1 // SPDX-License-Identifier: GPL-2.0-or-later
3 * libata-sff.c - helper library for PCI IDE BMDMA
5 * Maintained by: Tejun Heo <tj@kernel.org>
6 * Please ALWAYS copy linux-ide@vger.kernel.org
9 * Copyright 2003-2006 Red Hat, Inc. All rights reserved.
10 * Copyright 2003-2006 Jeff Garzik
12 * libata documentation is available via 'make {ps|pdf}docs',
13 * as Documentation/driver-api/libata.rst
15 * Hardware documentation available from http://www.t13.org/ and
16 * http://www.sata-io.org/
19 #include <linux/kernel.h>
20 #include <linux/gfp.h>
21 #include <linux/pci.h>
22 #include <linux/module.h>
23 #include <linux/libata.h>
24 #include <linux/highmem.h>
28 static struct workqueue_struct
*ata_sff_wq
;
30 const struct ata_port_operations ata_sff_port_ops
= {
31 .inherits
= &ata_base_port_ops
,
33 .qc_prep
= ata_noop_qc_prep
,
34 .qc_issue
= ata_sff_qc_issue
,
35 .qc_fill_rtf
= ata_sff_qc_fill_rtf
,
37 .freeze
= ata_sff_freeze
,
39 .prereset
= ata_sff_prereset
,
40 .softreset
= ata_sff_softreset
,
41 .hardreset
= sata_sff_hardreset
,
42 .postreset
= ata_sff_postreset
,
43 .error_handler
= ata_sff_error_handler
,
45 .sff_dev_select
= ata_sff_dev_select
,
46 .sff_check_status
= ata_sff_check_status
,
47 .sff_tf_load
= ata_sff_tf_load
,
48 .sff_tf_read
= ata_sff_tf_read
,
49 .sff_exec_command
= ata_sff_exec_command
,
50 .sff_data_xfer
= ata_sff_data_xfer
,
51 .sff_drain_fifo
= ata_sff_drain_fifo
,
53 .lost_interrupt
= ata_sff_lost_interrupt
,
55 EXPORT_SYMBOL_GPL(ata_sff_port_ops
);
58 * ata_sff_check_status - Read device status reg & clear interrupt
59 * @ap: port where the device is
61 * Reads ATA taskfile status register for currently-selected device
62 * and return its value. This also clears pending interrupts
66 * Inherited from caller.
68 u8
ata_sff_check_status(struct ata_port
*ap
)
70 return ioread8(ap
->ioaddr
.status_addr
);
72 EXPORT_SYMBOL_GPL(ata_sff_check_status
);
75 * ata_sff_altstatus - Read device alternate status reg
76 * @ap: port where the device is
78 * Reads ATA taskfile alternate status register for
79 * currently-selected device and return its value.
81 * Note: may NOT be used as the check_altstatus() entry in
82 * ata_port_operations.
85 * Inherited from caller.
87 static u8
ata_sff_altstatus(struct ata_port
*ap
)
89 if (ap
->ops
->sff_check_altstatus
)
90 return ap
->ops
->sff_check_altstatus(ap
);
92 return ioread8(ap
->ioaddr
.altstatus_addr
);
96 * ata_sff_irq_status - Check if the device is busy
97 * @ap: port where the device is
99 * Determine if the port is currently busy. Uses altstatus
100 * if available in order to avoid clearing shared IRQ status
101 * when finding an IRQ source. Non ctl capable devices don't
102 * share interrupt lines fortunately for us.
105 * Inherited from caller.
107 static u8
ata_sff_irq_status(struct ata_port
*ap
)
111 if (ap
->ops
->sff_check_altstatus
|| ap
->ioaddr
.altstatus_addr
) {
112 status
= ata_sff_altstatus(ap
);
113 /* Not us: We are busy */
114 if (status
& ATA_BUSY
)
117 /* Clear INTRQ latch */
118 status
= ap
->ops
->sff_check_status(ap
);
123 * ata_sff_sync - Flush writes
124 * @ap: Port to wait for.
127 * If we have an mmio device with no ctl and no altstatus
128 * method this will fail. No such devices are known to exist.
131 * Inherited from caller.
134 static void ata_sff_sync(struct ata_port
*ap
)
136 if (ap
->ops
->sff_check_altstatus
)
137 ap
->ops
->sff_check_altstatus(ap
);
138 else if (ap
->ioaddr
.altstatus_addr
)
139 ioread8(ap
->ioaddr
.altstatus_addr
);
143 * ata_sff_pause - Flush writes and wait 400nS
144 * @ap: Port to pause for.
147 * If we have an mmio device with no ctl and no altstatus
148 * method this will fail. No such devices are known to exist.
151 * Inherited from caller.
154 void ata_sff_pause(struct ata_port
*ap
)
159 EXPORT_SYMBOL_GPL(ata_sff_pause
);
162 * ata_sff_dma_pause - Pause before commencing DMA
163 * @ap: Port to pause for.
165 * Perform I/O fencing and ensure sufficient cycle delays occur
166 * for the HDMA1:0 transition
169 void ata_sff_dma_pause(struct ata_port
*ap
)
171 if (ap
->ops
->sff_check_altstatus
|| ap
->ioaddr
.altstatus_addr
) {
172 /* An altstatus read will cause the needed delay without
173 messing up the IRQ status */
174 ata_sff_altstatus(ap
);
177 /* There are no DMA controllers without ctl. BUG here to ensure
178 we never violate the HDMA1:0 transition timing and risk
182 EXPORT_SYMBOL_GPL(ata_sff_dma_pause
);
185 * ata_sff_busy_sleep - sleep until BSY clears, or timeout
186 * @ap: port containing status register to be polled
187 * @tmout_pat: impatience timeout in msecs
188 * @tmout: overall timeout in msecs
190 * Sleep until ATA Status register bit BSY clears,
191 * or a timeout occurs.
194 * Kernel thread context (may sleep).
197 * 0 on success, -errno otherwise.
199 int ata_sff_busy_sleep(struct ata_port
*ap
,
200 unsigned long tmout_pat
, unsigned long tmout
)
202 unsigned long timer_start
, timeout
;
205 status
= ata_sff_busy_wait(ap
, ATA_BUSY
, 300);
206 timer_start
= jiffies
;
207 timeout
= ata_deadline(timer_start
, tmout_pat
);
208 while (status
!= 0xff && (status
& ATA_BUSY
) &&
209 time_before(jiffies
, timeout
)) {
211 status
= ata_sff_busy_wait(ap
, ATA_BUSY
, 3);
214 if (status
!= 0xff && (status
& ATA_BUSY
))
216 "port is slow to respond, please be patient (Status 0x%x)\n",
219 timeout
= ata_deadline(timer_start
, tmout
);
220 while (status
!= 0xff && (status
& ATA_BUSY
) &&
221 time_before(jiffies
, timeout
)) {
223 status
= ap
->ops
->sff_check_status(ap
);
229 if (status
& ATA_BUSY
) {
231 "port failed to respond (%lu secs, Status 0x%x)\n",
232 DIV_ROUND_UP(tmout
, 1000), status
);
238 EXPORT_SYMBOL_GPL(ata_sff_busy_sleep
);
240 static int ata_sff_check_ready(struct ata_link
*link
)
242 u8 status
= link
->ap
->ops
->sff_check_status(link
->ap
);
244 return ata_check_ready(status
);
248 * ata_sff_wait_ready - sleep until BSY clears, or timeout
249 * @link: SFF link to wait ready status for
250 * @deadline: deadline jiffies for the operation
252 * Sleep until ATA Status register bit BSY clears, or timeout
256 * Kernel thread context (may sleep).
259 * 0 on success, -errno otherwise.
261 int ata_sff_wait_ready(struct ata_link
*link
, unsigned long deadline
)
263 return ata_wait_ready(link
, deadline
, ata_sff_check_ready
);
265 EXPORT_SYMBOL_GPL(ata_sff_wait_ready
);
268 * ata_sff_set_devctl - Write device control reg
269 * @ap: port where the device is
270 * @ctl: value to write
272 * Writes ATA taskfile device control register.
274 * Note: may NOT be used as the sff_set_devctl() entry in
275 * ata_port_operations.
278 * Inherited from caller.
280 static void ata_sff_set_devctl(struct ata_port
*ap
, u8 ctl
)
282 if (ap
->ops
->sff_set_devctl
)
283 ap
->ops
->sff_set_devctl(ap
, ctl
);
285 iowrite8(ctl
, ap
->ioaddr
.ctl_addr
);
289 * ata_sff_dev_select - Select device 0/1 on ATA bus
290 * @ap: ATA channel to manipulate
291 * @device: ATA device (numbered from zero) to select
293 * Use the method defined in the ATA specification to
294 * make either device 0, or device 1, active on the
295 * ATA channel. Works with both PIO and MMIO.
297 * May be used as the dev_select() entry in ata_port_operations.
302 void ata_sff_dev_select(struct ata_port
*ap
, unsigned int device
)
307 tmp
= ATA_DEVICE_OBS
;
309 tmp
= ATA_DEVICE_OBS
| ATA_DEV1
;
311 iowrite8(tmp
, ap
->ioaddr
.device_addr
);
312 ata_sff_pause(ap
); /* needed; also flushes, for mmio */
314 EXPORT_SYMBOL_GPL(ata_sff_dev_select
);
317 * ata_dev_select - Select device 0/1 on ATA bus
318 * @ap: ATA channel to manipulate
319 * @device: ATA device (numbered from zero) to select
320 * @wait: non-zero to wait for Status register BSY bit to clear
321 * @can_sleep: non-zero if context allows sleeping
323 * Use the method defined in the ATA specification to
324 * make either device 0, or device 1, active on the
327 * This is a high-level version of ata_sff_dev_select(), which
328 * additionally provides the services of inserting the proper
329 * pauses and status polling, where needed.
334 static void ata_dev_select(struct ata_port
*ap
, unsigned int device
,
335 unsigned int wait
, unsigned int can_sleep
)
337 if (ata_msg_probe(ap
))
338 ata_port_info(ap
, "ata_dev_select: ENTER, device %u, wait %u\n",
344 ap
->ops
->sff_dev_select(ap
, device
);
347 if (can_sleep
&& ap
->link
.device
[device
].class == ATA_DEV_ATAPI
)
354 * ata_sff_irq_on - Enable interrupts on a port.
355 * @ap: Port on which interrupts are enabled.
357 * Enable interrupts on a legacy IDE device using MMIO or PIO,
358 * wait for idle, clear any pending interrupts.
360 * Note: may NOT be used as the sff_irq_on() entry in
361 * ata_port_operations.
364 * Inherited from caller.
366 void ata_sff_irq_on(struct ata_port
*ap
)
368 struct ata_ioports
*ioaddr
= &ap
->ioaddr
;
370 if (ap
->ops
->sff_irq_on
) {
371 ap
->ops
->sff_irq_on(ap
);
375 ap
->ctl
&= ~ATA_NIEN
;
376 ap
->last_ctl
= ap
->ctl
;
378 if (ap
->ops
->sff_set_devctl
|| ioaddr
->ctl_addr
)
379 ata_sff_set_devctl(ap
, ap
->ctl
);
382 if (ap
->ops
->sff_irq_clear
)
383 ap
->ops
->sff_irq_clear(ap
);
385 EXPORT_SYMBOL_GPL(ata_sff_irq_on
);
388 * ata_sff_tf_load - send taskfile registers to host controller
389 * @ap: Port to which output is sent
390 * @tf: ATA taskfile register set
392 * Outputs ATA taskfile to standard ATA host controller.
395 * Inherited from caller.
397 void ata_sff_tf_load(struct ata_port
*ap
, const struct ata_taskfile
*tf
)
399 struct ata_ioports
*ioaddr
= &ap
->ioaddr
;
400 unsigned int is_addr
= tf
->flags
& ATA_TFLAG_ISADDR
;
402 if (tf
->ctl
!= ap
->last_ctl
) {
403 if (ioaddr
->ctl_addr
)
404 iowrite8(tf
->ctl
, ioaddr
->ctl_addr
);
405 ap
->last_ctl
= tf
->ctl
;
409 if (is_addr
&& (tf
->flags
& ATA_TFLAG_LBA48
)) {
410 WARN_ON_ONCE(!ioaddr
->ctl_addr
);
411 iowrite8(tf
->hob_feature
, ioaddr
->feature_addr
);
412 iowrite8(tf
->hob_nsect
, ioaddr
->nsect_addr
);
413 iowrite8(tf
->hob_lbal
, ioaddr
->lbal_addr
);
414 iowrite8(tf
->hob_lbam
, ioaddr
->lbam_addr
);
415 iowrite8(tf
->hob_lbah
, ioaddr
->lbah_addr
);
416 VPRINTK("hob: feat 0x%X nsect 0x%X, lba 0x%X 0x%X 0x%X\n",
425 iowrite8(tf
->feature
, ioaddr
->feature_addr
);
426 iowrite8(tf
->nsect
, ioaddr
->nsect_addr
);
427 iowrite8(tf
->lbal
, ioaddr
->lbal_addr
);
428 iowrite8(tf
->lbam
, ioaddr
->lbam_addr
);
429 iowrite8(tf
->lbah
, ioaddr
->lbah_addr
);
430 VPRINTK("feat 0x%X nsect 0x%X lba 0x%X 0x%X 0x%X\n",
438 if (tf
->flags
& ATA_TFLAG_DEVICE
) {
439 iowrite8(tf
->device
, ioaddr
->device_addr
);
440 VPRINTK("device 0x%X\n", tf
->device
);
445 EXPORT_SYMBOL_GPL(ata_sff_tf_load
);
448 * ata_sff_tf_read - input device's ATA taskfile shadow registers
449 * @ap: Port from which input is read
450 * @tf: ATA taskfile register set for storing input
452 * Reads ATA taskfile registers for currently-selected device
453 * into @tf. Assumes the device has a fully SFF compliant task file
454 * layout and behaviour. If you device does not (eg has a different
455 * status method) then you will need to provide a replacement tf_read
458 * Inherited from caller.
460 void ata_sff_tf_read(struct ata_port
*ap
, struct ata_taskfile
*tf
)
462 struct ata_ioports
*ioaddr
= &ap
->ioaddr
;
464 tf
->command
= ata_sff_check_status(ap
);
465 tf
->feature
= ioread8(ioaddr
->error_addr
);
466 tf
->nsect
= ioread8(ioaddr
->nsect_addr
);
467 tf
->lbal
= ioread8(ioaddr
->lbal_addr
);
468 tf
->lbam
= ioread8(ioaddr
->lbam_addr
);
469 tf
->lbah
= ioread8(ioaddr
->lbah_addr
);
470 tf
->device
= ioread8(ioaddr
->device_addr
);
472 if (tf
->flags
& ATA_TFLAG_LBA48
) {
473 if (likely(ioaddr
->ctl_addr
)) {
474 iowrite8(tf
->ctl
| ATA_HOB
, ioaddr
->ctl_addr
);
475 tf
->hob_feature
= ioread8(ioaddr
->error_addr
);
476 tf
->hob_nsect
= ioread8(ioaddr
->nsect_addr
);
477 tf
->hob_lbal
= ioread8(ioaddr
->lbal_addr
);
478 tf
->hob_lbam
= ioread8(ioaddr
->lbam_addr
);
479 tf
->hob_lbah
= ioread8(ioaddr
->lbah_addr
);
480 iowrite8(tf
->ctl
, ioaddr
->ctl_addr
);
481 ap
->last_ctl
= tf
->ctl
;
486 EXPORT_SYMBOL_GPL(ata_sff_tf_read
);
489 * ata_sff_exec_command - issue ATA command to host controller
490 * @ap: port to which command is being issued
491 * @tf: ATA taskfile register set
493 * Issues ATA command, with proper synchronization with interrupt
494 * handler / other threads.
497 * spin_lock_irqsave(host lock)
499 void ata_sff_exec_command(struct ata_port
*ap
, const struct ata_taskfile
*tf
)
501 DPRINTK("ata%u: cmd 0x%X\n", ap
->print_id
, tf
->command
);
503 iowrite8(tf
->command
, ap
->ioaddr
.command_addr
);
506 EXPORT_SYMBOL_GPL(ata_sff_exec_command
);
509 * ata_tf_to_host - issue ATA taskfile to host controller
510 * @ap: port to which command is being issued
511 * @tf: ATA taskfile register set
513 * Issues ATA taskfile register set to ATA host controller,
514 * with proper synchronization with interrupt handler and
518 * spin_lock_irqsave(host lock)
520 static inline void ata_tf_to_host(struct ata_port
*ap
,
521 const struct ata_taskfile
*tf
)
523 ap
->ops
->sff_tf_load(ap
, tf
);
524 ap
->ops
->sff_exec_command(ap
, tf
);
528 * ata_sff_data_xfer - Transfer data by PIO
529 * @qc: queued command
531 * @buflen: buffer length
534 * Transfer data from/to the device data register by PIO.
537 * Inherited from caller.
542 unsigned int ata_sff_data_xfer(struct ata_queued_cmd
*qc
, unsigned char *buf
,
543 unsigned int buflen
, int rw
)
545 struct ata_port
*ap
= qc
->dev
->link
->ap
;
546 void __iomem
*data_addr
= ap
->ioaddr
.data_addr
;
547 unsigned int words
= buflen
>> 1;
549 /* Transfer multiple of 2 bytes */
551 ioread16_rep(data_addr
, buf
, words
);
553 iowrite16_rep(data_addr
, buf
, words
);
555 /* Transfer trailing byte, if any. */
556 if (unlikely(buflen
& 0x01)) {
557 unsigned char pad
[2] = { };
559 /* Point buf to the tail of buffer */
563 * Use io*16_rep() accessors here as well to avoid pointlessly
564 * swapping bytes to and from on the big endian machines...
567 ioread16_rep(data_addr
, pad
, 1);
571 iowrite16_rep(data_addr
, pad
, 1);
578 EXPORT_SYMBOL_GPL(ata_sff_data_xfer
);
581 * ata_sff_data_xfer32 - Transfer data by PIO
582 * @qc: queued command
584 * @buflen: buffer length
587 * Transfer data from/to the device data register by PIO using 32bit
591 * Inherited from caller.
597 unsigned int ata_sff_data_xfer32(struct ata_queued_cmd
*qc
, unsigned char *buf
,
598 unsigned int buflen
, int rw
)
600 struct ata_device
*dev
= qc
->dev
;
601 struct ata_port
*ap
= dev
->link
->ap
;
602 void __iomem
*data_addr
= ap
->ioaddr
.data_addr
;
603 unsigned int words
= buflen
>> 2;
604 int slop
= buflen
& 3;
606 if (!(ap
->pflags
& ATA_PFLAG_PIO32
))
607 return ata_sff_data_xfer(qc
, buf
, buflen
, rw
);
609 /* Transfer multiple of 4 bytes */
611 ioread32_rep(data_addr
, buf
, words
);
613 iowrite32_rep(data_addr
, buf
, words
);
615 /* Transfer trailing bytes, if any */
616 if (unlikely(slop
)) {
617 unsigned char pad
[4] = { };
619 /* Point buf to the tail of buffer */
620 buf
+= buflen
- slop
;
623 * Use io*_rep() accessors here as well to avoid pointlessly
624 * swapping bytes to and from on the big endian machines...
628 ioread16_rep(data_addr
, pad
, 1);
630 ioread32_rep(data_addr
, pad
, 1);
631 memcpy(buf
, pad
, slop
);
633 memcpy(pad
, buf
, slop
);
635 iowrite16_rep(data_addr
, pad
, 1);
637 iowrite32_rep(data_addr
, pad
, 1);
640 return (buflen
+ 1) & ~1;
642 EXPORT_SYMBOL_GPL(ata_sff_data_xfer32
);
645 * ata_pio_sector - Transfer a sector of data.
646 * @qc: Command on going
648 * Transfer qc->sect_size bytes of data from/to the ATA device.
651 * Inherited from caller.
653 static void ata_pio_sector(struct ata_queued_cmd
*qc
)
655 int do_write
= (qc
->tf
.flags
& ATA_TFLAG_WRITE
);
656 struct ata_port
*ap
= qc
->ap
;
662 qc
->curbytes
= qc
->nbytes
;
665 if (qc
->curbytes
== qc
->nbytes
- qc
->sect_size
)
666 ap
->hsm_task_state
= HSM_ST_LAST
;
668 page
= sg_page(qc
->cursg
);
669 offset
= qc
->cursg
->offset
+ qc
->cursg_ofs
;
671 /* get the current page and offset */
672 page
= nth_page(page
, (offset
>> PAGE_SHIFT
));
675 DPRINTK("data %s\n", qc
->tf
.flags
& ATA_TFLAG_WRITE
? "write" : "read");
677 /* do the actual data transfer */
678 buf
= kmap_atomic(page
);
679 ap
->ops
->sff_data_xfer(qc
, buf
+ offset
, qc
->sect_size
, do_write
);
682 if (!do_write
&& !PageSlab(page
))
683 flush_dcache_page(page
);
685 qc
->curbytes
+= qc
->sect_size
;
686 qc
->cursg_ofs
+= qc
->sect_size
;
688 if (qc
->cursg_ofs
== qc
->cursg
->length
) {
689 qc
->cursg
= sg_next(qc
->cursg
);
691 ap
->hsm_task_state
= HSM_ST_LAST
;
697 * ata_pio_sectors - Transfer one or many sectors.
698 * @qc: Command on going
700 * Transfer one or many sectors of data from/to the
701 * ATA device for the DRQ request.
704 * Inherited from caller.
706 static void ata_pio_sectors(struct ata_queued_cmd
*qc
)
708 if (is_multi_taskfile(&qc
->tf
)) {
709 /* READ/WRITE MULTIPLE */
712 WARN_ON_ONCE(qc
->dev
->multi_count
== 0);
714 nsect
= min((qc
->nbytes
- qc
->curbytes
) / qc
->sect_size
,
715 qc
->dev
->multi_count
);
721 ata_sff_sync(qc
->ap
); /* flush */
725 * atapi_send_cdb - Write CDB bytes to hardware
726 * @ap: Port to which ATAPI device is attached.
727 * @qc: Taskfile currently active
729 * When device has indicated its readiness to accept
730 * a CDB, this function is called. Send the CDB.
735 static void atapi_send_cdb(struct ata_port
*ap
, struct ata_queued_cmd
*qc
)
738 DPRINTK("send cdb\n");
739 WARN_ON_ONCE(qc
->dev
->cdb_len
< 12);
741 ap
->ops
->sff_data_xfer(qc
, qc
->cdb
, qc
->dev
->cdb_len
, 1);
743 /* FIXME: If the CDB is for DMA do we need to do the transition delay
744 or is bmdma_start guaranteed to do it ? */
745 switch (qc
->tf
.protocol
) {
747 ap
->hsm_task_state
= HSM_ST
;
749 case ATAPI_PROT_NODATA
:
750 ap
->hsm_task_state
= HSM_ST_LAST
;
752 #ifdef CONFIG_ATA_BMDMA
754 ap
->hsm_task_state
= HSM_ST_LAST
;
756 ap
->ops
->bmdma_start(qc
);
758 #endif /* CONFIG_ATA_BMDMA */
765 * __atapi_pio_bytes - Transfer data from/to the ATAPI device.
766 * @qc: Command on going
767 * @bytes: number of bytes
769 * Transfer Transfer data from/to the ATAPI device.
772 * Inherited from caller.
775 static int __atapi_pio_bytes(struct ata_queued_cmd
*qc
, unsigned int bytes
)
777 int rw
= (qc
->tf
.flags
& ATA_TFLAG_WRITE
) ? WRITE
: READ
;
778 struct ata_port
*ap
= qc
->ap
;
779 struct ata_device
*dev
= qc
->dev
;
780 struct ata_eh_info
*ehi
= &dev
->link
->eh_info
;
781 struct scatterlist
*sg
;
784 unsigned int offset
, count
, consumed
;
789 ata_ehi_push_desc(ehi
, "unexpected or too much trailing data "
790 "buf=%u cur=%u bytes=%u",
791 qc
->nbytes
, qc
->curbytes
, bytes
);
796 offset
= sg
->offset
+ qc
->cursg_ofs
;
798 /* get the current page and offset */
799 page
= nth_page(page
, (offset
>> PAGE_SHIFT
));
802 /* don't overrun current sg */
803 count
= min(sg
->length
- qc
->cursg_ofs
, bytes
);
805 /* don't cross page boundaries */
806 count
= min(count
, (unsigned int)PAGE_SIZE
- offset
);
808 DPRINTK("data %s\n", qc
->tf
.flags
& ATA_TFLAG_WRITE
? "write" : "read");
810 /* do the actual data transfer */
811 buf
= kmap_atomic(page
);
812 consumed
= ap
->ops
->sff_data_xfer(qc
, buf
+ offset
, count
, rw
);
815 bytes
-= min(bytes
, consumed
);
816 qc
->curbytes
+= count
;
817 qc
->cursg_ofs
+= count
;
819 if (qc
->cursg_ofs
== sg
->length
) {
820 qc
->cursg
= sg_next(qc
->cursg
);
825 * There used to be a WARN_ON_ONCE(qc->cursg && count != consumed);
826 * Unfortunately __atapi_pio_bytes doesn't know enough to do the WARN
827 * check correctly as it doesn't know if it is the last request being
828 * made. Somebody should implement a proper sanity check.
836 * atapi_pio_bytes - Transfer data from/to the ATAPI device.
837 * @qc: Command on going
839 * Transfer Transfer data from/to the ATAPI device.
842 * Inherited from caller.
844 static void atapi_pio_bytes(struct ata_queued_cmd
*qc
)
846 struct ata_port
*ap
= qc
->ap
;
847 struct ata_device
*dev
= qc
->dev
;
848 struct ata_eh_info
*ehi
= &dev
->link
->eh_info
;
849 unsigned int ireason
, bc_lo
, bc_hi
, bytes
;
850 int i_write
, do_write
= (qc
->tf
.flags
& ATA_TFLAG_WRITE
) ? 1 : 0;
852 /* Abuse qc->result_tf for temp storage of intermediate TF
853 * here to save some kernel stack usage.
854 * For normal completion, qc->result_tf is not relevant. For
855 * error, qc->result_tf is later overwritten by ata_qc_complete().
856 * So, the correctness of qc->result_tf is not affected.
858 ap
->ops
->sff_tf_read(ap
, &qc
->result_tf
);
859 ireason
= qc
->result_tf
.nsect
;
860 bc_lo
= qc
->result_tf
.lbam
;
861 bc_hi
= qc
->result_tf
.lbah
;
862 bytes
= (bc_hi
<< 8) | bc_lo
;
864 /* shall be cleared to zero, indicating xfer of data */
865 if (unlikely(ireason
& ATAPI_COD
))
868 /* make sure transfer direction matches expected */
869 i_write
= ((ireason
& ATAPI_IO
) == 0) ? 1 : 0;
870 if (unlikely(do_write
!= i_write
))
873 if (unlikely(!bytes
))
876 VPRINTK("ata%u: xfering %d bytes\n", ap
->print_id
, bytes
);
878 if (unlikely(__atapi_pio_bytes(qc
, bytes
)))
880 ata_sff_sync(ap
); /* flush */
885 ata_ehi_push_desc(ehi
, "ATAPI check failed (ireason=0x%x bytes=%u)",
888 qc
->err_mask
|= AC_ERR_HSM
;
889 ap
->hsm_task_state
= HSM_ST_ERR
;
893 * ata_hsm_ok_in_wq - Check if the qc can be handled in the workqueue.
894 * @ap: the target ata_port
898 * 1 if ok in workqueue, 0 otherwise.
900 static inline int ata_hsm_ok_in_wq(struct ata_port
*ap
,
901 struct ata_queued_cmd
*qc
)
903 if (qc
->tf
.flags
& ATA_TFLAG_POLLING
)
906 if (ap
->hsm_task_state
== HSM_ST_FIRST
) {
907 if (qc
->tf
.protocol
== ATA_PROT_PIO
&&
908 (qc
->tf
.flags
& ATA_TFLAG_WRITE
))
911 if (ata_is_atapi(qc
->tf
.protocol
) &&
912 !(qc
->dev
->flags
& ATA_DFLAG_CDB_INTR
))
920 * ata_hsm_qc_complete - finish a qc running on standard HSM
921 * @qc: Command to complete
922 * @in_wq: 1 if called from workqueue, 0 otherwise
924 * Finish @qc which is running on standard HSM.
927 * If @in_wq is zero, spin_lock_irqsave(host lock).
928 * Otherwise, none on entry and grabs host lock.
930 static void ata_hsm_qc_complete(struct ata_queued_cmd
*qc
, int in_wq
)
932 struct ata_port
*ap
= qc
->ap
;
934 if (ap
->ops
->error_handler
) {
936 /* EH might have kicked in while host lock is
939 qc
= ata_qc_from_tag(ap
, qc
->tag
);
941 if (likely(!(qc
->err_mask
& AC_ERR_HSM
))) {
948 if (likely(!(qc
->err_mask
& AC_ERR_HSM
)))
963 * ata_sff_hsm_move - move the HSM to the next state.
964 * @ap: the target ata_port
966 * @status: current device status
967 * @in_wq: 1 if called from workqueue, 0 otherwise
970 * 1 when poll next status needed, 0 otherwise.
972 int ata_sff_hsm_move(struct ata_port
*ap
, struct ata_queued_cmd
*qc
,
973 u8 status
, int in_wq
)
975 struct ata_link
*link
= qc
->dev
->link
;
976 struct ata_eh_info
*ehi
= &link
->eh_info
;
979 lockdep_assert_held(ap
->lock
);
981 WARN_ON_ONCE((qc
->flags
& ATA_QCFLAG_ACTIVE
) == 0);
983 /* Make sure ata_sff_qc_issue() does not throw things
984 * like DMA polling into the workqueue. Notice that
985 * in_wq is not equivalent to (qc->tf.flags & ATA_TFLAG_POLLING).
987 WARN_ON_ONCE(in_wq
!= ata_hsm_ok_in_wq(ap
, qc
));
990 DPRINTK("ata%u: protocol %d task_state %d (dev_stat 0x%X)\n",
991 ap
->print_id
, qc
->tf
.protocol
, ap
->hsm_task_state
, status
);
993 switch (ap
->hsm_task_state
) {
995 /* Send first data block or PACKET CDB */
997 /* If polling, we will stay in the work queue after
998 * sending the data. Otherwise, interrupt handler
999 * takes over after sending the data.
1001 poll_next
= (qc
->tf
.flags
& ATA_TFLAG_POLLING
);
1003 /* check device status */
1004 if (unlikely((status
& ATA_DRQ
) == 0)) {
1005 /* handle BSY=0, DRQ=0 as error */
1006 if (likely(status
& (ATA_ERR
| ATA_DF
)))
1007 /* device stops HSM for abort/error */
1008 qc
->err_mask
|= AC_ERR_DEV
;
1010 /* HSM violation. Let EH handle this */
1011 ata_ehi_push_desc(ehi
,
1012 "ST_FIRST: !(DRQ|ERR|DF)");
1013 qc
->err_mask
|= AC_ERR_HSM
;
1016 ap
->hsm_task_state
= HSM_ST_ERR
;
1020 /* Device should not ask for data transfer (DRQ=1)
1021 * when it finds something wrong.
1022 * We ignore DRQ here and stop the HSM by
1023 * changing hsm_task_state to HSM_ST_ERR and
1024 * let the EH abort the command or reset the device.
1026 if (unlikely(status
& (ATA_ERR
| ATA_DF
))) {
1027 /* Some ATAPI tape drives forget to clear the ERR bit
1028 * when doing the next command (mostly request sense).
1029 * We ignore ERR here to workaround and proceed sending
1032 if (!(qc
->dev
->horkage
& ATA_HORKAGE_STUCK_ERR
)) {
1033 ata_ehi_push_desc(ehi
, "ST_FIRST: "
1034 "DRQ=1 with device error, "
1035 "dev_stat 0x%X", status
);
1036 qc
->err_mask
|= AC_ERR_HSM
;
1037 ap
->hsm_task_state
= HSM_ST_ERR
;
1042 if (qc
->tf
.protocol
== ATA_PROT_PIO
) {
1043 /* PIO data out protocol.
1044 * send first data block.
1047 /* ata_pio_sectors() might change the state
1048 * to HSM_ST_LAST. so, the state is changed here
1049 * before ata_pio_sectors().
1051 ap
->hsm_task_state
= HSM_ST
;
1052 ata_pio_sectors(qc
);
1055 atapi_send_cdb(ap
, qc
);
1057 /* if polling, ata_sff_pio_task() handles the rest.
1058 * otherwise, interrupt handler takes over from here.
1063 /* complete command or read/write the data register */
1064 if (qc
->tf
.protocol
== ATAPI_PROT_PIO
) {
1065 /* ATAPI PIO protocol */
1066 if ((status
& ATA_DRQ
) == 0) {
1067 /* No more data to transfer or device error.
1068 * Device error will be tagged in HSM_ST_LAST.
1070 ap
->hsm_task_state
= HSM_ST_LAST
;
1074 /* Device should not ask for data transfer (DRQ=1)
1075 * when it finds something wrong.
1076 * We ignore DRQ here and stop the HSM by
1077 * changing hsm_task_state to HSM_ST_ERR and
1078 * let the EH abort the command or reset the device.
1080 if (unlikely(status
& (ATA_ERR
| ATA_DF
))) {
1081 ata_ehi_push_desc(ehi
, "ST-ATAPI: "
1082 "DRQ=1 with device error, "
1083 "dev_stat 0x%X", status
);
1084 qc
->err_mask
|= AC_ERR_HSM
;
1085 ap
->hsm_task_state
= HSM_ST_ERR
;
1089 atapi_pio_bytes(qc
);
1091 if (unlikely(ap
->hsm_task_state
== HSM_ST_ERR
))
1092 /* bad ireason reported by device */
1096 /* ATA PIO protocol */
1097 if (unlikely((status
& ATA_DRQ
) == 0)) {
1098 /* handle BSY=0, DRQ=0 as error */
1099 if (likely(status
& (ATA_ERR
| ATA_DF
))) {
1100 /* device stops HSM for abort/error */
1101 qc
->err_mask
|= AC_ERR_DEV
;
1103 /* If diagnostic failed and this is
1104 * IDENTIFY, it's likely a phantom
1105 * device. Mark hint.
1107 if (qc
->dev
->horkage
&
1108 ATA_HORKAGE_DIAGNOSTIC
)
1112 /* HSM violation. Let EH handle this.
1113 * Phantom devices also trigger this
1114 * condition. Mark hint.
1116 ata_ehi_push_desc(ehi
, "ST-ATA: "
1117 "DRQ=0 without device error, "
1118 "dev_stat 0x%X", status
);
1119 qc
->err_mask
|= AC_ERR_HSM
|
1123 ap
->hsm_task_state
= HSM_ST_ERR
;
1127 /* For PIO reads, some devices may ask for
1128 * data transfer (DRQ=1) alone with ERR=1.
1129 * We respect DRQ here and transfer one
1130 * block of junk data before changing the
1131 * hsm_task_state to HSM_ST_ERR.
1133 * For PIO writes, ERR=1 DRQ=1 doesn't make
1134 * sense since the data block has been
1135 * transferred to the device.
1137 if (unlikely(status
& (ATA_ERR
| ATA_DF
))) {
1138 /* data might be corrputed */
1139 qc
->err_mask
|= AC_ERR_DEV
;
1141 if (!(qc
->tf
.flags
& ATA_TFLAG_WRITE
)) {
1142 ata_pio_sectors(qc
);
1143 status
= ata_wait_idle(ap
);
1146 if (status
& (ATA_BUSY
| ATA_DRQ
)) {
1147 ata_ehi_push_desc(ehi
, "ST-ATA: "
1148 "BUSY|DRQ persists on ERR|DF, "
1149 "dev_stat 0x%X", status
);
1150 qc
->err_mask
|= AC_ERR_HSM
;
1153 /* There are oddball controllers with
1154 * status register stuck at 0x7f and
1155 * lbal/m/h at zero which makes it
1156 * pass all other presence detection
1157 * mechanisms we have. Set NODEV_HINT
1158 * for it. Kernel bz#7241.
1161 qc
->err_mask
|= AC_ERR_NODEV_HINT
;
1163 /* ata_pio_sectors() might change the
1164 * state to HSM_ST_LAST. so, the state
1165 * is changed after ata_pio_sectors().
1167 ap
->hsm_task_state
= HSM_ST_ERR
;
1171 ata_pio_sectors(qc
);
1173 if (ap
->hsm_task_state
== HSM_ST_LAST
&&
1174 (!(qc
->tf
.flags
& ATA_TFLAG_WRITE
))) {
1176 status
= ata_wait_idle(ap
);
1185 if (unlikely(!ata_ok(status
))) {
1186 qc
->err_mask
|= __ac_err_mask(status
);
1187 ap
->hsm_task_state
= HSM_ST_ERR
;
1191 /* no more data to transfer */
1192 DPRINTK("ata%u: dev %u command complete, drv_stat 0x%x\n",
1193 ap
->print_id
, qc
->dev
->devno
, status
);
1195 WARN_ON_ONCE(qc
->err_mask
& (AC_ERR_DEV
| AC_ERR_HSM
));
1197 ap
->hsm_task_state
= HSM_ST_IDLE
;
1199 /* complete taskfile transaction */
1200 ata_hsm_qc_complete(qc
, in_wq
);
1206 ap
->hsm_task_state
= HSM_ST_IDLE
;
1208 /* complete taskfile transaction */
1209 ata_hsm_qc_complete(qc
, in_wq
);
1215 WARN(true, "ata%d: SFF host state machine in invalid state %d",
1216 ap
->print_id
, ap
->hsm_task_state
);
1221 EXPORT_SYMBOL_GPL(ata_sff_hsm_move
);
1223 void ata_sff_queue_work(struct work_struct
*work
)
1225 queue_work(ata_sff_wq
, work
);
1227 EXPORT_SYMBOL_GPL(ata_sff_queue_work
);
1229 void ata_sff_queue_delayed_work(struct delayed_work
*dwork
, unsigned long delay
)
1231 queue_delayed_work(ata_sff_wq
, dwork
, delay
);
1233 EXPORT_SYMBOL_GPL(ata_sff_queue_delayed_work
);
1235 void ata_sff_queue_pio_task(struct ata_link
*link
, unsigned long delay
)
1237 struct ata_port
*ap
= link
->ap
;
1239 WARN_ON((ap
->sff_pio_task_link
!= NULL
) &&
1240 (ap
->sff_pio_task_link
!= link
));
1241 ap
->sff_pio_task_link
= link
;
1243 /* may fail if ata_sff_flush_pio_task() in progress */
1244 ata_sff_queue_delayed_work(&ap
->sff_pio_task
, msecs_to_jiffies(delay
));
1246 EXPORT_SYMBOL_GPL(ata_sff_queue_pio_task
);
1248 void ata_sff_flush_pio_task(struct ata_port
*ap
)
1252 cancel_delayed_work_sync(&ap
->sff_pio_task
);
1255 * We wanna reset the HSM state to IDLE. If we do so without
1256 * grabbing the port lock, critical sections protected by it which
1257 * expect the HSM state to stay stable may get surprised. For
1258 * example, we may set IDLE in between the time
1259 * __ata_sff_port_intr() checks for HSM_ST_IDLE and before it calls
1260 * ata_sff_hsm_move() causing ata_sff_hsm_move() to BUG().
1262 spin_lock_irq(ap
->lock
);
1263 ap
->hsm_task_state
= HSM_ST_IDLE
;
1264 spin_unlock_irq(ap
->lock
);
1266 ap
->sff_pio_task_link
= NULL
;
1268 if (ata_msg_ctl(ap
))
1269 ata_port_dbg(ap
, "%s: EXIT\n", __func__
);
1272 static void ata_sff_pio_task(struct work_struct
*work
)
1274 struct ata_port
*ap
=
1275 container_of(work
, struct ata_port
, sff_pio_task
.work
);
1276 struct ata_link
*link
= ap
->sff_pio_task_link
;
1277 struct ata_queued_cmd
*qc
;
1281 spin_lock_irq(ap
->lock
);
1283 BUG_ON(ap
->sff_pio_task_link
== NULL
);
1284 /* qc can be NULL if timeout occurred */
1285 qc
= ata_qc_from_tag(ap
, link
->active_tag
);
1287 ap
->sff_pio_task_link
= NULL
;
1292 WARN_ON_ONCE(ap
->hsm_task_state
== HSM_ST_IDLE
);
1295 * This is purely heuristic. This is a fast path.
1296 * Sometimes when we enter, BSY will be cleared in
1297 * a chk-status or two. If not, the drive is probably seeking
1298 * or something. Snooze for a couple msecs, then
1299 * chk-status again. If still busy, queue delayed work.
1301 status
= ata_sff_busy_wait(ap
, ATA_BUSY
, 5);
1302 if (status
& ATA_BUSY
) {
1303 spin_unlock_irq(ap
->lock
);
1305 spin_lock_irq(ap
->lock
);
1307 status
= ata_sff_busy_wait(ap
, ATA_BUSY
, 10);
1308 if (status
& ATA_BUSY
) {
1309 ata_sff_queue_pio_task(link
, ATA_SHORT_PAUSE
);
1315 * hsm_move() may trigger another command to be processed.
1316 * clean the link beforehand.
1318 ap
->sff_pio_task_link
= NULL
;
1320 poll_next
= ata_sff_hsm_move(ap
, qc
, status
, 1);
1322 /* another command or interrupt handler
1323 * may be running at this point.
1328 spin_unlock_irq(ap
->lock
);
1332 * ata_sff_qc_issue - issue taskfile to a SFF controller
1333 * @qc: command to issue to device
1335 * This function issues a PIO or NODATA command to a SFF
1339 * spin_lock_irqsave(host lock)
1342 * Zero on success, AC_ERR_* mask on failure
1344 unsigned int ata_sff_qc_issue(struct ata_queued_cmd
*qc
)
1346 struct ata_port
*ap
= qc
->ap
;
1347 struct ata_link
*link
= qc
->dev
->link
;
1349 /* Use polling pio if the LLD doesn't handle
1350 * interrupt driven pio and atapi CDB interrupt.
1352 if (ap
->flags
& ATA_FLAG_PIO_POLLING
)
1353 qc
->tf
.flags
|= ATA_TFLAG_POLLING
;
1355 /* select the device */
1356 ata_dev_select(ap
, qc
->dev
->devno
, 1, 0);
1358 /* start the command */
1359 switch (qc
->tf
.protocol
) {
1360 case ATA_PROT_NODATA
:
1361 if (qc
->tf
.flags
& ATA_TFLAG_POLLING
)
1362 ata_qc_set_polling(qc
);
1364 ata_tf_to_host(ap
, &qc
->tf
);
1365 ap
->hsm_task_state
= HSM_ST_LAST
;
1367 if (qc
->tf
.flags
& ATA_TFLAG_POLLING
)
1368 ata_sff_queue_pio_task(link
, 0);
1373 if (qc
->tf
.flags
& ATA_TFLAG_POLLING
)
1374 ata_qc_set_polling(qc
);
1376 ata_tf_to_host(ap
, &qc
->tf
);
1378 if (qc
->tf
.flags
& ATA_TFLAG_WRITE
) {
1379 /* PIO data out protocol */
1380 ap
->hsm_task_state
= HSM_ST_FIRST
;
1381 ata_sff_queue_pio_task(link
, 0);
1383 /* always send first data block using the
1384 * ata_sff_pio_task() codepath.
1387 /* PIO data in protocol */
1388 ap
->hsm_task_state
= HSM_ST
;
1390 if (qc
->tf
.flags
& ATA_TFLAG_POLLING
)
1391 ata_sff_queue_pio_task(link
, 0);
1393 /* if polling, ata_sff_pio_task() handles the
1394 * rest. otherwise, interrupt handler takes
1401 case ATAPI_PROT_PIO
:
1402 case ATAPI_PROT_NODATA
:
1403 if (qc
->tf
.flags
& ATA_TFLAG_POLLING
)
1404 ata_qc_set_polling(qc
);
1406 ata_tf_to_host(ap
, &qc
->tf
);
1408 ap
->hsm_task_state
= HSM_ST_FIRST
;
1410 /* send cdb by polling if no cdb interrupt */
1411 if ((!(qc
->dev
->flags
& ATA_DFLAG_CDB_INTR
)) ||
1412 (qc
->tf
.flags
& ATA_TFLAG_POLLING
))
1413 ata_sff_queue_pio_task(link
, 0);
1417 return AC_ERR_SYSTEM
;
1422 EXPORT_SYMBOL_GPL(ata_sff_qc_issue
);
1425 * ata_sff_qc_fill_rtf - fill result TF using ->sff_tf_read
1426 * @qc: qc to fill result TF for
1428 * @qc is finished and result TF needs to be filled. Fill it
1429 * using ->sff_tf_read.
1432 * spin_lock_irqsave(host lock)
1435 * true indicating that result TF is successfully filled.
1437 bool ata_sff_qc_fill_rtf(struct ata_queued_cmd
*qc
)
1439 qc
->ap
->ops
->sff_tf_read(qc
->ap
, &qc
->result_tf
);
1442 EXPORT_SYMBOL_GPL(ata_sff_qc_fill_rtf
);
1444 static unsigned int ata_sff_idle_irq(struct ata_port
*ap
)
1446 ap
->stats
.idle_irq
++;
1449 if ((ap
->stats
.idle_irq
% 1000) == 0) {
1450 ap
->ops
->sff_check_status(ap
);
1451 if (ap
->ops
->sff_irq_clear
)
1452 ap
->ops
->sff_irq_clear(ap
);
1453 ata_port_warn(ap
, "irq trap\n");
1457 return 0; /* irq not handled */
1460 static unsigned int __ata_sff_port_intr(struct ata_port
*ap
,
1461 struct ata_queued_cmd
*qc
,
1466 VPRINTK("ata%u: protocol %d task_state %d\n",
1467 ap
->print_id
, qc
->tf
.protocol
, ap
->hsm_task_state
);
1469 /* Check whether we are expecting interrupt in this state */
1470 switch (ap
->hsm_task_state
) {
1472 /* Some pre-ATAPI-4 devices assert INTRQ
1473 * at this state when ready to receive CDB.
1476 /* Check the ATA_DFLAG_CDB_INTR flag is enough here.
1477 * The flag was turned on only for atapi devices. No
1478 * need to check ata_is_atapi(qc->tf.protocol) again.
1480 if (!(qc
->dev
->flags
& ATA_DFLAG_CDB_INTR
))
1481 return ata_sff_idle_irq(ap
);
1484 return ata_sff_idle_irq(ap
);
1489 /* check main status, clearing INTRQ if needed */
1490 status
= ata_sff_irq_status(ap
);
1491 if (status
& ATA_BUSY
) {
1493 /* BMDMA engine is already stopped, we're screwed */
1494 qc
->err_mask
|= AC_ERR_HSM
;
1495 ap
->hsm_task_state
= HSM_ST_ERR
;
1497 return ata_sff_idle_irq(ap
);
1500 /* clear irq events */
1501 if (ap
->ops
->sff_irq_clear
)
1502 ap
->ops
->sff_irq_clear(ap
);
1504 ata_sff_hsm_move(ap
, qc
, status
, 0);
1506 return 1; /* irq handled */
1510 * ata_sff_port_intr - Handle SFF port interrupt
1511 * @ap: Port on which interrupt arrived (possibly...)
1512 * @qc: Taskfile currently active in engine
1514 * Handle port interrupt for given queued command.
1517 * spin_lock_irqsave(host lock)
1520 * One if interrupt was handled, zero if not (shared irq).
1522 unsigned int ata_sff_port_intr(struct ata_port
*ap
, struct ata_queued_cmd
*qc
)
1524 return __ata_sff_port_intr(ap
, qc
, false);
1526 EXPORT_SYMBOL_GPL(ata_sff_port_intr
);
1528 static inline irqreturn_t
__ata_sff_interrupt(int irq
, void *dev_instance
,
1529 unsigned int (*port_intr
)(struct ata_port
*, struct ata_queued_cmd
*))
1531 struct ata_host
*host
= dev_instance
;
1532 bool retried
= false;
1534 unsigned int handled
, idle
, polling
;
1535 unsigned long flags
;
1537 /* TODO: make _irqsave conditional on x86 PCI IDE legacy mode */
1538 spin_lock_irqsave(&host
->lock
, flags
);
1541 handled
= idle
= polling
= 0;
1542 for (i
= 0; i
< host
->n_ports
; i
++) {
1543 struct ata_port
*ap
= host
->ports
[i
];
1544 struct ata_queued_cmd
*qc
;
1546 qc
= ata_qc_from_tag(ap
, ap
->link
.active_tag
);
1548 if (!(qc
->tf
.flags
& ATA_TFLAG_POLLING
))
1549 handled
|= port_intr(ap
, qc
);
1557 * If no port was expecting IRQ but the controller is actually
1558 * asserting IRQ line, nobody cared will ensue. Check IRQ
1559 * pending status if available and clear spurious IRQ.
1561 if (!handled
&& !retried
) {
1564 for (i
= 0; i
< host
->n_ports
; i
++) {
1565 struct ata_port
*ap
= host
->ports
[i
];
1567 if (polling
& (1 << i
))
1570 if (!ap
->ops
->sff_irq_check
||
1571 !ap
->ops
->sff_irq_check(ap
))
1574 if (idle
& (1 << i
)) {
1575 ap
->ops
->sff_check_status(ap
);
1576 if (ap
->ops
->sff_irq_clear
)
1577 ap
->ops
->sff_irq_clear(ap
);
1579 /* clear INTRQ and check if BUSY cleared */
1580 if (!(ap
->ops
->sff_check_status(ap
) & ATA_BUSY
))
1583 * With command in flight, we can't do
1584 * sff_irq_clear() w/o racing with completion.
1595 spin_unlock_irqrestore(&host
->lock
, flags
);
1597 return IRQ_RETVAL(handled
);
1601 * ata_sff_interrupt - Default SFF ATA host interrupt handler
1602 * @irq: irq line (unused)
1603 * @dev_instance: pointer to our ata_host information structure
1605 * Default interrupt handler for PCI IDE devices. Calls
1606 * ata_sff_port_intr() for each port that is not disabled.
1609 * Obtains host lock during operation.
1612 * IRQ_NONE or IRQ_HANDLED.
1614 irqreturn_t
ata_sff_interrupt(int irq
, void *dev_instance
)
1616 return __ata_sff_interrupt(irq
, dev_instance
, ata_sff_port_intr
);
1618 EXPORT_SYMBOL_GPL(ata_sff_interrupt
);
1621 * ata_sff_lost_interrupt - Check for an apparent lost interrupt
1622 * @ap: port that appears to have timed out
1624 * Called from the libata error handlers when the core code suspects
1625 * an interrupt has been lost. If it has complete anything we can and
1626 * then return. Interface must support altstatus for this faster
1627 * recovery to occur.
1630 * Caller holds host lock
1633 void ata_sff_lost_interrupt(struct ata_port
*ap
)
1636 struct ata_queued_cmd
*qc
;
1638 /* Only one outstanding command per SFF channel */
1639 qc
= ata_qc_from_tag(ap
, ap
->link
.active_tag
);
1640 /* We cannot lose an interrupt on a non-existent or polled command */
1641 if (!qc
|| qc
->tf
.flags
& ATA_TFLAG_POLLING
)
1643 /* See if the controller thinks it is still busy - if so the command
1644 isn't a lost IRQ but is still in progress */
1645 status
= ata_sff_altstatus(ap
);
1646 if (status
& ATA_BUSY
)
1649 /* There was a command running, we are no longer busy and we have
1651 ata_port_warn(ap
, "lost interrupt (Status 0x%x)\n",
1653 /* Run the host interrupt logic as if the interrupt had not been
1655 ata_sff_port_intr(ap
, qc
);
1657 EXPORT_SYMBOL_GPL(ata_sff_lost_interrupt
);
1660 * ata_sff_freeze - Freeze SFF controller port
1661 * @ap: port to freeze
1663 * Freeze SFF controller port.
1666 * Inherited from caller.
1668 void ata_sff_freeze(struct ata_port
*ap
)
1670 ap
->ctl
|= ATA_NIEN
;
1671 ap
->last_ctl
= ap
->ctl
;
1673 if (ap
->ops
->sff_set_devctl
|| ap
->ioaddr
.ctl_addr
)
1674 ata_sff_set_devctl(ap
, ap
->ctl
);
1676 /* Under certain circumstances, some controllers raise IRQ on
1677 * ATA_NIEN manipulation. Also, many controllers fail to mask
1678 * previously pending IRQ on ATA_NIEN assertion. Clear it.
1680 ap
->ops
->sff_check_status(ap
);
1682 if (ap
->ops
->sff_irq_clear
)
1683 ap
->ops
->sff_irq_clear(ap
);
1685 EXPORT_SYMBOL_GPL(ata_sff_freeze
);
1688 * ata_sff_thaw - Thaw SFF controller port
1691 * Thaw SFF controller port.
1694 * Inherited from caller.
1696 void ata_sff_thaw(struct ata_port
*ap
)
1698 /* clear & re-enable interrupts */
1699 ap
->ops
->sff_check_status(ap
);
1700 if (ap
->ops
->sff_irq_clear
)
1701 ap
->ops
->sff_irq_clear(ap
);
1704 EXPORT_SYMBOL_GPL(ata_sff_thaw
);
1707 * ata_sff_prereset - prepare SFF link for reset
1708 * @link: SFF link to be reset
1709 * @deadline: deadline jiffies for the operation
1711 * SFF link @link is about to be reset. Initialize it. It first
1712 * calls ata_std_prereset() and wait for !BSY if the port is
1716 * Kernel thread context (may sleep)
1719 * 0 on success, -errno otherwise.
1721 int ata_sff_prereset(struct ata_link
*link
, unsigned long deadline
)
1723 struct ata_eh_context
*ehc
= &link
->eh_context
;
1726 rc
= ata_std_prereset(link
, deadline
);
1730 /* if we're about to do hardreset, nothing more to do */
1731 if (ehc
->i
.action
& ATA_EH_HARDRESET
)
1734 /* wait for !BSY if we don't know that no device is attached */
1735 if (!ata_link_offline(link
)) {
1736 rc
= ata_sff_wait_ready(link
, deadline
);
1737 if (rc
&& rc
!= -ENODEV
) {
1739 "device not ready (errno=%d), forcing hardreset\n",
1741 ehc
->i
.action
|= ATA_EH_HARDRESET
;
1747 EXPORT_SYMBOL_GPL(ata_sff_prereset
);
1750 * ata_devchk - PATA device presence detection
1751 * @ap: ATA channel to examine
1752 * @device: Device to examine (starting at zero)
1754 * This technique was originally described in
1755 * Hale Landis's ATADRVR (www.ata-atapi.com), and
1756 * later found its way into the ATA/ATAPI spec.
1758 * Write a pattern to the ATA shadow registers,
1759 * and if a device is present, it will respond by
1760 * correctly storing and echoing back the
1761 * ATA shadow register contents.
1766 static unsigned int ata_devchk(struct ata_port
*ap
, unsigned int device
)
1768 struct ata_ioports
*ioaddr
= &ap
->ioaddr
;
1771 ap
->ops
->sff_dev_select(ap
, device
);
1773 iowrite8(0x55, ioaddr
->nsect_addr
);
1774 iowrite8(0xaa, ioaddr
->lbal_addr
);
1776 iowrite8(0xaa, ioaddr
->nsect_addr
);
1777 iowrite8(0x55, ioaddr
->lbal_addr
);
1779 iowrite8(0x55, ioaddr
->nsect_addr
);
1780 iowrite8(0xaa, ioaddr
->lbal_addr
);
1782 nsect
= ioread8(ioaddr
->nsect_addr
);
1783 lbal
= ioread8(ioaddr
->lbal_addr
);
1785 if ((nsect
== 0x55) && (lbal
== 0xaa))
1786 return 1; /* we found a device */
1788 return 0; /* nothing found */
1792 * ata_sff_dev_classify - Parse returned ATA device signature
1793 * @dev: ATA device to classify (starting at zero)
1794 * @present: device seems present
1795 * @r_err: Value of error register on completion
1797 * After an event -- SRST, E.D.D., or SATA COMRESET -- occurs,
1798 * an ATA/ATAPI-defined set of values is placed in the ATA
1799 * shadow registers, indicating the results of device detection
1802 * Select the ATA device, and read the values from the ATA shadow
1803 * registers. Then parse according to the Error register value,
1804 * and the spec-defined values examined by ata_dev_classify().
1810 * Device type - %ATA_DEV_ATA, %ATA_DEV_ATAPI or %ATA_DEV_NONE.
1812 unsigned int ata_sff_dev_classify(struct ata_device
*dev
, int present
,
1815 struct ata_port
*ap
= dev
->link
->ap
;
1816 struct ata_taskfile tf
;
1820 ap
->ops
->sff_dev_select(ap
, dev
->devno
);
1822 memset(&tf
, 0, sizeof(tf
));
1824 ap
->ops
->sff_tf_read(ap
, &tf
);
1829 /* see if device passed diags: continue and warn later */
1831 /* diagnostic fail : do nothing _YET_ */
1832 dev
->horkage
|= ATA_HORKAGE_DIAGNOSTIC
;
1835 else if ((dev
->devno
== 0) && (err
== 0x81))
1838 return ATA_DEV_NONE
;
1840 /* determine if device is ATA or ATAPI */
1841 class = ata_dev_classify(&tf
);
1843 if (class == ATA_DEV_UNKNOWN
) {
1844 /* If the device failed diagnostic, it's likely to
1845 * have reported incorrect device signature too.
1846 * Assume ATA device if the device seems present but
1847 * device signature is invalid with diagnostic
1850 if (present
&& (dev
->horkage
& ATA_HORKAGE_DIAGNOSTIC
))
1851 class = ATA_DEV_ATA
;
1853 class = ATA_DEV_NONE
;
1854 } else if ((class == ATA_DEV_ATA
) &&
1855 (ap
->ops
->sff_check_status(ap
) == 0))
1856 class = ATA_DEV_NONE
;
1860 EXPORT_SYMBOL_GPL(ata_sff_dev_classify
);
1863 * ata_sff_wait_after_reset - wait for devices to become ready after reset
1864 * @link: SFF link which is just reset
1865 * @devmask: mask of present devices
1866 * @deadline: deadline jiffies for the operation
1868 * Wait devices attached to SFF @link to become ready after
1869 * reset. It contains preceding 150ms wait to avoid accessing TF
1870 * status register too early.
1873 * Kernel thread context (may sleep).
1876 * 0 on success, -ENODEV if some or all of devices in @devmask
1877 * don't seem to exist. -errno on other errors.
1879 int ata_sff_wait_after_reset(struct ata_link
*link
, unsigned int devmask
,
1880 unsigned long deadline
)
1882 struct ata_port
*ap
= link
->ap
;
1883 struct ata_ioports
*ioaddr
= &ap
->ioaddr
;
1884 unsigned int dev0
= devmask
& (1 << 0);
1885 unsigned int dev1
= devmask
& (1 << 1);
1888 ata_msleep(ap
, ATA_WAIT_AFTER_RESET
);
1890 /* always check readiness of the master device */
1891 rc
= ata_sff_wait_ready(link
, deadline
);
1892 /* -ENODEV means the odd clown forgot the D7 pulldown resistor
1893 * and TF status is 0xff, bail out on it too.
1898 /* if device 1 was found in ata_devchk, wait for register
1899 * access briefly, then wait for BSY to clear.
1904 ap
->ops
->sff_dev_select(ap
, 1);
1906 /* Wait for register access. Some ATAPI devices fail
1907 * to set nsect/lbal after reset, so don't waste too
1908 * much time on it. We're gonna wait for !BSY anyway.
1910 for (i
= 0; i
< 2; i
++) {
1913 nsect
= ioread8(ioaddr
->nsect_addr
);
1914 lbal
= ioread8(ioaddr
->lbal_addr
);
1915 if ((nsect
== 1) && (lbal
== 1))
1917 ata_msleep(ap
, 50); /* give drive a breather */
1920 rc
= ata_sff_wait_ready(link
, deadline
);
1928 /* is all this really necessary? */
1929 ap
->ops
->sff_dev_select(ap
, 0);
1931 ap
->ops
->sff_dev_select(ap
, 1);
1933 ap
->ops
->sff_dev_select(ap
, 0);
1937 EXPORT_SYMBOL_GPL(ata_sff_wait_after_reset
);
1939 static int ata_bus_softreset(struct ata_port
*ap
, unsigned int devmask
,
1940 unsigned long deadline
)
1942 struct ata_ioports
*ioaddr
= &ap
->ioaddr
;
1944 DPRINTK("ata%u: bus reset via SRST\n", ap
->print_id
);
1946 if (ap
->ioaddr
.ctl_addr
) {
1947 /* software reset. causes dev0 to be selected */
1948 iowrite8(ap
->ctl
, ioaddr
->ctl_addr
);
1949 udelay(20); /* FIXME: flush */
1950 iowrite8(ap
->ctl
| ATA_SRST
, ioaddr
->ctl_addr
);
1951 udelay(20); /* FIXME: flush */
1952 iowrite8(ap
->ctl
, ioaddr
->ctl_addr
);
1953 ap
->last_ctl
= ap
->ctl
;
1956 /* wait the port to become ready */
1957 return ata_sff_wait_after_reset(&ap
->link
, devmask
, deadline
);
1961 * ata_sff_softreset - reset host port via ATA SRST
1962 * @link: ATA link to reset
1963 * @classes: resulting classes of attached devices
1964 * @deadline: deadline jiffies for the operation
1966 * Reset host port using ATA SRST.
1969 * Kernel thread context (may sleep)
1972 * 0 on success, -errno otherwise.
1974 int ata_sff_softreset(struct ata_link
*link
, unsigned int *classes
,
1975 unsigned long deadline
)
1977 struct ata_port
*ap
= link
->ap
;
1978 unsigned int slave_possible
= ap
->flags
& ATA_FLAG_SLAVE_POSS
;
1979 unsigned int devmask
= 0;
1985 /* determine if device 0/1 are present */
1986 if (ata_devchk(ap
, 0))
1987 devmask
|= (1 << 0);
1988 if (slave_possible
&& ata_devchk(ap
, 1))
1989 devmask
|= (1 << 1);
1991 /* select device 0 again */
1992 ap
->ops
->sff_dev_select(ap
, 0);
1994 /* issue bus reset */
1995 DPRINTK("about to softreset, devmask=%x\n", devmask
);
1996 rc
= ata_bus_softreset(ap
, devmask
, deadline
);
1997 /* if link is occupied, -ENODEV too is an error */
1998 if (rc
&& (rc
!= -ENODEV
|| sata_scr_valid(link
))) {
1999 ata_link_err(link
, "SRST failed (errno=%d)\n", rc
);
2003 /* determine by signature whether we have ATA or ATAPI devices */
2004 classes
[0] = ata_sff_dev_classify(&link
->device
[0],
2005 devmask
& (1 << 0), &err
);
2006 if (slave_possible
&& err
!= 0x81)
2007 classes
[1] = ata_sff_dev_classify(&link
->device
[1],
2008 devmask
& (1 << 1), &err
);
2010 DPRINTK("EXIT, classes[0]=%u [1]=%u\n", classes
[0], classes
[1]);
2013 EXPORT_SYMBOL_GPL(ata_sff_softreset
);
2016 * sata_sff_hardreset - reset host port via SATA phy reset
2017 * @link: link to reset
2018 * @class: resulting class of attached device
2019 * @deadline: deadline jiffies for the operation
2021 * SATA phy-reset host port using DET bits of SControl register,
2022 * wait for !BSY and classify the attached device.
2025 * Kernel thread context (may sleep)
2028 * 0 on success, -errno otherwise.
2030 int sata_sff_hardreset(struct ata_link
*link
, unsigned int *class,
2031 unsigned long deadline
)
2033 struct ata_eh_context
*ehc
= &link
->eh_context
;
2034 const unsigned long *timing
= sata_ehc_deb_timing(ehc
);
2038 rc
= sata_link_hardreset(link
, timing
, deadline
, &online
,
2039 ata_sff_check_ready
);
2041 *class = ata_sff_dev_classify(link
->device
, 1, NULL
);
2043 DPRINTK("EXIT, class=%u\n", *class);
2046 EXPORT_SYMBOL_GPL(sata_sff_hardreset
);
2049 * ata_sff_postreset - SFF postreset callback
2050 * @link: the target SFF ata_link
2051 * @classes: classes of attached devices
2053 * This function is invoked after a successful reset. It first
2054 * calls ata_std_postreset() and performs SFF specific postreset
2058 * Kernel thread context (may sleep)
2060 void ata_sff_postreset(struct ata_link
*link
, unsigned int *classes
)
2062 struct ata_port
*ap
= link
->ap
;
2064 ata_std_postreset(link
, classes
);
2066 /* is double-select really necessary? */
2067 if (classes
[0] != ATA_DEV_NONE
)
2068 ap
->ops
->sff_dev_select(ap
, 1);
2069 if (classes
[1] != ATA_DEV_NONE
)
2070 ap
->ops
->sff_dev_select(ap
, 0);
2072 /* bail out if no device is present */
2073 if (classes
[0] == ATA_DEV_NONE
&& classes
[1] == ATA_DEV_NONE
) {
2074 DPRINTK("EXIT, no device\n");
2078 /* set up device control */
2079 if (ap
->ops
->sff_set_devctl
|| ap
->ioaddr
.ctl_addr
) {
2080 ata_sff_set_devctl(ap
, ap
->ctl
);
2081 ap
->last_ctl
= ap
->ctl
;
2084 EXPORT_SYMBOL_GPL(ata_sff_postreset
);
2087 * ata_sff_drain_fifo - Stock FIFO drain logic for SFF controllers
2090 * Drain the FIFO and device of any stuck data following a command
2091 * failing to complete. In some cases this is necessary before a
2092 * reset will recover the device.
2096 void ata_sff_drain_fifo(struct ata_queued_cmd
*qc
)
2099 struct ata_port
*ap
;
2101 /* We only need to flush incoming data when a command was running */
2102 if (qc
== NULL
|| qc
->dma_dir
== DMA_TO_DEVICE
)
2106 /* Drain up to 64K of data before we give up this recovery method */
2107 for (count
= 0; (ap
->ops
->sff_check_status(ap
) & ATA_DRQ
)
2108 && count
< 65536; count
+= 2)
2109 ioread16(ap
->ioaddr
.data_addr
);
2111 /* Can become DEBUG later */
2113 ata_port_dbg(ap
, "drained %d bytes to clear DRQ\n", count
);
2116 EXPORT_SYMBOL_GPL(ata_sff_drain_fifo
);
2119 * ata_sff_error_handler - Stock error handler for SFF controller
2120 * @ap: port to handle error for
2122 * Stock error handler for SFF controller. It can handle both
2123 * PATA and SATA controllers. Many controllers should be able to
2124 * use this EH as-is or with some added handling before and
2128 * Kernel thread context (may sleep)
2130 void ata_sff_error_handler(struct ata_port
*ap
)
2132 ata_reset_fn_t softreset
= ap
->ops
->softreset
;
2133 ata_reset_fn_t hardreset
= ap
->ops
->hardreset
;
2134 struct ata_queued_cmd
*qc
;
2135 unsigned long flags
;
2137 qc
= __ata_qc_from_tag(ap
, ap
->link
.active_tag
);
2138 if (qc
&& !(qc
->flags
& ATA_QCFLAG_FAILED
))
2141 spin_lock_irqsave(ap
->lock
, flags
);
2144 * We *MUST* do FIFO draining before we issue a reset as
2145 * several devices helpfully clear their internal state and
2146 * will lock solid if we touch the data port post reset. Pass
2147 * qc in case anyone wants to do different PIO/DMA recovery or
2148 * has per command fixups
2150 if (ap
->ops
->sff_drain_fifo
)
2151 ap
->ops
->sff_drain_fifo(qc
);
2153 spin_unlock_irqrestore(ap
->lock
, flags
);
2155 /* ignore built-in hardresets if SCR access is not available */
2156 if ((hardreset
== sata_std_hardreset
||
2157 hardreset
== sata_sff_hardreset
) && !sata_scr_valid(&ap
->link
))
2160 ata_do_eh(ap
, ap
->ops
->prereset
, softreset
, hardreset
,
2161 ap
->ops
->postreset
);
2163 EXPORT_SYMBOL_GPL(ata_sff_error_handler
);
2166 * ata_sff_std_ports - initialize ioaddr with standard port offsets.
2167 * @ioaddr: IO address structure to be initialized
2169 * Utility function which initializes data_addr, error_addr,
2170 * feature_addr, nsect_addr, lbal_addr, lbam_addr, lbah_addr,
2171 * device_addr, status_addr, and command_addr to standard offsets
2172 * relative to cmd_addr.
2174 * Does not set ctl_addr, altstatus_addr, bmdma_addr, or scr_addr.
2176 void ata_sff_std_ports(struct ata_ioports
*ioaddr
)
2178 ioaddr
->data_addr
= ioaddr
->cmd_addr
+ ATA_REG_DATA
;
2179 ioaddr
->error_addr
= ioaddr
->cmd_addr
+ ATA_REG_ERR
;
2180 ioaddr
->feature_addr
= ioaddr
->cmd_addr
+ ATA_REG_FEATURE
;
2181 ioaddr
->nsect_addr
= ioaddr
->cmd_addr
+ ATA_REG_NSECT
;
2182 ioaddr
->lbal_addr
= ioaddr
->cmd_addr
+ ATA_REG_LBAL
;
2183 ioaddr
->lbam_addr
= ioaddr
->cmd_addr
+ ATA_REG_LBAM
;
2184 ioaddr
->lbah_addr
= ioaddr
->cmd_addr
+ ATA_REG_LBAH
;
2185 ioaddr
->device_addr
= ioaddr
->cmd_addr
+ ATA_REG_DEVICE
;
2186 ioaddr
->status_addr
= ioaddr
->cmd_addr
+ ATA_REG_STATUS
;
2187 ioaddr
->command_addr
= ioaddr
->cmd_addr
+ ATA_REG_CMD
;
2189 EXPORT_SYMBOL_GPL(ata_sff_std_ports
);
2193 static int ata_resources_present(struct pci_dev
*pdev
, int port
)
2197 /* Check the PCI resources for this channel are enabled */
2199 for (i
= 0; i
< 2; i
++) {
2200 if (pci_resource_start(pdev
, port
+ i
) == 0 ||
2201 pci_resource_len(pdev
, port
+ i
) == 0)
2208 * ata_pci_sff_init_host - acquire native PCI ATA resources and init host
2209 * @host: target ATA host
2211 * Acquire native PCI ATA resources for @host and initialize the
2212 * first two ports of @host accordingly. Ports marked dummy are
2213 * skipped and allocation failure makes the port dummy.
2215 * Note that native PCI resources are valid even for legacy hosts
2216 * as we fix up pdev resources array early in boot, so this
2217 * function can be used for both native and legacy SFF hosts.
2220 * Inherited from calling layer (may sleep).
2223 * 0 if at least one port is initialized, -ENODEV if no port is
2226 int ata_pci_sff_init_host(struct ata_host
*host
)
2228 struct device
*gdev
= host
->dev
;
2229 struct pci_dev
*pdev
= to_pci_dev(gdev
);
2230 unsigned int mask
= 0;
2233 /* request, iomap BARs and init port addresses accordingly */
2234 for (i
= 0; i
< 2; i
++) {
2235 struct ata_port
*ap
= host
->ports
[i
];
2237 void __iomem
* const *iomap
;
2239 if (ata_port_is_dummy(ap
))
2242 /* Discard disabled ports. Some controllers show
2243 * their unused channels this way. Disabled ports are
2246 if (!ata_resources_present(pdev
, i
)) {
2247 ap
->ops
= &ata_dummy_port_ops
;
2251 rc
= pcim_iomap_regions(pdev
, 0x3 << base
,
2252 dev_driver_string(gdev
));
2255 "failed to request/iomap BARs for port %d (errno=%d)\n",
2258 pcim_pin_device(pdev
);
2259 ap
->ops
= &ata_dummy_port_ops
;
2262 host
->iomap
= iomap
= pcim_iomap_table(pdev
);
2264 ap
->ioaddr
.cmd_addr
= iomap
[base
];
2265 ap
->ioaddr
.altstatus_addr
=
2266 ap
->ioaddr
.ctl_addr
= (void __iomem
*)
2267 ((unsigned long)iomap
[base
+ 1] | ATA_PCI_CTL_OFS
);
2268 ata_sff_std_ports(&ap
->ioaddr
);
2270 ata_port_desc(ap
, "cmd 0x%llx ctl 0x%llx",
2271 (unsigned long long)pci_resource_start(pdev
, base
),
2272 (unsigned long long)pci_resource_start(pdev
, base
+ 1));
2278 dev_err(gdev
, "no available native port\n");
2284 EXPORT_SYMBOL_GPL(ata_pci_sff_init_host
);
2287 * ata_pci_sff_prepare_host - helper to prepare PCI PIO-only SFF ATA host
2288 * @pdev: target PCI device
2289 * @ppi: array of port_info, must be enough for two ports
2290 * @r_host: out argument for the initialized ATA host
2292 * Helper to allocate PIO-only SFF ATA host for @pdev, acquire
2293 * all PCI resources and initialize it accordingly in one go.
2296 * Inherited from calling layer (may sleep).
2299 * 0 on success, -errno otherwise.
2301 int ata_pci_sff_prepare_host(struct pci_dev
*pdev
,
2302 const struct ata_port_info
* const *ppi
,
2303 struct ata_host
**r_host
)
2305 struct ata_host
*host
;
2308 if (!devres_open_group(&pdev
->dev
, NULL
, GFP_KERNEL
))
2311 host
= ata_host_alloc_pinfo(&pdev
->dev
, ppi
, 2);
2313 dev_err(&pdev
->dev
, "failed to allocate ATA host\n");
2318 rc
= ata_pci_sff_init_host(host
);
2322 devres_remove_group(&pdev
->dev
, NULL
);
2327 devres_release_group(&pdev
->dev
, NULL
);
2330 EXPORT_SYMBOL_GPL(ata_pci_sff_prepare_host
);
2333 * ata_pci_sff_activate_host - start SFF host, request IRQ and register it
2334 * @host: target SFF ATA host
2335 * @irq_handler: irq_handler used when requesting IRQ(s)
2336 * @sht: scsi_host_template to use when registering the host
2338 * This is the counterpart of ata_host_activate() for SFF ATA
2339 * hosts. This separate helper is necessary because SFF hosts
2340 * use two separate interrupts in legacy mode.
2343 * Inherited from calling layer (may sleep).
2346 * 0 on success, -errno otherwise.
2348 int ata_pci_sff_activate_host(struct ata_host
*host
,
2349 irq_handler_t irq_handler
,
2350 struct scsi_host_template
*sht
)
2352 struct device
*dev
= host
->dev
;
2353 struct pci_dev
*pdev
= to_pci_dev(dev
);
2354 const char *drv_name
= dev_driver_string(host
->dev
);
2355 int legacy_mode
= 0, rc
;
2357 rc
= ata_host_start(host
);
2361 if ((pdev
->class >> 8) == PCI_CLASS_STORAGE_IDE
) {
2365 * ATA spec says we should use legacy mode when one
2366 * port is in legacy mode, but disabled ports on some
2367 * PCI hosts appear as fixed legacy ports, e.g SB600/700
2368 * on which the secondary port is not wired, so
2369 * ignore ports that are marked as 'dummy' during
2372 pci_read_config_byte(pdev
, PCI_CLASS_PROG
, &tmp8
);
2373 if (!ata_port_is_dummy(host
->ports
[0]))
2375 if (!ata_port_is_dummy(host
->ports
[1]))
2377 if ((tmp8
& mask
) != mask
)
2381 if (!devres_open_group(dev
, NULL
, GFP_KERNEL
))
2384 if (!legacy_mode
&& pdev
->irq
) {
2387 rc
= devm_request_irq(dev
, pdev
->irq
, irq_handler
,
2388 IRQF_SHARED
, drv_name
, host
);
2392 for (i
= 0; i
< 2; i
++) {
2393 if (ata_port_is_dummy(host
->ports
[i
]))
2395 ata_port_desc(host
->ports
[i
], "irq %d", pdev
->irq
);
2397 } else if (legacy_mode
) {
2398 if (!ata_port_is_dummy(host
->ports
[0])) {
2399 rc
= devm_request_irq(dev
, ATA_PRIMARY_IRQ(pdev
),
2400 irq_handler
, IRQF_SHARED
,
2405 ata_port_desc(host
->ports
[0], "irq %d",
2406 ATA_PRIMARY_IRQ(pdev
));
2409 if (!ata_port_is_dummy(host
->ports
[1])) {
2410 rc
= devm_request_irq(dev
, ATA_SECONDARY_IRQ(pdev
),
2411 irq_handler
, IRQF_SHARED
,
2416 ata_port_desc(host
->ports
[1], "irq %d",
2417 ATA_SECONDARY_IRQ(pdev
));
2421 rc
= ata_host_register(host
, sht
);
2424 devres_remove_group(dev
, NULL
);
2426 devres_release_group(dev
, NULL
);
2430 EXPORT_SYMBOL_GPL(ata_pci_sff_activate_host
);
2432 static const struct ata_port_info
*ata_sff_find_valid_pi(
2433 const struct ata_port_info
* const *ppi
)
2437 /* look up the first valid port_info */
2438 for (i
= 0; i
< 2 && ppi
[i
]; i
++)
2439 if (ppi
[i
]->port_ops
!= &ata_dummy_port_ops
)
2445 static int ata_pci_init_one(struct pci_dev
*pdev
,
2446 const struct ata_port_info
* const *ppi
,
2447 struct scsi_host_template
*sht
, void *host_priv
,
2448 int hflags
, bool bmdma
)
2450 struct device
*dev
= &pdev
->dev
;
2451 const struct ata_port_info
*pi
;
2452 struct ata_host
*host
= NULL
;
2457 pi
= ata_sff_find_valid_pi(ppi
);
2459 dev_err(&pdev
->dev
, "no valid port_info specified\n");
2463 if (!devres_open_group(dev
, NULL
, GFP_KERNEL
))
2466 rc
= pcim_enable_device(pdev
);
2470 #ifdef CONFIG_ATA_BMDMA
2472 /* prepare and activate BMDMA host */
2473 rc
= ata_pci_bmdma_prepare_host(pdev
, ppi
, &host
);
2476 /* prepare and activate SFF host */
2477 rc
= ata_pci_sff_prepare_host(pdev
, ppi
, &host
);
2480 host
->private_data
= host_priv
;
2481 host
->flags
|= hflags
;
2483 #ifdef CONFIG_ATA_BMDMA
2485 pci_set_master(pdev
);
2486 rc
= ata_pci_sff_activate_host(host
, ata_bmdma_interrupt
, sht
);
2489 rc
= ata_pci_sff_activate_host(host
, ata_sff_interrupt
, sht
);
2492 devres_remove_group(&pdev
->dev
, NULL
);
2494 devres_release_group(&pdev
->dev
, NULL
);
2500 * ata_pci_sff_init_one - Initialize/register PIO-only PCI IDE controller
2501 * @pdev: Controller to be initialized
2502 * @ppi: array of port_info, must be enough for two ports
2503 * @sht: scsi_host_template to use when registering the host
2504 * @host_priv: host private_data
2505 * @hflag: host flags
2507 * This is a helper function which can be called from a driver's
2508 * xxx_init_one() probe function if the hardware uses traditional
2509 * IDE taskfile registers and is PIO only.
2512 * Nobody makes a single channel controller that appears solely as
2513 * the secondary legacy port on PCI.
2516 * Inherited from PCI layer (may sleep).
2519 * Zero on success, negative on errno-based value on error.
2521 int ata_pci_sff_init_one(struct pci_dev
*pdev
,
2522 const struct ata_port_info
* const *ppi
,
2523 struct scsi_host_template
*sht
, void *host_priv
, int hflag
)
2525 return ata_pci_init_one(pdev
, ppi
, sht
, host_priv
, hflag
, 0);
2527 EXPORT_SYMBOL_GPL(ata_pci_sff_init_one
);
2529 #endif /* CONFIG_PCI */
2535 #ifdef CONFIG_ATA_BMDMA
2537 const struct ata_port_operations ata_bmdma_port_ops
= {
2538 .inherits
= &ata_sff_port_ops
,
2540 .error_handler
= ata_bmdma_error_handler
,
2541 .post_internal_cmd
= ata_bmdma_post_internal_cmd
,
2543 .qc_prep
= ata_bmdma_qc_prep
,
2544 .qc_issue
= ata_bmdma_qc_issue
,
2546 .sff_irq_clear
= ata_bmdma_irq_clear
,
2547 .bmdma_setup
= ata_bmdma_setup
,
2548 .bmdma_start
= ata_bmdma_start
,
2549 .bmdma_stop
= ata_bmdma_stop
,
2550 .bmdma_status
= ata_bmdma_status
,
2552 .port_start
= ata_bmdma_port_start
,
2554 EXPORT_SYMBOL_GPL(ata_bmdma_port_ops
);
2556 const struct ata_port_operations ata_bmdma32_port_ops
= {
2557 .inherits
= &ata_bmdma_port_ops
,
2559 .sff_data_xfer
= ata_sff_data_xfer32
,
2560 .port_start
= ata_bmdma_port_start32
,
2562 EXPORT_SYMBOL_GPL(ata_bmdma32_port_ops
);
2565 * ata_bmdma_fill_sg - Fill PCI IDE PRD table
2566 * @qc: Metadata associated with taskfile to be transferred
2568 * Fill PCI IDE PRD (scatter-gather) table with segments
2569 * associated with the current disk command.
2572 * spin_lock_irqsave(host lock)
2575 static void ata_bmdma_fill_sg(struct ata_queued_cmd
*qc
)
2577 struct ata_port
*ap
= qc
->ap
;
2578 struct ata_bmdma_prd
*prd
= ap
->bmdma_prd
;
2579 struct scatterlist
*sg
;
2580 unsigned int si
, pi
;
2583 for_each_sg(qc
->sg
, sg
, qc
->n_elem
, si
) {
2587 /* determine if physical DMA addr spans 64K boundary.
2588 * Note h/w doesn't support 64-bit, so we unconditionally
2589 * truncate dma_addr_t to u32.
2591 addr
= (u32
) sg_dma_address(sg
);
2592 sg_len
= sg_dma_len(sg
);
2595 offset
= addr
& 0xffff;
2597 if ((offset
+ sg_len
) > 0x10000)
2598 len
= 0x10000 - offset
;
2600 prd
[pi
].addr
= cpu_to_le32(addr
);
2601 prd
[pi
].flags_len
= cpu_to_le32(len
& 0xffff);
2602 VPRINTK("PRD[%u] = (0x%X, 0x%X)\n", pi
, addr
, len
);
2610 prd
[pi
- 1].flags_len
|= cpu_to_le32(ATA_PRD_EOT
);
2614 * ata_bmdma_fill_sg_dumb - Fill PCI IDE PRD table
2615 * @qc: Metadata associated with taskfile to be transferred
2617 * Fill PCI IDE PRD (scatter-gather) table with segments
2618 * associated with the current disk command. Perform the fill
2619 * so that we avoid writing any length 64K records for
2620 * controllers that don't follow the spec.
2623 * spin_lock_irqsave(host lock)
2626 static void ata_bmdma_fill_sg_dumb(struct ata_queued_cmd
*qc
)
2628 struct ata_port
*ap
= qc
->ap
;
2629 struct ata_bmdma_prd
*prd
= ap
->bmdma_prd
;
2630 struct scatterlist
*sg
;
2631 unsigned int si
, pi
;
2634 for_each_sg(qc
->sg
, sg
, qc
->n_elem
, si
) {
2636 u32 sg_len
, len
, blen
;
2638 /* determine if physical DMA addr spans 64K boundary.
2639 * Note h/w doesn't support 64-bit, so we unconditionally
2640 * truncate dma_addr_t to u32.
2642 addr
= (u32
) sg_dma_address(sg
);
2643 sg_len
= sg_dma_len(sg
);
2646 offset
= addr
& 0xffff;
2648 if ((offset
+ sg_len
) > 0x10000)
2649 len
= 0x10000 - offset
;
2651 blen
= len
& 0xffff;
2652 prd
[pi
].addr
= cpu_to_le32(addr
);
2654 /* Some PATA chipsets like the CS5530 can't
2655 cope with 0x0000 meaning 64K as the spec
2657 prd
[pi
].flags_len
= cpu_to_le32(0x8000);
2659 prd
[++pi
].addr
= cpu_to_le32(addr
+ 0x8000);
2661 prd
[pi
].flags_len
= cpu_to_le32(blen
);
2662 VPRINTK("PRD[%u] = (0x%X, 0x%X)\n", pi
, addr
, len
);
2670 prd
[pi
- 1].flags_len
|= cpu_to_le32(ATA_PRD_EOT
);
2674 * ata_bmdma_qc_prep - Prepare taskfile for submission
2675 * @qc: Metadata associated with taskfile to be prepared
2677 * Prepare ATA taskfile for submission.
2680 * spin_lock_irqsave(host lock)
2682 enum ata_completion_errors
ata_bmdma_qc_prep(struct ata_queued_cmd
*qc
)
2684 if (!(qc
->flags
& ATA_QCFLAG_DMAMAP
))
2687 ata_bmdma_fill_sg(qc
);
2691 EXPORT_SYMBOL_GPL(ata_bmdma_qc_prep
);
2694 * ata_bmdma_dumb_qc_prep - Prepare taskfile for submission
2695 * @qc: Metadata associated with taskfile to be prepared
2697 * Prepare ATA taskfile for submission.
2700 * spin_lock_irqsave(host lock)
2702 enum ata_completion_errors
ata_bmdma_dumb_qc_prep(struct ata_queued_cmd
*qc
)
2704 if (!(qc
->flags
& ATA_QCFLAG_DMAMAP
))
2707 ata_bmdma_fill_sg_dumb(qc
);
2711 EXPORT_SYMBOL_GPL(ata_bmdma_dumb_qc_prep
);
2714 * ata_bmdma_qc_issue - issue taskfile to a BMDMA controller
2715 * @qc: command to issue to device
2717 * This function issues a PIO, NODATA or DMA command to a
2718 * SFF/BMDMA controller. PIO and NODATA are handled by
2719 * ata_sff_qc_issue().
2722 * spin_lock_irqsave(host lock)
2725 * Zero on success, AC_ERR_* mask on failure
2727 unsigned int ata_bmdma_qc_issue(struct ata_queued_cmd
*qc
)
2729 struct ata_port
*ap
= qc
->ap
;
2730 struct ata_link
*link
= qc
->dev
->link
;
2732 /* defer PIO handling to sff_qc_issue */
2733 if (!ata_is_dma(qc
->tf
.protocol
))
2734 return ata_sff_qc_issue(qc
);
2736 /* select the device */
2737 ata_dev_select(ap
, qc
->dev
->devno
, 1, 0);
2739 /* start the command */
2740 switch (qc
->tf
.protocol
) {
2742 WARN_ON_ONCE(qc
->tf
.flags
& ATA_TFLAG_POLLING
);
2744 ap
->ops
->sff_tf_load(ap
, &qc
->tf
); /* load tf registers */
2745 ap
->ops
->bmdma_setup(qc
); /* set up bmdma */
2746 ap
->ops
->bmdma_start(qc
); /* initiate bmdma */
2747 ap
->hsm_task_state
= HSM_ST_LAST
;
2750 case ATAPI_PROT_DMA
:
2751 WARN_ON_ONCE(qc
->tf
.flags
& ATA_TFLAG_POLLING
);
2753 ap
->ops
->sff_tf_load(ap
, &qc
->tf
); /* load tf registers */
2754 ap
->ops
->bmdma_setup(qc
); /* set up bmdma */
2755 ap
->hsm_task_state
= HSM_ST_FIRST
;
2757 /* send cdb by polling if no cdb interrupt */
2758 if (!(qc
->dev
->flags
& ATA_DFLAG_CDB_INTR
))
2759 ata_sff_queue_pio_task(link
, 0);
2764 return AC_ERR_SYSTEM
;
2769 EXPORT_SYMBOL_GPL(ata_bmdma_qc_issue
);
2772 * ata_bmdma_port_intr - Handle BMDMA port interrupt
2773 * @ap: Port on which interrupt arrived (possibly...)
2774 * @qc: Taskfile currently active in engine
2776 * Handle port interrupt for given queued command.
2779 * spin_lock_irqsave(host lock)
2782 * One if interrupt was handled, zero if not (shared irq).
2784 unsigned int ata_bmdma_port_intr(struct ata_port
*ap
, struct ata_queued_cmd
*qc
)
2786 struct ata_eh_info
*ehi
= &ap
->link
.eh_info
;
2788 bool bmdma_stopped
= false;
2789 unsigned int handled
;
2791 if (ap
->hsm_task_state
== HSM_ST_LAST
&& ata_is_dma(qc
->tf
.protocol
)) {
2792 /* check status of DMA engine */
2793 host_stat
= ap
->ops
->bmdma_status(ap
);
2794 VPRINTK("ata%u: host_stat 0x%X\n", ap
->print_id
, host_stat
);
2796 /* if it's not our irq... */
2797 if (!(host_stat
& ATA_DMA_INTR
))
2798 return ata_sff_idle_irq(ap
);
2800 /* before we do anything else, clear DMA-Start bit */
2801 ap
->ops
->bmdma_stop(qc
);
2802 bmdma_stopped
= true;
2804 if (unlikely(host_stat
& ATA_DMA_ERR
)) {
2805 /* error when transferring data to/from memory */
2806 qc
->err_mask
|= AC_ERR_HOST_BUS
;
2807 ap
->hsm_task_state
= HSM_ST_ERR
;
2811 handled
= __ata_sff_port_intr(ap
, qc
, bmdma_stopped
);
2813 if (unlikely(qc
->err_mask
) && ata_is_dma(qc
->tf
.protocol
))
2814 ata_ehi_push_desc(ehi
, "BMDMA stat 0x%x", host_stat
);
2818 EXPORT_SYMBOL_GPL(ata_bmdma_port_intr
);
2821 * ata_bmdma_interrupt - Default BMDMA ATA host interrupt handler
2822 * @irq: irq line (unused)
2823 * @dev_instance: pointer to our ata_host information structure
2825 * Default interrupt handler for PCI IDE devices. Calls
2826 * ata_bmdma_port_intr() for each port that is not disabled.
2829 * Obtains host lock during operation.
2832 * IRQ_NONE or IRQ_HANDLED.
2834 irqreturn_t
ata_bmdma_interrupt(int irq
, void *dev_instance
)
2836 return __ata_sff_interrupt(irq
, dev_instance
, ata_bmdma_port_intr
);
2838 EXPORT_SYMBOL_GPL(ata_bmdma_interrupt
);
2841 * ata_bmdma_error_handler - Stock error handler for BMDMA controller
2842 * @ap: port to handle error for
2844 * Stock error handler for BMDMA controller. It can handle both
2845 * PATA and SATA controllers. Most BMDMA controllers should be
2846 * able to use this EH as-is or with some added handling before
2850 * Kernel thread context (may sleep)
2852 void ata_bmdma_error_handler(struct ata_port
*ap
)
2854 struct ata_queued_cmd
*qc
;
2855 unsigned long flags
;
2858 qc
= __ata_qc_from_tag(ap
, ap
->link
.active_tag
);
2859 if (qc
&& !(qc
->flags
& ATA_QCFLAG_FAILED
))
2862 /* reset PIO HSM and stop DMA engine */
2863 spin_lock_irqsave(ap
->lock
, flags
);
2865 if (qc
&& ata_is_dma(qc
->tf
.protocol
)) {
2868 host_stat
= ap
->ops
->bmdma_status(ap
);
2870 /* BMDMA controllers indicate host bus error by
2871 * setting DMA_ERR bit and timing out. As it wasn't
2872 * really a timeout event, adjust error mask and
2873 * cancel frozen state.
2875 if (qc
->err_mask
== AC_ERR_TIMEOUT
&& (host_stat
& ATA_DMA_ERR
)) {
2876 qc
->err_mask
= AC_ERR_HOST_BUS
;
2880 ap
->ops
->bmdma_stop(qc
);
2882 /* if we're gonna thaw, make sure IRQ is clear */
2884 ap
->ops
->sff_check_status(ap
);
2885 if (ap
->ops
->sff_irq_clear
)
2886 ap
->ops
->sff_irq_clear(ap
);
2890 spin_unlock_irqrestore(ap
->lock
, flags
);
2893 ata_eh_thaw_port(ap
);
2895 ata_sff_error_handler(ap
);
2897 EXPORT_SYMBOL_GPL(ata_bmdma_error_handler
);
2900 * ata_bmdma_post_internal_cmd - Stock post_internal_cmd for BMDMA
2901 * @qc: internal command to clean up
2904 * Kernel thread context (may sleep)
2906 void ata_bmdma_post_internal_cmd(struct ata_queued_cmd
*qc
)
2908 struct ata_port
*ap
= qc
->ap
;
2909 unsigned long flags
;
2911 if (ata_is_dma(qc
->tf
.protocol
)) {
2912 spin_lock_irqsave(ap
->lock
, flags
);
2913 ap
->ops
->bmdma_stop(qc
);
2914 spin_unlock_irqrestore(ap
->lock
, flags
);
2917 EXPORT_SYMBOL_GPL(ata_bmdma_post_internal_cmd
);
2920 * ata_bmdma_irq_clear - Clear PCI IDE BMDMA interrupt.
2921 * @ap: Port associated with this ATA transaction.
2923 * Clear interrupt and error flags in DMA status register.
2925 * May be used as the irq_clear() entry in ata_port_operations.
2928 * spin_lock_irqsave(host lock)
2930 void ata_bmdma_irq_clear(struct ata_port
*ap
)
2932 void __iomem
*mmio
= ap
->ioaddr
.bmdma_addr
;
2937 iowrite8(ioread8(mmio
+ ATA_DMA_STATUS
), mmio
+ ATA_DMA_STATUS
);
2939 EXPORT_SYMBOL_GPL(ata_bmdma_irq_clear
);
2942 * ata_bmdma_setup - Set up PCI IDE BMDMA transaction
2943 * @qc: Info associated with this ATA transaction.
2946 * spin_lock_irqsave(host lock)
2948 void ata_bmdma_setup(struct ata_queued_cmd
*qc
)
2950 struct ata_port
*ap
= qc
->ap
;
2951 unsigned int rw
= (qc
->tf
.flags
& ATA_TFLAG_WRITE
);
2954 /* load PRD table addr. */
2955 mb(); /* make sure PRD table writes are visible to controller */
2956 iowrite32(ap
->bmdma_prd_dma
, ap
->ioaddr
.bmdma_addr
+ ATA_DMA_TABLE_OFS
);
2958 /* specify data direction, triple-check start bit is clear */
2959 dmactl
= ioread8(ap
->ioaddr
.bmdma_addr
+ ATA_DMA_CMD
);
2960 dmactl
&= ~(ATA_DMA_WR
| ATA_DMA_START
);
2962 dmactl
|= ATA_DMA_WR
;
2963 iowrite8(dmactl
, ap
->ioaddr
.bmdma_addr
+ ATA_DMA_CMD
);
2965 /* issue r/w command */
2966 ap
->ops
->sff_exec_command(ap
, &qc
->tf
);
2968 EXPORT_SYMBOL_GPL(ata_bmdma_setup
);
2971 * ata_bmdma_start - Start a PCI IDE BMDMA transaction
2972 * @qc: Info associated with this ATA transaction.
2975 * spin_lock_irqsave(host lock)
2977 void ata_bmdma_start(struct ata_queued_cmd
*qc
)
2979 struct ata_port
*ap
= qc
->ap
;
2982 /* start host DMA transaction */
2983 dmactl
= ioread8(ap
->ioaddr
.bmdma_addr
+ ATA_DMA_CMD
);
2984 iowrite8(dmactl
| ATA_DMA_START
, ap
->ioaddr
.bmdma_addr
+ ATA_DMA_CMD
);
2986 /* Strictly, one may wish to issue an ioread8() here, to
2987 * flush the mmio write. However, control also passes
2988 * to the hardware at this point, and it will interrupt
2989 * us when we are to resume control. So, in effect,
2990 * we don't care when the mmio write flushes.
2991 * Further, a read of the DMA status register _immediately_
2992 * following the write may not be what certain flaky hardware
2993 * is expected, so I think it is best to not add a readb()
2994 * without first all the MMIO ATA cards/mobos.
2995 * Or maybe I'm just being paranoid.
2997 * FIXME: The posting of this write means I/O starts are
2998 * unnecessarily delayed for MMIO
3001 EXPORT_SYMBOL_GPL(ata_bmdma_start
);
3004 * ata_bmdma_stop - Stop PCI IDE BMDMA transfer
3005 * @qc: Command we are ending DMA for
3007 * Clears the ATA_DMA_START flag in the dma control register
3009 * May be used as the bmdma_stop() entry in ata_port_operations.
3012 * spin_lock_irqsave(host lock)
3014 void ata_bmdma_stop(struct ata_queued_cmd
*qc
)
3016 struct ata_port
*ap
= qc
->ap
;
3017 void __iomem
*mmio
= ap
->ioaddr
.bmdma_addr
;
3019 /* clear start/stop bit */
3020 iowrite8(ioread8(mmio
+ ATA_DMA_CMD
) & ~ATA_DMA_START
,
3021 mmio
+ ATA_DMA_CMD
);
3023 /* one-PIO-cycle guaranteed wait, per spec, for HDMA1:0 transition */
3024 ata_sff_dma_pause(ap
);
3026 EXPORT_SYMBOL_GPL(ata_bmdma_stop
);
3029 * ata_bmdma_status - Read PCI IDE BMDMA status
3030 * @ap: Port associated with this ATA transaction.
3032 * Read and return BMDMA status register.
3034 * May be used as the bmdma_status() entry in ata_port_operations.
3037 * spin_lock_irqsave(host lock)
3039 u8
ata_bmdma_status(struct ata_port
*ap
)
3041 return ioread8(ap
->ioaddr
.bmdma_addr
+ ATA_DMA_STATUS
);
3043 EXPORT_SYMBOL_GPL(ata_bmdma_status
);
3047 * ata_bmdma_port_start - Set port up for bmdma.
3048 * @ap: Port to initialize
3050 * Called just after data structures for each port are
3051 * initialized. Allocates space for PRD table.
3053 * May be used as the port_start() entry in ata_port_operations.
3056 * Inherited from caller.
3058 int ata_bmdma_port_start(struct ata_port
*ap
)
3060 if (ap
->mwdma_mask
|| ap
->udma_mask
) {
3062 dmam_alloc_coherent(ap
->host
->dev
, ATA_PRD_TBL_SZ
,
3063 &ap
->bmdma_prd_dma
, GFP_KERNEL
);
3070 EXPORT_SYMBOL_GPL(ata_bmdma_port_start
);
3073 * ata_bmdma_port_start32 - Set port up for dma.
3074 * @ap: Port to initialize
3076 * Called just after data structures for each port are
3077 * initialized. Enables 32bit PIO and allocates space for PRD
3080 * May be used as the port_start() entry in ata_port_operations for
3081 * devices that are capable of 32bit PIO.
3084 * Inherited from caller.
3086 int ata_bmdma_port_start32(struct ata_port
*ap
)
3088 ap
->pflags
|= ATA_PFLAG_PIO32
| ATA_PFLAG_PIO32CHANGE
;
3089 return ata_bmdma_port_start(ap
);
3091 EXPORT_SYMBOL_GPL(ata_bmdma_port_start32
);
3096 * ata_pci_bmdma_clear_simplex - attempt to kick device out of simplex
3099 * Some PCI ATA devices report simplex mode but in fact can be told to
3100 * enter non simplex mode. This implements the necessary logic to
3101 * perform the task on such devices. Calling it on other devices will
3102 * have -undefined- behaviour.
3104 int ata_pci_bmdma_clear_simplex(struct pci_dev
*pdev
)
3106 unsigned long bmdma
= pci_resource_start(pdev
, 4);
3112 simplex
= inb(bmdma
+ 0x02);
3113 outb(simplex
& 0x60, bmdma
+ 0x02);
3114 simplex
= inb(bmdma
+ 0x02);
3119 EXPORT_SYMBOL_GPL(ata_pci_bmdma_clear_simplex
);
3121 static void ata_bmdma_nodma(struct ata_host
*host
, const char *reason
)
3125 dev_err(host
->dev
, "BMDMA: %s, falling back to PIO\n", reason
);
3127 for (i
= 0; i
< 2; i
++) {
3128 host
->ports
[i
]->mwdma_mask
= 0;
3129 host
->ports
[i
]->udma_mask
= 0;
3134 * ata_pci_bmdma_init - acquire PCI BMDMA resources and init ATA host
3135 * @host: target ATA host
3137 * Acquire PCI BMDMA resources and initialize @host accordingly.
3140 * Inherited from calling layer (may sleep).
3142 void ata_pci_bmdma_init(struct ata_host
*host
)
3144 struct device
*gdev
= host
->dev
;
3145 struct pci_dev
*pdev
= to_pci_dev(gdev
);
3148 /* No BAR4 allocation: No DMA */
3149 if (pci_resource_start(pdev
, 4) == 0) {
3150 ata_bmdma_nodma(host
, "BAR4 is zero");
3155 * Some controllers require BMDMA region to be initialized
3156 * even if DMA is not in use to clear IRQ status via
3157 * ->sff_irq_clear method. Try to initialize bmdma_addr
3158 * regardless of dma masks.
3160 rc
= dma_set_mask_and_coherent(&pdev
->dev
, ATA_DMA_MASK
);
3162 ata_bmdma_nodma(host
, "failed to set dma mask");
3164 /* request and iomap DMA region */
3165 rc
= pcim_iomap_regions(pdev
, 1 << 4, dev_driver_string(gdev
));
3167 ata_bmdma_nodma(host
, "failed to request/iomap BAR4");
3170 host
->iomap
= pcim_iomap_table(pdev
);
3172 for (i
= 0; i
< 2; i
++) {
3173 struct ata_port
*ap
= host
->ports
[i
];
3174 void __iomem
*bmdma
= host
->iomap
[4] + 8 * i
;
3176 if (ata_port_is_dummy(ap
))
3179 ap
->ioaddr
.bmdma_addr
= bmdma
;
3180 if ((!(ap
->flags
& ATA_FLAG_IGN_SIMPLEX
)) &&
3181 (ioread8(bmdma
+ 2) & 0x80))
3182 host
->flags
|= ATA_HOST_SIMPLEX
;
3184 ata_port_desc(ap
, "bmdma 0x%llx",
3185 (unsigned long long)pci_resource_start(pdev
, 4) + 8 * i
);
3188 EXPORT_SYMBOL_GPL(ata_pci_bmdma_init
);
3191 * ata_pci_bmdma_prepare_host - helper to prepare PCI BMDMA ATA host
3192 * @pdev: target PCI device
3193 * @ppi: array of port_info, must be enough for two ports
3194 * @r_host: out argument for the initialized ATA host
3196 * Helper to allocate BMDMA ATA host for @pdev, acquire all PCI
3197 * resources and initialize it accordingly in one go.
3200 * Inherited from calling layer (may sleep).
3203 * 0 on success, -errno otherwise.
3205 int ata_pci_bmdma_prepare_host(struct pci_dev
*pdev
,
3206 const struct ata_port_info
* const * ppi
,
3207 struct ata_host
**r_host
)
3211 rc
= ata_pci_sff_prepare_host(pdev
, ppi
, r_host
);
3215 ata_pci_bmdma_init(*r_host
);
3218 EXPORT_SYMBOL_GPL(ata_pci_bmdma_prepare_host
);
3221 * ata_pci_bmdma_init_one - Initialize/register BMDMA PCI IDE controller
3222 * @pdev: Controller to be initialized
3223 * @ppi: array of port_info, must be enough for two ports
3224 * @sht: scsi_host_template to use when registering the host
3225 * @host_priv: host private_data
3226 * @hflags: host flags
3228 * This function is similar to ata_pci_sff_init_one() but also
3229 * takes care of BMDMA initialization.
3232 * Inherited from PCI layer (may sleep).
3235 * Zero on success, negative on errno-based value on error.
3237 int ata_pci_bmdma_init_one(struct pci_dev
*pdev
,
3238 const struct ata_port_info
* const * ppi
,
3239 struct scsi_host_template
*sht
, void *host_priv
,
3242 return ata_pci_init_one(pdev
, ppi
, sht
, host_priv
, hflags
, 1);
3244 EXPORT_SYMBOL_GPL(ata_pci_bmdma_init_one
);
3246 #endif /* CONFIG_PCI */
3247 #endif /* CONFIG_ATA_BMDMA */
3250 * ata_sff_port_init - Initialize SFF/BMDMA ATA port
3251 * @ap: Port to initialize
3253 * Called on port allocation to initialize SFF/BMDMA specific
3259 void ata_sff_port_init(struct ata_port
*ap
)
3261 INIT_DELAYED_WORK(&ap
->sff_pio_task
, ata_sff_pio_task
);
3262 ap
->ctl
= ATA_DEVCTL_OBS
;
3263 ap
->last_ctl
= 0xFF;
3266 int __init
ata_sff_init(void)
3268 ata_sff_wq
= alloc_workqueue("ata_sff", WQ_MEM_RECLAIM
, WQ_MAX_ACTIVE
);
3275 void ata_sff_exit(void)
3277 destroy_workqueue(ata_sff_wq
);