
1824 * devices. This function also issues ATA_CMD_INIT_DEV_PARAMS
1825 * for pre-ATA4 drives.
1827 * FIXME: ATA_CMD_ID_ATA is optional for early drives and right
1828 * now we abort if we hit that case.
1831 * Kernel thread context (may sleep)
1834 * 0 on success, -errno otherwise.
1836 int ata_dev_read_id(struct ata_device
*dev
, unsigned int *p_class
,
1837 unsigned int flags
, u16
*id
)
1839 struct ata_port
*ap
= dev
->link
->ap
;
1840 unsigned int class = *p_class
;
1841 struct ata_taskfile tf
;
1842 unsigned int err_mask
= 0;
1844 bool is_semb
= class == ATA_DEV_SEMB
;
1845 int may_fallback
= 1, tried_spinup
= 0;
1848 if (ata_msg_ctl(ap
))
1849 ata_dev_dbg(dev
, "%s: ENTER\n", __func__
);
1852 ata_tf_init(dev
, &tf
);
1856 class = ATA_DEV_ATA
; /* some hard drives report SEMB sig */
1860 tf
.command
= ATA_CMD_ID_ATA
;
1863 tf
.command
= ATA_CMD_ID_ATAPI
;
1867 reason
= "unsupported class";
1871 tf
.protocol
= ATA_PROT_PIO
;
1873 /* Some devices choke if TF registers contain garbage. Make
1874 * sure those are properly initialized.
1876 tf
.flags
|= ATA_TFLAG_ISADDR
| ATA_TFLAG_DEVICE
;
1878 /* Device presence detection is unreliable on some
1879 * controllers. Always poll IDENTIFY if available.
1881 tf
.flags
|= ATA_TFLAG_POLLING
;
1883 if (ap
->ops
->read_id
)
1884 err_mask
= ap
->ops
->read_id(dev
, &tf
, id
);
1886 err_mask
= ata_do_dev_read_id(dev
, &tf
, id
);
1889 if (err_mask
& AC_ERR_NODEV_HINT
) {
1890 ata_dev_dbg(dev
, "NODEV after polling detection\n");
1896 "IDENTIFY failed on device w/ SEMB sig, disabled\n");
1897 /* SEMB is not supported yet */
1898 *p_class
= ATA_DEV_SEMB_UNSUP
;
1902 if ((err_mask
== AC_ERR_DEV
) && (tf
.feature
& ATA_ABORTED
)) {
1903 /* Device or controller might have reported
1904 * the wrong device class. Give a shot at the
1905 * other IDENTIFY if the current one is
1906 * aborted by the device.
1911 if (class == ATA_DEV_ATA
)
1912 class = ATA_DEV_ATAPI
;
1914 class = ATA_DEV_ATA
;
1918 /* Control reaches here iff the device aborted
1919 * both flavors of IDENTIFYs which happens
1920 * sometimes with phantom devices.
1923 "both IDENTIFYs aborted, assuming NODEV\n");
1928 reason
= "I/O error";
1932 if (dev
->horkage
& ATA_HORKAGE_DUMP_ID
) {
1933 ata_dev_dbg(dev
, "dumping IDENTIFY data, "
1934 "class=%d may_fallback=%d tried_spinup=%d\n",
1935 class, may_fallback
, tried_spinup
);
1936 print_hex_dump(KERN_DEBUG
, "", DUMP_PREFIX_OFFSET
,
1937 16, 2, id
, ATA_ID_WORDS
* sizeof(*id
), true);
1940 /* Falling back doesn't make sense if ID data was read
1941 * successfully at least once.
1945 swap_buf_le16(id
, ATA_ID_WORDS
);
1949 reason
= "device reports invalid type";
1951 if (class == ATA_DEV_ATA
|| class == ATA_DEV_ZAC
) {
1952 if (!ata_id_is_ata(id
) && !ata_id_is_cfa(id
))
1954 if (ap
->host
->flags
& ATA_HOST_IGNORE_ATA
&&
1955 ata_id_is_ata(id
)) {
1957 "host indicates ignore ATA devices, ignored\n");
1961 if (ata_id_is_ata(id
))
1965 if (!tried_spinup
&& (id
[2] == 0x37c8 || id
[2] == 0x738c)) {
1968 * Drive powered-up in standby mode, and requires a specific
1969 * SET_FEATURES spin-up subcommand before it will accept
1970 * anything other than the original IDENTIFY command.
1972 err_mask
= ata_dev_set_feature(dev
, SETFEATURES_SPINUP
, 0);
1973 if (err_mask
&& id
[2] != 0x738c) {
1975 reason
= "SPINUP failed";
1979 * If the drive initially returned incomplete IDENTIFY info,
1980 * we now must reissue the IDENTIFY command.
1982 if (id
[2] == 0x37c8)
1986 if ((flags
& ATA_READID_POSTRESET
) &&
1987 (class == ATA_DEV_ATA
|| class == ATA_DEV_ZAC
)) {
1989 * The exact sequence expected by certain pre-ATA4 drives is:
1991 * IDENTIFY (optional in early ATA)
1992 * INITIALIZE DEVICE PARAMETERS (later IDE and ATA)
1994 * Some drives were very specific about that exact sequence.
1996 * Note that ATA4 says lba is mandatory so the second check
1997 * should never trigger.
1999 if (ata_id_major_version(id
) < 4 || !ata_id_has_lba(id
)) {
2000 err_mask
= ata_dev_init_params(dev
, id
[3], id
[6]);
2003 reason
= "INIT_DEV_PARAMS failed";
2007 /* current CHS translation info (id[53-58]) might be
2008 * changed. reread the identify device info.
2010 flags
&= ~ATA_READID_POSTRESET
;
2020 if (ata_msg_warn(ap
))
2021 ata_dev_warn(dev
, "failed to IDENTIFY (%s, err_mask=0x%x)\n",
2027 * ata_read_log_page - read a specific log page
2028 * @dev: target device
2030 * @page: page to read
2031 * @buf: buffer to store read page
2032 * @sectors: number of sectors to read
2034 * Read log page using READ_LOG_EXT command.
2037 * Kernel thread context (may sleep).
2040 * 0 on success, AC_ERR_* mask otherwise.
2042 unsigned int ata_read_log_page(struct ata_device
*dev
, u8 log
,
2043 u8 page
, void *buf
, unsigned int sectors
)
2045 unsigned long ap_flags
= dev
->link
->ap
->flags
;
2046 struct ata_taskfile tf
;
2047 unsigned int err_mask
;
2050 DPRINTK("read log page - log 0x%x, page 0x%x\n", log
, page
);
2053 * Return error without actually issuing the command on controllers
2054 * which e.g. lockup on a read log page.
2056 if (ap_flags
& ATA_FLAG_NO_LOG_PAGE
)
2060 ata_tf_init(dev
, &tf
);
2061 if (dev
->dma_mode
&& ata_id_has_read_log_dma_ext(dev
->id
) &&
2062 !(dev
->horkage
& ATA_HORKAGE_NO_DMA_LOG
)) {
2063 tf
.command
= ATA_CMD_READ_LOG_DMA_EXT
;
2064 tf
.protocol
= ATA_PROT_DMA
;
2067 tf
.command
= ATA_CMD_READ_LOG_EXT
;
2068 tf
.protocol
= ATA_PROT_PIO
;
2074 tf
.hob_nsect
= sectors
>> 8;
2075 tf
.flags
|= ATA_TFLAG_ISADDR
| ATA_TFLAG_LBA48
| ATA_TFLAG_DEVICE
;
2077 err_mask
= ata_exec_internal(dev
, &tf
, NULL
, DMA_FROM_DEVICE
,
2078 buf
, sectors
* ATA_SECT_SIZE
, 0);
2080 if (err_mask
&& dma
) {
2081 dev
->horkage
|= ATA_HORKAGE_NO_DMA_LOG
;
2082 ata_dev_warn(dev
, "READ LOG DMA EXT failed, trying PIO\n");
2086 DPRINTK("EXIT, err_mask=%x\n", err_mask
);
2090 static bool ata_log_supported(struct ata_device
*dev
, u8 log
)
2092 struct ata_port
*ap
= dev
->link
->ap
;
2094 if (ata_read_log_page(dev
, ATA_LOG_DIRECTORY
, 0, ap
->sector_buf
, 1))
2096 return get_unaligned_le16(&ap
->sector_buf
[log
* 2]) ? true : false;
2099 static bool ata_identify_page_supported(struct ata_device
*dev
, u8 page
)
2101 struct ata_port
*ap
= dev
->link
->ap
;
2102 unsigned int err
, i
;
2104 if (!ata_log_supported(dev
, ATA_LOG_IDENTIFY_DEVICE
)) {
2105 ata_dev_warn(dev
, "ATA Identify Device Log not supported\n");
2110 * Read IDENTIFY DEVICE data log, page 0, to figure out if the page is
2113 err
= ata_read_log_page(dev
, ATA_LOG_IDENTIFY_DEVICE
, 0, ap
->sector_buf
,
2117 "failed to get Device Identify Log Emask 0x%x\n",
2122 for (i
= 0; i
< ap
->sector_buf
[8]; i
++) {
2123 if (ap
->sector_buf
[9 + i
] == page
)
2130 static int ata_do_link_spd_horkage(struct ata_device
*dev
)
2132 struct ata_link
*plink
= ata_dev_phys_link(dev
);
2133 u32 target
, target_limit
;
2135 if (!sata_scr_valid(plink
))
2138 if (dev
->horkage
& ATA_HORKAGE_1_5_GBPS
)
2143 target_limit
= (1 << target
) - 1;
2145 /* if already on stricter limit, no need to push further */
2146 if (plink
->sata_spd_limit
<= target_limit
)
2149 plink
->sata_spd_limit
= target_limit
;
2151 /* Request another EH round by returning -EAGAIN if link is
2152 * going faster than the target speed. Forward progress is
2153 * guaranteed by setting sata_spd_limit to target_limit above.
2155 if (plink
->sata_spd
> target
) {
2156 ata_dev_info(dev
, "applying link speed limit horkage to %s\n",
2157 sata_spd_string(target
));
2163 static inline u8
ata_dev_knobble(struct ata_device
*dev
)
2165 struct ata_port
*ap
= dev
->link
->ap
;
2167 if (ata_dev_blacklisted(dev
) & ATA_HORKAGE_BRIDGE_OK
)
2170 return ((ap
->cbl
== ATA_CBL_SATA
) && (!ata_id_is_sata(dev
->id
)));
2173 static void ata_dev_config_ncq_send_recv(struct ata_device
*dev
)
2175 struct ata_port
*ap
= dev
->link
->ap
;
2176 unsigned int err_mask
;
2178 if (!ata_log_supported(dev
, ATA_LOG_NCQ_SEND_RECV
)) {
2179 ata_dev_warn(dev
, "NCQ Send/Recv Log not supported\n");
2182 err_mask
= ata_read_log_page(dev
, ATA_LOG_NCQ_SEND_RECV
,
2183 0, ap
->sector_buf
, 1);
2186 "failed to get NCQ Send/Recv Log Emask 0x%x\n",
2189 u8
*cmds
= dev
->ncq_send_recv_cmds
;
2191 dev
->flags
|= ATA_DFLAG_NCQ_SEND_RECV
;
2192 memcpy(cmds
, ap
->sector_buf
, ATA_LOG_NCQ_SEND_RECV_SIZE
);
2194 if (dev
->horkage
& ATA_HORKAGE_NO_NCQ_TRIM
) {
2195 ata_dev_dbg(dev
, "disabling queued TRIM support\n");
2196 cmds
[ATA_LOG_NCQ_SEND_RECV_DSM_OFFSET
] &=
2197 ~ATA_LOG_NCQ_SEND_RECV_DSM_TRIM
;
2202 static void ata_dev_config_ncq_non_data(struct ata_device
*dev
)
2204 struct ata_port
*ap
= dev
->link
->ap
;
2205 unsigned int err_mask
;
2207 if (!ata_log_supported(dev
, ATA_LOG_NCQ_NON_DATA
)) {
2209 "NCQ Send/Recv Log not supported\n");
2212 err_mask
= ata_read_log_page(dev
, ATA_LOG_NCQ_NON_DATA
,
2213 0, ap
->sector_buf
, 1);
2216 "failed to get NCQ Non-Data Log Emask 0x%x\n",
2219 u8
*cmds
= dev
->ncq_non_data_cmds
;
2221 memcpy(cmds
, ap
->sector_buf
, ATA_LOG_NCQ_NON_DATA_SIZE
);
2225 static void ata_dev_config_ncq_prio(struct ata_device
*dev
)
2227 struct ata_port
*ap
= dev
->link
->ap
;
2228 unsigned int err_mask
;
2230 if (!(dev
->flags
& ATA_DFLAG_NCQ_PRIO_ENABLE
)) {
2231 dev
->flags
&= ~ATA_DFLAG_NCQ_PRIO
;
2235 err_mask
= ata_read_log_page(dev
,
2236 ATA_LOG_IDENTIFY_DEVICE
,
2237 ATA_LOG_SATA_SETTINGS
,
2242 "failed to get Identify Device data, Emask 0x%x\n",
2247 if (ap
->sector_buf
[ATA_LOG_NCQ_PRIO_OFFSET
] & BIT(3)) {
2248 dev
->flags
|= ATA_DFLAG_NCQ_PRIO
;
2250 dev
->flags
&= ~ATA_DFLAG_NCQ_PRIO
;
2251 ata_dev_dbg(dev
, "SATA page does not support priority\n");
2256 static int ata_dev_config_ncq(struct ata_device
*dev
,
2257 char *desc
, size_t desc_sz
)
2259 struct ata_port
*ap
= dev
->link
->ap
;
2260 int hdepth
= 0, ddepth
= ata_id_queue_depth(dev
->id
);
2261 unsigned int err_mask
;
2264 if (!ata_id_has_ncq(dev
->id
)) {
2268 if (dev
->horkage
& ATA_HORKAGE_NONCQ
) {
2269 snprintf(desc
, desc_sz
, "NCQ (not used)");
2272 if (ap
->flags
& ATA_FLAG_NCQ
) {
2273 hdepth
= min(ap
->scsi_host
->can_queue
, ATA_MAX_QUEUE
);
2274 dev
->flags
|= ATA_DFLAG_NCQ
;
2277 if (!(dev
->horkage
& ATA_HORKAGE_BROKEN_FPDMA_AA
) &&
2278 (ap
->flags
& ATA_FLAG_FPDMA_AA
) &&
2279 ata_id_has_fpdma_aa(dev
->id
)) {
2280 err_mask
= ata_dev_set_feature(dev
, SETFEATURES_SATA_ENABLE
,
2284 "failed to enable AA (error_mask=0x%x)\n",
2286 if (err_mask
!= AC_ERR_DEV
) {
2287 dev
->horkage
|= ATA_HORKAGE_BROKEN_FPDMA_AA
;
2294 if (hdepth
>= ddepth
)
2295 snprintf(desc
, desc_sz
, "NCQ (depth %d)%s", ddepth
, aa_desc
);
2297 snprintf(desc
, desc_sz
, "NCQ (depth %d/%d)%s", hdepth
,
2300 if ((ap
->flags
& ATA_FLAG_FPDMA_AUX
)) {
2301 if (ata_id_has_ncq_send_and_recv(dev
->id
))
2302 ata_dev_config_ncq_send_recv(dev
);
2303 if (ata_id_has_ncq_non_data(dev
->id
))
2304 ata_dev_config_ncq_non_data(dev
);
2305 if (ata_id_has_ncq_prio(dev
->id
))
2306 ata_dev_config_ncq_prio(dev
);
2312 static void ata_dev_config_sense_reporting(struct ata_device
*dev
)
2314 unsigned int err_mask
;
2316 if (!ata_id_has_sense_reporting(dev
->id
))
2319 if (ata_id_sense_reporting_enabled(dev
->id
))
2322 err_mask
= ata_dev_set_feature(dev
, SETFEATURE_SENSE_DATA
, 0x1);
2325 "failed to enable Sense Data Reporting, Emask 0x%x\n",
2330 static void ata_dev_config_zac(struct ata_device
*dev
)
2332 struct ata_port
*ap
= dev
->link
->ap
;
2333 unsigned int err_mask
;
2334 u8
*identify_buf
= ap
->sector_buf
;
2336 dev
->zac_zones_optimal_open
= U32_MAX
;
2337 dev
->zac_zones_optimal_nonseq
= U32_MAX
;
2338 dev
->zac_zones_max_open
= U32_MAX
;
2341 * Always set the 'ZAC' flag for Host-managed devices.
2343 if (dev
->class == ATA_DEV_ZAC
)
2344 dev
->flags
|= ATA_DFLAG_ZAC
;
2345 else if (ata_id_zoned_cap(dev
->id
) == 0x01)
2347 * Check for host-aware devices.
2349 dev
->flags
|= ATA_DFLAG_ZAC
;
2351 if (!(dev
->flags
& ATA_DFLAG_ZAC
))
2354 if (!ata_identify_page_supported(dev
, ATA_LOG_ZONED_INFORMATION
)) {
2356 "ATA Zoned Information Log not supported\n");
2361 * Read IDENTIFY DEVICE data log, page 9 (Zoned-device information)
2363 err_mask
= ata_read_log_page(dev
, ATA_LOG_IDENTIFY_DEVICE
,
2364 ATA_LOG_ZONED_INFORMATION
,
2367 u64 zoned_cap
, opt_open
, opt_nonseq
, max_open
;
2369 zoned_cap
= get_unaligned_le64(&identify_buf
[8]);
2370 if ((zoned_cap
>> 63))
2371 dev
->zac_zoned_cap
= (zoned_cap
& 1);
2372 opt_open
= get_unaligned_le64(&identify_buf
[24]);
2373 if ((opt_open
>> 63))
2374 dev
->zac_zones_optimal_open
= (u32
)opt_open
;
2375 opt_nonseq
= get_unaligned_le64(&identify_buf
[32]);
2376 if ((opt_nonseq
>> 63))
2377 dev
->zac_zones_optimal_nonseq
= (u32
)opt_nonseq
;
2378 max_open
= get_unaligned_le64(&identify_buf
[40]);
2379 if ((max_open
>> 63))
2380 dev
->zac_zones_max_open
= (u32
)max_open
;
2384 static void ata_dev_config_trusted(struct ata_device
*dev
)
2386 struct ata_port
*ap
= dev
->link
->ap
;
2390 if (!ata_id_has_trusted(dev
->id
))
2393 if (!ata_identify_page_supported(dev
, ATA_LOG_SECURITY
)) {
2395 "Security Log not supported\n");
2399 err
= ata_read_log_page(dev
, ATA_LOG_IDENTIFY_DEVICE
, ATA_LOG_SECURITY
,
2403 "failed to read Security Log, Emask 0x%x\n", err
);
2407 trusted_cap
= get_unaligned_le64(&ap
->sector_buf
[40]);
2408 if (!(trusted_cap
& (1ULL << 63))) {
2410 "Trusted Computing capability qword not valid!\n");
2414 if (trusted_cap
& (1 << 0))
2415 dev
->flags
|= ATA_DFLAG_TRUSTED
;
2419 * ata_dev_configure - Configure the specified ATA/ATAPI device
2420 * @dev: Target device to configure
2422 * Configure @dev according to @dev->id. Generic and low-level
2423 * driver specific fixups are also applied.
2426 * Kernel thread context (may sleep)
2429 * 0 on success, -errno otherwise
2431 int ata_dev_configure(struct ata_device
*dev
)
2433 struct ata_port
*ap
= dev
->link
->ap
;
2434 struct ata_eh_context
*ehc
= &dev
->link
->eh_context
;
2435 int print_info
= ehc
->i
.flags
& ATA_EHI_PRINTINFO
;
2436 const u16
*id
= dev
->id
;
2437 unsigned long xfer_mask
;
2438 unsigned int err_mask
;
2439 char revbuf
[7]; /* XYZ-99\0 */
2440 char fwrevbuf
[ATA_ID_FW_REV_LEN
+1];
2441 char modelbuf
[ATA_ID_PROD_LEN
+1];
2444 if (!ata_dev_enabled(dev
) && ata_msg_info(ap
)) {
2445 ata_dev_info(dev
, "%s: ENTER/EXIT -- nodev\n", __func__
);
2449 if (ata_msg_probe(ap
))
2450 ata_dev_dbg(dev
, "%s: ENTER\n", __func__
);
2453 dev
->horkage
|= ata_dev_blacklisted(dev
);
2454 ata_force_horkage(dev
);
2456 if (dev
->horkage
& ATA_HORKAGE_DISABLE
) {
2457 ata_dev_info(dev
, "unsupported device, disabling\n");
2458 ata_dev_disable(dev
);
2462 if ((!atapi_enabled
|| (ap
->flags
& ATA_FLAG_NO_ATAPI
)) &&
2463 dev
->class == ATA_DEV_ATAPI
) {
2464 ata_dev_warn(dev
, "WARNING: ATAPI is %s, device ignored\n",
2465 atapi_enabled
? "not supported with this driver"
2467 ata_dev_disable(dev
);
2471 rc
= ata_do_link_spd_horkage(dev
);
2475 /* some WD SATA-1 drives have issues with LPM, turn on NOLPM for them */
2476 if ((dev
->horkage
& ATA_HORKAGE_WD_BROKEN_LPM
) &&
2477 (id
[ATA_ID_SATA_CAPABILITY
] & 0xe) == 0x2)
2478 dev
->horkage
|= ATA_HORKAGE_NOLPM
;
2480 if (ap
->flags
& ATA_FLAG_NO_LPM
)
2481 dev
->horkage
|= ATA_HORKAGE_NOLPM
;
2483 if (dev
->horkage
& ATA_HORKAGE_NOLPM
) {
2484 ata_dev_warn(dev
, "LPM support broken, forcing max_power\n");
2485 dev
->link
->ap
->target_lpm_policy
= ATA_LPM_MAX_POWER
;
2488 /* let ACPI work its magic */
2489 rc
= ata_acpi_on_devcfg(dev
);
2493 /* massage HPA, do it early as it might change IDENTIFY data */
2494 rc
= ata_hpa_resize(dev
);
2498 /* print device capabilities */
2499 if (ata_msg_probe(ap
))
2501 "%s: cfg 49:%04x 82:%04x 83:%04x 84:%04x "
2502 "85:%04x 86:%04x 87:%04x 88:%04x\n",
2504 id
[49], id
[82], id
[83], id
[84],
2505 id
[85], id
[86], id
[87], id
[88]);
2507 /* initialize to-be-configured parameters */
2508 dev
->flags
&= ~ATA_DFLAG_CFG_MASK
;
2509 dev
->max_sectors
= 0;
2515 dev
->multi_count
= 0;
2518 * common ATA, ATAPI feature tests
2521 /* find max transfer mode; for printk only */
2522 xfer_mask
= ata_id_xfermask(id
);
2524 if (ata_msg_probe(ap
))
2527 /* SCSI only uses 4-char revisions, dump full 8 chars from ATA */
2528 ata_id_c_string(dev
->id
, fwrevbuf
, ATA_ID_FW_REV
,
2531 ata_id_c_string(dev
->id
, modelbuf
, ATA_ID_PROD
,
2534 /* ATA-specific feature tests */
2535 if (dev
->class == ATA_DEV_ATA
|| dev
->class == ATA_DEV_ZAC
) {
2536 if (ata_id_is_cfa(id
)) {
2537 /* CPRM may make this media unusable */
2538 if (id
[ATA_ID_CFA_KEY_MGMT
] & 1)
2540 "supports DRM functions and may not be fully accessible\n");
2541 snprintf(revbuf
, 7, "CFA");
2543 snprintf(revbuf
, 7, "ATA-%d", ata_id_major_version(id
));
2544 /* Warn the user if the device has TPM extensions */
2545 if (ata_id_has_tpm(id
))
2547 "supports DRM functions and may not be fully accessible\n");
2550 dev
->n_sectors
= ata_id_n_sectors(id
);
2552 /* get current R/W Multiple count setting */
2553 if ((dev
->id
[47] >> 8) == 0x80 && (dev
->id
[59] & 0x100)) {
2554 unsigned int max
= dev
->id
[47] & 0xff;
2555 unsigned int cnt
= dev
->id
[59] & 0xff;
2556 /* only recognize/allow powers of two here */
2557 if (is_power_of_2(max
) && is_power_of_2(cnt
))
2559 dev
->multi_count
= cnt
;
2562 if (ata_id_has_lba(id
)) {
2563 const char *lba_desc
;
2567 dev
->flags
|= ATA_DFLAG_LBA
;
2568 if (ata_id_has_lba48(id
)) {
2569 dev
->flags
|= ATA_DFLAG_LBA48
;
2572 if (dev
->n_sectors
>= (1UL << 28) &&
2573 ata_id_has_flush_ext(id
))
2574 dev
->flags
|= ATA_DFLAG_FLUSH_EXT
;
2578 rc
= ata_dev_config_ncq(dev
, ncq_desc
, sizeof(ncq_desc
));
2582 /* print device info to dmesg */
2583 if (ata_msg_drv(ap
) && print_info
) {
2584 ata_dev_info(dev
, "%s: %s, %s, max %s\n",
2585 revbuf
, modelbuf
, fwrevbuf
,
2586 ata_mode_string(xfer_mask
));
2588 "%llu sectors, multi %u: %s %s\n",
2589 (unsigned long long)dev
->n_sectors
,
2590 dev
->multi_count
, lba_desc
, ncq_desc
);
2595 /* Default translation */
2596 dev
->cylinders
= id
[1];
2598 dev
->sectors
= id
[6];
2600 if (ata_id_current_chs_valid(id
)) {
2601 /* Current CHS translation is valid. */
2602 dev
->cylinders
= id
[54];
2603 dev
->heads
= id
[55];
2604 dev
->sectors
= id
[56];
2607 /* print device info to dmesg */
2608 if (ata_msg_drv(ap
) && print_info
) {
2609 ata_dev_info(dev
, "%s: %s, %s, max %s\n",
2610 revbuf
, modelbuf
, fwrevbuf
,
2611 ata_mode_string(xfer_mask
));
2613 "%llu sectors, multi %u, CHS %u/%u/%u\n",
2614 (unsigned long long)dev
->n_sectors
,
2615 dev
->multi_count
, dev
->cylinders
,
2616 dev
->heads
, dev
->sectors
);
2620 /* Check and mark DevSlp capability. Get DevSlp timing variables
2621 * from SATA Settings page of Identify Device Data Log.
2623 if (ata_id_has_devslp(dev
->id
)) {
2624 u8
*sata_setting
= ap
->sector_buf
;
2627 dev
->flags
|= ATA_DFLAG_DEVSLP
;
2628 err_mask
= ata_read_log_page(dev
,
2629 ATA_LOG_IDENTIFY_DEVICE
,
2630 ATA_LOG_SATA_SETTINGS
,
2635 "failed to get Identify Device Data, Emask 0x%x\n",
2638 for (i
= 0; i
< ATA_LOG_DEVSLP_SIZE
; i
++) {
2639 j
= ATA_LOG_DEVSLP_OFFSET
+ i
;
2640 dev
->devslp_timing
[i
] = sata_setting
[j
];
2643 ata_dev_config_sense_reporting(dev
);
2644 ata_dev_config_zac(dev
);
2645 ata_dev_config_trusted(dev
);
2649 /* ATAPI-specific feature tests */
2650 else if (dev
->class == ATA_DEV_ATAPI
) {
2651 const char *cdb_intr_string
= "";
2652 const char *atapi_an_string
= "";
2653 const char *dma_dir_string
= "";
2656 rc
= atapi_cdb_len(id
);
2657 if ((rc
< 12) || (rc
> ATAPI_CDB_LEN
)) {
2658 if (ata_msg_warn(ap
))
2659 ata_dev_warn(dev
, "unsupported CDB len\n");
2663 dev
->cdb_len
= (unsigned int) rc
;
2665 /* Enable ATAPI AN if both the host and device have
2666 * the support. If PMP is attached, SNTF is required
2667 * to enable ATAPI AN to discern between PHY status
2668 * changed notifications and ATAPI ANs.
2671 (ap
->flags
& ATA_FLAG_AN
) && ata_id_has_atapi_AN(id
) &&
2672 (!sata_pmp_attached(ap
) ||
2673 sata_scr_read(&ap
->link
, SCR_NOTIFICATION
, &sntf
) == 0)) {
2674 /* issue SET feature command to turn this on */
2675 err_mask
= ata_dev_set_feature(dev
,
2676 SETFEATURES_SATA_ENABLE
, SATA_AN
);
2679 "failed to enable ATAPI AN (err_mask=0x%x)\n",
2682 dev
->flags
|= ATA_DFLAG_AN
;
2683 atapi_an_string
= ", ATAPI AN";
2687 if (ata_id_cdb_intr(dev
->id
)) {
2688 dev
->flags
|= ATA_DFLAG_CDB_INTR
;
2689 cdb_intr_string
= ", CDB intr";
2692 if (atapi_dmadir
|| (dev
->horkage
& ATA_HORKAGE_ATAPI_DMADIR
) || atapi_id_dmadir(dev
->id
)) {
2693 dev
->flags
|= ATA_DFLAG_DMADIR
;
2694 dma_dir_string
= ", DMADIR";
2697 if (ata_id_has_da(dev
->id
)) {
2698 dev
->flags
|= ATA_DFLAG_DA
;
2702 /* print device info to dmesg */
2703 if (ata_msg_drv(ap
) && print_info
)
2705 "ATAPI: %s, %s, max %s%s%s%s\n",
2707 ata_mode_string(xfer_mask
),
2708 cdb_intr_string
, atapi_an_string
,
2712 /* determine max_sectors */
2713 dev
->max_sectors
= ATA_MAX_SECTORS
;
2714 if (dev
->flags
& ATA_DFLAG_LBA48
)
2715 dev
->max_sectors
= ATA_MAX_SECTORS_LBA48
;
2717 /* Limit PATA drive on SATA cable bridge transfers to udma5,
2719 if (ata_dev_knobble(dev
)) {
2720 if (ata_msg_drv(ap
) && print_info
)
2721 ata_dev_info(dev
, "applying bridge limits\n");
2722 dev
->udma_mask
&= ATA_UDMA5
;
2723 dev
->max_sectors
= ATA_MAX_SECTORS
;
2726 if ((dev
->class == ATA_DEV_ATAPI
) &&
2727 (atapi_command_packet_set(id
) == TYPE_TAPE
)) {
2728 dev
->max_sectors
= ATA_MAX_SECTORS_TAPE
;
2729 dev
->horkage
|= ATA_HORKAGE_STUCK_ERR
;
2732 if (dev
->horkage
& ATA_HORKAGE_MAX_SEC_128
)
2733 dev
->max_sectors
= min_t(unsigned int, ATA_MAX_SECTORS_128
,
2736 if (dev
->horkage
& ATA_HORKAGE_MAX_SEC_1024
)
2737 dev
->max_sectors
= min_t(unsigned int, ATA_MAX_SECTORS_1024
,
2740 if (dev
->horkage
& ATA_HORKAGE_MAX_SEC_LBA48
)
2741 dev
->max_sectors
= ATA_MAX_SECTORS_LBA48
;
2743 if (ap
->ops
->dev_config
)
2744 ap
->ops
->dev_config(dev
);
2746 if (dev
->horkage
& ATA_HORKAGE_DIAGNOSTIC
) {
2747 /* Let the user know. We don't want to disallow opens for
2748 rescue purposes, or in case the vendor is just a blithering
2749 idiot. Do this after the dev_config call as some controllers
2750 with buggy firmware may want to avoid reporting false device
2755 "Drive reports diagnostics failure. This may indicate a drive\n");
2757 "fault or invalid emulation. Contact drive vendor for information.\n");
2761 if ((dev
->horkage
& ATA_HORKAGE_FIRMWARE_WARN
) && print_info
) {
2762 ata_dev_warn(dev
, "WARNING: device requires firmware update to be fully functional\n");
2763 ata_dev_warn(dev
, " contact the vendor or visit http://ata.wiki.kernel.org\n");
2769 if (ata_msg_probe(ap
))
2770 ata_dev_dbg(dev
, "%s: EXIT, err\n", __func__
);
2775 * ata_cable_40wire - return 40 wire cable type
2778 * Helper method for drivers which want to hardwire 40 wire cable
2782 int ata_cable_40wire(struct ata_port
*ap
)
2784 return ATA_CBL_PATA40
;
2788 * ata_cable_80wire - return 80 wire cable type
2791 * Helper method for drivers which want to hardwire 80 wire cable
2795 int ata_cable_80wire(struct ata_port
*ap
)
2797 return ATA_CBL_PATA80
;
2801 * ata_cable_unknown - return unknown PATA cable.
2804 * Helper method for drivers which have no PATA cable detection.
2807 int ata_cable_unknown(struct ata_port
*ap
)
2809 return ATA_CBL_PATA_UNK
;
2813 * ata_cable_ignore - return ignored PATA cable.
2816 * Helper method for drivers which don't use cable type to limit
2819 int ata_cable_ignore(struct ata_port
*ap
)
2821 return ATA_CBL_PATA_IGN
;
2825 * ata_cable_sata - return SATA cable type
2828 * Helper method for drivers which have SATA cables
2831 int ata_cable_sata(struct ata_port
*ap
)
2833 return ATA_CBL_SATA
;
2837 * ata_bus_probe - Reset and probe ATA bus
2840 * Master ATA bus probing function. Initiates a hardware-dependent
2841 * bus reset, then attempts to identify any devices found on
2845 * PCI/etc. bus probe sem.
2848 * Zero on success, negative errno otherwise.
2851 int ata_bus_probe(struct ata_port
*ap
)
2853 unsigned int classes
[ATA_MAX_DEVICES
];
2854 int tries
[ATA_MAX_DEVICES
];
2856 struct ata_device
*dev
;
2858 ata_for_each_dev(dev
, &ap
->link
, ALL
)
2859 tries
[dev
->devno
] = ATA_PROBE_MAX_TRIES
;
2862 ata_for_each_dev(dev
, &ap
->link
, ALL
) {
2863 /* If we issue an SRST then an ATA drive (not ATAPI)
2864 * may change configuration and be in PIO0 timing. If
2865 * we do a hard reset (or are coming from power on)
2866 * this is true for ATA or ATAPI. Until we've set a
2867 * suitable controller mode we should not touch the
2868 * bus as we may be talking too fast.
2870 dev
->pio_mode
= XFER_PIO_0
;
2871 dev
->dma_mode
= 0xff;
2873 /* If the controller has a pio mode setup function
2874 * then use it to set the chipset to rights. Don't
2875 * touch the DMA setup as that will be dealt with when
2876 * configuring devices.
2878 if (ap
->ops
->set_piomode
)
2879 ap
->ops
->set_piomode(ap
, dev
);
2882 /* reset and determine device classes */
2883 ap
->ops
->phy_reset(ap
);
2885 ata_for_each_dev(dev
, &ap
->link
, ALL
) {
2886 if (dev
->class != ATA_DEV_UNKNOWN
)
2887 classes
[dev
->devno
] = dev
->class;
2889 classes
[dev
->devno
] = ATA_DEV_NONE
;
2891 dev
->class = ATA_DEV_UNKNOWN
;
2894 /* read IDENTIFY page and configure devices. We have to do the identify
2895 specific sequence bass-ackwards so that PDIAG- is released by
2898 ata_for_each_dev(dev
, &ap
->link
, ALL_REVERSE
) {
2899 if (tries
[dev
->devno
])
2900 dev
->class = classes
[dev
->devno
];
2902 if (!ata_dev_enabled(dev
))
2905 rc
= ata_dev_read_id(dev
, &dev
->class, ATA_READID_POSTRESET
,
2911 /* Now ask for the cable type as PDIAG- should have been released */
2912 if (ap
->ops
->cable_detect
)
2913 ap
->cbl
= ap
->ops
->cable_detect(ap
);
2915 /* We may have SATA bridge glue hiding here irrespective of
2916 * the reported cable types and sensed types. When SATA
2917 * drives indicate we have a bridge, we don't know which end
2918 * of the link the bridge is which is a problem.
2920 ata_for_each_dev(dev
, &ap
->link
, ENABLED
)
2921 if (ata_id_is_sata(dev
->id
))
2922 ap
->cbl
= ATA_CBL_SATA
;
2924 /* After the identify sequence we can now set up the devices. We do
2925 this in the normal order so that the user doesn't get confused */
2927 ata_for_each_dev(dev
, &ap
->link
, ENABLED
) {
2928 ap
->link
.eh_context
.i
.flags
|= ATA_EHI_PRINTINFO
;
2929 rc
= ata_dev_configure(dev
);
2930 ap
->link
.eh_context
.i
.flags
&= ~ATA_EHI_PRINTINFO
;
2935 /* configure transfer mode */
2936 rc
= ata_set_mode(&ap
->link
, &dev
);
2940 ata_for_each_dev(dev
, &ap
->link
, ENABLED
)
2946 tries
[dev
->devno
]--;
2950 /* eeek, something went very wrong, give up */
2951 tries
[dev
->devno
] = 0;
2955 /* give it just one more chance */
2956 tries
[dev
->devno
] = min(tries
[dev
->devno
], 1);
2959 if (tries
[dev
->devno
] == 1) {
2960 /* This is the last chance, better to slow
2961 * down than lose it.
2963 sata_down_spd_limit(&ap
->link
, 0);
2964 ata_down_xfermask_limit(dev
, ATA_DNXFER_PIO
);
2968 if (!tries
[dev
->devno
])
2969 ata_dev_disable(dev
);
2975 * sata_print_link_status - Print SATA link status
2976 * @link: SATA link to printk link status about
2978 * This function prints link speed and status of a SATA link.
2983 static void sata_print_link_status(struct ata_link
*link
)
2985 u32 sstatus
, scontrol
, tmp
;
2987 if (sata_scr_read(link
, SCR_STATUS
, &sstatus
))
2989 sata_scr_read(link
, SCR_CONTROL
, &scontrol
);
2991 if (ata_phys_link_online(link
)) {
2992 tmp
= (sstatus
>> 4) & 0xf;
2993 ata_link_info(link
, "SATA link up %s (SStatus %X SControl %X)\n",
2994 sata_spd_string(tmp
), sstatus
, scontrol
);
2996 ata_link_info(link
, "SATA link down (SStatus %X SControl %X)\n",
3002 * ata_dev_pair - return other device on cable
3005 * Obtain the other device on the same cable, or if none is
3006 * present NULL is returned
3009 struct ata_device
*ata_dev_pair(struct ata_device
*adev
)
3011 struct ata_link
*link
= adev
->link
;
3012 struct ata_device
*pair
= &link
->device
[1 - adev
->devno
];
3013 if (!ata_dev_enabled(pair
))
3019 * sata_down_spd_limit - adjust SATA spd limit downward
3020 * @link: Link to adjust SATA spd limit for
3021 * @spd_limit: Additional limit
3023 * Adjust SATA spd limit of @link downward. Note that this
3024 * function only adjusts the limit. The change must be applied
3025 * using sata_set_spd().
3027 * If @spd_limit is non-zero, the speed is limited to equal to or
3028 * lower than @spd_limit if such speed is supported. If
3029 * @spd_limit is slower than any supported speed, only the lowest
3030 * supported speed is allowed.
3033 * Inherited from caller.
3036 * 0 on success, negative errno on failure
3038 int sata_down_spd_limit(struct ata_link
*link
, u32 spd_limit
)
3040 u32 sstatus
, spd
, mask
;
3043 if (!sata_scr_valid(link
))
3046 /* If SCR can be read, use it to determine the current SPD.
3047 * If not, use cached value in link->sata_spd.
3049 rc
= sata_scr_read(link
, SCR_STATUS
, &sstatus
);
3050 if (rc
== 0 && ata_sstatus_online(sstatus
))
3051 spd
= (sstatus
>> 4) & 0xf;
3053 spd
= link
->sata_spd
;
3055 mask
= link
->sata_spd_limit
;
3059 /* unconditionally mask off the highest bit */
3060 bit
= fls(mask
) - 1;
3061 mask
&= ~(1 << bit
);
3064 * Mask off all speeds higher than or equal to the current one. At
3065 * this point, if current SPD is not available and we previously
3066 * recorded the link speed from SStatus, the driver has already
3067 * masked off the highest bit so mask should already be 1 or 0.
3068 * Otherwise, we should not force 1.5Gbps on a link where we have
3069 * not previously recorded speed from SStatus. Just return in this
3073 mask
&= (1 << (spd
- 1)) - 1;
3077 /* were we already at the bottom? */
3082 if (mask
& ((1 << spd_limit
) - 1))
3083 mask
&= (1 << spd_limit
) - 1;
3085 bit
= ffs(mask
) - 1;
3090 link
->sata_spd_limit
= mask
;
3092 ata_link_warn(link
, "limiting SATA link speed to %s\n",
3093 sata_spd_string(fls(mask
)));
3098 static int __sata_set_spd_needed(struct ata_link
*link
, u32
*scontrol
)
3100 struct ata_link
*host_link
= &link
->ap
->link
;
3101 u32 limit
, target
, spd
;
3103 limit
= link
->sata_spd_limit
;
3105 /* Don't configure downstream link faster than upstream link.
3106 * It doesn't speed up anything and some PMPs choke on such
3109 if (!ata_is_host_link(link
) && host_link
->sata_spd
)
3110 limit
&= (1 << host_link
->sata_spd
) - 1;
3112 if (limit
== UINT_MAX
)
3115 target
= fls(limit
);
3117 spd
= (*scontrol
>> 4) & 0xf;
3118 *scontrol
= (*scontrol
& ~0xf0) | ((target
& 0xf) << 4);
3120 return spd
!= target
;
3124 * sata_set_spd_needed - is SATA spd configuration needed
3125 * @link: Link in question
3127 * Test whether the spd limit in SControl matches
3128 * @link->sata_spd_limit. This function is used to determine
3129 * whether hardreset is necessary to apply SATA spd
3133 * Inherited from caller.
3136 * 1 if SATA spd configuration is needed, 0 otherwise.
3138 static int sata_set_spd_needed(struct ata_link
*link
)
3142 if (sata_scr_read(link
, SCR_CONTROL
, &scontrol
))
3145 return __sata_set_spd_needed(link
, &scontrol
);
3149 * sata_set_spd - set SATA spd according to spd limit
3150 * @link: Link to set SATA spd for
3152 * Set SATA spd of @link according to sata_spd_limit.
3155 * Inherited from caller.
3158 * 0 if spd doesn't need to be changed, 1 if spd has been
3159 * changed. Negative errno if SCR registers are inaccessible.
3161 int sata_set_spd(struct ata_link
*link
)
3166 if ((rc
= sata_scr_read(link
, SCR_CONTROL
, &scontrol
)))
3169 if (!__sata_set_spd_needed(link
, &scontrol
))
3172 if ((rc
= sata_scr_write(link
, SCR_CONTROL
, scontrol
)))
3179 * This mode timing computation functionality is ported over from
3180 * drivers/ide/ide-timing.h and was originally written by Vojtech Pavlik
3183 * PIO 0-4, MWDMA 0-2 and UDMA 0-6 timings (in nanoseconds).
3184 * These were taken from ATA/ATAPI-6 standard, rev 0a, except
3185 * for UDMA6, which is currently supported only by Maxtor drives.
3187 * For PIO 5/6 MWDMA 3/4 see the CFA specification 3.0.
3190 static const struct ata_timing ata_timing
[] = {
3191 /* { XFER_PIO_SLOW, 120, 290, 240, 960, 290, 240, 0, 960, 0 }, */
3192 { XFER_PIO_0
, 70, 290, 240, 600, 165, 150, 0, 600, 0 },
3193 { XFER_PIO_1
, 50, 290, 93, 383, 125, 100, 0, 383, 0 },
3194 { XFER_PIO_2
, 30, 290, 40, 330, 100, 90, 0, 240, 0 },
3195 { XFER_PIO_3
, 30, 80, 70, 180, 80, 70, 0, 180, 0 },
3196 { XFER_PIO_4
, 25, 70, 25, 120, 70, 25, 0, 120, 0 },
3197 { XFER_PIO_5
, 15, 65, 25, 100, 65, 25, 0, 100, 0 },
3198 { XFER_PIO_6
, 10, 55, 20, 80, 55, 20, 0, 80, 0 },
3200 { XFER_SW_DMA_0
, 120, 0, 0, 0, 480, 480, 50, 960, 0 },
3201 { XFER_SW_DMA_1
, 90, 0, 0, 0, 240, 240, 30, 480, 0 },
3202 { XFER_SW_DMA_2
, 60, 0, 0, 0, 120, 120, 20, 240, 0 },
3204 { XFER_MW_DMA_0
, 60, 0, 0, 0, 215, 215, 20, 480, 0 },
3205 { XFER_MW_DMA_1
, 45, 0, 0, 0, 80, 50, 5, 150, 0 },
3206 { XFER_MW_DMA_2
, 25, 0, 0, 0, 70, 25, 5, 120, 0 },
3207 { XFER_MW_DMA_3
, 25, 0, 0, 0, 65, 25, 5, 100, 0 },
3208 { XFER_MW_DMA_4
, 25, 0, 0, 0, 55, 20, 5, 80, 0 },
3210 /* { XFER_UDMA_SLOW, 0, 0, 0, 0, 0, 0, 0, 0, 150 }, */
3211 { XFER_UDMA_0
, 0, 0, 0, 0, 0, 0, 0, 0, 120 },
3212 { XFER_UDMA_1
, 0, 0, 0, 0, 0, 0, 0, 0, 80 },
3213 { XFER_UDMA_2
, 0, 0, 0, 0, 0, 0, 0, 0, 60 },
3214 { XFER_UDMA_3
, 0, 0, 0, 0, 0, 0, 0, 0, 45 },
3215 { XFER_UDMA_4
, 0, 0, 0, 0, 0, 0, 0, 0, 30 },
3216 { XFER_UDMA_5
, 0, 0, 0, 0, 0, 0, 0, 0, 20 },
3217 { XFER_UDMA_6
, 0, 0, 0, 0, 0, 0, 0, 0, 15 },
3222 #define ENOUGH(v, unit) (((v)-1)/(unit)+1)
3223 #define EZ(v, unit) ((v)?ENOUGH(((v) * 1000), unit):0)
3225 static void ata_timing_quantize(const struct ata_timing
*t
, struct ata_timing
*q
, int T
, int UT
)
3227 q
->setup
= EZ(t
->setup
, T
);
3228 q
->act8b
= EZ(t
->act8b
, T
);
3229 q
->rec8b
= EZ(t
->rec8b
, T
);
3230 q
->cyc8b
= EZ(t
->cyc8b
, T
);
3231 q
->active
= EZ(t
->active
, T
);
3232 q
->recover
= EZ(t
->recover
, T
);
3233 q
->dmack_hold
= EZ(t
->dmack_hold
, T
);
3234 q
->cycle
= EZ(t
->cycle
, T
);
3235 q
->udma
= EZ(t
->udma
, UT
);
3238 void ata_timing_merge(const struct ata_timing
*a
, const struct ata_timing
*b
,
3239 struct ata_timing
*m
, unsigned int what
)
3241 if (what
& ATA_TIMING_SETUP
) m
->setup
= max(a
->setup
, b
->setup
);
3242 if (what
& ATA_TIMING_ACT8B
) m
->act8b
= max(a
->act8b
, b
->act8b
);
3243 if (what
& ATA_TIMING_REC8B
) m
->rec8b
= max(a
->rec8b
, b
->rec8b
);
3244 if (what
& ATA_TIMING_CYC8B
) m
->cyc8b
= max(a
->cyc8b
, b
->cyc8b
);
3245 if (what
& ATA_TIMING_ACTIVE
) m
->active
= max(a
->active
, b
->active
);
3246 if (what
& ATA_TIMING_RECOVER
) m
->recover
= max(a
->recover
, b
->recover
);
3247 if (what
& ATA_TIMING_DMACK_HOLD
) m
->dmack_hold
= max(a
->dmack_hold
, b
->dmack_hold
);
3248 if (what
& ATA_TIMING_CYCLE
) m
->cycle
= max(a
->cycle
, b
->cycle
);
3249 if (what
& ATA_TIMING_UDMA
) m
->udma
= max(a
->udma
, b
->udma
);
3252 const struct ata_timing
*ata_timing_find_mode(u8 xfer_mode
)
3254 const struct ata_timing
*t
= ata_timing
;
3256 while (xfer_mode
> t
->mode
)
3259 if (xfer_mode
== t
->mode
)
3262 WARN_ONCE(true, "%s: unable to find timing for xfer_mode 0x%x\n",
3263 __func__
, xfer_mode
);
3268 int ata_timing_compute(struct ata_device
*adev
, unsigned short speed
,
3269 struct ata_timing
*t
, int T
, int UT
)
3271 const u16
*id
= adev
->id
;
3272 const struct ata_timing
*s
;
3273 struct ata_timing p
;
3279 if (!(s
= ata_timing_find_mode(speed
)))
3282 memcpy(t
, s
, sizeof(*s
));
3285 * If the drive is an EIDE drive, it can tell us it needs extended
3286 * PIO/MW_DMA cycle timing.
3289 if (id
[ATA_ID_FIELD_VALID
] & 2) { /* EIDE drive */
3290 memset(&p
, 0, sizeof(p
));
3292 if (speed
>= XFER_PIO_0
&& speed
< XFER_SW_DMA_0
) {
3293 if (speed
<= XFER_PIO_2
)
3294 p
.cycle
= p
.cyc8b
= id
[ATA_ID_EIDE_PIO
];
3295 else if ((speed
<= XFER_PIO_4
) ||
3296 (speed
== XFER_PIO_5
&& !ata_id_is_cfa(id
)))
3297 p
.cycle
= p
.cyc8b
= id
[ATA_ID_EIDE_PIO_IORDY
];
3298 } else if (speed
>= XFER_MW_DMA_0
&& speed
<= XFER_MW_DMA_2
)
3299 p
.cycle
= id
[ATA_ID_EIDE_DMA_MIN
];
3301 ata_timing_merge(&p
, t
, t
, ATA_TIMING_CYCLE
| ATA_TIMING_CYC8B
);
3305 * Convert the timing to bus clock counts.
3308 ata_timing_quantize(t
, t
, T
, UT
);
3311 * Even in DMA/UDMA modes we still use PIO access for IDENTIFY,
3312 * S.M.A.R.T * and some other commands. We have to ensure that the
3313 * DMA cycle timing is slower/equal than the fastest PIO timing.
3316 if (speed
> XFER_PIO_6
) {
3317 ata_timing_compute(adev
, adev
->pio_mode
, &p
, T
, UT
);
3318 ata_timing_merge(&p
, t
, t
, ATA_TIMING_ALL
);
3322 * Lengthen active & recovery time so that cycle time is correct.
3325 if (t
->act8b
+ t
->rec8b
< t
->cyc8b
) {
3326 t
->act8b
+= (t
->cyc8b
- (t
->act8b
+ t
->rec8b
)) / 2;
3327 t
->rec8b
= t
->cyc8b
- t
->act8b
;
3330 if (t
->active
+ t
->recover
< t
->cycle
) {
3331 t
->active
+= (t
->cycle
- (t
->active
+ t
->recover
)) / 2;
3332 t
->recover
= t
->cycle
- t
->active
;
3335 /* In a few cases quantisation may produce enough errors to
3336 leave t->cycle too low for the sum of active and recovery
3337 if so we must correct this */
3338 if (t
->active
+ t
->recover
> t
->cycle
)
3339 t
->cycle
= t
->active
+ t
->recover
;
3345 * ata_timing_cycle2mode - find xfer mode for the specified cycle duration
3346 * @xfer_shift: ATA_SHIFT_* value for transfer type to examine.
3347 * @cycle: cycle duration in ns
3349 * Return matching xfer mode for @cycle. The returned mode is of
3350 * the transfer type specified by @xfer_shift. If @cycle is too
3351 * slow for @xfer_shift, 0xff is returned. If @cycle is faster
3352 * than the fastest known mode, the fasted mode is returned.
3358 * Matching xfer_mode, 0xff if no match found.
3360 u8
ata_timing_cycle2mode(unsigned int xfer_shift
, int cycle
)
3362 u8 base_mode
= 0xff, last_mode
= 0xff;
3363 const struct ata_xfer_ent
*ent
;
3364 const struct ata_timing
*t
;
3366 for (ent
= ata_xfer_tbl
; ent
->shift
>= 0; ent
++)
3367 if (ent
->shift
== xfer_shift
)
3368 base_mode
= ent
->base
;
3370 for (t
= ata_timing_find_mode(base_mode
);
3371 t
&& ata_xfer_mode2shift(t
->mode
) == xfer_shift
; t
++) {
3372 unsigned short this_cycle
;
3374 switch (xfer_shift
) {
3376 case ATA_SHIFT_MWDMA
:
3377 this_cycle
= t
->cycle
;
3379 case ATA_SHIFT_UDMA
:
3380 this_cycle
= t
->udma
;
3386 if (cycle
> this_cycle
)
3389 last_mode
= t
->mode
;
3396 * ata_down_xfermask_limit - adjust dev xfer masks downward
3397 * @dev: Device to adjust xfer masks
3398 * @sel: ATA_DNXFER_* selector
3400 * Adjust xfer masks of @dev downward. Note that this function
3401 * does not apply the change. Invoking ata_set_mode() afterwards
3402 * will apply the limit.
3405 * Inherited from caller.
3408 * 0 on success, negative errno on failure
3410 int ata_down_xfermask_limit(struct ata_device
*dev
, unsigned int sel
)
3413 unsigned long orig_mask
, xfer_mask
;
3414 unsigned long pio_mask
, mwdma_mask
, udma_mask
;
3417 quiet
= !!(sel
& ATA_DNXFER_QUIET
);
3418 sel
&= ~ATA_DNXFER_QUIET
;
3420 xfer_mask
= orig_mask
= ata_pack_xfermask(dev
->pio_mask
,
3423 ata_unpack_xfermask(xfer_mask
, &pio_mask
, &mwdma_mask
, &udma_mask
);
3426 case ATA_DNXFER_PIO
:
3427 highbit
= fls(pio_mask
) - 1;
3428 pio_mask
&= ~(1 << highbit
);
3431 case ATA_DNXFER_DMA
:
3433 highbit
= fls(udma_mask
) - 1;
3434 udma_mask
&= ~(1 << highbit
);
3437 } else if (mwdma_mask
) {
3438 highbit
= fls(mwdma_mask
) - 1;
3439 mwdma_mask
&= ~(1 << highbit
);
3445 case ATA_DNXFER_40C
:
3446 udma_mask
&= ATA_UDMA_MASK_40C
;
3449 case ATA_DNXFER_FORCE_PIO0
:
3452 case ATA_DNXFER_FORCE_PIO
:
3461 xfer_mask
&= ata_pack_xfermask(pio_mask
, mwdma_mask
, udma_mask
);
3463 if (!(xfer_mask
& ATA_MASK_PIO
) || xfer_mask
== orig_mask
)
3467 if (xfer_mask
& (ATA_MASK_MWDMA
| ATA_MASK_UDMA
))
3468 snprintf(buf
, sizeof(buf
), "%s:%s",
3469 ata_mode_string(xfer_mask
),
3470 ata_mode_string(xfer_mask
& ATA_MASK_PIO
));
3472 snprintf(buf
, sizeof(buf
), "%s",
3473 ata_mode_string(xfer_mask
));
3475 ata_dev_warn(dev
, "limiting speed to %s\n", buf
);
3478 ata_unpack_xfermask(xfer_mask
, &dev
->pio_mask
, &dev
->mwdma_mask
,
3484 static int ata_dev_set_mode(struct ata_device
*dev
)
3486 struct ata_port
*ap
= dev
->link
->ap
;
3487 struct ata_eh_context
*ehc
= &dev
->link
->eh_context
;
3488 const bool nosetxfer
= dev
->horkage
& ATA_HORKAGE_NOSETXFER
;
3489 const char *dev_err_whine
= "";
3490 int ign_dev_err
= 0;
3491 unsigned int err_mask
= 0;
3494 dev
->flags
&= ~ATA_DFLAG_PIO
;
3495 if (dev
->xfer_shift
== ATA_SHIFT_PIO
)
3496 dev
->flags
|= ATA_DFLAG_PIO
;
3498 if (nosetxfer
&& ap
->flags
& ATA_FLAG_SATA
&& ata_id_is_sata(dev
->id
))
3499 dev_err_whine
= " (SET_XFERMODE skipped)";
3503 "NOSETXFER but PATA detected - can't "
3504 "skip SETXFER, might malfunction\n");
3505 err_mask
= ata_dev_set_xfermode(dev
);
3508 if (err_mask
& ~AC_ERR_DEV
)
3512 ehc
->i
.flags
|= ATA_EHI_POST_SETMODE
;
3513 rc
= ata_dev_revalidate(dev
, ATA_DEV_UNKNOWN
, 0);
3514 ehc
->i
.flags
&= ~ATA_EHI_POST_SETMODE
;
3518 if (dev
->xfer_shift
== ATA_SHIFT_PIO
) {
3519 /* Old CFA may refuse this command, which is just fine */
3520 if (ata_id_is_cfa(dev
->id
))
3522 /* Catch several broken garbage emulations plus some pre
3524 if (ata_id_major_version(dev
->id
) == 0 &&
3525 dev
->pio_mode
<= XFER_PIO_2
)
3527 /* Some very old devices and some bad newer ones fail
3528 any kind of SET_XFERMODE request but support PIO0-2
3529 timings and no IORDY */
3530 if (!ata_id_has_iordy(dev
->id
) && dev
->pio_mode
<= XFER_PIO_2
)
3533 /* Early MWDMA devices do DMA but don't allow DMA mode setting.
3534 Don't fail an MWDMA0 set IFF the device indicates it is in MWDMA0 */
3535 if (dev
->xfer_shift
== ATA_SHIFT_MWDMA
&&
3536 dev
->dma_mode
== XFER_MW_DMA_0
&&
3537 (dev
->id
[63] >> 8) & 1)
3540 /* if the device is actually configured correctly, ignore dev err */
3541 if (dev
->xfer_mode
== ata_xfer_mask2mode(ata_id_xfermask(dev
->id
)))
3544 if (err_mask
& AC_ERR_DEV
) {
3548 dev_err_whine
= " (device error ignored)";
3551 DPRINTK("xfer_shift=%u, xfer_mode=0x%x\n",
3552 dev
->xfer_shift
, (int)dev
->xfer_mode
);
3554 if (!(ehc
->i
.flags
& ATA_EHI_QUIET
) ||
3555 ehc
->i
.flags
& ATA_EHI_DID_HARDRESET
)
3556 ata_dev_info(dev
, "configured for %s%s\n",
3557 ata_mode_string(ata_xfer_mode2mask(dev
->xfer_mode
)),
3563 ata_dev_err(dev
, "failed to set xfermode (err_mask=0x%x)\n", err_mask
);
3568 * ata_do_set_mode - Program timings and issue SET FEATURES - XFER
3569 * @link: link on which timings will be programmed
3570 * @r_failed_dev: out parameter for failed device
3572 * Standard implementation of the function used to tune and set
3573 * ATA device disk transfer mode (PIO3, UDMA6, etc.). If
3574 * ata_dev_set_mode() fails, pointer to the failing device is
3575 * returned in @r_failed_dev.
3578 * PCI/etc. bus probe sem.
3581 * 0 on success, negative errno otherwise
3584 int ata_do_set_mode(struct ata_link
*link
, struct ata_device
**r_failed_dev
)
3586 struct ata_port
*ap
= link
->ap
;
3587 struct ata_device
*dev
;
3588 int rc
= 0, used_dma
= 0, found
= 0;
3590 /* step 1: calculate xfer_mask */
3591 ata_for_each_dev(dev
, link
, ENABLED
) {
3592 unsigned long pio_mask
, dma_mask
;
3593 unsigned int mode_mask
;
3595 mode_mask
= ATA_DMA_MASK_ATA
;
3596 if (dev
->class == ATA_DEV_ATAPI
)
3597 mode_mask
= ATA_DMA_MASK_ATAPI
;
3598 else if (ata_id_is_cfa(dev
->id
))
3599 mode_mask
= ATA_DMA_MASK_CFA
;
3601 ata_dev_xfermask(dev
);
3602 ata_force_xfermask(dev
);
3604 pio_mask
= ata_pack_xfermask(dev
->pio_mask
, 0, 0);
3606 if (libata_dma_mask
& mode_mask
)
3607 dma_mask
= ata_pack_xfermask(0, dev
->mwdma_mask
,
3612 dev
->pio_mode
= ata_xfer_mask2mode(pio_mask
);
3613 dev
->dma_mode
= ata_xfer_mask2mode(dma_mask
);
3616 if (ata_dma_enabled(dev
))
3622 /* step 2: always set host PIO timings */
3623 ata_for_each_dev(dev
, link
, ENABLED
) {
3624 if (dev
->pio_mode
== 0xff) {
3625 ata_dev_warn(dev
, "no PIO support\n");
3630 dev
->xfer_mode
= dev
->pio_mode
;
3631 dev
->xfer_shift
= ATA_SHIFT_PIO
;
3632 if (ap
->ops
->set_piomode
)
3633 ap
->ops
->set_piomode(ap
, dev
);
3636 /* step 3: set host DMA timings */
3637 ata_for_each_dev(dev
, link
, ENABLED
) {
3638 if (!ata_dma_enabled(dev
))
3641 dev
->xfer_mode
= dev
->dma_mode
;
3642 dev
->xfer_shift
= ata_xfer_mode2shift(dev
->dma_mode
);
3643 if (ap
->ops
->set_dmamode
)
3644 ap
->ops
->set_dmamode(ap
, dev
);
3647 /* step 4: update devices' xfer mode */
3648 ata_for_each_dev(dev
, link
, ENABLED
) {
3649 rc
= ata_dev_set_mode(dev
);
3654 /* Record simplex status. If we selected DMA then the other
3655 * host channels are not permitted to do so.
3657 if (used_dma
&& (ap
->host
->flags
& ATA_HOST_SIMPLEX
))
3658 ap
->host
->simplex_claimed
= ap
;
3662 *r_failed_dev
= dev
;
3667 * ata_wait_ready - wait for link to become ready
3668 * @link: link to be waited on
3669 * @deadline: deadline jiffies for the operation
3670 * @check_ready: callback to check link readiness
3672 * Wait for @link to become ready. @check_ready should return
3673 * positive number if @link is ready, 0 if it isn't, -ENODEV if
3674 * link doesn't seem to be occupied, other errno for other error
3677 * Transient -ENODEV conditions are allowed for
3678 * ATA_TMOUT_FF_WAIT.
3684 * 0 if @link is ready before @deadline; otherwise, -errno.
3686 int ata_wait_ready(struct ata_link
*link
, unsigned long deadline
,
3687 int (*check_ready
)(struct ata_link
*link
))
3689 unsigned long start
= jiffies
;
3690 unsigned long nodev_deadline
;
3693 /* choose which 0xff timeout to use, read comment in libata.h */
3694 if (link
->ap
->host
->flags
& ATA_HOST_PARALLEL_SCAN
)
3695 nodev_deadline
= ata_deadline(start
, ATA_TMOUT_FF_WAIT_LONG
);
3697 nodev_deadline
= ata_deadline(start
, ATA_TMOUT_FF_WAIT
);
3699 /* Slave readiness can't be tested separately from master. On
3700 * M/S emulation configuration, this function should be called
3701 * only on the master and it will handle both master and slave.
3703 WARN_ON(link
== link
->ap
->slave_link
);
3705 if (time_after(nodev_deadline
, deadline
))
3706 nodev_deadline
= deadline
;
3709 unsigned long now
= jiffies
;
3712 ready
= tmp
= check_ready(link
);
3717 * -ENODEV could be transient. Ignore -ENODEV if link
3718 * is online. Also, some SATA devices take a long
3719 * time to clear 0xff after reset. Wait for
3720 * ATA_TMOUT_FF_WAIT[_LONG] on -ENODEV if link isn't
3723 * Note that some PATA controllers (pata_ali) explode
3724 * if status register is read more than once when
3725 * there's no device attached.
3727 if (ready
== -ENODEV
) {
3728 if (ata_link_online(link
))
3730 else if ((link
->ap
->flags
& ATA_FLAG_SATA
) &&
3731 !ata_link_offline(link
) &&
3732 time_before(now
, nodev_deadline
))
3738 if (time_after(now
, deadline
))
3741 if (!warned
&& time_after(now
, start
+ 5 * HZ
) &&
3742 (deadline
- now
> 3 * HZ
)) {
3744 "link is slow to respond, please be patient "
3745 "(ready=%d)\n", tmp
);
3749 ata_msleep(link
->ap
, 50);
3754 * ata_wait_after_reset - wait for link to become ready after reset
3755 * @link: link to be waited on
3756 * @deadline: deadline jiffies for the operation
3757 * @check_ready: callback to check link readiness
3759 * Wait for @link to become ready after reset.
3765 * 0 if @link is ready before @deadline; otherwise, -errno.
3767 int ata_wait_after_reset(struct ata_link
*link
, unsigned long deadline
,
3768 int (*check_ready
)(struct ata_link
*link
))
3770 ata_msleep(link
->ap
, ATA_WAIT_AFTER_RESET
);
3772 return ata_wait_ready(link
, deadline
, check_ready
);
3776 * sata_link_debounce - debounce SATA phy status
3777 * @link: ATA link to debounce SATA phy status for
3778 * @params: timing parameters { interval, duration, timeout } in msec
3779 * @deadline: deadline jiffies for the operation
3781 * Make sure SStatus of @link reaches stable state, determined by
3782 * holding the same value where DET is not 1 for @duration polled
3783 * every @interval, before @timeout. Timeout constraints the
3784 * beginning of the stable state. Because DET gets stuck at 1 on
3785 * some controllers after hot unplugging, this functions waits
3786 * until timeout then returns 0 if DET is stable at 1.
3788 * @timeout is further limited by @deadline. The sooner of the
3792 * Kernel thread context (may sleep)
3795 * 0 on success, -errno on failure.
3797 int sata_link_debounce(struct ata_link
*link
, const unsigned long *params
,
3798 unsigned long deadline
)
3800 unsigned long interval
= params
[0];
3801 unsigned long duration
= params
[1];
3802 unsigned long last_jiffies
, t
;
3806 t
= ata_deadline(jiffies
, params
[2]);
3807 if (time_before(t
, deadline
))
3810 if ((rc
= sata_scr_read(link
, SCR_STATUS
, &cur
)))
3815 last_jiffies
= jiffies
;
3818 ata_msleep(link
->ap
, interval
);
3819 if ((rc
= sata_scr_read(link
, SCR_STATUS
, &cur
)))
3825 if (cur
== 1 && time_before(jiffies
, deadline
))
3827 if (time_after(jiffies
,
3828 ata_deadline(last_jiffies
, duration
)))
3833 /* unstable, start over */
3835 last_jiffies
= jiffies
;
3837 /* Check deadline. If debouncing failed, return
3838 * -EPIPE to tell upper layer to lower link speed.
3840 if (time_after(jiffies
, deadline
))
3846 * sata_link_resume - resume SATA link
3847 * @link: ATA link to resume SATA
3848 * @params: timing parameters { interval, duration, timeout } in msec
3849 * @deadline: deadline jiffies for the operation
3851 * Resume SATA phy @link and debounce it.
3854 * Kernel thread context (may sleep)
3857 * 0 on success, -errno on failure.
3859 int sata_link_resume(struct ata_link
*link
, const unsigned long *params
,
3860 unsigned long deadline
)
3862 int tries
= ATA_LINK_RESUME_TRIES
;
3863 u32 scontrol
, serror
;
3866 if ((rc
= sata_scr_read(link
, SCR_CONTROL
, &scontrol
)))
3870 * Writes to SControl sometimes get ignored under certain
3871 * controllers (ata_piix SIDPR). Make sure DET actually is
3875 scontrol
= (scontrol
& 0x0f0) | 0x300;
3876 if ((rc
= sata_scr_write(link
, SCR_CONTROL
, scontrol
)))
3879 * Some PHYs react badly if SStatus is pounded
3880 * immediately after resuming. Delay 200ms before
3883 if (!(link
->flags
& ATA_LFLAG_NO_DB_DELAY
))
3884 ata_msleep(link
->ap
, 200);
3886 /* is SControl restored correctly? */
3887 if ((rc
= sata_scr_read(link
, SCR_CONTROL
, &scontrol
)))
3889 } while ((scontrol
& 0xf0f) != 0x300 && --tries
);
3891 if ((scontrol
& 0xf0f) != 0x300) {
3892 ata_link_warn(link
, "failed to resume link (SControl %X)\n",
3897 if (tries
< ATA_LINK_RESUME_TRIES
)
3898 ata_link_warn(link
, "link resume succeeded after %d retries\n",
3899 ATA_LINK_RESUME_TRIES
- tries
);
3901 if ((rc
= sata_link_debounce(link
, params
, deadline
)))
3904 /* clear SError, some PHYs require this even for SRST to work */
3905 if (!(rc
= sata_scr_read(link
, SCR_ERROR
, &serror
)))
3906 rc
= sata_scr_write(link
, SCR_ERROR
, serror
);
3908 return rc
!= -EINVAL
? rc
: 0;
3912 * sata_link_scr_lpm - manipulate SControl IPM and SPM fields
3913 * @link: ATA link to manipulate SControl for
3914 * @policy: LPM policy to configure
3915 * @spm_wakeup: initiate LPM transition to active state
3917 * Manipulate the IPM field of the SControl register of @link
3918 * according to @policy. If @policy is ATA_LPM_MAX_POWER and
3919 * @spm_wakeup is %true, the SPM field is manipulated to wake up
3920 * the link. This function also clears PHYRDY_CHG before
3927 * 0 on success, -errno otherwise.
3929 int sata_link_scr_lpm(struct ata_link
*link
, enum ata_lpm_policy policy
,
3932 struct ata_eh_context
*ehc
= &link
->eh_context
;
3933 bool woken_up
= false;
3937 rc
= sata_scr_read(link
, SCR_CONTROL
, &scontrol
);
3942 case ATA_LPM_MAX_POWER
:
3943 /* disable all LPM transitions */
3944 scontrol
|= (0x7 << 8);
3945 /* initiate transition to active state */
3947 scontrol
|= (0x4 << 12);
3951 case ATA_LPM_MED_POWER
:
3952 /* allow LPM to PARTIAL */
3953 scontrol
&= ~(0x1 << 8);
3954 scontrol
|= (0x6 << 8);
3956 case ATA_LPM_MED_POWER_WITH_DIPM
:
3957 case ATA_LPM_MIN_POWER_WITH_PARTIAL
:
3958 case ATA_LPM_MIN_POWER
:
3959 if (ata_link_nr_enabled(link
) > 0)
3960 /* no restrictions on LPM transitions */
3961 scontrol
&= ~(0x7 << 8);
3963 /* empty port, power off */
3965 scontrol
|= (0x1 << 2);
3972 rc
= sata_scr_write(link
, SCR_CONTROL
, scontrol
);
3976 /* give the link time to transit out of LPM state */
3980 /* clear PHYRDY_CHG from SError */
3981 ehc
->i
.serror
&= ~SERR_PHYRDY_CHG
;
3982 return sata_scr_write(link
, SCR_ERROR
, SERR_PHYRDY_CHG
);
3986 * ata_std_prereset - prepare for reset
3987 * @link: ATA link to be reset
3988 * @deadline: deadline jiffies for the operation
3990 * @link is about to be reset. Initialize it. Failure from
3991 * prereset makes libata abort whole reset sequence and give up
3992 * that port, so prereset should be best-effort. It does its
3993 * best to prepare for reset sequence but if things go wrong, it
3994 * should just whine, not fail.
3997 * Kernel thread context (may sleep)
4000 * 0 on success, -errno otherwise.
4002 int ata_std_prereset(struct ata_link
*link
, unsigned long deadline
)
4004 struct ata_port
*ap
= link
->ap
;
4005 struct ata_eh_context
*ehc
= &link
->eh_context
;
4006 const unsigned long *timing
= sata_ehc_deb_timing(ehc
);
4009 /* if we're about to do hardreset, nothing more to do */
4010 if (ehc
->i
.action
& ATA_EH_HARDRESET
)
4013 /* if SATA, resume link */
4014 if (ap
->flags
& ATA_FLAG_SATA
) {
4015 rc
= sata_link_resume(link
, timing
, deadline
);
4016 /* whine about phy resume failure but proceed */
4017 if (rc
&& rc
!= -EOPNOTSUPP
)
4019 "failed to resume link for reset (errno=%d)\n",
4023 /* no point in trying softreset on offline link */
4024 if (ata_phys_link_offline(link
))
4025 ehc
->i
.action
&= ~ATA_EH_SOFTRESET
;
4031 * sata_link_hardreset - reset link via SATA phy reset
4032 * @link: link to reset
4033 * @timing: timing parameters { interval, duration, timeout } in msec
4034 * @deadline: deadline jiffies for the operation
4035 * @online: optional out parameter indicating link onlineness
4036 * @check_ready: optional callback to check link readiness
4038 * SATA phy-reset @link using DET bits of SControl register.
4039 * After hardreset, link readiness is waited upon using
4040 * ata_wait_ready() if @check_ready is specified. LLDs are
4041 * allowed to not specify @check_ready and wait itself after this
4042 * function returns. Device classification is LLD's
4045 * *@online is set to one iff reset succeeded and @link is online
4049 * Kernel thread context (may sleep)
4052 * 0 on success, -errno otherwise.
4054 int sata_link_hardreset(struct ata_link
*link
, const unsigned long *timing
,
4055 unsigned long deadline
,
4056 bool *online
, int (*check_ready
)(struct ata_link
*))
4066 if (sata_set_spd_needed(link
)) {
4067 /* SATA spec says nothing about how to reconfigure
4068 * spd. To be on the safe side, turn off phy during
4069 * reconfiguration. This works for at least ICH7 AHCI
4072 if ((rc
= sata_scr_read(link
, SCR_CONTROL
, &scontrol
)))
4075 scontrol
= (scontrol
& 0x0f0) | 0x304;
4077 if ((rc
= sata_scr_write(link
, SCR_CONTROL
, scontrol
)))
4083 /* issue phy wake/reset */
4084 if ((rc
= sata_scr_read(link
, SCR_CONTROL
, &scontrol
)))
4087 scontrol
= (scontrol
& 0x0f0) | 0x301;
4089 if ((rc
= sata_scr_write_flush(link
, SCR_CONTROL
, scontrol
)))
4092 /* Couldn't find anything in SATA I/II specs, but AHCI-1.1
4093 * 10.4.2 says at least 1 ms.
4095 ata_msleep(link
->ap
, 1);
4097 /* bring link back */
4098 rc
= sata_link_resume(link
, timing
, deadline
);
4101 /* if link is offline nothing more to do */
4102 if (ata_phys_link_offline(link
))
4105 /* Link is online. From this point, -ENODEV too is an error. */
4109 if (sata_pmp_supported(link
->ap
) && ata_is_host_link(link
)) {
4110 /* If PMP is supported, we have to do follow-up SRST.
4111 * Some PMPs don't send D2H Reg FIS after hardreset if
4112 * the first port is empty. Wait only for
4113 * ATA_TMOUT_PMP_SRST_WAIT.
4116 unsigned long pmp_deadline
;
4118 pmp_deadline
= ata_deadline(jiffies
,
4119 ATA_TMOUT_PMP_SRST_WAIT
);
4120 if (time_after(pmp_deadline
, deadline
))
4121 pmp_deadline
= deadline
;
4122 ata_wait_ready(link
, pmp_deadline
, check_ready
);
4130 rc
= ata_wait_ready(link
, deadline
, check_ready
);
4132 if (rc
&& rc
!= -EAGAIN
) {
4133 /* online is set iff link is online && reset succeeded */
4136 ata_link_err(link
, "COMRESET failed (errno=%d)\n", rc
);
4138 DPRINTK("EXIT, rc=%d\n", rc
);
4143 * sata_std_hardreset - COMRESET w/o waiting or classification
4144 * @link: link to reset
4145 * @class: resulting class of attached device
4146 * @deadline: deadline jiffies for the operation
4148 * Standard SATA COMRESET w/o waiting or classification.
4151 * Kernel thread context (may sleep)
4154 * 0 if link offline, -EAGAIN if link online, -errno on errors.
4156 int sata_std_hardreset(struct ata_link
*link
, unsigned int *class,
4157 unsigned long deadline
)
4159 const unsigned long *timing
= sata_ehc_deb_timing(&link
->eh_context
);
4164 rc
= sata_link_hardreset(link
, timing
, deadline
, &online
, NULL
);
4165 return online
? -EAGAIN
: rc
;
4169 * ata_std_postreset - standard postreset callback
4170 * @link: the target ata_link
4171 * @classes: classes of attached devices
4173 * This function is invoked after a successful reset. Note that
4174 * the device might have been reset more than once using
4175 * different reset methods before postreset is invoked.
4178 * Kernel thread context (may sleep)
4180 void ata_std_postreset(struct ata_link
*link
, unsigned int *classes
)
4186 /* reset complete, clear SError */
4187 if (!sata_scr_read(link
, SCR_ERROR
, &serror
))
4188 sata_scr_write(link
, SCR_ERROR
, serror
);
4190 /* print link status */
4191 sata_print_link_status(link
);
4197 * ata_dev_same_device - Determine whether new ID matches configured device
4198 * @dev: device to compare against
4199 * @new_class: class of the new device
4200 * @new_id: IDENTIFY page of the new device
4202 * Compare @new_class and @new_id against @dev and determine
4203 * whether @dev is the device indicated by @new_class and
4210 * 1 if @dev matches @new_class and @new_id, 0 otherwise.
4212 static int ata_dev_same_device(struct ata_device
*dev
, unsigned int new_class
,
4215 const u16
*old_id
= dev
->id
;
4216 unsigned char model
[2][ATA_ID_PROD_LEN
+ 1];
4217 unsigned char serial
[2][ATA_ID_SERNO_LEN
+ 1];
4219 if (dev
->class != new_class
) {
4220 ata_dev_info(dev
, "class mismatch %d != %d\n",
4221 dev
->class, new_class
);
4225 ata_id_c_string(old_id
, model
[0], ATA_ID_PROD
, sizeof(model
[0]));
4226 ata_id_c_string(new_id
, model
[1], ATA_ID_PROD
, sizeof(model
[1]));
4227 ata_id_c_string(old_id
, serial
[0], ATA_ID_SERNO
, sizeof(serial
[0]));
4228 ata_id_c_string(new_id
, serial
[1], ATA_ID_SERNO
, sizeof(serial
[1]));
4230 if (strcmp(model
[0], model
[1])) {
4231 ata_dev_info(dev
, "model number mismatch '%s' != '%s'\n",
4232 model
[0], model
[1]);
4236 if (strcmp(serial
[0], serial
[1])) {
4237 ata_dev_info(dev
, "serial number mismatch '%s' != '%s'\n",
4238 serial
[0], serial
[1]);
4246 * ata_dev_reread_id - Re-read IDENTIFY data
4247 * @dev: target ATA device
4248 * @readid_flags: read ID flags
4250 * Re-read IDENTIFY page and make sure @dev is still attached to
4254 * Kernel thread context (may sleep)
4257 * 0 on success, negative errno otherwise
4259 int ata_dev_reread_id(struct ata_device
*dev
, unsigned int readid_flags
)
4261 unsigned int class = dev
->class;
4262 u16
*id
= (void *)dev
->link
->ap
->sector_buf
;
4266 rc
= ata_dev_read_id(dev
, &class, readid_flags
, id
);
4270 /* is the device still there? */
4271 if (!ata_dev_same_device(dev
, class, id
))
4274 memcpy(dev
->id
, id
, sizeof(id
[0]) * ATA_ID_WORDS
);
4279 * ata_dev_revalidate - Revalidate ATA device
4280 * @dev: device to revalidate
4281 * @new_class: new class code
4282 * @readid_flags: read ID flags
4284 * Re-read IDENTIFY page, make sure @dev is still attached to the
4285 * port and reconfigure it according to the new IDENTIFY page.
4288 * Kernel thread context (may sleep)
4291 * 0 on success, negative errno otherwise
4293 int ata_dev_revalidate(struct ata_device
*dev
, unsigned int new_class
,
4294 unsigned int readid_flags
)
4296 u64 n_sectors
= dev
->n_sectors
;
4297 u64 n_native_sectors
= dev
->n_native_sectors
;
4300 if (!ata_dev_enabled(dev
))
4303 /* fail early if !ATA && !ATAPI to avoid issuing [P]IDENTIFY to PMP */
4304 if (ata_class_enabled(new_class
) &&
4305 new_class
!= ATA_DEV_ATA
&&
4306 new_class
!= ATA_DEV_ATAPI
&&
4307 new_class
!= ATA_DEV_ZAC
&&
4308 new_class
!= ATA_DEV_SEMB
) {
4309 ata_dev_info(dev
, "class mismatch %u != %u\n",
4310 dev
->class, new_class
);
4316 rc
= ata_dev_reread_id(dev
, readid_flags
);
4320 /* configure device according to the new ID */
4321 rc
= ata_dev_configure(dev
);
4325 /* verify n_sectors hasn't changed */
4326 if (dev
->class != ATA_DEV_ATA
|| !n_sectors
||
4327 dev
->n_sectors
== n_sectors
)
4330 /* n_sectors has changed */
4331 ata_dev_warn(dev
, "n_sectors mismatch %llu != %llu\n",
4332 (unsigned long long)n_sectors
,
4333 (unsigned long long)dev
->n_sectors
);
4336 * Something could have caused HPA to be unlocked
4337 * involuntarily. If n_native_sectors hasn't changed and the
4338 * new size matches it, keep the device.
4340 if (dev
->n_native_sectors
== n_native_sectors
&&
4341 dev
->n_sectors
> n_sectors
&& dev
->n_sectors
== n_native_sectors
) {
4343 "new n_sectors matches native, probably "
4344 "late HPA unlock, n_sectors updated\n");
4345 /* use the larger n_sectors */
4350 * Some BIOSes boot w/o HPA but resume w/ HPA locked. Try
4351 * unlocking HPA in those cases.
4353 * https://bugzilla.kernel.org/show_bug.cgi?id=15396
4355 if (dev
->n_native_sectors
== n_native_sectors
&&
4356 dev
->n_sectors
< n_sectors
&& n_sectors
== n_native_sectors
&&
4357 !(dev
->horkage
& ATA_HORKAGE_BROKEN_HPA
)) {
4359 "old n_sectors matches native, probably "
4360 "late HPA lock, will try to unlock HPA\n");
4361 /* try unlocking HPA */
4362 dev
->flags
|= ATA_DFLAG_UNLOCK_HPA
;
4367 /* restore original n_[native_]sectors and fail */
4368 dev
->n_native_sectors
= n_native_sectors
;
4369 dev
->n_sectors
= n_sectors
;
4371 ata_dev_err(dev
, "revalidation failed (errno=%d)\n", rc
);
4375 struct ata_blacklist_entry
{
4376 const char *model_num
;
4377 const char *model_rev
;
4378 unsigned long horkage
;
4381 static const struct ata_blacklist_entry ata_device_blacklist
[] = {
4382 /* Devices with DMA related problems under Linux */
4383 { "WDC AC11000H", NULL
, ATA_HORKAGE_NODMA
},
4384 { "WDC AC22100H", NULL
, ATA_HORKAGE_NODMA
},
4385 { "WDC AC32500H", NULL
, ATA_HORKAGE_NODMA
},
4386 { "WDC AC33100H", NULL
, ATA_HORKAGE_NODMA
},
4387 { "WDC AC31600H", NULL
, ATA_HORKAGE_NODMA
},
4388 { "WDC AC32100H", "24.09P07", ATA_HORKAGE_NODMA
},
4389 { "WDC AC23200L", "21.10N21", ATA_HORKAGE_NODMA
},
4390 { "Compaq CRD-8241B", NULL
, ATA_HORKAGE_NODMA
},
4391 { "CRD-8400B", NULL
, ATA_HORKAGE_NODMA
},
4392 { "CRD-848[02]B", NULL
, ATA_HORKAGE_NODMA
},
4393 { "CRD-84", NULL
, ATA_HORKAGE_NODMA
},
4394 { "SanDisk SDP3B", NULL
, ATA_HORKAGE_NODMA
},
4395 { "SanDisk SDP3B-64", NULL
, ATA_HORKAGE_NODMA
},
4396 { "SANYO CD-ROM CRD", NULL
, ATA_HORKAGE_NODMA
},
4397 { "HITACHI CDR-8", NULL
, ATA_HORKAGE_NODMA
},
4398 { "HITACHI CDR-8[34]35",NULL
, ATA_HORKAGE_NODMA
},
4399 { "Toshiba CD-ROM XM-6202B", NULL
, ATA_HORKAGE_NODMA
},
4400 { "TOSHIBA CD-ROM XM-1702BC", NULL
, ATA_HORKAGE_NODMA
},
4401 { "CD-532E-A", NULL
, ATA_HORKAGE_NODMA
},
4402 { "E-IDE CD-ROM CR-840",NULL
, ATA_HORKAGE_NODMA
},
4403 { "CD-ROM Drive/F5A", NULL
, ATA_HORKAGE_NODMA
},
4404 { "WPI CDD-820", NULL
, ATA_HORKAGE_NODMA
},
4405 { "SAMSUNG CD-ROM SC-148C", NULL
, ATA_HORKAGE_NODMA
},
4406 { "SAMSUNG CD-ROM SC", NULL
, ATA_HORKAGE_NODMA
},
4407 { "ATAPI CD-ROM DRIVE 40X MAXIMUM",NULL
,ATA_HORKAGE_NODMA
},
4408 { "_NEC DV5800A", NULL
, ATA_HORKAGE_NODMA
},
4409 { "SAMSUNG CD-ROM SN-124", "N001", ATA_HORKAGE_NODMA
},
4410 { "Seagate STT20000A", NULL
, ATA_HORKAGE_NODMA
},
4411 { " 2GB ATA Flash Disk", "ADMA428M", ATA_HORKAGE_NODMA
},
4412 { "VRFDFC22048UCHC-TE*", NULL
, ATA_HORKAGE_NODMA
},
4413 /* Odd clown on sil3726/4726 PMPs */
4414 { "Config Disk", NULL
, ATA_HORKAGE_DISABLE
},
4416 /* Weird ATAPI devices */
4417 { "TORiSAN DVD-ROM DRD-N216", NULL
, ATA_HORKAGE_MAX_SEC_128
},
4418 { "QUANTUM DAT DAT72-000", NULL
, ATA_HORKAGE_ATAPI_MOD16_DMA
},
4419 { "Slimtype DVD A DS8A8SH", NULL
, ATA_HORKAGE_MAX_SEC_LBA48
},
4420 { "Slimtype DVD A DS8A9SH", NULL
, ATA_HORKAGE_MAX_SEC_LBA48
},
4423 * Causes silent data corruption with higher max sects.
4424 * http://lkml.kernel.org/g/x49wpy40ysk.fsf@segfault.boston.devel.redhat.com
4426 { "ST380013AS", "3.20", ATA_HORKAGE_MAX_SEC_1024
},
4429 * These devices time out with higher max sects.
4430 * https://bugzilla.kernel.org/show_bug.cgi?id=121671
4432 { "LITEON CX1-JB*-HP", NULL
, ATA_HORKAGE_MAX_SEC_1024
},
4433 { "LITEON EP1-*", NULL
, ATA_HORKAGE_MAX_SEC_1024
},
4435 /* Devices we expect to fail diagnostics */
4437 /* Devices where NCQ should be avoided */
4439 { "WDC WD740ADFD-00", NULL
, ATA_HORKAGE_NONCQ
},
4440 { "WDC WD740ADFD-00NLR1", NULL
, ATA_HORKAGE_NONCQ
, },
4441 /* http://thread.gmane.org/gmane.linux.ide/14907 */
4442 { "FUJITSU MHT2060BH", NULL
, ATA_HORKAGE_NONCQ
},
4444 { "Maxtor *", "BANC*", ATA_HORKAGE_NONCQ
},
4445 { "Maxtor 7V300F0", "VA111630", ATA_HORKAGE_NONCQ
},
4446 { "ST380817AS", "3.42", ATA_HORKAGE_NONCQ
},
4447 { "ST3160023AS", "3.42", ATA_HORKAGE_NONCQ
},
4448 { "OCZ CORE_SSD", "02.10104", ATA_HORKAGE_NONCQ
},
4450 /* Seagate NCQ + FLUSH CACHE firmware bug */
4451 { "ST31500341AS", "SD1[5-9]", ATA_HORKAGE_NONCQ
|
4452 ATA_HORKAGE_FIRMWARE_WARN
},
4454 { "ST31000333AS", "SD1[5-9]", ATA_HORKAGE_NONCQ
|
4455 ATA_HORKAGE_FIRMWARE_WARN
},
4457 { "ST3640[36]23AS", "SD1[5-9]", ATA_HORKAGE_NONCQ
|
4458 ATA_HORKAGE_FIRMWARE_WARN
},
4460 { "ST3320[68]13AS", "SD1[5-9]", ATA_HORKAGE_NONCQ
|
4461 ATA_HORKAGE_FIRMWARE_WARN
},
4463 /* drives which fail FPDMA_AA activation (some may freeze afterwards)
4464 the ST disks also have LPM issues */
4465 { "ST1000LM024 HN-M101MBB", NULL
, ATA_HORKAGE_BROKEN_FPDMA_AA
|
4466 ATA_HORKAGE_NOLPM
, },
4467 { "VB0250EAVER", "HPG7", ATA_HORKAGE_BROKEN_FPDMA_AA
},
4469 /* Blacklist entries taken from Silicon Image 3124/3132
4470 Windows driver .inf file - also several Linux problem reports */
4471 { "HTS541060G9SA00", "MB3OC60D", ATA_HORKAGE_NONCQ
, },
4472 { "HTS541080G9SA00", "MB4OC60D", ATA_HORKAGE_NONCQ
, },
4473 { "HTS541010G9SA00", "MBZOC60D", ATA_HORKAGE_NONCQ
, },
4475 /* https://bugzilla.kernel.org/show_bug.cgi?id=15573 */
4476 { "C300-CTFDDAC128MAG", "0001", ATA_HORKAGE_NONCQ
, },
4478 /* Some Sandisk SSDs lock up hard with NCQ enabled. Reported on
4479 SD7SN6S256G and SD8SN8U256G */
4480 { "SanDisk SD[78]SN*G", NULL
, ATA_HORKAGE_NONCQ
, },
4482 /* devices which puke on READ_NATIVE_MAX */
4483 { "HDS724040KLSA80", "KFAOA20N", ATA_HORKAGE_BROKEN_HPA
, },
4484 { "WDC WD3200JD-00KLB0", "WD-WCAMR1130137", ATA_HORKAGE_BROKEN_HPA
},
4485 { "WDC WD2500JD-00HBB0", "WD-WMAL71490727", ATA_HORKAGE_BROKEN_HPA
},
4486 { "MAXTOR 6L080L4", "A93.0500", ATA_HORKAGE_BROKEN_HPA
},
4488 /* this one allows HPA unlocking but fails IOs on the area */
4489 { "OCZ-VERTEX", "1.30", ATA_HORKAGE_BROKEN_HPA
},
4491 /* Devices which report 1 sector over size HPA */
4492 { "ST340823A", NULL
, ATA_HORKAGE_HPA_SIZE
, },
4493 { "ST320413A", NULL
, ATA_HORKAGE_HPA_SIZE
, },
4494 { "ST310211A", NULL
, ATA_HORKAGE_HPA_SIZE
, },
4496 /* Devices which get the IVB wrong */
4497 { "QUANTUM FIREBALLlct10 05", "A03.0900", ATA_HORKAGE_IVB
, },
4498 /* Maybe we should just blacklist TSSTcorp... */
4499 { "TSSTcorp CDDVDW SH-S202[HJN]", "SB0[01]", ATA_HORKAGE_IVB
, },
4501 /* Devices that do not need bridging limits applied */
4502 { "MTRON MSP-SATA*", NULL
, ATA_HORKAGE_BRIDGE_OK
, },
4503 { "BUFFALO HD-QSU2/R5", NULL
, ATA_HORKAGE_BRIDGE_OK
, },
4505 /* Devices which aren't very happy with higher link speeds */
4506 { "WD My Book", NULL
, ATA_HORKAGE_1_5_GBPS
, },
4507 { "Seagate FreeAgent GoFlex", NULL
, ATA_HORKAGE_1_5_GBPS
, },
4510 * Devices which choke on SETXFER. Applies only if both the
4511 * device and controller are SATA.
4513 { "PIONEER DVD-RW DVRTD08", NULL
, ATA_HORKAGE_NOSETXFER
},
4514 { "PIONEER DVD-RW DVRTD08A", NULL
, ATA_HORKAGE_NOSETXFER
},
4515 { "PIONEER DVD-RW DVR-215", NULL
, ATA_HORKAGE_NOSETXFER
},
4516 { "PIONEER DVD-RW DVR-212D", NULL
, ATA_HORKAGE_NOSETXFER
},
4517 { "PIONEER DVD-RW DVR-216D", NULL
, ATA_HORKAGE_NOSETXFER
},
4519 /* Crucial BX100 SSD 500GB has broken LPM support */
4520 { "CT500BX100SSD1", NULL
, ATA_HORKAGE_NOLPM
},
4522 /* 512GB MX100 with MU01 firmware has both queued TRIM and LPM issues */
4523 { "Crucial_CT512MX100*", "MU01", ATA_HORKAGE_NO_NCQ_TRIM
|
4524 ATA_HORKAGE_ZERO_AFTER_TRIM
|
4525 ATA_HORKAGE_NOLPM
, },
4526 /* 512GB MX100 with newer firmware has only LPM issues */
4527 { "Crucial_CT512MX100*", NULL
, ATA_HORKAGE_ZERO_AFTER_TRIM
|
4528 ATA_HORKAGE_NOLPM
, },
4530 /* 480GB+ M500 SSDs have both queued TRIM and LPM issues */
4531 { "Crucial_CT480M500*", NULL
, ATA_HORKAGE_NO_NCQ_TRIM
|
4532 ATA_HORKAGE_ZERO_AFTER_TRIM
|
4533 ATA_HORKAGE_NOLPM
, },
4534 { "Crucial_CT960M500*", NULL
, ATA_HORKAGE_NO_NCQ_TRIM
|
4535 ATA_HORKAGE_ZERO_AFTER_TRIM
|
4536 ATA_HORKAGE_NOLPM
, },
4538 /* These specific Samsung models/firmware-revs do not handle LPM well */
4539 { "SAMSUNG MZMPC128HBFU-000MV", "CXM14M1Q", ATA_HORKAGE_NOLPM
, },
4540 { "SAMSUNG SSD PM830 mSATA *", "CXM13D1Q", ATA_HORKAGE_NOLPM
, },
4541 { "SAMSUNG MZ7TD256HAFV-000L9", NULL
, ATA_HORKAGE_NOLPM
, },
4542 { "SAMSUNG MZ7TE512HMHP-000L1", "EXT06L0Q", ATA_HORKAGE_NOLPM
, },
4544 /* devices that don't properly handle queued TRIM commands */
4545 { "Micron_M500IT_*", "MU01", ATA_HORKAGE_NO_NCQ_TRIM
|
4546 ATA_HORKAGE_ZERO_AFTER_TRIM
, },
4547 { "Micron_M500_*", NULL
, ATA_HORKAGE_NO_NCQ_TRIM
|
4548 ATA_HORKAGE_ZERO_AFTER_TRIM
, },
4549 { "Crucial_CT*M500*", NULL
, ATA_HORKAGE_NO_NCQ_TRIM
|
4550 ATA_HORKAGE_ZERO_AFTER_TRIM
, },
4551 { "Micron_M5[15]0_*", "MU01", ATA_HORKAGE_NO_NCQ_TRIM
|
4552 ATA_HORKAGE_ZERO_AFTER_TRIM
, },
4553 { "Crucial_CT*M550*", "MU01", ATA_HORKAGE_NO_NCQ_TRIM
|
4554 ATA_HORKAGE_ZERO_AFTER_TRIM
, },
4555 { "Crucial_CT*MX100*", "MU01", ATA_HORKAGE_NO_NCQ_TRIM
|
4556 ATA_HORKAGE_ZERO_AFTER_TRIM
, },
4557 { "Samsung SSD 840*", NULL
, ATA_HORKAGE_NO_NCQ_TRIM
|
4558 ATA_HORKAGE_ZERO_AFTER_TRIM
, },
4559 { "Samsung SSD 850*", NULL
, ATA_HORKAGE_NO_NCQ_TRIM
|
4560 ATA_HORKAGE_ZERO_AFTER_TRIM
, },
4561 { "FCCT*M500*", NULL
, ATA_HORKAGE_NO_NCQ_TRIM
|
4562 ATA_HORKAGE_ZERO_AFTER_TRIM
, },
4564 /* devices that don't properly handle TRIM commands */
4565 { "SuperSSpeed S238*", NULL
, ATA_HORKAGE_NOTRIM
, },
4568 * As defined, the DRAT (Deterministic Read After Trim) and RZAT
4569 * (Return Zero After Trim) flags in the ATA Command Set are
4570 * unreliable in the sense that they only define what happens if
4571 * the device successfully executed the DSM TRIM command. TRIM
4572 * is only advisory, however, and the device is free to silently
4573 * ignore all or parts of the request.
4575 * Whitelist drives that are known to reliably return zeroes
4580 * The intel 510 drive has buggy DRAT/RZAT. Explicitly exclude
4581 * that model before whitelisting all other intel SSDs.
4583 { "INTEL*SSDSC2MH*", NULL
, 0, },
4585 { "Micron*", NULL
, ATA_HORKAGE_ZERO_AFTER_TRIM
, },
4586 { "Crucial*", NULL
, ATA_HORKAGE_ZERO_AFTER_TRIM
, },
4587 { "INTEL*SSD*", NULL
, ATA_HORKAGE_ZERO_AFTER_TRIM
, },
4588 { "SSD*INTEL*", NULL
, ATA_HORKAGE_ZERO_AFTER_TRIM
, },
4589 { "Samsung*SSD*", NULL
, ATA_HORKAGE_ZERO_AFTER_TRIM
, },
4590 { "SAMSUNG*SSD*", NULL
, ATA_HORKAGE_ZERO_AFTER_TRIM
, },
4591 { "SAMSUNG*MZ7KM*", NULL
, ATA_HORKAGE_ZERO_AFTER_TRIM
, },
4592 { "ST[1248][0248]0[FH]*", NULL
, ATA_HORKAGE_ZERO_AFTER_TRIM
, },
4595 * Some WD SATA-I drives spin up and down erratically when the link
4596 * is put into the slumber mode. We don't have full list of the
4597 * affected devices. Disable LPM if the device matches one of the
4598 * known prefixes and is SATA-1. As a side effect LPM partial is
4601 * https://bugzilla.kernel.org/show_bug.cgi?id=57211
4603 { "WDC WD800JD-*", NULL
, ATA_HORKAGE_WD_BROKEN_LPM
},
4604 { "WDC WD1200JD-*", NULL
, ATA_HORKAGE_WD_BROKEN_LPM
},
4605 { "WDC WD1600JD-*", NULL
, ATA_HORKAGE_WD_BROKEN_LPM
},
4606 { "WDC WD2000JD-*", NULL
, ATA_HORKAGE_WD_BROKEN_LPM
},
4607 { "WDC WD2500JD-*", NULL
, ATA_HORKAGE_WD_BROKEN_LPM
},
4608 { "WDC WD3000JD-*", NULL
, ATA_HORKAGE_WD_BROKEN_LPM
},
4609 { "WDC WD3200JD-*", NULL
, ATA_HORKAGE_WD_BROKEN_LPM
},
4615 static unsigned long ata_dev_blacklisted(const struct ata_device
*dev
)
4617 unsigned char model_num
[ATA_ID_PROD_LEN
+ 1];
4618 unsigned char model_rev
[ATA_ID_FW_REV_LEN
+ 1];
4619 const struct ata_blacklist_entry
*ad
= ata_device_blacklist
;
4621 ata_id_c_string(dev
->id
, model_num
, ATA_ID_PROD
, sizeof(model_num
));
4622 ata_id_c_string(dev
->id
, model_rev
, ATA_ID_FW_REV
, sizeof(model_rev
));
4624 while (ad
->model_num
) {
4625 if (glob_match(ad
->model_num
, model_num
)) {
4626 if (ad
->model_rev
== NULL
)
4628 if (glob_match(ad
->model_rev
, model_rev
))
4636 static int ata_dma_blacklisted(const struct ata_device
*dev
)
4638 /* We don't support polling DMA.
4639 * DMA blacklist those ATAPI devices with CDB-intr (and use PIO)
4640 * if the LLDD handles only interrupts in the HSM_ST_LAST state.
4642 if ((dev
->link
->ap
->flags
& ATA_FLAG_PIO_POLLING
) &&
4643 (dev
->flags
& ATA_DFLAG_CDB_INTR
))
4645 return (dev
->horkage
& ATA_HORKAGE_NODMA
) ? 1 : 0;
4649 * ata_is_40wire - check drive side detection
4652 * Perform drive side detection decoding, allowing for device vendors
4653 * who can't follow the documentation.
4656 static int ata_is_40wire(struct ata_device
*dev
)
4658 if (dev
->horkage
& ATA_HORKAGE_IVB
)
4659 return ata_drive_40wire_relaxed(dev
->id
);
4660 return ata_drive_40wire(dev
->id
);
4664 * cable_is_40wire - 40/80/SATA decider
4665 * @ap: port to consider
4667 * This function encapsulates the policy for speed management
4668 * in one place. At the moment we don't cache the result but
4669 * there is a good case for setting ap->cbl to the result when
4670 * we are called with unknown cables (and figuring out if it
4671 * impacts hotplug at all).
4673 * Return 1 if the cable appears to be 40 wire.
4676 static int cable_is_40wire(struct ata_port
*ap
)
4678 struct ata_link
*link
;
4679 struct ata_device
*dev
;
4681 /* If the controller thinks we are 40 wire, we are. */
4682 if (ap
->cbl
== ATA_CBL_PATA40
)
4685 /* If the controller thinks we are 80 wire, we are. */
4686 if (ap
->cbl
== ATA_CBL_PATA80
|| ap
->cbl
== ATA_CBL_SATA
)
4689 /* If the system is known to be 40 wire short cable (eg
4690 * laptop), then we allow 80 wire modes even if the drive
4693 if (ap
->cbl
== ATA_CBL_PATA40_SHORT
)
4696 /* If the controller doesn't know, we scan.
4698 * Note: We look for all 40 wire detects at this point. Any
4699 * 80 wire detect is taken to be 80 wire cable because
4700 * - in many setups only the one drive (slave if present) will
4701 * give a valid detect
4702 * - if you have a non detect capable drive you don't want it
4703 * to colour the choice
4705 ata_for_each_link(link
, ap
, EDGE
) {
4706 ata_for_each_dev(dev
, link
, ENABLED
) {
4707 if (!ata_is_40wire(dev
))
4715 * ata_dev_xfermask - Compute supported xfermask of the given device
4716 * @dev: Device to compute xfermask for
4718 * Compute supported xfermask of @dev and store it in
4719 * dev->*_mask. This function is responsible for applying all
4720 * known limits including host controller limits, device
4726 static void ata_dev_xfermask(struct ata_device
*dev
)
4728 struct ata_link
*link
= dev
->link
;
4729 struct ata_port
*ap
= link
->ap
;
4730 struct ata_host
*host
= ap
->host
;
4731 unsigned long xfer_mask
;
4733 /* controller modes available */
4734 xfer_mask
= ata_pack_xfermask(ap
->pio_mask
,
4735 ap
->mwdma_mask
, ap
->udma_mask
);
4737 /* drive modes available */
4738 xfer_mask
&= ata_pack_xfermask(dev
->pio_mask
,
4739 dev
->mwdma_mask
, dev
->udma_mask
);
4740 xfer_mask
&= ata_id_xfermask(dev
->id
);
4743 * CFA Advanced TrueIDE timings are not allowed on a shared
4746 if (ata_dev_pair(dev
)) {
4747 /* No PIO5 or PIO6 */
4748 xfer_mask
&= ~(0x03 << (ATA_SHIFT_PIO
+ 5));
4749 /* No MWDMA3 or MWDMA 4 */
4750 xfer_mask
&= ~(0x03 << (ATA_SHIFT_MWDMA
+ 3));
4753 if (ata_dma_blacklisted(dev
)) {
4754 xfer_mask
&= ~(ATA_MASK_MWDMA
| ATA_MASK_UDMA
);
4756 "device is on DMA blacklist, disabling DMA\n");
4759 if ((host
->flags
& ATA_HOST_SIMPLEX
) &&
4760 host
->simplex_claimed
&& host
->simplex_claimed
!= ap
) {
4761 xfer_mask
&= ~(ATA_MASK_MWDMA
| ATA_MASK_UDMA
);
4763 "simplex DMA is claimed by other device, disabling DMA\n");
4766 if (ap
->flags
& ATA_FLAG_NO_IORDY
)
4767 xfer_mask
&= ata_pio_mask_no_iordy(dev
);
4769 if (ap
->ops
->mode_filter
)
4770 xfer_mask
= ap
->ops
->mode_filter(dev
, xfer_mask
);
4772 /* Apply cable rule here. Don't apply it early because when
4773 * we handle hot plug the cable type can itself change.
4774 * Check this last so that we know if the transfer rate was
4775 * solely limited by the cable.
4776 * Unknown or 80 wire cables reported host side are checked
4777 * drive side as well. Cases where we know a 40wire cable
4778 * is used safely for 80 are not checked here.
4780 if (xfer_mask
& (0xF8 << ATA_SHIFT_UDMA
))
4781 /* UDMA/44 or higher would be available */
4782 if (cable_is_40wire(ap
)) {
4784 "limited to UDMA/33 due to 40-wire cable\n");
4785 xfer_mask
&= ~(0xF8 << ATA_SHIFT_UDMA
);
4788 ata_unpack_xfermask(xfer_mask
, &dev
->pio_mask
,
4789 &dev
->mwdma_mask
, &dev
->udma_mask
);
4793 * ata_dev_set_xfermode - Issue SET FEATURES - XFER MODE command
4794 * @dev: Device to which command will be sent
4796 * Issue SET FEATURES - XFER MODE command to device @dev
4800 * PCI/etc. bus probe sem.
4803 * 0 on success, AC_ERR_* mask otherwise.
4806 static unsigned int ata_dev_set_xfermode(struct ata_device
*dev
)
4808 struct ata_taskfile tf
;
4809 unsigned int err_mask
;
4811 /* set up set-features taskfile */
4812 DPRINTK("set features - xfer mode\n");
4814 /* Some controllers and ATAPI devices show flaky interrupt
4815 * behavior after setting xfer mode. Use polling instead.
4817 ata_tf_init(dev
, &tf
);
4818 tf
.command
= ATA_CMD_SET_FEATURES
;
4819 tf
.feature
= SETFEATURES_XFER
;
4820 tf
.flags
|= ATA_TFLAG_ISADDR
| ATA_TFLAG_DEVICE
| ATA_TFLAG_POLLING
;
4821 tf
.protocol
= ATA_PROT_NODATA
;
4822 /* If we are using IORDY we must send the mode setting command */
4823 if (ata_pio_need_iordy(dev
))
4824 tf
.nsect
= dev
->xfer_mode
;
4825 /* If the device has IORDY and the controller does not - turn it off */
4826 else if (ata_id_has_iordy(dev
->id
))
4828 else /* In the ancient relic department - skip all of this */
4831 /* On some disks, this command causes spin-up, so we need longer timeout */
4832 err_mask
= ata_exec_internal(dev
, &tf
, NULL
, DMA_NONE
, NULL
, 0, 15000);
4834 DPRINTK("EXIT, err_mask=%x\n", err_mask
);
4839 * ata_dev_set_feature - Issue SET FEATURES - SATA FEATURES
4840 * @dev: Device to which command will be sent
4841 * @enable: Whether to enable or disable the feature
4842 * @feature: The sector count represents the feature to set
4844 * Issue SET FEATURES - SATA FEATURES command to device @dev
4845 * on port @ap with sector count
4848 * PCI/etc. bus probe sem.
4851 * 0 on success, AC_ERR_* mask otherwise.
4853 unsigned int ata_dev_set_feature(struct ata_device
*dev
, u8 enable
, u8 feature
)
4855 struct ata_taskfile tf
;
4856 unsigned int err_mask
;
4857 unsigned long timeout
= 0;
4859 /* set up set-features taskfile */
4860 DPRINTK("set features - SATA features\n");
4862 ata_tf_init(dev
, &tf
);
4863 tf
.command
= ATA_CMD_SET_FEATURES
;
4864 tf
.feature
= enable
;
4865 tf
.flags
|= ATA_TFLAG_ISADDR
| ATA_TFLAG_DEVICE
;
4866 tf
.protocol
= ATA_PROT_NODATA
;
4869 if (enable
== SETFEATURES_SPINUP
)
4870 timeout
= ata_probe_timeout
?
4871 ata_probe_timeout
* 1000 : SETFEATURES_SPINUP_TIMEOUT
;
4872 err_mask
= ata_exec_internal(dev
, &tf
, NULL
, DMA_NONE
, NULL
, 0, timeout
);
4874 DPRINTK("EXIT, err_mask=%x\n", err_mask
);
4877 EXPORT_SYMBOL_GPL(ata_dev_set_feature
);
4880 * ata_dev_init_params - Issue INIT DEV PARAMS command
4881 * @dev: Device to which command will be sent
4882 * @heads: Number of heads (taskfile parameter)
4883 * @sectors: Number of sectors (taskfile parameter)
4886 * Kernel thread context (may sleep)
4889 * 0 on success, AC_ERR_* mask otherwise.
4891 static unsigned int ata_dev_init_params(struct ata_device
*dev
,
4892 u16 heads
, u16 sectors
)
4894 struct ata_taskfile tf
;
4895 unsigned int err_mask
;
4897 /* Number of sectors per track 1-255. Number of heads 1-16 */
4898 if (sectors
< 1 || sectors
> 255 || heads
< 1 || heads
> 16)
4899 return AC_ERR_INVALID
;
4901 /* set up init dev params taskfile */
4902 DPRINTK("init dev params \n");
4904 ata_tf_init(dev
, &tf
);
4905 tf
.command
= ATA_CMD_INIT_DEV_PARAMS
;
4906 tf
.flags
|= ATA_TFLAG_ISADDR
| ATA_TFLAG_DEVICE
;
4907 tf
.protocol
= ATA_PROT_NODATA
;
4909 tf
.device
|= (heads
- 1) & 0x0f; /* max head = num. of heads - 1 */
4911 err_mask
= ata_exec_internal(dev
, &tf
, NULL
, DMA_NONE
, NULL
, 0, 0);
4912 /* A clean abort indicates an original or just out of spec drive
4913 and we should continue as we issue the setup based on the
4914 drive reported working geometry */
4915 if (err_mask
== AC_ERR_DEV
&& (tf
.feature
& ATA_ABORTED
))
4918 DPRINTK("EXIT, err_mask=%x\n", err_mask
);
4923 * atapi_check_dma - Check whether ATAPI DMA can be supported
4924 * @qc: Metadata associated with taskfile to check
4926 * Allow low-level driver to filter ATA PACKET commands, returning
4927 * a status indicating whether or not it is OK to use DMA for the
4928 * supplied PACKET command.
4931 * spin_lock_irqsave(host lock)
4933 * RETURNS: 0 when ATAPI DMA can be used
4936 int atapi_check_dma(struct ata_queued_cmd
*qc
)
4938 struct ata_port
*ap
= qc
->ap
;
4940 /* Don't allow DMA if it isn't multiple of 16 bytes. Quite a
4941 * few ATAPI devices choke on such DMA requests.
4943 if (!(qc
->dev
->horkage
& ATA_HORKAGE_ATAPI_MOD16_DMA
) &&
4944 unlikely(qc
->nbytes
& 15))
4947 if (ap
->ops
->check_atapi_dma
)
4948 return ap
->ops
->check_atapi_dma(qc
);
4954 * ata_std_qc_defer - Check whether a qc needs to be deferred
4955 * @qc: ATA command in question
4957 * Non-NCQ commands cannot run with any other command, NCQ or
4958 * not. As upper layer only knows the queue depth, we are
4959 * responsible for maintaining exclusion. This function checks
4960 * whether a new command @qc can be issued.
4963 * spin_lock_irqsave(host lock)
4966 * ATA_DEFER_* if deferring is needed, 0 otherwise.
4968 int ata_std_qc_defer(struct ata_queued_cmd
*qc
)
4970 struct ata_link
*link
= qc
->dev
->link
;
4972 if (ata_is_ncq(qc
->tf
.protocol
)) {
4973 if (!ata_tag_valid(link
->active_tag
))
4976 if (!ata_tag_valid(link
->active_tag
) && !link
->sactive
)
4980 return ATA_DEFER_LINK
;
4983 enum ata_completion_errors
ata_noop_qc_prep(struct ata_queued_cmd
*qc
)
4989 * ata_sg_init - Associate command with scatter-gather table.
4990 * @qc: Command to be associated
4991 * @sg: Scatter-gather table.
4992 * @n_elem: Number of elements in s/g table.
4994 * Initialize the data-related elements of queued_cmd @qc
4995 * to point to a scatter-gather table @sg, containing @n_elem
4999 * spin_lock_irqsave(host lock)
5001 void ata_sg_init(struct ata_queued_cmd
*qc
, struct scatterlist
*sg
,
5002 unsigned int n_elem
)
5005 qc
->n_elem
= n_elem
;
5009 #ifdef CONFIG_HAS_DMA
5012 * ata_sg_clean - Unmap DMA memory associated with command
5013 * @qc: Command containing DMA memory to be released
5015 * Unmap all mapped DMA memory associated with this command.
5018 * spin_lock_irqsave(host lock)
5020 static void ata_sg_clean(struct ata_queued_cmd
*qc
)
5022 struct ata_port
*ap
= qc
->ap
;
5023 struct scatterlist
*sg
= qc
->sg
;
5024 int dir
= qc
->dma_dir
;
5026 WARN_ON_ONCE(sg
== NULL
);
5028 VPRINTK("unmapping %u sg elements\n", qc
->n_elem
);
5031 dma_unmap_sg(ap
->dev
, sg
, qc
->orig_n_elem
, dir
);
5033 qc
->flags
&= ~ATA_QCFLAG_DMAMAP
;
5038 * ata_sg_setup - DMA-map the scatter-gather table associated with a command.
5039 * @qc: Command with scatter-gather table to be mapped.
5041 * DMA-map the scatter-gather table associated with queued_cmd @qc.
5044 * spin_lock_irqsave(host lock)
5047 * Zero on success, negative on error.
5050 static int ata_sg_setup(struct ata_queued_cmd
*qc
)
5052 struct ata_port
*ap
= qc
->ap
;
5053 unsigned int n_elem
;
5055 VPRINTK("ENTER, ata%u\n", ap
->print_id
);
5057 n_elem
= dma_map_sg(ap
->dev
, qc
->sg
, qc
->n_elem
, qc
->dma_dir
);
5061 VPRINTK("%d sg elements mapped\n", n_elem
);
5062 qc
->orig_n_elem
= qc
->n_elem
;
5063 qc
->n_elem
= n_elem
;
5064 qc
->flags
|= ATA_QCFLAG_DMAMAP
;
5069 #else /* !CONFIG_HAS_DMA */
5071 static inline void ata_sg_clean(struct ata_queued_cmd
*qc
) {}
5072 static inline int ata_sg_setup(struct ata_queued_cmd
*qc
) { return -1; }
5074 #endif /* !CONFIG_HAS_DMA */
5077 * swap_buf_le16 - swap halves of 16-bit words in place
5078 * @buf: Buffer to swap
5079 * @buf_words: Number of 16-bit words in buffer.
5081 * Swap halves of 16-bit words if needed to convert from
5082 * little-endian byte order to native cpu byte order, or
5086 * Inherited from caller.
5088 void swap_buf_le16(u16
*buf
, unsigned int buf_words
)
5093 for (i
= 0; i
< buf_words
; i
++)
5094 buf
[i
] = le16_to_cpu(buf
[i
]);
5095 #endif /* __BIG_ENDIAN */
5099 * ata_qc_new_init - Request an available ATA command, and initialize it
5100 * @dev: Device from whom we request an available command structure
5107 struct ata_queued_cmd
*ata_qc_new_init(struct ata_device
*dev
, int tag
)
5109 struct ata_port
*ap
= dev
->link
->ap
;
5110 struct ata_queued_cmd
*qc
;
5112 /* no command while frozen */
5113 if (unlikely(ap
->pflags
& ATA_PFLAG_FROZEN
))
5117 if (ap
->flags
& ATA_FLAG_SAS_HOST
) {
5118 tag
= ata_sas_allocate_tag(ap
);
5123 qc
= __ata_qc_from_tag(ap
, tag
);
5124 qc
->tag
= qc
->hw_tag
= tag
;
5135 * ata_qc_free - free unused ata_queued_cmd
5136 * @qc: Command to complete
5138 * Designed to free unused ata_queued_cmd object
5139 * in case something prevents using it.
5142 * spin_lock_irqsave(host lock)
5144 void ata_qc_free(struct ata_queued_cmd
*qc
)
5146 struct ata_port
*ap
;
5149 WARN_ON_ONCE(qc
== NULL
); /* ata_qc_from_tag _might_ return NULL */
5154 if (ata_tag_valid(tag
)) {
5155 qc
->tag
= ATA_TAG_POISON
;
5156 if (ap
->flags
& ATA_FLAG_SAS_HOST
)
5157 ata_sas_free_tag(tag
, ap
);
5161 void __ata_qc_complete(struct ata_queued_cmd
*qc
)
5163 struct ata_port
*ap
;
5164 struct ata_link
*link
;
5166 WARN_ON_ONCE(qc
== NULL
); /* ata_qc_from_tag _might_ return NULL */
5167 WARN_ON_ONCE(!(qc
->flags
& ATA_QCFLAG_ACTIVE
));
5169 link
= qc
->dev
->link
;
5171 if (likely(qc
->flags
& ATA_QCFLAG_DMAMAP
))
5174 /* command should be marked inactive atomically with qc completion */
5175 if (ata_is_ncq(qc
->tf
.protocol
)) {
5176 link
->sactive
&= ~(1 << qc
->hw_tag
);
5178 ap
->nr_active_links
--;
5180 link
->active_tag
= ATA_TAG_POISON
;
5181 ap
->nr_active_links
--;
5184 /* clear exclusive status */
5185 if (unlikely(qc
->flags
& ATA_QCFLAG_CLEAR_EXCL
&&
5186 ap
->excl_link
== link
))
5187 ap
->excl_link
= NULL
;
5189 /* atapi: mark qc as inactive to prevent the interrupt handler
5190 * from completing the command twice later, before the error handler
5191 * is called. (when rc != 0 and atapi request sense is needed)
5193 qc
->flags
&= ~ATA_QCFLAG_ACTIVE
;
5194 ap
->qc_active
&= ~(1ULL << qc
->tag
);
5196 /* call completion callback */
5197 qc
->complete_fn(qc
);
5200 static void fill_result_tf(struct ata_queued_cmd
*qc
)
5202 struct ata_port
*ap
= qc
->ap
;
5204 qc
->result_tf
.flags
= qc
->tf
.flags
;
5205 ap
->ops
->qc_fill_rtf(qc
);
5208 static void ata_verify_xfer(struct ata_queued_cmd
*qc
)
5210 struct ata_device
*dev
= qc
->dev
;
5212 if (!ata_is_data(qc
->tf
.protocol
))
5215 if ((dev
->mwdma_mask
|| dev
->udma_mask
) && ata_is_pio(qc
->tf
.protocol
))
5218 dev
->flags
&= ~ATA_DFLAG_DUBIOUS_XFER
;
5222 * ata_qc_complete - Complete an active ATA command
5223 * @qc: Command to complete
5225 * Indicate to the mid and upper layers that an ATA command has
5226 * completed, with either an ok or not-ok status.
5228 * Refrain from calling this function multiple times when
5229 * successfully completing multiple NCQ commands.
5230 * ata_qc_complete_multiple() should be used instead, which will
5231 * properly update IRQ expect state.
5234 * spin_lock_irqsave(host lock)
5236 void ata_qc_complete(struct ata_queued_cmd
*qc
)
5238 struct ata_port
*ap
= qc
->ap
;
5240 /* Trigger the LED (if available) */
5241 ledtrig_disk_activity(!!(qc
->tf
.flags
& ATA_TFLAG_WRITE
));
5243 /* XXX: New EH and old EH use different mechanisms to
5244 * synchronize EH with regular execution path.
5246 * In new EH, a failed qc is marked with ATA_QCFLAG_FAILED.
5247 * Normal execution path is responsible for not accessing a
5248 * failed qc. libata core enforces the rule by returning NULL
5249 * from ata_qc_from_tag() for failed qcs.
5251 * Old EH depends on ata_qc_complete() nullifying completion
5252 * requests if ATA_QCFLAG_EH_SCHEDULED is set. Old EH does
5253 * not synchronize with interrupt handler. Only PIO task is
5256 if (ap
->ops
->error_handler
) {
5257 struct ata_device
*dev
= qc
->dev
;
5258 struct ata_eh_info
*ehi
= &dev
->link
->eh_info
;
5260 if (unlikely(qc
->err_mask
))
5261 qc
->flags
|= ATA_QCFLAG_FAILED
;
5264 * Finish internal commands without any further processing
5265 * and always with the result TF filled.
5267 if (unlikely(ata_tag_internal(qc
->tag
))) {
5269 trace_ata_qc_complete_internal(qc
);
5270 __ata_qc_complete(qc
);
5275 * Non-internal qc has failed. Fill the result TF and
5278 if (unlikely(qc
->flags
& ATA_QCFLAG_FAILED
)) {
5280 trace_ata_qc_complete_failed(qc
);
5281 ata_qc_schedule_eh(qc
);
5285 WARN_ON_ONCE(ap
->pflags
& ATA_PFLAG_FROZEN
);
5287 /* read result TF if requested */
5288 if (qc
->flags
& ATA_QCFLAG_RESULT_TF
)
5291 trace_ata_qc_complete_done(qc
);
5292 /* Some commands need post-processing after successful
5295 switch (qc
->tf
.command
) {
5296 case ATA_CMD_SET_FEATURES
:
5297 if (qc
->tf
.feature
!= SETFEATURES_WC_ON
&&
5298 qc
->tf
.feature
!= SETFEATURES_WC_OFF
&&
5299 qc
->tf
.feature
!= SETFEATURES_RA_ON
&&
5300 qc
->tf
.feature
!= SETFEATURES_RA_OFF
)
5303 case ATA_CMD_INIT_DEV_PARAMS
: /* CHS translation changed */
5304 case ATA_CMD_SET_MULTI
: /* multi_count changed */
5305 /* revalidate device */
5306 ehi
->dev_action
[dev
->devno
] |= ATA_EH_REVALIDATE
;
5307 ata_port_schedule_eh(ap
);
5311 dev
->flags
|= ATA_DFLAG_SLEEPING
;
5315 if (unlikely(dev
->flags
& ATA_DFLAG_DUBIOUS_XFER
))
5316 ata_verify_xfer(qc
);
5318 __ata_qc_complete(qc
);
5320 if (qc
->flags
& ATA_QCFLAG_EH_SCHEDULED
)
5323 /* read result TF if failed or requested */
5324 if (qc
->err_mask
|| qc
->flags
& ATA_QCFLAG_RESULT_TF
)
5327 __ata_qc_complete(qc
);
5332 * ata_qc_get_active - get bitmask of active qcs
5333 * @ap: port in question
5336 * spin_lock_irqsave(host lock)
5339 * Bitmask of active qcs
5341 u64
ata_qc_get_active(struct ata_port
*ap
)
5343 u64 qc_active
= ap
->qc_active
;
5345 /* ATA_TAG_INTERNAL is sent to hw as tag 0 */
5346 if (qc_active
& (1ULL << ATA_TAG_INTERNAL
)) {
5347 qc_active
|= (1 << 0);
5348 qc_active
&= ~(1ULL << ATA_TAG_INTERNAL
);
5353 EXPORT_SYMBOL_GPL(ata_qc_get_active
);
5356 * ata_qc_complete_multiple - Complete multiple qcs successfully
5357 * @ap: port in question
5358 * @qc_active: new qc_active mask
5360 * Complete in-flight commands. This functions is meant to be
5361 * called from low-level driver's interrupt routine to complete
5362 * requests normally. ap->qc_active and @qc_active is compared
5363 * and commands are completed accordingly.
5365 * Always use this function when completing multiple NCQ commands
5366 * from IRQ handlers instead of calling ata_qc_complete()
5367 * multiple times to keep IRQ expect status properly in sync.
5370 * spin_lock_irqsave(host lock)
5373 * Number of completed commands on success, -errno otherwise.
5375 int ata_qc_complete_multiple(struct ata_port
*ap
, u64 qc_active
)
5377 u64 done_mask
, ap_qc_active
= ap
->qc_active
;
5381 * If the internal tag is set on ap->qc_active, then we care about
5382 * bit0 on the passed in qc_active mask. Move that bit up to match
5385 if (ap_qc_active
& (1ULL << ATA_TAG_INTERNAL
)) {
5386 qc_active
|= (qc_active
& 0x01) << ATA_TAG_INTERNAL
;
5387 qc_active
^= qc_active
& 0x01;
5390 done_mask
= ap_qc_active
^ qc_active
;
5392 if (unlikely(done_mask
& qc_active
)) {
5393 ata_port_err(ap
, "illegal qc_active transition (%08llx->%08llx)\n",
5394 ap
->qc_active
, qc_active
);
5399 struct ata_queued_cmd
*qc
;
5400 unsigned int tag
= __ffs64(done_mask
);
5402 qc
= ata_qc_from_tag(ap
, tag
);
5404 ata_qc_complete(qc
);
5407 done_mask
&= ~(1ULL << tag
);
5414 * ata_qc_issue - issue taskfile to device
5415 * @qc: command to issue to device
5417 * Prepare an ATA command to submission to device.
5418 * This includes mapping the data into a DMA-able
5419 * area, filling in the S/G table, and finally
5420 * writing the taskfile to hardware, starting the command.
5423 * spin_lock_irqsave(host lock)
5425 void ata_qc_issue(struct ata_queued_cmd
*qc
)
5427 struct ata_port
*ap
= qc
->ap
;
5428 struct ata_link
*link
= qc
->dev
->link
;
5429 u8 prot
= qc
->tf
.protocol
;
5431 /* Make sure only one non-NCQ command is outstanding. The
5432 * check is skipped for old EH because it reuses active qc to
5433 * request ATAPI sense.
5435 WARN_ON_ONCE(ap
->ops
->error_handler
&& ata_tag_valid(link
->active_tag
));
5437 if (ata_is_ncq(prot
)) {
5438 WARN_ON_ONCE(link
->sactive
& (1 << qc
->hw_tag
));
5441 ap
->nr_active_links
++;
5442 link
->sactive
|= 1 << qc
->hw_tag
;
5444 WARN_ON_ONCE(link
->sactive
);
5446 ap
->nr_active_links
++;
5447 link
->active_tag
= qc
->tag
;
5450 qc
->flags
|= ATA_QCFLAG_ACTIVE
;
5451 ap
->qc_active
|= 1ULL << qc
->tag
;
5454 * We guarantee to LLDs that they will have at least one
5455 * non-zero sg if the command is a data command.
5457 if (ata_is_data(prot
) && (!qc
->sg
|| !qc
->n_elem
|| !qc
->nbytes
))
5460 if (ata_is_dma(prot
) || (ata_is_pio(prot
) &&
5461 (ap
->flags
& ATA_FLAG_PIO_DMA
)))
5462 if (ata_sg_setup(qc
))
5465 /* if device is sleeping, schedule reset and abort the link */
5466 if (unlikely(qc
->dev
->flags
& ATA_DFLAG_SLEEPING
)) {
5467 link
->eh_info
.action
|= ATA_EH_RESET
;
5468 ata_ehi_push_desc(&link
->eh_info
, "waking up from sleep");
5469 ata_link_abort(link
);
5473 qc
->err_mask
|= ap
->ops
->qc_prep(qc
);
5474 if (unlikely(qc
->err_mask
))
5476 trace_ata_qc_issue(qc
);
5477 qc
->err_mask
|= ap
->ops
->qc_issue(qc
);
5478 if (unlikely(qc
->err_mask
))
5483 qc
->err_mask
|= AC_ERR_SYSTEM
;
5485 ata_qc_complete(qc
);
5489 * sata_scr_valid - test whether SCRs are accessible
5490 * @link: ATA link to test SCR accessibility for
5492 * Test whether SCRs are accessible for @link.
5498 * 1 if SCRs are accessible, 0 otherwise.
5500 int sata_scr_valid(struct ata_link
*link
)
5502 struct ata_port
*ap
= link
->ap
;
5504 return (ap
->flags
& ATA_FLAG_SATA
) && ap
->ops
->scr_read
;
5508 * sata_scr_read - read SCR register of the specified port
5509 * @link: ATA link to read SCR for
5511 * @val: Place to store read value
5513 * Read SCR register @reg of @link into *@val. This function is
5514 * guaranteed to succeed if @link is ap->link, the cable type of
5515 * the port is SATA and the port implements ->scr_read.
5518 * None if @link is ap->link. Kernel thread context otherwise.
5521 * 0 on success, negative errno on failure.
5523 int sata_scr_read(struct ata_link
*link
, int reg
, u32
*val
)
5525 if (ata_is_host_link(link
)) {
5526 if (sata_scr_valid(link
))
5527 return link
->ap
->ops
->scr_read(link
, reg
, val
);
5531 return sata_pmp_scr_read(link
, reg
, val
);
5535 * sata_scr_write - write SCR register of the specified port
5536 * @link: ATA link to write SCR for
5537 * @reg: SCR to write
5538 * @val: value to write
5540 * Write @val to SCR register @reg of @link. This function is
5541 * guaranteed to succeed if @link is ap->link, the cable type of
5542 * the port is SATA and the port implements ->scr_read.
5545 * None if @link is ap->link. Kernel thread context otherwise.
5548 * 0 on success, negative errno on failure.
5550 int sata_scr_write(struct ata_link
*link
, int reg
, u32 val
)
5552 if (ata_is_host_link(link
)) {
5553 if (sata_scr_valid(link
))
5554 return link
->ap
->ops
->scr_write(link
, reg
, val
);
5558 return sata_pmp_scr_write(link
, reg
, val
);
5562 * sata_scr_write_flush - write SCR register of the specified port and flush
5563 * @link: ATA link to write SCR for
5564 * @reg: SCR to write
5565 * @val: value to write
5567 * This function is identical to sata_scr_write() except that this
5568 * function performs flush after writing to the register.
5571 * None if @link is ap->link. Kernel thread context otherwise.
5574 * 0 on success, negative errno on failure.
5576 int sata_scr_write_flush(struct ata_link
*link
, int reg
, u32 val
)
5578 if (ata_is_host_link(link
)) {
5581 if (sata_scr_valid(link
)) {
5582 rc
= link
->ap
->ops
->scr_write(link
, reg
, val
);
5584 rc
= link
->ap
->ops
->scr_read(link
, reg
, &val
);
5590 return sata_pmp_scr_write(link
, reg
, val
);
5594 * ata_phys_link_online - test whether the given link is online
5595 * @link: ATA link to test
5597 * Test whether @link is online. Note that this function returns
5598 * 0 if online status of @link cannot be obtained, so
5599 * ata_link_online(link) != !ata_link_offline(link).
5605 * True if the port online status is available and online.
5607 bool ata_phys_link_online(struct ata_link
*link
)
5611 if (sata_scr_read(link
, SCR_STATUS
, &sstatus
) == 0 &&
5612 ata_sstatus_online(sstatus
))
5618 * ata_phys_link_offline - test whether the given link is offline
5619 * @link: ATA link to test
5621 * Test whether @link is offline. Note that this function
5622 * returns 0 if offline status of @link cannot be obtained, so
5623 * ata_link_online(link) != !ata_link_offline(link).
5629 * True if the port offline status is available and offline.
5631 bool ata_phys_link_offline(struct ata_link
*link
)
5635 if (sata_scr_read(link
, SCR_STATUS
, &sstatus
) == 0 &&
5636 !ata_sstatus_online(sstatus
))
5642 * ata_link_online - test whether the given link is online
5643 * @link: ATA link to test
5645 * Test whether @link is online. This is identical to
5646 * ata_phys_link_online() when there's no slave link. When
5647 * there's a slave link, this function should only be called on
5648 * the master link and will return true if any of M/S links is
5655 * True if the port online status is available and online.
5657 bool ata_link_online(struct ata_link
*link
)
5659 struct ata_link
*slave
= link
->ap
->slave_link
;
5661 WARN_ON(link
== slave
); /* shouldn't be called on slave link */
5663 return ata_phys_link_online(link
) ||
5664 (slave
&& ata_phys_link_online(slave
));
5668 * ata_link_offline - test whether the given link is offline
5669 * @link: ATA link to test
5671 * Test whether @link is offline. This is identical to
5672 * ata_phys_link_offline() when there's no slave link. When
5673 * there's a slave link, this function should only be called on
5674 * the master link and will return true if both M/S links are
5681 * True if the port offline status is available and offline.
5683 bool ata_link_offline(struct ata_link
*link
)
5685 struct ata_link
*slave
= link
->ap
->slave_link
;
5687 WARN_ON(link
== slave
); /* shouldn't be called on slave link */
5689 return ata_phys_link_offline(link
) &&
5690 (!slave
|| ata_phys_link_offline(slave
));
5694 static void ata_port_request_pm(struct ata_port
*ap
, pm_message_t mesg
,
5695 unsigned int action
, unsigned int ehi_flags
,
5698 struct ata_link
*link
;
5699 unsigned long flags
;
5701 /* Previous resume operation might still be in
5702 * progress. Wait for PM_PENDING to clear.
5704 if (ap
->pflags
& ATA_PFLAG_PM_PENDING
) {
5705 ata_port_wait_eh(ap
);
5706 WARN_ON(ap
->pflags
& ATA_PFLAG_PM_PENDING
);
5709 /* request PM ops to EH */
5710 spin_lock_irqsave(ap
->lock
, flags
);
5713 ap
->pflags
|= ATA_PFLAG_PM_PENDING
;
5714 ata_for_each_link(link
, ap
, HOST_FIRST
) {
5715 link
->eh_info
.action
|= action
;
5716 link
->eh_info
.flags
|= ehi_flags
;
5719 ata_port_schedule_eh(ap
);
5721 spin_unlock_irqrestore(ap
->lock
, flags
);
5724 ata_port_wait_eh(ap
);
5725 WARN_ON(ap
->pflags
& ATA_PFLAG_PM_PENDING
);
5730 * On some hardware, device fails to respond after spun down for suspend. As
5731 * the device won't be used before being resumed, we don't need to touch the
5732 * device. Ask EH to skip the usual stuff and proceed directly to suspend.
5734 * http://thread.gmane.org/gmane.linux.ide/46764
5736 static const unsigned int ata_port_suspend_ehi
= ATA_EHI_QUIET
5737 | ATA_EHI_NO_AUTOPSY
5738 | ATA_EHI_NO_RECOVERY
;
5740 static void ata_port_suspend(struct ata_port
*ap
, pm_message_t mesg
)
5742 ata_port_request_pm(ap
, mesg
, 0, ata_port_suspend_ehi
, false);
5745 static void ata_port_suspend_async(struct ata_port
*ap
, pm_message_t mesg
)
5747 ata_port_request_pm(ap
, mesg
, 0, ata_port_suspend_ehi
, true);
5750 static int ata_port_pm_suspend(struct device
*dev
)
5752 struct ata_port
*ap
= to_ata_port(dev
);
5754 if (pm_runtime_suspended(dev
))
5757 ata_port_suspend(ap
, PMSG_SUSPEND
);
5761 static int ata_port_pm_freeze(struct device
*dev
)
5763 struct ata_port
*ap
= to_ata_port(dev
);
5765 if (pm_runtime_suspended(dev
))
5768 ata_port_suspend(ap
, PMSG_FREEZE
);
5772 static int ata_port_pm_poweroff(struct device
*dev
)
5774 ata_port_suspend(to_ata_port(dev
), PMSG_HIBERNATE
);
5778 static const unsigned int ata_port_resume_ehi
= ATA_EHI_NO_AUTOPSY
5781 static void ata_port_resume(struct ata_port
*ap
, pm_message_t mesg
)
5783 ata_port_request_pm(ap
, mesg
, ATA_EH_RESET
, ata_port_resume_ehi
, false);
5786 static void ata_port_resume_async(struct ata_port
*ap
, pm_message_t mesg
)
5788 ata_port_request_pm(ap
, mesg
, ATA_EH_RESET
, ata_port_resume_ehi
, true);
5791 static int ata_port_pm_resume(struct device
*dev
)
5793 ata_port_resume_async(to_ata_port(dev
), PMSG_RESUME
);
5794 pm_runtime_disable(dev
);
5795 pm_runtime_set_active(dev
);
5796 pm_runtime_enable(dev
);
5801 * For ODDs, the upper layer will poll for media change every few seconds,
5802 * which will make it enter and leave suspend state every few seconds. And
5803 * as each suspend will cause a hard/soft reset, the gain of runtime suspend
5804 * is very little and the ODD may malfunction after constantly being reset.
5805 * So the idle callback here will not proceed to suspend if a non-ZPODD capable
5806 * ODD is attached to the port.
5808 static int ata_port_runtime_idle(struct device
*dev
)
5810 struct ata_port
*ap
= to_ata_port(dev
);
5811 struct ata_link
*link
;
5812 struct ata_device
*adev
;
5814 ata_for_each_link(link
, ap
, HOST_FIRST
) {
5815 ata_for_each_dev(adev
, link
, ENABLED
)
5816 if (adev
->class == ATA_DEV_ATAPI
&&
5817 !zpodd_dev_enabled(adev
))
5824 static int ata_port_runtime_suspend(struct device
*dev
)
5826 ata_port_suspend(to_ata_port(dev
), PMSG_AUTO_SUSPEND
);
5830 static int ata_port_runtime_resume(struct device
*dev
)
5832 ata_port_resume(to_ata_port(dev
), PMSG_AUTO_RESUME
);
5836 static const struct dev_pm_ops ata_port_pm_ops
= {
5837 .suspend
= ata_port_pm_suspend
,
5838 .resume
= ata_port_pm_resume
,
5839 .freeze
= ata_port_pm_freeze
,
5840 .thaw
= ata_port_pm_resume
,
5841 .poweroff
= ata_port_pm_poweroff
,
5842 .restore
= ata_port_pm_resume
,
5844 .runtime_suspend
= ata_port_runtime_suspend
,
5845 .runtime_resume
= ata_port_runtime_resume
,
5846 .runtime_idle
= ata_port_runtime_idle
,
5849 /* sas ports don't participate in pm runtime management of ata_ports,
5850 * and need to resume ata devices at the domain level, not the per-port
5851 * level. sas suspend/resume is async to allow parallel port recovery
5852 * since sas has multiple ata_port instances per Scsi_Host.
5854 void ata_sas_port_suspend(struct ata_port
*ap
)
5856 ata_port_suspend_async(ap
, PMSG_SUSPEND
);
5858 EXPORT_SYMBOL_GPL(ata_sas_port_suspend
);
5860 void ata_sas_port_resume(struct ata_port
*ap
)
5862 ata_port_resume_async(ap
, PMSG_RESUME
);
5864 EXPORT_SYMBOL_GPL(ata_sas_port_resume
);
5867 * ata_host_suspend - suspend host
5868 * @host: host to suspend
5871 * Suspend @host. Actual operation is performed by port suspend.
5873 int ata_host_suspend(struct ata_host
*host
, pm_message_t mesg
)
5875 host
->dev
->power
.power_state
= mesg
;
5880 * ata_host_resume - resume host
5881 * @host: host to resume
5883 * Resume @host. Actual operation is performed by port resume.
5885 void ata_host_resume(struct ata_host
*host
)
5887 host
->dev
->power
.power_state
= PMSG_ON
;
5891 const struct device_type ata_port_type
= {
5894 .pm
= &ata_port_pm_ops
,
5899 * ata_dev_init - Initialize an ata_device structure
5900 * @dev: Device structure to initialize
5902 * Initialize @dev in preparation for probing.
5905 * Inherited from caller.
5907 void ata_dev_init(struct ata_device
*dev
)
5909 struct ata_link
*link
= ata_dev_phys_link(dev
);
5910 struct ata_port
*ap
= link
->ap
;
5911 unsigned long flags
;
5913 /* SATA spd limit is bound to the attached device, reset together */
5914 link
->sata_spd_limit
= link
->hw_sata_spd_limit
;
5917 /* High bits of dev->flags are used to record warm plug
5918 * requests which occur asynchronously. Synchronize using
5921 spin_lock_irqsave(ap
->lock
, flags
);
5922 dev
->flags
&= ~ATA_DFLAG_INIT_MASK
;
5924 spin_unlock_irqrestore(ap
->lock
, flags
);
5926 memset((void *)dev
+ ATA_DEVICE_CLEAR_BEGIN
, 0,
5927 ATA_DEVICE_CLEAR_END
- ATA_DEVICE_CLEAR_BEGIN
);
5928 dev
->pio_mask
= UINT_MAX
;
5929 dev
->mwdma_mask
= UINT_MAX
;
5930 dev
->udma_mask
= UINT_MAX
;
5934 * ata_link_init - Initialize an ata_link structure
5935 * @ap: ATA port link is attached to
5936 * @link: Link structure to initialize
5937 * @pmp: Port multiplier port number
5942 * Kernel thread context (may sleep)
5944 void ata_link_init(struct ata_port
*ap
, struct ata_link
*link
, int pmp
)
5948 /* clear everything except for devices */
5949 memset((void *)link
+ ATA_LINK_CLEAR_BEGIN
, 0,
5950 ATA_LINK_CLEAR_END
- ATA_LINK_CLEAR_BEGIN
);
5954 link
->active_tag
= ATA_TAG_POISON
;
5955 link
->hw_sata_spd_limit
= UINT_MAX
;
5957 /* can't use iterator, ap isn't initialized yet */
5958 for (i
= 0; i
< ATA_MAX_DEVICES
; i
++) {
5959 struct ata_device
*dev
= &link
->device
[i
];
5962 dev
->devno
= dev
- link
->device
;
5963 #ifdef CONFIG_ATA_ACPI
5964 dev
->gtf_filter
= ata_acpi_gtf_filter
;
5971 * sata_link_init_spd - Initialize link->sata_spd_limit
5972 * @link: Link to configure sata_spd_limit for
5974 * Initialize @link->[hw_]sata_spd_limit to the currently
5978 * Kernel thread context (may sleep).
5981 * 0 on success, -errno on failure.
5983 int sata_link_init_spd(struct ata_link
*link
)
5988 rc
= sata_scr_read(link
, SCR_CONTROL
, &link
->saved_scontrol
);
5992 spd
= (link
->saved_scontrol
>> 4) & 0xf;
5994 link
->hw_sata_spd_limit
&= (1 << spd
) - 1;
5996 ata_force_link_limits(link
);
5998 link
->sata_spd_limit
= link
->hw_sata_spd_limit
;
6004 * ata_port_alloc - allocate and initialize basic ATA port resources
6005 * @host: ATA host this allocated port belongs to
6007 * Allocate and initialize basic ATA port resources.
6010 * Allocate ATA port on success, NULL on failure.
6013 * Inherited from calling layer (may sleep).
6015 struct ata_port
*ata_port_alloc(struct ata_host
*host
)
6017 struct ata_port
*ap
;
6021 ap
= kzalloc(sizeof(*ap
), GFP_KERNEL
);
6025 ap
->pflags
|= ATA_PFLAG_INITIALIZING
| ATA_PFLAG_FROZEN
;
6026 ap
->lock
= &host
->lock
;
6028 ap
->local_port_no
= -1;
6030 ap
->dev
= host
->dev
;
6032 #if defined(ATA_VERBOSE_DEBUG)
6033 /* turn on all debugging levels */
6034 ap
->msg_enable
= 0x00FF;
6035 #elif defined(ATA_DEBUG)
6036 ap
->msg_enable
= ATA_MSG_DRV
| ATA_MSG_INFO
| ATA_MSG_CTL
| ATA_MSG_WARN
| ATA_MSG_ERR
;
6038 ap
->msg_enable
= ATA_MSG_DRV
| ATA_MSG_ERR
| ATA_MSG_WARN
;
6041 mutex_init(&ap
->scsi_scan_mutex
);
6042 INIT_DELAYED_WORK(&ap
->hotplug_task
, ata_scsi_hotplug
);
6043 INIT_WORK(&ap
->scsi_rescan_task
, ata_scsi_dev_rescan
);
6044 INIT_LIST_HEAD(&ap
->eh_done_q
);
6045 init_waitqueue_head(&ap
->eh_wait_q
);
6046 init_completion(&ap
->park_req_pending
);
6047 timer_setup(&ap
->fastdrain_timer
, ata_eh_fastdrain_timerfn
,
6050 ap
->cbl
= ATA_CBL_NONE
;
6052 ata_link_init(ap
, &ap
->link
, 0);
6055 ap
->stats
.unhandled_irq
= 1;
6056 ap
->stats
.idle_irq
= 1;
6058 ata_sff_port_init(ap
);
6063 static void ata_devres_release(struct device
*gendev
, void *res
)
6065 struct ata_host
*host
= dev_get_drvdata(gendev
);
6068 for (i
= 0; i
< host
->n_ports
; i
++) {
6069 struct ata_port
*ap
= host
->ports
[i
];
6075 scsi_host_put(ap
->scsi_host
);
6079 dev_set_drvdata(gendev
, NULL
);
6083 static void ata_host_release(struct kref
*kref
)
6085 struct ata_host
*host
= container_of(kref
, struct ata_host
, kref
);
6088 for (i
= 0; i
< host
->n_ports
; i
++) {
6089 struct ata_port
*ap
= host
->ports
[i
];
6091 kfree(ap
->pmp_link
);
6092 kfree(ap
->slave_link
);
6094 host
->ports
[i
] = NULL
;
6099 void ata_host_get(struct ata_host
*host
)
6101 kref_get(&host
->kref
);
6104 void ata_host_put(struct ata_host
*host
)
6106 kref_put(&host
->kref
, ata_host_release
);
6110 * ata_host_alloc - allocate and init basic ATA host resources
6111 * @dev: generic device this host is associated with
6112 * @max_ports: maximum number of ATA ports associated with this host
6114 * Allocate and initialize basic ATA host resources. LLD calls
6115 * this function to allocate a host, initializes it fully and
6116 * attaches it using ata_host_register().
6118 * @max_ports ports are allocated and host->n_ports is
6119 * initialized to @max_ports. The caller is allowed to decrease
6120 * host->n_ports before calling ata_host_register(). The unused
6121 * ports will be automatically freed on registration.
6124 * Allocate ATA host on success, NULL on failure.
6127 * Inherited from calling layer (may sleep).
6129 struct ata_host
*ata_host_alloc(struct device
*dev
, int max_ports
)
6131 struct ata_host
*host
;
6138 /* alloc a container for our list of ATA ports (buses) */
6139 sz
= sizeof(struct ata_host
) + (max_ports
+ 1) * sizeof(void *);
6140 host
= kzalloc(sz
, GFP_KERNEL
);
6144 if (!devres_open_group(dev
, NULL
, GFP_KERNEL
))
6147 dr
= devres_alloc(ata_devres_release
, 0, GFP_KERNEL
);
6151 devres_add(dev
, dr
);
6152 dev_set_drvdata(dev
, host
);
6154 spin_lock_init(&host
->lock
);
6155 mutex_init(&host
->eh_mutex
);
6157 host
->n_ports
= max_ports
;
6158 kref_init(&host
->kref
);
6160 /* allocate ports bound to this host */
6161 for (i
= 0; i
< max_ports
; i
++) {
6162 struct ata_port
*ap
;
6164 ap
= ata_port_alloc(host
);
6169 host
->ports
[i
] = ap
;
6172 devres_remove_group(dev
, NULL
);
6176 devres_release_group(dev
, NULL
);
6183 * ata_host_alloc_pinfo - alloc host and init with port_info array
6184 * @dev: generic device this host is associated with
6185 * @ppi: array of ATA port_info to initialize host with
6186 * @n_ports: number of ATA ports attached to this host
6188 * Allocate ATA host and initialize with info from @ppi. If NULL
6189 * terminated, @ppi may contain fewer entries than @n_ports. The
6190 * last entry will be used for the remaining ports.
6193 * Allocate ATA host on success, NULL on failure.
6196 * Inherited from calling layer (may sleep).
6198 struct ata_host
*ata_host_alloc_pinfo(struct device
*dev
,
6199 const struct ata_port_info
* const * ppi
,
6202 const struct ata_port_info
*pi
;
6203 struct ata_host
*host
;
6206 host
= ata_host_alloc(dev
, n_ports
);
6210 for (i
= 0, j
= 0, pi
= NULL
; i
< host
->n_ports
; i
++) {
6211 struct ata_port
*ap
= host
->ports
[i
];
6216 ap
->pio_mask
= pi
->pio_mask
;
6217 ap
->mwdma_mask
= pi
->mwdma_mask
;
6218 ap
->udma_mask
= pi
->udma_mask
;
6219 ap
->flags
|= pi
->flags
;
6220 ap
->link
.flags
|= pi
->link_flags
;
6221 ap
->ops
= pi
->port_ops
;
6223 if (!host
->ops
&& (pi
->port_ops
!= &ata_dummy_port_ops
))
6224 host
->ops
= pi
->port_ops
;
6231 * ata_slave_link_init - initialize slave link
6232 * @ap: port to initialize slave link for
6234 * Create and initialize slave link for @ap. This enables slave
6235 * link handling on the port.
6237 * In libata, a port contains links and a link contains devices.
6238 * There is single host link but if a PMP is attached to it,
6239 * there can be multiple fan-out links. On SATA, there's usually
6240 * a single device connected to a link but PATA and SATA
6241 * controllers emulating TF based interface can have two - master
6244 * However, there are a few controllers which don't fit into this
6245 * abstraction too well - SATA controllers which emulate TF
6246 * interface with both master and slave devices but also have
6247 * separate SCR register sets for each device. These controllers
6248 * need separate links for physical link handling
6249 * (e.g. onlineness, link speed) but should be treated like a
6250 * traditional M/S controller for everything else (e.g. command
6251 * issue, softreset).
6253 * slave_link is libata's way of handling this class of
6254 * controllers without impacting core layer too much. For
6255 * anything other than physical link handling, the default host
6256 * link is used for both master and slave. For physical link
6257 * handling, separate @ap->slave_link is used. All dirty details
6258 * are implemented inside libata core layer. From LLD's POV, the
6259 * only difference is that prereset, hardreset and postreset are
6260 * called once more for the slave link, so the reset sequence
6261 * looks like the following.
6263 * prereset(M) -> prereset(S) -> hardreset(M) -> hardreset(S) ->
6264 * softreset(M) -> postreset(M) -> postreset(S)
6266 * Note that softreset is called only for the master. Softreset
6267 * resets both M/S by definition, so SRST on master should handle
6268 * both (the standard method will work just fine).
6271 * Should be called before host is registered.
6274 * 0 on success, -errno on failure.
6276 int ata_slave_link_init(struct ata_port
*ap
)
6278 struct ata_link
*link
;
6280 WARN_ON(ap
->slave_link
);
6281 WARN_ON(ap
->flags
& ATA_FLAG_PMP
);
6283 link
= kzalloc(sizeof(*link
), GFP_KERNEL
);
6287 ata_link_init(ap
, link
, 1);
6288 ap
->slave_link
= link
;
6292 static void ata_host_stop(struct device
*gendev
, void *res
)
6294 struct ata_host
*host
= dev_get_drvdata(gendev
);
6297 WARN_ON(!(host
->flags
& ATA_HOST_STARTED
));
6299 for (i
= 0; i
< host
->n_ports
; i
++) {
6300 struct ata_port
*ap
= host
->ports
[i
];
6302 if (ap
->ops
->port_stop
)
6303 ap
->ops
->port_stop(ap
);
6306 if (host
->ops
->host_stop
)
6307 host
->ops
->host_stop(host
);
6311 * ata_finalize_port_ops - finalize ata_port_operations
6312 * @ops: ata_port_operations to finalize
6314 * An ata_port_operations can inherit from another ops and that
6315 * ops can again inherit from another. This can go on as many
6316 * times as necessary as long as there is no loop in the
6317 * inheritance chain.
6319 * Ops tables are finalized when the host is started. NULL or
6320 * unspecified entries are inherited from the closet ancestor
6321 * which has the method and the entry is populated with it.
6322 * After finalization, the ops table directly points to all the
6323 * methods and ->inherits is no longer necessary and cleared.
6325 * Using ATA_OP_NULL, inheriting ops can force a method to NULL.
6330 static void ata_finalize_port_ops(struct ata_port_operations
*ops
)
6332 static DEFINE_SPINLOCK(lock
);
6333 const struct ata_port_operations
*cur
;
6334 void **begin
= (void **)ops
;
6335 void **end
= (void **)&ops
->inherits
;
6338 if (!ops
|| !ops
->inherits
)
6343 for (cur
= ops
->inherits
; cur
; cur
= cur
->inherits
) {
6344 void **inherit
= (void **)cur
;
6346 for (pp
= begin
; pp
< end
; pp
++, inherit
++)
6351 for (pp
= begin
; pp
< end
; pp
++)
6355 ops
->inherits
= NULL
;
6361 * ata_host_start - start and freeze ports of an ATA host
6362 * @host: ATA host to start ports for
6364 * Start and then freeze ports of @host. Started status is
6365 * recorded in host->flags, so this function can be called
6366 * multiple times. Ports are guaranteed to get started only
6367 * once. If host->ops isn't initialized yet, its set to the
6368 * first non-dummy port ops.
6371 * Inherited from calling layer (may sleep).
6374 * 0 if all ports are started successfully, -errno otherwise.
6376 int ata_host_start(struct ata_host
*host
)
6379 void *start_dr
= NULL
;
6382 if (host
->flags
& ATA_HOST_STARTED
)
6385 ata_finalize_port_ops(host
->ops
);
6387 for (i
= 0; i
< host
->n_ports
; i
++) {
6388 struct ata_port
*ap
= host
->ports
[i
];
6390 ata_finalize_port_ops(ap
->ops
);
6392 if (!host
->ops
&& !ata_port_is_dummy(ap
))
6393 host
->ops
= ap
->ops
;
6395 if (ap
->ops
->port_stop
)
6399 if (host
->ops
->host_stop
)
6403 start_dr
= devres_alloc(ata_host_stop
, 0, GFP_KERNEL
);
6408 for (i
= 0; i
< host
->n_ports
; i
++) {
6409 struct ata_port
*ap
= host
->ports
[i
];
6411 if (ap
->ops
->port_start
) {
6412 rc
= ap
->ops
->port_start(ap
);
6416 "failed to start port %d (errno=%d)\n",
6421 ata_eh_freeze_port(ap
);
6425 devres_add(host
->dev
, start_dr
);
6426 host
->flags
|= ATA_HOST_STARTED
;
6431 struct ata_port
*ap
= host
->ports
[i
];
6433 if (ap
->ops
->port_stop
)
6434 ap
->ops
->port_stop(ap
);
6436 devres_free(start_dr
);
6441 * ata_sas_host_init - Initialize a host struct for sas (ipr, libsas)
6442 * @host: host to initialize
6443 * @dev: device host is attached to
6447 void ata_host_init(struct ata_host
*host
, struct device
*dev
,
6448 struct ata_port_operations
*ops
)
6450 spin_lock_init(&host
->lock
);
6451 mutex_init(&host
->eh_mutex
);
6452 host
->n_tags
= ATA_MAX_QUEUE
;
6455 kref_init(&host
->kref
);
6458 void __ata_port_probe(struct ata_port
*ap
)
6460 struct ata_eh_info
*ehi
= &ap
->link
.eh_info
;
6461 unsigned long flags
;
6463 /* kick EH for boot probing */
6464 spin_lock_irqsave(ap
->lock
, flags
);
6466 ehi
->probe_mask
|= ATA_ALL_DEVICES
;
6467 ehi
->action
|= ATA_EH_RESET
;
6468 ehi
->flags
|= ATA_EHI_NO_AUTOPSY
| ATA_EHI_QUIET
;
6470 ap
->pflags
&= ~ATA_PFLAG_INITIALIZING
;
6471 ap
->pflags
|= ATA_PFLAG_LOADING
;
6472 ata_port_schedule_eh(ap
);
6474 spin_unlock_irqrestore(ap
->lock
, flags
);
6477 int ata_port_probe(struct ata_port
*ap
)
6481 if (ap
->ops
->error_handler
) {
6482 __ata_port_probe(ap
);
6483 ata_port_wait_eh(ap
);
6485 DPRINTK("ata%u: bus probe begin\n", ap
->print_id
);
6486 rc
= ata_bus_probe(ap
);
6487 DPRINTK("ata%u: bus probe end\n", ap
->print_id
);
6493 static void async_port_probe(void *data
, async_cookie_t cookie
)
6495 struct ata_port
*ap
= data
;
6498 * If we're not allowed to scan this host in parallel,
6499 * we need to wait until all previous scans have completed
6500 * before going further.
6501 * Jeff Garzik says this is only within a controller, so we
6502 * don't need to wait for port 0, only for later ports.
6504 if (!(ap
->host
->flags
& ATA_HOST_PARALLEL_SCAN
) && ap
->port_no
!= 0)
6505 async_synchronize_cookie(cookie
);
6507 (void)ata_port_probe(ap
);
6509 /* in order to keep device order, we need to synchronize at this point */
6510 async_synchronize_cookie(cookie
);
6512 ata_scsi_scan_host(ap
, 1);
6516 * ata_host_register - register initialized ATA host
6517 * @host: ATA host to register
6518 * @sht: template for SCSI host
6520 * Register initialized ATA host. @host is allocated using
6521 * ata_host_alloc() and fully initialized by LLD. This function
6522 * starts ports, registers @host with ATA and SCSI layers and
6523 * probe registered devices.
6526 * Inherited from calling layer (may sleep).
6529 * 0 on success, -errno otherwise.
6531 int ata_host_register(struct ata_host
*host
, struct scsi_host_template
*sht
)
6535 host
->n_tags
= clamp(sht
->can_queue
, 1, ATA_MAX_QUEUE
);
6537 /* host must have been started */
6538 if (!(host
->flags
& ATA_HOST_STARTED
)) {
6539 dev_err(host
->dev
, "BUG: trying to register unstarted host\n");
6544 /* Blow away unused ports. This happens when LLD can't
6545 * determine the exact number of ports to allocate at
6548 for (i
= host
->n_ports
; host
->ports
[i
]; i
++)
6549 kfree(host
->ports
[i
]);
6551 /* give ports names and add SCSI hosts */
6552 for (i
= 0; i
< host
->n_ports
; i
++) {
6553 host
->ports
[i
]->print_id
= atomic_inc_return(&ata_print_id
);
6554 host
->ports
[i
]->local_port_no
= i
+ 1;
6557 /* Create associated sysfs transport objects */
6558 for (i
= 0; i
< host
->n_ports
; i
++) {
6559 rc
= ata_tport_add(host
->dev
,host
->ports
[i
]);
6565 rc
= ata_scsi_add_hosts(host
, sht
);
6569 /* set cable, sata_spd_limit and report */
6570 for (i
= 0; i
< host
->n_ports
; i
++) {
6571 struct ata_port
*ap
= host
->ports
[i
];
6572 unsigned long xfer_mask
;
6574 /* set SATA cable type if still unset */
6575 if (ap
->cbl
== ATA_CBL_NONE
&& (ap
->flags
& ATA_FLAG_SATA
))
6576 ap
->cbl
= ATA_CBL_SATA
;
6578 /* init sata_spd_limit to the current value */
6579 sata_link_init_spd(&ap
->link
);
6581 sata_link_init_spd(ap
->slave_link
);
6583 /* print per-port info to dmesg */
6584 xfer_mask
= ata_pack_xfermask(ap
->pio_mask
, ap
->mwdma_mask
,
6587 if (!ata_port_is_dummy(ap
)) {
6588 ata_port_info(ap
, "%cATA max %s %s\n",
6589 (ap
->flags
& ATA_FLAG_SATA
) ? 'S' : 'P',
6590 ata_mode_string(xfer_mask
),
6591 ap
->link
.eh_info
.desc
);
6592 ata_ehi_clear_desc(&ap
->link
.eh_info
);
6594 ata_port_info(ap
, "DUMMY\n");
6597 /* perform each probe asynchronously */
6598 for (i
= 0; i
< host
->n_ports
; i
++) {
6599 struct ata_port
*ap
= host
->ports
[i
];
6600 async_schedule(async_port_probe
, ap
);
6607 ata_tport_delete(host
->ports
[i
]);
6614 * ata_host_activate - start host, request IRQ and register it
6615 * @host: target ATA host
6616 * @irq: IRQ to request
6617 * @irq_handler: irq_handler used when requesting IRQ
6618 * @irq_flags: irq_flags used when requesting IRQ
6619 * @sht: scsi_host_template to use when registering the host
6621 * After allocating an ATA host and initializing it, most libata
6622 * LLDs perform three steps to activate the host - start host,
6623 * request IRQ and register it. This helper takes necessary
6624 * arguments and performs the three steps in one go.
6626 * An invalid IRQ skips the IRQ registration and expects the host to
6627 * have set polling mode on the port. In this case, @irq_handler
6631 * Inherited from calling layer (may sleep).
6634 * 0 on success, -errno otherwise.
6636 int ata_host_activate(struct ata_host
*host
, int irq
,
6637 irq_handler_t irq_handler
, unsigned long irq_flags
,
6638 struct scsi_host_template
*sht
)
6643 rc
= ata_host_start(host
);
6647 /* Special case for polling mode */
6649 WARN_ON(irq_handler
);
6650 return ata_host_register(host
, sht
);
6653 irq_desc
= devm_kasprintf(host
->dev
, GFP_KERNEL
, "%s[%s]",
6654 dev_driver_string(host
->dev
),
6655 dev_name(host
->dev
));
6659 rc
= devm_request_irq(host
->dev
, irq
, irq_handler
, irq_flags
,
6664 for (i
= 0; i
< host
->n_ports
; i
++)
6665 ata_port_desc(host
->ports
[i
], "irq %d", irq
);
6667 rc
= ata_host_register(host
, sht
);
6668 /* if failed, just free the IRQ and leave ports alone */
6670 devm_free_irq(host
->dev
, irq
, host
);
6676 * ata_port_detach - Detach ATA port in preparation of device removal
6677 * @ap: ATA port to be detached
6679 * Detach all ATA devices and the associated SCSI devices of @ap;
6680 * then, remove the associated SCSI host. @ap is guaranteed to
6681 * be quiescent on return from this function.
6684 * Kernel thread context (may sleep).
6686 static void ata_port_detach(struct ata_port
*ap
)
6688 unsigned long flags
;
6689 struct ata_link
*link
;
6690 struct ata_device
*dev
;
6692 if (!ap
->ops
->error_handler
)
6695 /* tell EH we're leaving & flush EH */
6696 spin_lock_irqsave(ap
->lock
, flags
);
6697 ap
->pflags
|= ATA_PFLAG_UNLOADING
;
6698 ata_port_schedule_eh(ap
);
6699 spin_unlock_irqrestore(ap
->lock
, flags
);
6701 /* wait till EH commits suicide */
6702 ata_port_wait_eh(ap
);
6704 /* it better be dead now */
6705 WARN_ON(!(ap
->pflags
& ATA_PFLAG_UNLOADED
));
6707 cancel_delayed_work_sync(&ap
->hotplug_task
);
6710 /* clean up zpodd on port removal */
6711 ata_for_each_link(link
, ap
, HOST_FIRST
) {
6712 ata_for_each_dev(dev
, link
, ALL
) {
6713 if (zpodd_dev_enabled(dev
))
6719 for (i
= 0; i
< SATA_PMP_MAX_PORTS
; i
++)
6720 ata_tlink_delete(&ap
->pmp_link
[i
]);
6722 /* remove the associated SCSI host */
6723 scsi_remove_host(ap
->scsi_host
);
6724 ata_tport_delete(ap
);
6728 * ata_host_detach - Detach all ports of an ATA host
6729 * @host: Host to detach
6731 * Detach all ports of @host.
6734 * Kernel thread context (may sleep).
6736 void ata_host_detach(struct ata_host
*host
)
6740 /* Ensure ata_port probe has completed */
6741 async_synchronize_full();
6743 for (i
= 0; i
< host
->n_ports
; i
++)
6744 ata_port_detach(host
->ports
[i
]);
6746 /* the host is dead now, dissociate ACPI */
6747 ata_acpi_dissociate(host
);
6753 * ata_pci_remove_one - PCI layer callback for device removal
6754 * @pdev: PCI device that was removed
6756 * PCI layer indicates to libata via this hook that hot-unplug or
6757 * module unload event has occurred. Detach all ports. Resource
6758 * release is handled via devres.
6761 * Inherited from PCI layer (may sleep).
6763 void ata_pci_remove_one(struct pci_dev
*pdev
)
6765 struct ata_host
*host
= pci_get_drvdata(pdev
);
6767 ata_host_detach(host
);
6770 /* move to PCI subsystem */
6771 int pci_test_config_bits(struct pci_dev
*pdev
, const struct pci_bits
*bits
)
6773 unsigned long tmp
= 0;
6775 switch (bits
->width
) {
6778 pci_read_config_byte(pdev
, bits
->reg
, &tmp8
);
6784 pci_read_config_word(pdev
, bits
->reg
, &tmp16
);
6790 pci_read_config_dword(pdev
, bits
->reg
, &tmp32
);
6801 return (tmp
== bits
->val
) ? 1 : 0;
6805 void ata_pci_device_do_suspend(struct pci_dev
*pdev
, pm_message_t mesg
)
6807 pci_save_state(pdev
);
6808 pci_disable_device(pdev
);
6810 if (mesg
.event
& PM_EVENT_SLEEP
)
6811 pci_set_power_state(pdev
, PCI_D3hot
);
6814 int ata_pci_device_do_resume(struct pci_dev
*pdev
)
6818 pci_set_power_state(pdev
, PCI_D0
);
6819 pci_restore_state(pdev
);
6821 rc
= pcim_enable_device(pdev
);
6824 "failed to enable device after resume (%d)\n", rc
);
6828 pci_set_master(pdev
);
6832 int ata_pci_device_suspend(struct pci_dev
*pdev
, pm_message_t mesg
)
6834 struct ata_host
*host
= pci_get_drvdata(pdev
);
6837 rc
= ata_host_suspend(host
, mesg
);
6841 ata_pci_device_do_suspend(pdev
, mesg
);
6846 int ata_pci_device_resume(struct pci_dev
*pdev
)
6848 struct ata_host
*host
= pci_get_drvdata(pdev
);
6851 rc
= ata_pci_device_do_resume(pdev
);
6853 ata_host_resume(host
);
6856 #endif /* CONFIG_PM */
6858 #endif /* CONFIG_PCI */
6861 * ata_platform_remove_one - Platform layer callback for device removal
6862 * @pdev: Platform device that was removed
6864 * Platform layer indicates to libata via this hook that hot-unplug or
6865 * module unload event has occurred. Detach all ports. Resource
6866 * release is handled via devres.
6869 * Inherited from platform layer (may sleep).
6871 int ata_platform_remove_one(struct platform_device
*pdev
)
6873 struct ata_host
*host
= platform_get_drvdata(pdev
);
6875 ata_host_detach(host
);
6880 static int __init
ata_parse_force_one(char **cur
,
6881 struct ata_force_ent
*force_ent
,
6882 const char **reason
)
6884 static const struct ata_force_param force_tbl
[] __initconst
= {
6885 { "40c", .cbl
= ATA_CBL_PATA40
},
6886 { "80c", .cbl
= ATA_CBL_PATA80
},
6887 { "short40c", .cbl
= ATA_CBL_PATA40_SHORT
},
6888 { "unk", .cbl
= ATA_CBL_PATA_UNK
},
6889 { "ign", .cbl
= ATA_CBL_PATA_IGN
},
6890 { "sata", .cbl
= ATA_CBL_SATA
},
6891 { "1.5Gbps", .spd_limit
= 1 },
6892 { "3.0Gbps", .spd_limit
= 2 },
6893 { "noncq", .horkage_on
= ATA_HORKAGE_NONCQ
},
6894 { "ncq", .horkage_off
= ATA_HORKAGE_NONCQ
},
6895 { "noncqtrim", .horkage_on
= ATA_HORKAGE_NO_NCQ_TRIM
},
6896 { "ncqtrim", .horkage_off
= ATA_HORKAGE_NO_NCQ_TRIM
},
6897 { "dump_id", .horkage_on
= ATA_HORKAGE_DUMP_ID
},
6898 { "pio0", .xfer_mask
= 1 << (ATA_SHIFT_PIO
+ 0) },
6899 { "pio1", .xfer_mask
= 1 << (ATA_SHIFT_PIO
+ 1) },
6900 { "pio2", .xfer_mask
= 1 << (ATA_SHIFT_PIO
+ 2) },
6901 { "pio3", .xfer_mask
= 1 << (ATA_SHIFT_PIO
+ 3) },
6902 { "pio4", .xfer_mask
= 1 << (ATA_SHIFT_PIO
+ 4) },
6903 { "pio5", .xfer_mask
= 1 << (ATA_SHIFT_PIO
+ 5) },
6904 { "pio6", .xfer_mask
= 1 << (ATA_SHIFT_PIO
+ 6) },
6905 { "mwdma0", .xfer_mask
= 1 << (ATA_SHIFT_MWDMA
+ 0) },
6906 { "mwdma1", .xfer_mask
= 1 << (ATA_SHIFT_MWDMA
+ 1) },
6907 { "mwdma2", .xfer_mask
= 1 << (ATA_SHIFT_MWDMA
+ 2) },
6908 { "mwdma3", .xfer_mask
= 1 << (ATA_SHIFT_MWDMA
+ 3) },
6909 { "mwdma4", .xfer_mask
= 1 << (ATA_SHIFT_MWDMA
+ 4) },
6910 { "udma0", .xfer_mask
= 1 << (ATA_SHIFT_UDMA
+ 0) },
6911 { "udma16", .xfer_mask
= 1 << (ATA_SHIFT_UDMA
+ 0) },
6912 { "udma/16", .xfer_mask
= 1 << (ATA_SHIFT_UDMA
+ 0) },
6913 { "udma1", .xfer_mask
= 1 << (ATA_SHIFT_UDMA
+ 1) },
6914 { "udma25", .xfer_mask
= 1 << (ATA_SHIFT_UDMA
+ 1) },
6915 { "udma/25", .xfer_mask
= 1 << (ATA_SHIFT_UDMA
+ 1) },
6916 { "udma2", .xfer_mask
= 1 << (ATA_SHIFT_UDMA
+ 2) },
6917 { "udma33", .xfer_mask
= 1 << (ATA_SHIFT_UDMA
+ 2) },
6918 { "udma/33", .xfer_mask
= 1 << (ATA_SHIFT_UDMA
+ 2) },
6919 { "udma3", .xfer_mask
= 1 << (ATA_SHIFT_UDMA
+ 3) },
6920 { "udma44", .xfer_mask
= 1 << (ATA_SHIFT_UDMA
+ 3) },
6921 { "udma/44", .xfer_mask
= 1 << (ATA_SHIFT_UDMA
+ 3) },
6922 { "udma4", .xfer_mask
= 1 << (ATA_SHIFT_UDMA
+ 4) },
6923 { "udma66", .xfer_mask
= 1 << (ATA_SHIFT_UDMA
+ 4) },
6924 { "udma/66", .xfer_mask
= 1 << (ATA_SHIFT_UDMA
+ 4) },
6925 { "udma5", .xfer_mask
= 1 << (ATA_SHIFT_UDMA
+ 5) },
6926 { "udma100", .xfer_mask
= 1 << (ATA_SHIFT_UDMA
+ 5) },
6927 { "udma/100", .xfer_mask
= 1 << (ATA_SHIFT_UDMA
+ 5) },
6928 { "udma6", .xfer_mask
= 1 << (ATA_SHIFT_UDMA
+ 6) },
6929 { "udma133", .xfer_mask
= 1 << (ATA_SHIFT_UDMA
+ 6) },
6930 { "udma/133", .xfer_mask
= 1 << (ATA_SHIFT_UDMA
+ 6) },
6931 { "udma7", .xfer_mask
= 1 << (ATA_SHIFT_UDMA
+ 7) },
6932 { "nohrst", .lflags
= ATA_LFLAG_NO_HRST
},
6933 { "nosrst", .lflags
= ATA_LFLAG_NO_SRST
},
6934 { "norst", .lflags
= ATA_LFLAG_NO_HRST
| ATA_LFLAG_NO_SRST
},
6935 { "rstonce", .lflags
= ATA_LFLAG_RST_ONCE
},
6936 { "atapi_dmadir", .horkage_on
= ATA_HORKAGE_ATAPI_DMADIR
},
6937 { "disable", .horkage_on
= ATA_HORKAGE_DISABLE
},
6939 char *start
= *cur
, *p
= *cur
;
6940 char *id
, *val
, *endp
;
6941 const struct ata_force_param
*match_fp
= NULL
;
6942 int nr_matches
= 0, i
;
6944 /* find where this param ends and update *cur */
6945 while (*p
!= '\0' && *p
!= ',')
6956 p
= strchr(start
, ':');
6958 val
= strstrip(start
);
6963 id
= strstrip(start
);
6964 val
= strstrip(p
+ 1);
6967 p
= strchr(id
, '.');
6970 force_ent
->device
= simple_strtoul(p
, &endp
, 10);
6971 if (p
== endp
|| *endp
!= '\0') {
6972 *reason
= "invalid device";
6977 force_ent
->port
= simple_strtoul(id
, &endp
, 10);
6978 if (id
== endp
|| *endp
!= '\0') {
6979 *reason
= "invalid port/link";
6984 /* parse val, allow shortcuts so that both 1.5 and 1.5Gbps work */
6985 for (i
= 0; i
< ARRAY_SIZE(force_tbl
); i
++) {
6986 const struct ata_force_param
*fp
= &force_tbl
[i
];
6988 if (strncasecmp(val
, fp
->name
, strlen(val
)))
6994 if (strcasecmp(val
, fp
->name
) == 0) {
7001 *reason
= "unknown value";
7004 if (nr_matches
> 1) {
7005 *reason
= "ambiguous value";
7009 force_ent
->param
= *match_fp
;
7014 static void __init
ata_parse_force_param(void)
7016 int idx
= 0, size
= 1;
7017 int last_port
= -1, last_device
= -1;
7018 char *p
, *cur
, *next
;
7020 /* calculate maximum number of params and allocate force_tbl */
7021 for (p
= ata_force_param_buf
; *p
; p
++)
7025 ata_force_tbl
= kcalloc(size
, sizeof(ata_force_tbl
[0]), GFP_KERNEL
);
7026 if (!ata_force_tbl
) {
7027 printk(KERN_WARNING
"ata: failed to extend force table, "
7028 "libata.force ignored\n");
7032 /* parse and populate the table */
7033 for (cur
= ata_force_param_buf
; *cur
!= '\0'; cur
= next
) {
7034 const char *reason
= "";
7035 struct ata_force_ent te
= { .port
= -1, .device
= -1 };
7038 if (ata_parse_force_one(&next
, &te
, &reason
)) {
7039 printk(KERN_WARNING
"ata: failed to parse force "
7040 "parameter \"%s\" (%s)\n",
7045 if (te
.port
== -1) {
7046 te
.port
= last_port
;
7047 te
.device
= last_device
;
7050 ata_force_tbl
[idx
++] = te
;
7052 last_port
= te
.port
;
7053 last_device
= te
.device
;
7056 ata_force_tbl_size
= idx
;
7059 static int __init
ata_init(void)
7063 ata_parse_force_param();
7065 rc
= ata_sff_init();
7067 kfree(ata_force_tbl
);
7071 libata_transport_init();
7072 ata_scsi_transport_template
= ata_attach_transport();
7073 if (!ata_scsi_transport_template
) {
7079 printk(KERN_DEBUG
"libata version " DRV_VERSION
" loaded.\n");
7086 static void __exit
ata_exit(void)
7088 ata_release_transport(ata_scsi_transport_template
);
7089 libata_transport_exit();
7091 kfree(ata_force_tbl
);
7094 subsys_initcall(ata_init
);
7095 module_exit(ata_exit
);
7097 static DEFINE_RATELIMIT_STATE(ratelimit
, HZ
/ 5, 1);
7099 int ata_ratelimit(void)
7101 return __ratelimit(&ratelimit
);
7105 * ata_msleep - ATA EH owner aware msleep
7106 * @ap: ATA port to attribute the sleep to
7107 * @msecs: duration to sleep in milliseconds
7109 * Sleeps @msecs. If the current task is owner of @ap's EH, the
7110 * ownership is released before going to sleep and reacquired
7111 * after the sleep is complete. IOW, other ports sharing the
7112 * @ap->host will be allowed to own the EH while this task is
7118 void ata_msleep(struct ata_port
*ap
, unsigned int msecs
)
7120 bool owns_eh
= ap
&& ap
->host
->eh_owner
== current
;
7126 unsigned long usecs
= msecs
* USEC_PER_MSEC
;
7127 usleep_range(usecs
, usecs
+ 50);
7137 * ata_wait_register - wait until register value changes
7138 * @ap: ATA port to wait register for, can be NULL
7139 * @reg: IO-mapped register
7140 * @mask: Mask to apply to read register value
7141 * @val: Wait condition
7142 * @interval: polling interval in milliseconds
7143 * @timeout: timeout in milliseconds
7145 * Waiting for some bits of register to change is a common
7146 * operation for ATA controllers. This function reads 32bit LE
7147 * IO-mapped register @reg and tests for the following condition.
7149 * (*@reg & mask) != val
7151 * If the condition is met, it returns; otherwise, the process is
7152 * repeated after @interval_msec until timeout.
7155 * Kernel thread context (may sleep)
7158 * The final register value.
7160 u32
ata_wait_register(struct ata_port
*ap
, void __iomem
*reg
, u32 mask
, u32 val
,
7161 unsigned long interval
, unsigned long timeout
)
7163 unsigned long deadline
;
7166 tmp
= ioread32(reg
);
7168 /* Calculate timeout _after_ the first read to make sure
7169 * preceding writes reach the controller before starting to
7170 * eat away the timeout.
7172 deadline
= ata_deadline(jiffies
, timeout
);
7174 while ((tmp
& mask
) == val
&& time_before(jiffies
, deadline
)) {
7175 ata_msleep(ap
, interval
);
7176 tmp
= ioread32(reg
);
7183 * sata_lpm_ignore_phy_events - test if PHY event should be ignored
7184 * @link: Link receiving the event
7186 * Test whether the received PHY event has to be ignored or not.
7192 * True if the event has to be ignored.
7194 bool sata_lpm_ignore_phy_events(struct ata_link
*link
)
7196 unsigned long lpm_timeout
= link
->last_lpm_change
+
7197 msecs_to_jiffies(ATA_TMOUT_SPURIOUS_PHY
);
7199 /* if LPM is enabled, PHYRDY doesn't mean anything */
7200 if (link
->lpm_policy
> ATA_LPM_MAX_POWER
)
7203 /* ignore the first PHY event after the LPM policy changed
7204 * as it is might be spurious
7206 if ((link
->flags
& ATA_LFLAG_CHANGED
) &&
7207 time_before(jiffies
, lpm_timeout
))
7212 EXPORT_SYMBOL_GPL(sata_lpm_ignore_phy_events
);
7217 static unsigned int ata_dummy_qc_issue(struct ata_queued_cmd
*qc
)
7219 return AC_ERR_SYSTEM
;
7222 static void ata_dummy_error_handler(struct ata_port
*ap
)
7227 struct ata_port_operations ata_dummy_port_ops
= {
7228 .qc_prep
= ata_noop_qc_prep
,
7229 .qc_issue
= ata_dummy_qc_issue
,
7230 .error_handler
= ata_dummy_error_handler
,
7231 .sched_eh
= ata_std_sched_eh
,
7232 .end_eh
= ata_std_end_eh
,
7235 const struct ata_port_info ata_dummy_port_info
= {
7236 .port_ops
= &ata_dummy_port_ops
,
7240 * Utility print functions
7242 void ata_port_printk(const struct ata_port
*ap
, const char *level
,
7243 const char *fmt
, ...)
7245 struct va_format vaf
;
7248 va_start(args
, fmt
);
7253 printk("%sata%u: %pV", level
, ap
->print_id
, &vaf
);
7257 EXPORT_SYMBOL(ata_port_printk
);
7259 void ata_link_printk(const struct ata_link
*link
, const char *level
,
7260 const char *fmt
, ...)
7262 struct va_format vaf
;
7265 va_start(args
, fmt
);
7270 if (sata_pmp_attached(link
->ap
) || link
->ap
->slave_link
)
7271 printk("%sata%u.%02u: %pV",
7272 level
, link
->ap
->print_id
, link
->pmp
, &vaf
);
7274 printk("%sata%u: %pV",
7275 level
, link
->ap
->print_id
, &vaf
);
7279 EXPORT_SYMBOL(ata_link_printk
);
7281 void ata_dev_printk(const struct ata_device
*dev
, const char *level
,
7282 const char *fmt
, ...)
7284 struct va_format vaf
;
7287 va_start(args
, fmt
);
7292 printk("%sata%u.%02u: %pV",
7293 level
, dev
->link
->ap
->print_id
, dev
->link
->pmp
+ dev
->devno
,
7298 EXPORT_SYMBOL(ata_dev_printk
);
7300 void ata_print_version(const struct device
*dev
, const char *version
)
7302 dev_printk(KERN_DEBUG
, dev
, "version %s\n", version
);
7304 EXPORT_SYMBOL(ata_print_version
);
7307 * libata is essentially a library of internal helper functions for
7308 * low-level ATA host controller drivers. As such, the API/ABI is
7309 * likely to change as new drivers are added and updated.
7310 * Do not depend on ABI/API stability.
7312 EXPORT_SYMBOL_GPL(sata_deb_timing_normal
);
7313 EXPORT_SYMBOL_GPL(sata_deb_timing_hotplug
);
7314 EXPORT_SYMBOL_GPL(sata_deb_timing_long
);
7315 EXPORT_SYMBOL_GPL(ata_base_port_ops
);
7316 EXPORT_SYMBOL_GPL(sata_port_ops
);
7317 EXPORT_SYMBOL_GPL(ata_dummy_port_ops
);
7318 EXPORT_SYMBOL_GPL(ata_dummy_port_info
);
7319 EXPORT_SYMBOL_GPL(ata_link_next
);
7320 EXPORT_SYMBOL_GPL(ata_dev_next
);
7321 EXPORT_SYMBOL_GPL(ata_std_bios_param
);
7322 EXPORT_SYMBOL_GPL(ata_scsi_unlock_native_capacity
);
7323 EXPORT_SYMBOL_GPL(ata_host_init
);
7324 EXPORT_SYMBOL_GPL(ata_host_alloc
);
7325 EXPORT_SYMBOL_GPL(ata_host_alloc_pinfo
);
7326 EXPORT_SYMBOL_GPL(ata_slave_link_init
);
7327 EXPORT_SYMBOL_GPL(ata_host_start
);
7328 EXPORT_SYMBOL_GPL(ata_host_register
);
7329 EXPORT_SYMBOL_GPL(ata_host_activate
);
7330 EXPORT_SYMBOL_GPL(ata_host_detach
);
7331 EXPORT_SYMBOL_GPL(ata_sg_init
);
7332 EXPORT_SYMBOL_GPL(ata_qc_complete
);
7333 EXPORT_SYMBOL_GPL(ata_qc_complete_multiple
);
7334 EXPORT_SYMBOL_GPL(atapi_cmd_type
);
7335 EXPORT_SYMBOL_GPL(ata_tf_to_fis
);
7336 EXPORT_SYMBOL_GPL(ata_tf_from_fis
);
7337 EXPORT_SYMBOL_GPL(ata_pack_xfermask
);
7338 EXPORT_SYMBOL_GPL(ata_unpack_xfermask
);
7339 EXPORT_SYMBOL_GPL(ata_xfer_mask2mode
);
7340 EXPORT_SYMBOL_GPL(ata_xfer_mode2mask
);
7341 EXPORT_SYMBOL_GPL(ata_xfer_mode2shift
);
7342 EXPORT_SYMBOL_GPL(ata_mode_string
);
7343 EXPORT_SYMBOL_GPL(ata_id_xfermask
);
7344 EXPORT_SYMBOL_GPL(ata_do_set_mode
);
7345 EXPORT_SYMBOL_GPL(ata_std_qc_defer
);
7346 EXPORT_SYMBOL_GPL(ata_noop_qc_prep
);
7347 EXPORT_SYMBOL_GPL(ata_dev_disable
);
7348 EXPORT_SYMBOL_GPL(sata_set_spd
);
7349 EXPORT_SYMBOL_GPL(ata_wait_after_reset
);
7350 EXPORT_SYMBOL_GPL(sata_link_debounce
);
7351 EXPORT_SYMBOL_GPL(sata_link_resume
);
7352 EXPORT_SYMBOL_GPL(sata_link_scr_lpm
);
7353 EXPORT_SYMBOL_GPL(ata_std_prereset
);
7354 EXPORT_SYMBOL_GPL(sata_link_hardreset
);
7355 EXPORT_SYMBOL_GPL(sata_std_hardreset
);
7356 EXPORT_SYMBOL_GPL(ata_std_postreset
);
7357 EXPORT_SYMBOL_GPL(ata_dev_classify
);
7358 EXPORT_SYMBOL_GPL(ata_dev_pair
);
7359 EXPORT_SYMBOL_GPL(ata_ratelimit
);
7360 EXPORT_SYMBOL_GPL(ata_msleep
);
7361 EXPORT_SYMBOL_GPL(ata_wait_register
);
7362 EXPORT_SYMBOL_GPL(ata_scsi_queuecmd
);
7363 EXPORT_SYMBOL_GPL(ata_scsi_slave_config
);
7364 EXPORT_SYMBOL_GPL(ata_scsi_slave_destroy
);
7365 EXPORT_SYMBOL_GPL(ata_scsi_change_queue_depth
);
7366 EXPORT_SYMBOL_GPL(__ata_change_queue_depth
);
7367 EXPORT_SYMBOL_GPL(sata_scr_valid
);
7368 EXPORT_SYMBOL_GPL(sata_scr_read
);
7369 EXPORT_SYMBOL_GPL(sata_scr_write
);
7370 EXPORT_SYMBOL_GPL(sata_scr_write_flush
);
7371 EXPORT_SYMBOL_GPL(ata_link_online
);
7372 EXPORT_SYMBOL_GPL(ata_link_offline
);
7374 EXPORT_SYMBOL_GPL(ata_host_suspend
);
7375 EXPORT_SYMBOL_GPL(ata_host_resume
);
7376 #endif /* CONFIG_PM */
7377 EXPORT_SYMBOL_GPL(ata_id_string
);
7378 EXPORT_SYMBOL_GPL(ata_id_c_string
);
7379 EXPORT_SYMBOL_GPL(ata_do_dev_read_id
);
7380 EXPORT_SYMBOL_GPL(ata_scsi_simulate
);
7382 EXPORT_SYMBOL_GPL(ata_pio_need_iordy
);
7383 EXPORT_SYMBOL_GPL(ata_timing_find_mode
);
7384 EXPORT_SYMBOL_GPL(ata_timing_compute
);
7385 EXPORT_SYMBOL_GPL(ata_timing_merge
);
7386 EXPORT_SYMBOL_GPL(ata_timing_cycle2mode
);
7389 EXPORT_SYMBOL_GPL(pci_test_config_bits
);
7390 EXPORT_SYMBOL_GPL(ata_pci_remove_one
);
7392 EXPORT_SYMBOL_GPL(ata_pci_device_do_suspend
);
7393 EXPORT_SYMBOL_GPL(ata_pci_device_do_resume
);
7394 EXPORT_SYMBOL_GPL(ata_pci_device_suspend
);
7395 EXPORT_SYMBOL_GPL(ata_pci_device_resume
);
7396 #endif /* CONFIG_PM */
7397 #endif /* CONFIG_PCI */
7399 EXPORT_SYMBOL_GPL(ata_platform_remove_one
);
7401 EXPORT_SYMBOL_GPL(__ata_ehi_push_desc
);
7402 EXPORT_SYMBOL_GPL(ata_ehi_push_desc
);
7403 EXPORT_SYMBOL_GPL(ata_ehi_clear_desc
);
7404 EXPORT_SYMBOL_GPL(ata_port_desc
);
7406 EXPORT_SYMBOL_GPL(ata_port_pbar_desc
);
7407 #endif /* CONFIG_PCI */
7408 EXPORT_SYMBOL_GPL(ata_port_schedule_eh
);
7409 EXPORT_SYMBOL_GPL(ata_link_abort
);
7410 EXPORT_SYMBOL_GPL(ata_port_abort
);
7411 EXPORT_SYMBOL_GPL(ata_port_freeze
);
7412 EXPORT_SYMBOL_GPL(sata_async_notification
);
7413 EXPORT_SYMBOL_GPL(ata_eh_freeze_port
);
7414 EXPORT_SYMBOL_GPL(ata_eh_thaw_port
);
7415 EXPORT_SYMBOL_GPL(ata_eh_qc_complete
);
7416 EXPORT_SYMBOL_GPL(ata_eh_qc_retry
);
7417 EXPORT_SYMBOL_GPL(ata_eh_analyze_ncq_error
);
7418 EXPORT_SYMBOL_GPL(ata_do_eh
);
7419 EXPORT_SYMBOL_GPL(ata_std_error_handler
);
7421 EXPORT_SYMBOL_GPL(ata_cable_40wire
);
7422 EXPORT_SYMBOL_GPL(ata_cable_80wire
);
7423 EXPORT_SYMBOL_GPL(ata_cable_unknown
);
7424 EXPORT_SYMBOL_GPL(ata_cable_ignore
);
7425 EXPORT_SYMBOL_GPL(ata_cable_sata
);
7426 EXPORT_SYMBOL_GPL(ata_host_get
);
7427 EXPORT_SYMBOL_GPL(ata_host_put
);