1 // SPDX-License-Identifier: GPL-2.0
3 // Register map access API
5 // Copyright 2011 Wolfson Microelectronics plc
7 // Author: Mark Brown <broonie@opensource.wolfsonmicro.com>
9 #include <linux/device.h>
10 #include <linux/slab.h>
11 #include <linux/export.h>
12 #include <linux/mutex.h>
13 #include <linux/err.h>
15 #include <linux/rbtree.h>
16 #include <linux/sched.h>
17 #include <linux/delay.h>
18 #include <linux/log2.h>
19 #include <linux/hwspinlock.h>
21 #define CREATE_TRACE_POINTS
27 * Sometimes for failures during very early init the trace
28 * infrastructure isn't available early enough to be used. For this
29 * sort of problem defining LOG_DEVICE will add printks for basic
30 * register I/O on a specific device.
35 static inline bool regmap_should_log(struct regmap
*map
)
37 return (map
->dev
&& strcmp(dev_name(map
->dev
), LOG_DEVICE
) == 0);
40 static inline bool regmap_should_log(struct regmap
*map
) { return false; }
44 static int _regmap_update_bits(struct regmap
*map
, unsigned int reg
,
45 unsigned int mask
, unsigned int val
,
46 bool *change
, bool force_write
);
48 static int _regmap_bus_reg_read(void *context
, unsigned int reg
,
50 static int _regmap_bus_read(void *context
, unsigned int reg
,
52 static int _regmap_bus_formatted_write(void *context
, unsigned int reg
,
54 static int _regmap_bus_reg_write(void *context
, unsigned int reg
,
56 static int _regmap_bus_raw_write(void *context
, unsigned int reg
,
59 bool regmap_reg_in_ranges(unsigned int reg
,
60 const struct regmap_range
*ranges
,
63 const struct regmap_range
*r
;
66 for (i
= 0, r
= ranges
; i
< nranges
; i
++, r
++)
67 if (regmap_reg_in_range(reg
, r
))
71 EXPORT_SYMBOL_GPL(regmap_reg_in_ranges
);
73 bool regmap_check_range_table(struct regmap
*map
, unsigned int reg
,
74 const struct regmap_access_table
*table
)
76 /* Check "no ranges" first */
77 if (regmap_reg_in_ranges(reg
, table
->no_ranges
, table
->n_no_ranges
))
80 /* In case zero "yes ranges" are supplied, any reg is OK */
81 if (!table
->n_yes_ranges
)
84 return regmap_reg_in_ranges(reg
, table
->yes_ranges
,
87 EXPORT_SYMBOL_GPL(regmap_check_range_table
);
89 bool regmap_writeable(struct regmap
*map
, unsigned int reg
)
91 if (map
->max_register
&& reg
> map
->max_register
)
94 if (map
->writeable_reg
)
95 return map
->writeable_reg(map
->dev
, reg
);
98 return regmap_check_range_table(map
, reg
, map
->wr_table
);
103 bool regmap_cached(struct regmap
*map
, unsigned int reg
)
108 if (map
->cache_type
== REGCACHE_NONE
)
114 if (map
->max_register
&& reg
> map
->max_register
)
117 map
->lock(map
->lock_arg
);
118 ret
= regcache_read(map
, reg
, &val
);
119 map
->unlock(map
->lock_arg
);
126 bool regmap_readable(struct regmap
*map
, unsigned int reg
)
131 if (map
->max_register
&& reg
> map
->max_register
)
134 if (map
->format
.format_write
)
137 if (map
->readable_reg
)
138 return map
->readable_reg(map
->dev
, reg
);
141 return regmap_check_range_table(map
, reg
, map
->rd_table
);
146 bool regmap_volatile(struct regmap
*map
, unsigned int reg
)
148 if (!map
->format
.format_write
&& !regmap_readable(map
, reg
))
151 if (map
->volatile_reg
)
152 return map
->volatile_reg(map
->dev
, reg
);
154 if (map
->volatile_table
)
155 return regmap_check_range_table(map
, reg
, map
->volatile_table
);
163 bool regmap_precious(struct regmap
*map
, unsigned int reg
)
165 if (!regmap_readable(map
, reg
))
168 if (map
->precious_reg
)
169 return map
->precious_reg(map
->dev
, reg
);
171 if (map
->precious_table
)
172 return regmap_check_range_table(map
, reg
, map
->precious_table
);
177 bool regmap_writeable_noinc(struct regmap
*map
, unsigned int reg
)
179 if (map
->writeable_noinc_reg
)
180 return map
->writeable_noinc_reg(map
->dev
, reg
);
182 if (map
->wr_noinc_table
)
183 return regmap_check_range_table(map
, reg
, map
->wr_noinc_table
);
188 bool regmap_readable_noinc(struct regmap
*map
, unsigned int reg
)
190 if (map
->readable_noinc_reg
)
191 return map
->readable_noinc_reg(map
->dev
, reg
);
193 if (map
->rd_noinc_table
)
194 return regmap_check_range_table(map
, reg
, map
->rd_noinc_table
);
199 static bool regmap_volatile_range(struct regmap
*map
, unsigned int reg
,
204 for (i
= 0; i
< num
; i
++)
205 if (!regmap_volatile(map
, reg
+ regmap_get_offset(map
, i
)))
211 static void regmap_format_2_6_write(struct regmap
*map
,
212 unsigned int reg
, unsigned int val
)
214 u8
*out
= map
->work_buf
;
216 *out
= (reg
<< 6) | val
;
219 static void regmap_format_4_12_write(struct regmap
*map
,
220 unsigned int reg
, unsigned int val
)
222 __be16
*out
= map
->work_buf
;
223 *out
= cpu_to_be16((reg
<< 12) | val
);
226 static void regmap_format_7_9_write(struct regmap
*map
,
227 unsigned int reg
, unsigned int val
)
229 __be16
*out
= map
->work_buf
;
230 *out
= cpu_to_be16((reg
<< 9) | val
);
233 static void regmap_format_10_14_write(struct regmap
*map
,
234 unsigned int reg
, unsigned int val
)
236 u8
*out
= map
->work_buf
;
239 out
[1] = (val
>> 8) | (reg
<< 6);
243 static void regmap_format_8(void *buf
, unsigned int val
, unsigned int shift
)
250 static void regmap_format_16_be(void *buf
, unsigned int val
, unsigned int shift
)
254 b
[0] = cpu_to_be16(val
<< shift
);
257 static void regmap_format_16_le(void *buf
, unsigned int val
, unsigned int shift
)
261 b
[0] = cpu_to_le16(val
<< shift
);
264 static void regmap_format_16_native(void *buf
, unsigned int val
,
267 *(u16
*)buf
= val
<< shift
;
270 static void regmap_format_24(void *buf
, unsigned int val
, unsigned int shift
)
281 static void regmap_format_32_be(void *buf
, unsigned int val
, unsigned int shift
)
285 b
[0] = cpu_to_be32(val
<< shift
);
288 static void regmap_format_32_le(void *buf
, unsigned int val
, unsigned int shift
)
292 b
[0] = cpu_to_le32(val
<< shift
);
295 static void regmap_format_32_native(void *buf
, unsigned int val
,
298 *(u32
*)buf
= val
<< shift
;
302 static void regmap_format_64_be(void *buf
, unsigned int val
, unsigned int shift
)
306 b
[0] = cpu_to_be64((u64
)val
<< shift
);
309 static void regmap_format_64_le(void *buf
, unsigned int val
, unsigned int shift
)
313 b
[0] = cpu_to_le64((u64
)val
<< shift
);
316 static void regmap_format_64_native(void *buf
, unsigned int val
,
319 *(u64
*)buf
= (u64
)val
<< shift
;
323 static void regmap_parse_inplace_noop(void *buf
)
327 static unsigned int regmap_parse_8(const void *buf
)
334 static unsigned int regmap_parse_16_be(const void *buf
)
336 const __be16
*b
= buf
;
338 return be16_to_cpu(b
[0]);
341 static unsigned int regmap_parse_16_le(const void *buf
)
343 const __le16
*b
= buf
;
345 return le16_to_cpu(b
[0]);
348 static void regmap_parse_16_be_inplace(void *buf
)
352 b
[0] = be16_to_cpu(b
[0]);
355 static void regmap_parse_16_le_inplace(void *buf
)
359 b
[0] = le16_to_cpu(b
[0]);
362 static unsigned int regmap_parse_16_native(const void *buf
)
367 static unsigned int regmap_parse_24(const void *buf
)
370 unsigned int ret
= b
[2];
371 ret
|= ((unsigned int)b
[1]) << 8;
372 ret
|= ((unsigned int)b
[0]) << 16;
377 static unsigned int regmap_parse_32_be(const void *buf
)
379 const __be32
*b
= buf
;
381 return be32_to_cpu(b
[0]);
384 static unsigned int regmap_parse_32_le(const void *buf
)
386 const __le32
*b
= buf
;
388 return le32_to_cpu(b
[0]);
391 static void regmap_parse_32_be_inplace(void *buf
)
395 b
[0] = be32_to_cpu(b
[0]);
398 static void regmap_parse_32_le_inplace(void *buf
)
402 b
[0] = le32_to_cpu(b
[0]);
405 static unsigned int regmap_parse_32_native(const void *buf
)
411 static unsigned int regmap_parse_64_be(const void *buf
)
413 const __be64
*b
= buf
;
415 return be64_to_cpu(b
[0]);
418 static unsigned int regmap_parse_64_le(const void *buf
)
420 const __le64
*b
= buf
;
422 return le64_to_cpu(b
[0]);
425 static void regmap_parse_64_be_inplace(void *buf
)
429 b
[0] = be64_to_cpu(b
[0]);
432 static void regmap_parse_64_le_inplace(void *buf
)
436 b
[0] = le64_to_cpu(b
[0]);
439 static unsigned int regmap_parse_64_native(const void *buf
)
445 static void regmap_lock_hwlock(void *__map
)
447 struct regmap
*map
= __map
;
449 hwspin_lock_timeout(map
->hwlock
, UINT_MAX
);
452 static void regmap_lock_hwlock_irq(void *__map
)
454 struct regmap
*map
= __map
;
456 hwspin_lock_timeout_irq(map
->hwlock
, UINT_MAX
);
459 static void regmap_lock_hwlock_irqsave(void *__map
)
461 struct regmap
*map
= __map
;
463 hwspin_lock_timeout_irqsave(map
->hwlock
, UINT_MAX
,
464 &map
->spinlock_flags
);
467 static void regmap_unlock_hwlock(void *__map
)
469 struct regmap
*map
= __map
;
471 hwspin_unlock(map
->hwlock
);
474 static void regmap_unlock_hwlock_irq(void *__map
)
476 struct regmap
*map
= __map
;
478 hwspin_unlock_irq(map
->hwlock
);
481 static void regmap_unlock_hwlock_irqrestore(void *__map
)
483 struct regmap
*map
= __map
;
485 hwspin_unlock_irqrestore(map
->hwlock
, &map
->spinlock_flags
);
488 static void regmap_lock_unlock_none(void *__map
)
493 static void regmap_lock_mutex(void *__map
)
495 struct regmap
*map
= __map
;
496 mutex_lock(&map
->mutex
);
499 static void regmap_unlock_mutex(void *__map
)
501 struct regmap
*map
= __map
;
502 mutex_unlock(&map
->mutex
);
505 static void regmap_lock_spinlock(void *__map
)
506 __acquires(&map
->spinlock
)
508 struct regmap
*map
= __map
;
511 spin_lock_irqsave(&map
->spinlock
, flags
);
512 map
->spinlock_flags
= flags
;
515 static void regmap_unlock_spinlock(void *__map
)
516 __releases(&map
->spinlock
)
518 struct regmap
*map
= __map
;
519 spin_unlock_irqrestore(&map
->spinlock
, map
->spinlock_flags
);
522 static void dev_get_regmap_release(struct device
*dev
, void *res
)
525 * We don't actually have anything to do here; the goal here
526 * is not to manage the regmap but to provide a simple way to
527 * get the regmap back given a struct device.
531 static bool _regmap_range_add(struct regmap
*map
,
532 struct regmap_range_node
*data
)
534 struct rb_root
*root
= &map
->range_tree
;
535 struct rb_node
**new = &(root
->rb_node
), *parent
= NULL
;
538 struct regmap_range_node
*this =
539 rb_entry(*new, struct regmap_range_node
, node
);
542 if (data
->range_max
< this->range_min
)
543 new = &((*new)->rb_left
);
544 else if (data
->range_min
> this->range_max
)
545 new = &((*new)->rb_right
);
550 rb_link_node(&data
->node
, parent
, new);
551 rb_insert_color(&data
->node
, root
);
556 static struct regmap_range_node
*_regmap_range_lookup(struct regmap
*map
,
559 struct rb_node
*node
= map
->range_tree
.rb_node
;
562 struct regmap_range_node
*this =
563 rb_entry(node
, struct regmap_range_node
, node
);
565 if (reg
< this->range_min
)
566 node
= node
->rb_left
;
567 else if (reg
> this->range_max
)
568 node
= node
->rb_right
;
576 static void regmap_range_exit(struct regmap
*map
)
578 struct rb_node
*next
;
579 struct regmap_range_node
*range_node
;
581 next
= rb_first(&map
->range_tree
);
583 range_node
= rb_entry(next
, struct regmap_range_node
, node
);
584 next
= rb_next(&range_node
->node
);
585 rb_erase(&range_node
->node
, &map
->range_tree
);
589 kfree(map
->selector_work_buf
);
592 int regmap_attach_dev(struct device
*dev
, struct regmap
*map
,
593 const struct regmap_config
*config
)
599 regmap_debugfs_init(map
, config
->name
);
601 /* Add a devres resource for dev_get_regmap() */
602 m
= devres_alloc(dev_get_regmap_release
, sizeof(*m
), GFP_KERNEL
);
604 regmap_debugfs_exit(map
);
612 EXPORT_SYMBOL_GPL(regmap_attach_dev
);
614 static enum regmap_endian
regmap_get_reg_endian(const struct regmap_bus
*bus
,
615 const struct regmap_config
*config
)
617 enum regmap_endian endian
;
619 /* Retrieve the endianness specification from the regmap config */
620 endian
= config
->reg_format_endian
;
622 /* If the regmap config specified a non-default value, use that */
623 if (endian
!= REGMAP_ENDIAN_DEFAULT
)
626 /* Retrieve the endianness specification from the bus config */
627 if (bus
&& bus
->reg_format_endian_default
)
628 endian
= bus
->reg_format_endian_default
;
630 /* If the bus specified a non-default value, use that */
631 if (endian
!= REGMAP_ENDIAN_DEFAULT
)
634 /* Use this if no other value was found */
635 return REGMAP_ENDIAN_BIG
;
638 enum regmap_endian
regmap_get_val_endian(struct device
*dev
,
639 const struct regmap_bus
*bus
,
640 const struct regmap_config
*config
)
642 struct device_node
*np
;
643 enum regmap_endian endian
;
645 /* Retrieve the endianness specification from the regmap config */
646 endian
= config
->val_format_endian
;
648 /* If the regmap config specified a non-default value, use that */
649 if (endian
!= REGMAP_ENDIAN_DEFAULT
)
652 /* If the dev and dev->of_node exist try to get endianness from DT */
653 if (dev
&& dev
->of_node
) {
656 /* Parse the device's DT node for an endianness specification */
657 if (of_property_read_bool(np
, "big-endian"))
658 endian
= REGMAP_ENDIAN_BIG
;
659 else if (of_property_read_bool(np
, "little-endian"))
660 endian
= REGMAP_ENDIAN_LITTLE
;
661 else if (of_property_read_bool(np
, "native-endian"))
662 endian
= REGMAP_ENDIAN_NATIVE
;
664 /* If the endianness was specified in DT, use that */
665 if (endian
!= REGMAP_ENDIAN_DEFAULT
)
669 /* Retrieve the endianness specification from the bus config */
670 if (bus
&& bus
->val_format_endian_default
)
671 endian
= bus
->val_format_endian_default
;
673 /* If the bus specified a non-default value, use that */
674 if (endian
!= REGMAP_ENDIAN_DEFAULT
)
677 /* Use this if no other value was found */
678 return REGMAP_ENDIAN_BIG
;
680 EXPORT_SYMBOL_GPL(regmap_get_val_endian
);
682 struct regmap
*__regmap_init(struct device
*dev
,
683 const struct regmap_bus
*bus
,
685 const struct regmap_config
*config
,
686 struct lock_class_key
*lock_key
,
687 const char *lock_name
)
691 enum regmap_endian reg_endian
, val_endian
;
697 map
= kzalloc(sizeof(*map
), GFP_KERNEL
);
704 map
->name
= kstrdup_const(config
->name
, GFP_KERNEL
);
711 if (config
->disable_locking
) {
712 map
->lock
= map
->unlock
= regmap_lock_unlock_none
;
713 regmap_debugfs_disable(map
);
714 } else if (config
->lock
&& config
->unlock
) {
715 map
->lock
= config
->lock
;
716 map
->unlock
= config
->unlock
;
717 map
->lock_arg
= config
->lock_arg
;
718 } else if (config
->use_hwlock
) {
719 map
->hwlock
= hwspin_lock_request_specific(config
->hwlock_id
);
725 switch (config
->hwlock_mode
) {
726 case HWLOCK_IRQSTATE
:
727 map
->lock
= regmap_lock_hwlock_irqsave
;
728 map
->unlock
= regmap_unlock_hwlock_irqrestore
;
731 map
->lock
= regmap_lock_hwlock_irq
;
732 map
->unlock
= regmap_unlock_hwlock_irq
;
735 map
->lock
= regmap_lock_hwlock
;
736 map
->unlock
= regmap_unlock_hwlock
;
742 if ((bus
&& bus
->fast_io
) ||
744 spin_lock_init(&map
->spinlock
);
745 map
->lock
= regmap_lock_spinlock
;
746 map
->unlock
= regmap_unlock_spinlock
;
747 lockdep_set_class_and_name(&map
->spinlock
,
748 lock_key
, lock_name
);
750 mutex_init(&map
->mutex
);
751 map
->lock
= regmap_lock_mutex
;
752 map
->unlock
= regmap_unlock_mutex
;
753 lockdep_set_class_and_name(&map
->mutex
,
754 lock_key
, lock_name
);
760 * When we write in fast-paths with regmap_bulk_write() don't allocate
761 * scratch buffers with sleeping allocations.
763 if ((bus
&& bus
->fast_io
) || config
->fast_io
)
764 map
->alloc_flags
= GFP_ATOMIC
;
766 map
->alloc_flags
= GFP_KERNEL
;
768 map
->format
.reg_bytes
= DIV_ROUND_UP(config
->reg_bits
, 8);
769 map
->format
.pad_bytes
= config
->pad_bits
/ 8;
770 map
->format
.val_bytes
= DIV_ROUND_UP(config
->val_bits
, 8);
771 map
->format
.buf_size
= DIV_ROUND_UP(config
->reg_bits
+
772 config
->val_bits
+ config
->pad_bits
, 8);
773 map
->reg_shift
= config
->pad_bits
% 8;
774 if (config
->reg_stride
)
775 map
->reg_stride
= config
->reg_stride
;
778 if (is_power_of_2(map
->reg_stride
))
779 map
->reg_stride_order
= ilog2(map
->reg_stride
);
781 map
->reg_stride_order
= -1;
782 map
->use_single_read
= config
->use_single_read
|| !bus
|| !bus
->read
;
783 map
->use_single_write
= config
->use_single_write
|| !bus
|| !bus
->write
;
784 map
->can_multi_write
= config
->can_multi_write
&& bus
&& bus
->write
;
786 map
->max_raw_read
= bus
->max_raw_read
;
787 map
->max_raw_write
= bus
->max_raw_write
;
791 map
->bus_context
= bus_context
;
792 map
->max_register
= config
->max_register
;
793 map
->wr_table
= config
->wr_table
;
794 map
->rd_table
= config
->rd_table
;
795 map
->volatile_table
= config
->volatile_table
;
796 map
->precious_table
= config
->precious_table
;
797 map
->wr_noinc_table
= config
->wr_noinc_table
;
798 map
->rd_noinc_table
= config
->rd_noinc_table
;
799 map
->writeable_reg
= config
->writeable_reg
;
800 map
->readable_reg
= config
->readable_reg
;
801 map
->volatile_reg
= config
->volatile_reg
;
802 map
->precious_reg
= config
->precious_reg
;
803 map
->writeable_noinc_reg
= config
->writeable_noinc_reg
;
804 map
->readable_noinc_reg
= config
->readable_noinc_reg
;
805 map
->cache_type
= config
->cache_type
;
807 spin_lock_init(&map
->async_lock
);
808 INIT_LIST_HEAD(&map
->async_list
);
809 INIT_LIST_HEAD(&map
->async_free
);
810 init_waitqueue_head(&map
->async_waitq
);
812 if (config
->read_flag_mask
||
813 config
->write_flag_mask
||
814 config
->zero_flag_mask
) {
815 map
->read_flag_mask
= config
->read_flag_mask
;
816 map
->write_flag_mask
= config
->write_flag_mask
;
818 map
->read_flag_mask
= bus
->read_flag_mask
;
822 map
->reg_read
= config
->reg_read
;
823 map
->reg_write
= config
->reg_write
;
825 map
->defer_caching
= false;
826 goto skip_format_initialization
;
827 } else if (!bus
->read
|| !bus
->write
) {
828 map
->reg_read
= _regmap_bus_reg_read
;
829 map
->reg_write
= _regmap_bus_reg_write
;
831 map
->defer_caching
= false;
832 goto skip_format_initialization
;
834 map
->reg_read
= _regmap_bus_read
;
835 map
->reg_update_bits
= bus
->reg_update_bits
;
838 reg_endian
= regmap_get_reg_endian(bus
, config
);
839 val_endian
= regmap_get_val_endian(dev
, bus
, config
);
841 switch (config
->reg_bits
+ map
->reg_shift
) {
843 switch (config
->val_bits
) {
845 map
->format
.format_write
= regmap_format_2_6_write
;
853 switch (config
->val_bits
) {
855 map
->format
.format_write
= regmap_format_4_12_write
;
863 switch (config
->val_bits
) {
865 map
->format
.format_write
= regmap_format_7_9_write
;
873 switch (config
->val_bits
) {
875 map
->format
.format_write
= regmap_format_10_14_write
;
883 map
->format
.format_reg
= regmap_format_8
;
887 switch (reg_endian
) {
888 case REGMAP_ENDIAN_BIG
:
889 map
->format
.format_reg
= regmap_format_16_be
;
891 case REGMAP_ENDIAN_LITTLE
:
892 map
->format
.format_reg
= regmap_format_16_le
;
894 case REGMAP_ENDIAN_NATIVE
:
895 map
->format
.format_reg
= regmap_format_16_native
;
903 if (reg_endian
!= REGMAP_ENDIAN_BIG
)
905 map
->format
.format_reg
= regmap_format_24
;
909 switch (reg_endian
) {
910 case REGMAP_ENDIAN_BIG
:
911 map
->format
.format_reg
= regmap_format_32_be
;
913 case REGMAP_ENDIAN_LITTLE
:
914 map
->format
.format_reg
= regmap_format_32_le
;
916 case REGMAP_ENDIAN_NATIVE
:
917 map
->format
.format_reg
= regmap_format_32_native
;
926 switch (reg_endian
) {
927 case REGMAP_ENDIAN_BIG
:
928 map
->format
.format_reg
= regmap_format_64_be
;
930 case REGMAP_ENDIAN_LITTLE
:
931 map
->format
.format_reg
= regmap_format_64_le
;
933 case REGMAP_ENDIAN_NATIVE
:
934 map
->format
.format_reg
= regmap_format_64_native
;
946 if (val_endian
== REGMAP_ENDIAN_NATIVE
)
947 map
->format
.parse_inplace
= regmap_parse_inplace_noop
;
949 switch (config
->val_bits
) {
951 map
->format
.format_val
= regmap_format_8
;
952 map
->format
.parse_val
= regmap_parse_8
;
953 map
->format
.parse_inplace
= regmap_parse_inplace_noop
;
956 switch (val_endian
) {
957 case REGMAP_ENDIAN_BIG
:
958 map
->format
.format_val
= regmap_format_16_be
;
959 map
->format
.parse_val
= regmap_parse_16_be
;
960 map
->format
.parse_inplace
= regmap_parse_16_be_inplace
;
962 case REGMAP_ENDIAN_LITTLE
:
963 map
->format
.format_val
= regmap_format_16_le
;
964 map
->format
.parse_val
= regmap_parse_16_le
;
965 map
->format
.parse_inplace
= regmap_parse_16_le_inplace
;
967 case REGMAP_ENDIAN_NATIVE
:
968 map
->format
.format_val
= regmap_format_16_native
;
969 map
->format
.parse_val
= regmap_parse_16_native
;
976 if (val_endian
!= REGMAP_ENDIAN_BIG
)
978 map
->format
.format_val
= regmap_format_24
;
979 map
->format
.parse_val
= regmap_parse_24
;
982 switch (val_endian
) {
983 case REGMAP_ENDIAN_BIG
:
984 map
->format
.format_val
= regmap_format_32_be
;
985 map
->format
.parse_val
= regmap_parse_32_be
;
986 map
->format
.parse_inplace
= regmap_parse_32_be_inplace
;
988 case REGMAP_ENDIAN_LITTLE
:
989 map
->format
.format_val
= regmap_format_32_le
;
990 map
->format
.parse_val
= regmap_parse_32_le
;
991 map
->format
.parse_inplace
= regmap_parse_32_le_inplace
;
993 case REGMAP_ENDIAN_NATIVE
:
994 map
->format
.format_val
= regmap_format_32_native
;
995 map
->format
.parse_val
= regmap_parse_32_native
;
1003 switch (val_endian
) {
1004 case REGMAP_ENDIAN_BIG
:
1005 map
->format
.format_val
= regmap_format_64_be
;
1006 map
->format
.parse_val
= regmap_parse_64_be
;
1007 map
->format
.parse_inplace
= regmap_parse_64_be_inplace
;
1009 case REGMAP_ENDIAN_LITTLE
:
1010 map
->format
.format_val
= regmap_format_64_le
;
1011 map
->format
.parse_val
= regmap_parse_64_le
;
1012 map
->format
.parse_inplace
= regmap_parse_64_le_inplace
;
1014 case REGMAP_ENDIAN_NATIVE
:
1015 map
->format
.format_val
= regmap_format_64_native
;
1016 map
->format
.parse_val
= regmap_parse_64_native
;
1025 if (map
->format
.format_write
) {
1026 if ((reg_endian
!= REGMAP_ENDIAN_BIG
) ||
1027 (val_endian
!= REGMAP_ENDIAN_BIG
))
1029 map
->use_single_write
= true;
1032 if (!map
->format
.format_write
&&
1033 !(map
->format
.format_reg
&& map
->format
.format_val
))
1036 map
->work_buf
= kzalloc(map
->format
.buf_size
, GFP_KERNEL
);
1037 if (map
->work_buf
== NULL
) {
1042 if (map
->format
.format_write
) {
1043 map
->defer_caching
= false;
1044 map
->reg_write
= _regmap_bus_formatted_write
;
1045 } else if (map
->format
.format_val
) {
1046 map
->defer_caching
= true;
1047 map
->reg_write
= _regmap_bus_raw_write
;
1050 skip_format_initialization
:
1052 map
->range_tree
= RB_ROOT
;
1053 for (i
= 0; i
< config
->num_ranges
; i
++) {
1054 const struct regmap_range_cfg
*range_cfg
= &config
->ranges
[i
];
1055 struct regmap_range_node
*new;
1058 if (range_cfg
->range_max
< range_cfg
->range_min
) {
1059 dev_err(map
->dev
, "Invalid range %d: %d < %d\n", i
,
1060 range_cfg
->range_max
, range_cfg
->range_min
);
1064 if (range_cfg
->range_max
> map
->max_register
) {
1065 dev_err(map
->dev
, "Invalid range %d: %d > %d\n", i
,
1066 range_cfg
->range_max
, map
->max_register
);
1070 if (range_cfg
->selector_reg
> map
->max_register
) {
1072 "Invalid range %d: selector out of map\n", i
);
1076 if (range_cfg
->window_len
== 0) {
1077 dev_err(map
->dev
, "Invalid range %d: window_len 0\n",
1082 /* Make sure, that this register range has no selector
1083 or data window within its boundary */
1084 for (j
= 0; j
< config
->num_ranges
; j
++) {
1085 unsigned sel_reg
= config
->ranges
[j
].selector_reg
;
1086 unsigned win_min
= config
->ranges
[j
].window_start
;
1087 unsigned win_max
= win_min
+
1088 config
->ranges
[j
].window_len
- 1;
1090 /* Allow data window inside its own virtual range */
1094 if (range_cfg
->range_min
<= sel_reg
&&
1095 sel_reg
<= range_cfg
->range_max
) {
1097 "Range %d: selector for %d in window\n",
1102 if (!(win_max
< range_cfg
->range_min
||
1103 win_min
> range_cfg
->range_max
)) {
1105 "Range %d: window for %d in window\n",
1111 new = kzalloc(sizeof(*new), GFP_KERNEL
);
1118 new->name
= range_cfg
->name
;
1119 new->range_min
= range_cfg
->range_min
;
1120 new->range_max
= range_cfg
->range_max
;
1121 new->selector_reg
= range_cfg
->selector_reg
;
1122 new->selector_mask
= range_cfg
->selector_mask
;
1123 new->selector_shift
= range_cfg
->selector_shift
;
1124 new->window_start
= range_cfg
->window_start
;
1125 new->window_len
= range_cfg
->window_len
;
1127 if (!_regmap_range_add(map
, new)) {
1128 dev_err(map
->dev
, "Failed to add range %d\n", i
);
1133 if (map
->selector_work_buf
== NULL
) {
1134 map
->selector_work_buf
=
1135 kzalloc(map
->format
.buf_size
, GFP_KERNEL
);
1136 if (map
->selector_work_buf
== NULL
) {
1143 ret
= regcache_init(map
, config
);
1148 ret
= regmap_attach_dev(dev
, map
, config
);
1152 regmap_debugfs_init(map
, config
->name
);
1160 regmap_range_exit(map
);
1161 kfree(map
->work_buf
);
1164 hwspin_lock_free(map
->hwlock
);
1166 kfree_const(map
->name
);
1170 return ERR_PTR(ret
);
1172 EXPORT_SYMBOL_GPL(__regmap_init
);
1174 static void devm_regmap_release(struct device
*dev
, void *res
)
1176 regmap_exit(*(struct regmap
**)res
);
1179 struct regmap
*__devm_regmap_init(struct device
*dev
,
1180 const struct regmap_bus
*bus
,
1182 const struct regmap_config
*config
,
1183 struct lock_class_key
*lock_key
,
1184 const char *lock_name
)
1186 struct regmap
**ptr
, *regmap
;
1188 ptr
= devres_alloc(devm_regmap_release
, sizeof(*ptr
), GFP_KERNEL
);
1190 return ERR_PTR(-ENOMEM
);
1192 regmap
= __regmap_init(dev
, bus
, bus_context
, config
,
1193 lock_key
, lock_name
);
1194 if (!IS_ERR(regmap
)) {
1196 devres_add(dev
, ptr
);
1203 EXPORT_SYMBOL_GPL(__devm_regmap_init
);
1205 static void regmap_field_init(struct regmap_field
*rm_field
,
1206 struct regmap
*regmap
, struct reg_field reg_field
)
1208 rm_field
->regmap
= regmap
;
1209 rm_field
->reg
= reg_field
.reg
;
1210 rm_field
->shift
= reg_field
.lsb
;
1211 rm_field
->mask
= GENMASK(reg_field
.msb
, reg_field
.lsb
);
1212 rm_field
->id_size
= reg_field
.id_size
;
1213 rm_field
->id_offset
= reg_field
.id_offset
;
1217 * devm_regmap_field_alloc() - Allocate and initialise a register field.
1219 * @dev: Device that will be interacted with
1220 * @regmap: regmap bank in which this register field is located.
1221 * @reg_field: Register field with in the bank.
1223 * The return value will be an ERR_PTR() on error or a valid pointer
1224 * to a struct regmap_field. The regmap_field will be automatically freed
1225 * by the device management code.
1227 struct regmap_field
*devm_regmap_field_alloc(struct device
*dev
,
1228 struct regmap
*regmap
, struct reg_field reg_field
)
1230 struct regmap_field
*rm_field
= devm_kzalloc(dev
,
1231 sizeof(*rm_field
), GFP_KERNEL
);
1233 return ERR_PTR(-ENOMEM
);
1235 regmap_field_init(rm_field
, regmap
, reg_field
);
1240 EXPORT_SYMBOL_GPL(devm_regmap_field_alloc
);
1243 * devm_regmap_field_free() - Free a register field allocated using
1244 * devm_regmap_field_alloc.
1246 * @dev: Device that will be interacted with
1247 * @field: regmap field which should be freed.
1249 * Free register field allocated using devm_regmap_field_alloc(). Usually
1250 * drivers need not call this function, as the memory allocated via devm
1251 * will be freed as per device-driver life-cyle.
1253 void devm_regmap_field_free(struct device
*dev
,
1254 struct regmap_field
*field
)
1256 devm_kfree(dev
, field
);
1258 EXPORT_SYMBOL_GPL(devm_regmap_field_free
);
1261 * regmap_field_alloc() - Allocate and initialise a register field.
1263 * @regmap: regmap bank in which this register field is located.
1264 * @reg_field: Register field with in the bank.
1266 * The return value will be an ERR_PTR() on error or a valid pointer
1267 * to a struct regmap_field. The regmap_field should be freed by the
1268 * user once its finished working with it using regmap_field_free().
1270 struct regmap_field
*regmap_field_alloc(struct regmap
*regmap
,
1271 struct reg_field reg_field
)
1273 struct regmap_field
*rm_field
= kzalloc(sizeof(*rm_field
), GFP_KERNEL
);
1276 return ERR_PTR(-ENOMEM
);
1278 regmap_field_init(rm_field
, regmap
, reg_field
);
1282 EXPORT_SYMBOL_GPL(regmap_field_alloc
);
1285 * regmap_field_free() - Free register field allocated using
1286 * regmap_field_alloc.
1288 * @field: regmap field which should be freed.
1290 void regmap_field_free(struct regmap_field
*field
)
1294 EXPORT_SYMBOL_GPL(regmap_field_free
);
1297 * regmap_reinit_cache() - Reinitialise the current register cache
1299 * @map: Register map to operate on.
1300 * @config: New configuration. Only the cache data will be used.
1302 * Discard any existing register cache for the map and initialize a
1303 * new cache. This can be used to restore the cache to defaults or to
1304 * update the cache configuration to reflect runtime discovery of the
1307 * No explicit locking is done here, the user needs to ensure that
1308 * this function will not race with other calls to regmap.
1310 int regmap_reinit_cache(struct regmap
*map
, const struct regmap_config
*config
)
1313 regmap_debugfs_exit(map
);
1315 map
->max_register
= config
->max_register
;
1316 map
->writeable_reg
= config
->writeable_reg
;
1317 map
->readable_reg
= config
->readable_reg
;
1318 map
->volatile_reg
= config
->volatile_reg
;
1319 map
->precious_reg
= config
->precious_reg
;
1320 map
->writeable_noinc_reg
= config
->writeable_noinc_reg
;
1321 map
->readable_noinc_reg
= config
->readable_noinc_reg
;
1322 map
->cache_type
= config
->cache_type
;
1324 regmap_debugfs_init(map
, config
->name
);
1326 map
->cache_bypass
= false;
1327 map
->cache_only
= false;
1329 return regcache_init(map
, config
);
1331 EXPORT_SYMBOL_GPL(regmap_reinit_cache
);
1334 * regmap_exit() - Free a previously allocated register map
1336 * @map: Register map to operate on.
1338 void regmap_exit(struct regmap
*map
)
1340 struct regmap_async
*async
;
1343 regmap_debugfs_exit(map
);
1344 regmap_range_exit(map
);
1345 if (map
->bus
&& map
->bus
->free_context
)
1346 map
->bus
->free_context(map
->bus_context
);
1347 kfree(map
->work_buf
);
1348 while (!list_empty(&map
->async_free
)) {
1349 async
= list_first_entry_or_null(&map
->async_free
,
1350 struct regmap_async
,
1352 list_del(&async
->list
);
1353 kfree(async
->work_buf
);
1357 hwspin_lock_free(map
->hwlock
);
1358 kfree_const(map
->name
);
1361 EXPORT_SYMBOL_GPL(regmap_exit
);
1363 static int dev_get_regmap_match(struct device
*dev
, void *res
, void *data
)
1365 struct regmap
**r
= res
;
1371 /* If the user didn't specify a name match any */
1373 return (*r
)->name
== data
;
1379 * dev_get_regmap() - Obtain the regmap (if any) for a device
1381 * @dev: Device to retrieve the map for
1382 * @name: Optional name for the register map, usually NULL.
1384 * Returns the regmap for the device if one is present, or NULL. If
1385 * name is specified then it must match the name specified when
1386 * registering the device, if it is NULL then the first regmap found
1387 * will be used. Devices with multiple register maps are very rare,
1388 * generic code should normally not need to specify a name.
1390 struct regmap
*dev_get_regmap(struct device
*dev
, const char *name
)
1392 struct regmap
**r
= devres_find(dev
, dev_get_regmap_release
,
1393 dev_get_regmap_match
, (void *)name
);
1399 EXPORT_SYMBOL_GPL(dev_get_regmap
);
1402 * regmap_get_device() - Obtain the device from a regmap
1404 * @map: Register map to operate on.
1406 * Returns the underlying device that the regmap has been created for.
1408 struct device
*regmap_get_device(struct regmap
*map
)
1412 EXPORT_SYMBOL_GPL(regmap_get_device
);
1414 static int _regmap_select_page(struct regmap
*map
, unsigned int *reg
,
1415 struct regmap_range_node
*range
,
1416 unsigned int val_num
)
1418 void *orig_work_buf
;
1419 unsigned int win_offset
;
1420 unsigned int win_page
;
1424 win_offset
= (*reg
- range
->range_min
) % range
->window_len
;
1425 win_page
= (*reg
- range
->range_min
) / range
->window_len
;
1428 /* Bulk write shouldn't cross range boundary */
1429 if (*reg
+ val_num
- 1 > range
->range_max
)
1432 /* ... or single page boundary */
1433 if (val_num
> range
->window_len
- win_offset
)
1437 /* It is possible to have selector register inside data window.
1438 In that case, selector register is located on every page and
1439 it needs no page switching, when accessed alone. */
1441 range
->window_start
+ win_offset
!= range
->selector_reg
) {
1442 /* Use separate work_buf during page switching */
1443 orig_work_buf
= map
->work_buf
;
1444 map
->work_buf
= map
->selector_work_buf
;
1446 ret
= _regmap_update_bits(map
, range
->selector_reg
,
1447 range
->selector_mask
,
1448 win_page
<< range
->selector_shift
,
1451 map
->work_buf
= orig_work_buf
;
1457 *reg
= range
->window_start
+ win_offset
;
1462 static void regmap_set_work_buf_flag_mask(struct regmap
*map
, int max_bytes
,
1468 if (!mask
|| !map
->work_buf
)
1471 buf
= map
->work_buf
;
1473 for (i
= 0; i
< max_bytes
; i
++)
1474 buf
[i
] |= (mask
>> (8 * i
)) & 0xff;
1477 static int _regmap_raw_write_impl(struct regmap
*map
, unsigned int reg
,
1478 const void *val
, size_t val_len
)
1480 struct regmap_range_node
*range
;
1481 unsigned long flags
;
1482 void *work_val
= map
->work_buf
+ map
->format
.reg_bytes
+
1483 map
->format
.pad_bytes
;
1485 int ret
= -ENOTSUPP
;
1491 /* Check for unwritable or noinc registers in range
1494 if (!regmap_writeable_noinc(map
, reg
)) {
1495 for (i
= 0; i
< val_len
/ map
->format
.val_bytes
; i
++) {
1496 unsigned int element
=
1497 reg
+ regmap_get_offset(map
, i
);
1498 if (!regmap_writeable(map
, element
) ||
1499 regmap_writeable_noinc(map
, element
))
1504 if (!map
->cache_bypass
&& map
->format
.parse_val
) {
1506 int val_bytes
= map
->format
.val_bytes
;
1507 for (i
= 0; i
< val_len
/ val_bytes
; i
++) {
1508 ival
= map
->format
.parse_val(val
+ (i
* val_bytes
));
1509 ret
= regcache_write(map
,
1510 reg
+ regmap_get_offset(map
, i
),
1514 "Error in caching of register: %x ret: %d\n",
1519 if (map
->cache_only
) {
1520 map
->cache_dirty
= true;
1525 range
= _regmap_range_lookup(map
, reg
);
1527 int val_num
= val_len
/ map
->format
.val_bytes
;
1528 int win_offset
= (reg
- range
->range_min
) % range
->window_len
;
1529 int win_residue
= range
->window_len
- win_offset
;
1531 /* If the write goes beyond the end of the window split it */
1532 while (val_num
> win_residue
) {
1533 dev_dbg(map
->dev
, "Writing window %d/%zu\n",
1534 win_residue
, val_len
/ map
->format
.val_bytes
);
1535 ret
= _regmap_raw_write_impl(map
, reg
, val
,
1537 map
->format
.val_bytes
);
1542 val_num
-= win_residue
;
1543 val
+= win_residue
* map
->format
.val_bytes
;
1544 val_len
-= win_residue
* map
->format
.val_bytes
;
1546 win_offset
= (reg
- range
->range_min
) %
1548 win_residue
= range
->window_len
- win_offset
;
1551 ret
= _regmap_select_page(map
, ®
, range
, val_num
);
1556 map
->format
.format_reg(map
->work_buf
, reg
, map
->reg_shift
);
1557 regmap_set_work_buf_flag_mask(map
, map
->format
.reg_bytes
,
1558 map
->write_flag_mask
);
1561 * Essentially all I/O mechanisms will be faster with a single
1562 * buffer to write. Since register syncs often generate raw
1563 * writes of single registers optimise that case.
1565 if (val
!= work_val
&& val_len
== map
->format
.val_bytes
) {
1566 memcpy(work_val
, val
, map
->format
.val_bytes
);
1570 if (map
->async
&& map
->bus
->async_write
) {
1571 struct regmap_async
*async
;
1573 trace_regmap_async_write_start(map
, reg
, val_len
);
1575 spin_lock_irqsave(&map
->async_lock
, flags
);
1576 async
= list_first_entry_or_null(&map
->async_free
,
1577 struct regmap_async
,
1580 list_del(&async
->list
);
1581 spin_unlock_irqrestore(&map
->async_lock
, flags
);
1584 async
= map
->bus
->async_alloc();
1588 async
->work_buf
= kzalloc(map
->format
.buf_size
,
1589 GFP_KERNEL
| GFP_DMA
);
1590 if (!async
->work_buf
) {
1598 /* If the caller supplied the value we can use it safely. */
1599 memcpy(async
->work_buf
, map
->work_buf
, map
->format
.pad_bytes
+
1600 map
->format
.reg_bytes
+ map
->format
.val_bytes
);
1602 spin_lock_irqsave(&map
->async_lock
, flags
);
1603 list_add_tail(&async
->list
, &map
->async_list
);
1604 spin_unlock_irqrestore(&map
->async_lock
, flags
);
1606 if (val
!= work_val
)
1607 ret
= map
->bus
->async_write(map
->bus_context
,
1609 map
->format
.reg_bytes
+
1610 map
->format
.pad_bytes
,
1611 val
, val_len
, async
);
1613 ret
= map
->bus
->async_write(map
->bus_context
,
1615 map
->format
.reg_bytes
+
1616 map
->format
.pad_bytes
+
1617 val_len
, NULL
, 0, async
);
1620 dev_err(map
->dev
, "Failed to schedule write: %d\n",
1623 spin_lock_irqsave(&map
->async_lock
, flags
);
1624 list_move(&async
->list
, &map
->async_free
);
1625 spin_unlock_irqrestore(&map
->async_lock
, flags
);
1631 trace_regmap_hw_write_start(map
, reg
, val_len
/ map
->format
.val_bytes
);
1633 /* If we're doing a single register write we can probably just
1634 * send the work_buf directly, otherwise try to do a gather
1637 if (val
== work_val
)
1638 ret
= map
->bus
->write(map
->bus_context
, map
->work_buf
,
1639 map
->format
.reg_bytes
+
1640 map
->format
.pad_bytes
+
1642 else if (map
->bus
->gather_write
)
1643 ret
= map
->bus
->gather_write(map
->bus_context
, map
->work_buf
,
1644 map
->format
.reg_bytes
+
1645 map
->format
.pad_bytes
,
1650 /* If that didn't work fall back on linearising by hand. */
1651 if (ret
== -ENOTSUPP
) {
1652 len
= map
->format
.reg_bytes
+ map
->format
.pad_bytes
+ val_len
;
1653 buf
= kzalloc(len
, GFP_KERNEL
);
1657 memcpy(buf
, map
->work_buf
, map
->format
.reg_bytes
);
1658 memcpy(buf
+ map
->format
.reg_bytes
+ map
->format
.pad_bytes
,
1660 ret
= map
->bus
->write(map
->bus_context
, buf
, len
);
1663 } else if (ret
!= 0 && !map
->cache_bypass
&& map
->format
.parse_val
) {
1664 /* regcache_drop_region() takes lock that we already have,
1665 * thus call map->cache_ops->drop() directly
1667 if (map
->cache_ops
&& map
->cache_ops
->drop
)
1668 map
->cache_ops
->drop(map
, reg
, reg
+ 1);
1671 trace_regmap_hw_write_done(map
, reg
, val_len
/ map
->format
.val_bytes
);
1677 * regmap_can_raw_write - Test if regmap_raw_write() is supported
1679 * @map: Map to check.
1681 bool regmap_can_raw_write(struct regmap
*map
)
1683 return map
->bus
&& map
->bus
->write
&& map
->format
.format_val
&&
1684 map
->format
.format_reg
;
1686 EXPORT_SYMBOL_GPL(regmap_can_raw_write
);
1689 * regmap_get_raw_read_max - Get the maximum size we can read
1691 * @map: Map to check.
1693 size_t regmap_get_raw_read_max(struct regmap
*map
)
1695 return map
->max_raw_read
;
1697 EXPORT_SYMBOL_GPL(regmap_get_raw_read_max
);
1700 * regmap_get_raw_write_max - Get the maximum size we can read
1702 * @map: Map to check.
1704 size_t regmap_get_raw_write_max(struct regmap
*map
)
1706 return map
->max_raw_write
;
1708 EXPORT_SYMBOL_GPL(regmap_get_raw_write_max
);
1710 static int _regmap_bus_formatted_write(void *context
, unsigned int reg
,
1714 struct regmap_range_node
*range
;
1715 struct regmap
*map
= context
;
1717 WARN_ON(!map
->bus
|| !map
->format
.format_write
);
1719 range
= _regmap_range_lookup(map
, reg
);
1721 ret
= _regmap_select_page(map
, ®
, range
, 1);
1726 map
->format
.format_write(map
, reg
, val
);
1728 trace_regmap_hw_write_start(map
, reg
, 1);
1730 ret
= map
->bus
->write(map
->bus_context
, map
->work_buf
,
1731 map
->format
.buf_size
);
1733 trace_regmap_hw_write_done(map
, reg
, 1);
1738 static int _regmap_bus_reg_write(void *context
, unsigned int reg
,
1741 struct regmap
*map
= context
;
1743 return map
->bus
->reg_write(map
->bus_context
, reg
, val
);
1746 static int _regmap_bus_raw_write(void *context
, unsigned int reg
,
1749 struct regmap
*map
= context
;
1751 WARN_ON(!map
->bus
|| !map
->format
.format_val
);
1753 map
->format
.format_val(map
->work_buf
+ map
->format
.reg_bytes
1754 + map
->format
.pad_bytes
, val
, 0);
1755 return _regmap_raw_write_impl(map
, reg
,
1757 map
->format
.reg_bytes
+
1758 map
->format
.pad_bytes
,
1759 map
->format
.val_bytes
);
1762 static inline void *_regmap_map_get_context(struct regmap
*map
)
1764 return (map
->bus
) ? map
: map
->bus_context
;
1767 int _regmap_write(struct regmap
*map
, unsigned int reg
,
1771 void *context
= _regmap_map_get_context(map
);
1773 if (!regmap_writeable(map
, reg
))
1776 if (!map
->cache_bypass
&& !map
->defer_caching
) {
1777 ret
= regcache_write(map
, reg
, val
);
1780 if (map
->cache_only
) {
1781 map
->cache_dirty
= true;
1786 if (regmap_should_log(map
))
1787 dev_info(map
->dev
, "%x <= %x\n", reg
, val
);
1789 trace_regmap_reg_write(map
, reg
, val
);
1791 return map
->reg_write(context
, reg
, val
);
1795 * regmap_write() - Write a value to a single register
1797 * @map: Register map to write to
1798 * @reg: Register to write to
1799 * @val: Value to be written
1801 * A value of zero will be returned on success, a negative errno will
1802 * be returned in error cases.
1804 int regmap_write(struct regmap
*map
, unsigned int reg
, unsigned int val
)
1808 if (!IS_ALIGNED(reg
, map
->reg_stride
))
1811 map
->lock(map
->lock_arg
);
1813 ret
= _regmap_write(map
, reg
, val
);
1815 map
->unlock(map
->lock_arg
);
1819 EXPORT_SYMBOL_GPL(regmap_write
);
1822 * regmap_write_async() - Write a value to a single register asynchronously
1824 * @map: Register map to write to
1825 * @reg: Register to write to
1826 * @val: Value to be written
1828 * A value of zero will be returned on success, a negative errno will
1829 * be returned in error cases.
1831 int regmap_write_async(struct regmap
*map
, unsigned int reg
, unsigned int val
)
1835 if (!IS_ALIGNED(reg
, map
->reg_stride
))
1838 map
->lock(map
->lock_arg
);
1842 ret
= _regmap_write(map
, reg
, val
);
1846 map
->unlock(map
->lock_arg
);
1850 EXPORT_SYMBOL_GPL(regmap_write_async
);
1852 int _regmap_raw_write(struct regmap
*map
, unsigned int reg
,
1853 const void *val
, size_t val_len
)
1855 size_t val_bytes
= map
->format
.val_bytes
;
1856 size_t val_count
= val_len
/ val_bytes
;
1857 size_t chunk_count
, chunk_bytes
;
1858 size_t chunk_regs
= val_count
;
1864 if (map
->use_single_write
)
1866 else if (map
->max_raw_write
&& val_len
> map
->max_raw_write
)
1867 chunk_regs
= map
->max_raw_write
/ val_bytes
;
1869 chunk_count
= val_count
/ chunk_regs
;
1870 chunk_bytes
= chunk_regs
* val_bytes
;
1872 /* Write as many bytes as possible with chunk_size */
1873 for (i
= 0; i
< chunk_count
; i
++) {
1874 ret
= _regmap_raw_write_impl(map
, reg
, val
, chunk_bytes
);
1878 reg
+= regmap_get_offset(map
, chunk_regs
);
1880 val_len
-= chunk_bytes
;
1883 /* Write remaining bytes */
1885 ret
= _regmap_raw_write_impl(map
, reg
, val
, val_len
);
1891 * regmap_raw_write() - Write raw values to one or more registers
1893 * @map: Register map to write to
1894 * @reg: Initial register to write to
1895 * @val: Block of data to be written, laid out for direct transmission to the
1897 * @val_len: Length of data pointed to by val.
1899 * This function is intended to be used for things like firmware
1900 * download where a large block of data needs to be transferred to the
1901 * device. No formatting will be done on the data provided.
1903 * A value of zero will be returned on success, a negative errno will
1904 * be returned in error cases.
1906 int regmap_raw_write(struct regmap
*map
, unsigned int reg
,
1907 const void *val
, size_t val_len
)
1911 if (!regmap_can_raw_write(map
))
1913 if (val_len
% map
->format
.val_bytes
)
1916 map
->lock(map
->lock_arg
);
1918 ret
= _regmap_raw_write(map
, reg
, val
, val_len
);
1920 map
->unlock(map
->lock_arg
);
1924 EXPORT_SYMBOL_GPL(regmap_raw_write
);
1927 * regmap_noinc_write(): Write data from a register without incrementing the
1930 * @map: Register map to write to
1931 * @reg: Register to write to
1932 * @val: Pointer to data buffer
1933 * @val_len: Length of output buffer in bytes.
1935 * The regmap API usually assumes that bulk bus write operations will write a
1936 * range of registers. Some devices have certain registers for which a write
1937 * operation can write to an internal FIFO.
1939 * The target register must be volatile but registers after it can be
1940 * completely unrelated cacheable registers.
1942 * This will attempt multiple writes as required to write val_len bytes.
1944 * A value of zero will be returned on success, a negative errno will be
1945 * returned in error cases.
1947 int regmap_noinc_write(struct regmap
*map
, unsigned int reg
,
1948 const void *val
, size_t val_len
)
1955 if (!map
->bus
->write
)
1957 if (val_len
% map
->format
.val_bytes
)
1959 if (!IS_ALIGNED(reg
, map
->reg_stride
))
1964 map
->lock(map
->lock_arg
);
1966 if (!regmap_volatile(map
, reg
) || !regmap_writeable_noinc(map
, reg
)) {
1972 if (map
->max_raw_write
&& map
->max_raw_write
< val_len
)
1973 write_len
= map
->max_raw_write
;
1975 write_len
= val_len
;
1976 ret
= _regmap_raw_write(map
, reg
, val
, write_len
);
1979 val
= ((u8
*)val
) + write_len
;
1980 val_len
-= write_len
;
1984 map
->unlock(map
->lock_arg
);
1987 EXPORT_SYMBOL_GPL(regmap_noinc_write
);
1990 * regmap_field_update_bits_base() - Perform a read/modify/write cycle a
1993 * @field: Register field to write to
1994 * @mask: Bitmask to change
1995 * @val: Value to be written
1996 * @change: Boolean indicating if a write was done
1997 * @async: Boolean indicating asynchronously
1998 * @force: Boolean indicating use force update
2000 * Perform a read/modify/write cycle on the register field with change,
2001 * async, force option.
2003 * A value of zero will be returned on success, a negative errno will
2004 * be returned in error cases.
2006 int regmap_field_update_bits_base(struct regmap_field
*field
,
2007 unsigned int mask
, unsigned int val
,
2008 bool *change
, bool async
, bool force
)
2010 mask
= (mask
<< field
->shift
) & field
->mask
;
2012 return regmap_update_bits_base(field
->regmap
, field
->reg
,
2013 mask
, val
<< field
->shift
,
2014 change
, async
, force
);
2016 EXPORT_SYMBOL_GPL(regmap_field_update_bits_base
);
2019 * regmap_fields_update_bits_base() - Perform a read/modify/write cycle a
2020 * register field with port ID
2022 * @field: Register field to write to
2024 * @mask: Bitmask to change
2025 * @val: Value to be written
2026 * @change: Boolean indicating if a write was done
2027 * @async: Boolean indicating asynchronously
2028 * @force: Boolean indicating use force update
2030 * A value of zero will be returned on success, a negative errno will
2031 * be returned in error cases.
2033 int regmap_fields_update_bits_base(struct regmap_field
*field
, unsigned int id
,
2034 unsigned int mask
, unsigned int val
,
2035 bool *change
, bool async
, bool force
)
2037 if (id
>= field
->id_size
)
2040 mask
= (mask
<< field
->shift
) & field
->mask
;
2042 return regmap_update_bits_base(field
->regmap
,
2043 field
->reg
+ (field
->id_offset
* id
),
2044 mask
, val
<< field
->shift
,
2045 change
, async
, force
);
2047 EXPORT_SYMBOL_GPL(regmap_fields_update_bits_base
);
2050 * regmap_bulk_write() - Write multiple registers to the device
2052 * @map: Register map to write to
2053 * @reg: First register to be write from
2054 * @val: Block of data to be written, in native register size for device
2055 * @val_count: Number of registers to write
2057 * This function is intended to be used for writing a large block of
2058 * data to the device either in single transfer or multiple transfer.
2060 * A value of zero will be returned on success, a negative errno will
2061 * be returned in error cases.
2063 int regmap_bulk_write(struct regmap
*map
, unsigned int reg
, const void *val
,
2067 size_t val_bytes
= map
->format
.val_bytes
;
2069 if (!IS_ALIGNED(reg
, map
->reg_stride
))
2073 * Some devices don't support bulk write, for them we have a series of
2074 * single write operations.
2076 if (!map
->bus
|| !map
->format
.parse_inplace
) {
2077 map
->lock(map
->lock_arg
);
2078 for (i
= 0; i
< val_count
; i
++) {
2081 switch (val_bytes
) {
2083 ival
= *(u8
*)(val
+ (i
* val_bytes
));
2086 ival
= *(u16
*)(val
+ (i
* val_bytes
));
2089 ival
= *(u32
*)(val
+ (i
* val_bytes
));
2093 ival
= *(u64
*)(val
+ (i
* val_bytes
));
2101 ret
= _regmap_write(map
,
2102 reg
+ regmap_get_offset(map
, i
),
2108 map
->unlock(map
->lock_arg
);
2112 wval
= kmemdup(val
, val_count
* val_bytes
, map
->alloc_flags
);
2116 for (i
= 0; i
< val_count
* val_bytes
; i
+= val_bytes
)
2117 map
->format
.parse_inplace(wval
+ i
);
2119 ret
= regmap_raw_write(map
, reg
, wval
, val_bytes
* val_count
);
2125 EXPORT_SYMBOL_GPL(regmap_bulk_write
);
2128 * _regmap_raw_multi_reg_write()
2130 * the (register,newvalue) pairs in regs have not been formatted, but
2131 * they are all in the same page and have been changed to being page
2132 * relative. The page register has been written if that was necessary.
2134 static int _regmap_raw_multi_reg_write(struct regmap
*map
,
2135 const struct reg_sequence
*regs
,
2142 size_t val_bytes
= map
->format
.val_bytes
;
2143 size_t reg_bytes
= map
->format
.reg_bytes
;
2144 size_t pad_bytes
= map
->format
.pad_bytes
;
2145 size_t pair_size
= reg_bytes
+ pad_bytes
+ val_bytes
;
2146 size_t len
= pair_size
* num_regs
;
2151 buf
= kzalloc(len
, GFP_KERNEL
);
2155 /* We have to linearise by hand. */
2159 for (i
= 0; i
< num_regs
; i
++) {
2160 unsigned int reg
= regs
[i
].reg
;
2161 unsigned int val
= regs
[i
].def
;
2162 trace_regmap_hw_write_start(map
, reg
, 1);
2163 map
->format
.format_reg(u8
, reg
, map
->reg_shift
);
2164 u8
+= reg_bytes
+ pad_bytes
;
2165 map
->format
.format_val(u8
, val
, 0);
2169 *u8
|= map
->write_flag_mask
;
2171 ret
= map
->bus
->write(map
->bus_context
, buf
, len
);
2175 for (i
= 0; i
< num_regs
; i
++) {
2176 int reg
= regs
[i
].reg
;
2177 trace_regmap_hw_write_done(map
, reg
, 1);
2182 static unsigned int _regmap_register_page(struct regmap
*map
,
2184 struct regmap_range_node
*range
)
2186 unsigned int win_page
= (reg
- range
->range_min
) / range
->window_len
;
2191 static int _regmap_range_multi_paged_reg_write(struct regmap
*map
,
2192 struct reg_sequence
*regs
,
2197 struct reg_sequence
*base
;
2198 unsigned int this_page
= 0;
2199 unsigned int page_change
= 0;
2201 * the set of registers are not neccessarily in order, but
2202 * since the order of write must be preserved this algorithm
2203 * chops the set each time the page changes. This also applies
2204 * if there is a delay required at any point in the sequence.
2207 for (i
= 0, n
= 0; i
< num_regs
; i
++, n
++) {
2208 unsigned int reg
= regs
[i
].reg
;
2209 struct regmap_range_node
*range
;
2211 range
= _regmap_range_lookup(map
, reg
);
2213 unsigned int win_page
= _regmap_register_page(map
, reg
,
2217 this_page
= win_page
;
2218 if (win_page
!= this_page
) {
2219 this_page
= win_page
;
2224 /* If we have both a page change and a delay make sure to
2225 * write the regs and apply the delay before we change the
2229 if (page_change
|| regs
[i
].delay_us
) {
2231 /* For situations where the first write requires
2232 * a delay we need to make sure we don't call
2233 * raw_multi_reg_write with n=0
2234 * This can't occur with page breaks as we
2235 * never write on the first iteration
2237 if (regs
[i
].delay_us
&& i
== 0)
2240 ret
= _regmap_raw_multi_reg_write(map
, base
, n
);
2244 if (regs
[i
].delay_us
)
2245 udelay(regs
[i
].delay_us
);
2251 ret
= _regmap_select_page(map
,
2264 return _regmap_raw_multi_reg_write(map
, base
, n
);
2268 static int _regmap_multi_reg_write(struct regmap
*map
,
2269 const struct reg_sequence
*regs
,
2275 if (!map
->can_multi_write
) {
2276 for (i
= 0; i
< num_regs
; i
++) {
2277 ret
= _regmap_write(map
, regs
[i
].reg
, regs
[i
].def
);
2281 if (regs
[i
].delay_us
)
2282 udelay(regs
[i
].delay_us
);
2287 if (!map
->format
.parse_inplace
)
2290 if (map
->writeable_reg
)
2291 for (i
= 0; i
< num_regs
; i
++) {
2292 int reg
= regs
[i
].reg
;
2293 if (!map
->writeable_reg(map
->dev
, reg
))
2295 if (!IS_ALIGNED(reg
, map
->reg_stride
))
2299 if (!map
->cache_bypass
) {
2300 for (i
= 0; i
< num_regs
; i
++) {
2301 unsigned int val
= regs
[i
].def
;
2302 unsigned int reg
= regs
[i
].reg
;
2303 ret
= regcache_write(map
, reg
, val
);
2306 "Error in caching of register: %x ret: %d\n",
2311 if (map
->cache_only
) {
2312 map
->cache_dirty
= true;
2319 for (i
= 0; i
< num_regs
; i
++) {
2320 unsigned int reg
= regs
[i
].reg
;
2321 struct regmap_range_node
*range
;
2323 /* Coalesce all the writes between a page break or a delay
2326 range
= _regmap_range_lookup(map
, reg
);
2327 if (range
|| regs
[i
].delay_us
) {
2328 size_t len
= sizeof(struct reg_sequence
)*num_regs
;
2329 struct reg_sequence
*base
= kmemdup(regs
, len
,
2333 ret
= _regmap_range_multi_paged_reg_write(map
, base
,
2340 return _regmap_raw_multi_reg_write(map
, regs
, num_regs
);
2344 * regmap_multi_reg_write() - Write multiple registers to the device
2346 * @map: Register map to write to
2347 * @regs: Array of structures containing register,value to be written
2348 * @num_regs: Number of registers to write
2350 * Write multiple registers to the device where the set of register, value
2351 * pairs are supplied in any order, possibly not all in a single range.
2353 * The 'normal' block write mode will send ultimately send data on the
2354 * target bus as R,V1,V2,V3,..,Vn where successively higher registers are
2355 * addressed. However, this alternative block multi write mode will send
2356 * the data as R1,V1,R2,V2,..,Rn,Vn on the target bus. The target device
2357 * must of course support the mode.
2359 * A value of zero will be returned on success, a negative errno will be
2360 * returned in error cases.
2362 int regmap_multi_reg_write(struct regmap
*map
, const struct reg_sequence
*regs
,
2367 map
->lock(map
->lock_arg
);
2369 ret
= _regmap_multi_reg_write(map
, regs
, num_regs
);
2371 map
->unlock(map
->lock_arg
);
2375 EXPORT_SYMBOL_GPL(regmap_multi_reg_write
);
2378 * regmap_multi_reg_write_bypassed() - Write multiple registers to the
2379 * device but not the cache
2381 * @map: Register map to write to
2382 * @regs: Array of structures containing register,value to be written
2383 * @num_regs: Number of registers to write
2385 * Write multiple registers to the device but not the cache where the set
2386 * of register are supplied in any order.
2388 * This function is intended to be used for writing a large block of data
2389 * atomically to the device in single transfer for those I2C client devices
2390 * that implement this alternative block write mode.
2392 * A value of zero will be returned on success, a negative errno will
2393 * be returned in error cases.
2395 int regmap_multi_reg_write_bypassed(struct regmap
*map
,
2396 const struct reg_sequence
*regs
,
2402 map
->lock(map
->lock_arg
);
2404 bypass
= map
->cache_bypass
;
2405 map
->cache_bypass
= true;
2407 ret
= _regmap_multi_reg_write(map
, regs
, num_regs
);
2409 map
->cache_bypass
= bypass
;
2411 map
->unlock(map
->lock_arg
);
2415 EXPORT_SYMBOL_GPL(regmap_multi_reg_write_bypassed
);
2418 * regmap_raw_write_async() - Write raw values to one or more registers
2421 * @map: Register map to write to
2422 * @reg: Initial register to write to
2423 * @val: Block of data to be written, laid out for direct transmission to the
2424 * device. Must be valid until regmap_async_complete() is called.
2425 * @val_len: Length of data pointed to by val.
2427 * This function is intended to be used for things like firmware
2428 * download where a large block of data needs to be transferred to the
2429 * device. No formatting will be done on the data provided.
2431 * If supported by the underlying bus the write will be scheduled
2432 * asynchronously, helping maximise I/O speed on higher speed buses
2433 * like SPI. regmap_async_complete() can be called to ensure that all
2434 * asynchrnous writes have been completed.
2436 * A value of zero will be returned on success, a negative errno will
2437 * be returned in error cases.
2439 int regmap_raw_write_async(struct regmap
*map
, unsigned int reg
,
2440 const void *val
, size_t val_len
)
2444 if (val_len
% map
->format
.val_bytes
)
2446 if (!IS_ALIGNED(reg
, map
->reg_stride
))
2449 map
->lock(map
->lock_arg
);
2453 ret
= _regmap_raw_write(map
, reg
, val
, val_len
);
2457 map
->unlock(map
->lock_arg
);
2461 EXPORT_SYMBOL_GPL(regmap_raw_write_async
);
2463 static int _regmap_raw_read(struct regmap
*map
, unsigned int reg
, void *val
,
2464 unsigned int val_len
)
2466 struct regmap_range_node
*range
;
2471 if (!map
->bus
|| !map
->bus
->read
)
2474 range
= _regmap_range_lookup(map
, reg
);
2476 ret
= _regmap_select_page(map
, ®
, range
,
2477 val_len
/ map
->format
.val_bytes
);
2482 map
->format
.format_reg(map
->work_buf
, reg
, map
->reg_shift
);
2483 regmap_set_work_buf_flag_mask(map
, map
->format
.reg_bytes
,
2484 map
->read_flag_mask
);
2485 trace_regmap_hw_read_start(map
, reg
, val_len
/ map
->format
.val_bytes
);
2487 ret
= map
->bus
->read(map
->bus_context
, map
->work_buf
,
2488 map
->format
.reg_bytes
+ map
->format
.pad_bytes
,
2491 trace_regmap_hw_read_done(map
, reg
, val_len
/ map
->format
.val_bytes
);
2496 static int _regmap_bus_reg_read(void *context
, unsigned int reg
,
2499 struct regmap
*map
= context
;
2501 return map
->bus
->reg_read(map
->bus_context
, reg
, val
);
2504 static int _regmap_bus_read(void *context
, unsigned int reg
,
2508 struct regmap
*map
= context
;
2509 void *work_val
= map
->work_buf
+ map
->format
.reg_bytes
+
2510 map
->format
.pad_bytes
;
2512 if (!map
->format
.parse_val
)
2515 ret
= _regmap_raw_read(map
, reg
, work_val
, map
->format
.val_bytes
);
2517 *val
= map
->format
.parse_val(work_val
);
2522 static int _regmap_read(struct regmap
*map
, unsigned int reg
,
2526 void *context
= _regmap_map_get_context(map
);
2528 if (!map
->cache_bypass
) {
2529 ret
= regcache_read(map
, reg
, val
);
2534 if (map
->cache_only
)
2537 if (!regmap_readable(map
, reg
))
2540 ret
= map
->reg_read(context
, reg
, val
);
2542 if (regmap_should_log(map
))
2543 dev_info(map
->dev
, "%x => %x\n", reg
, *val
);
2545 trace_regmap_reg_read(map
, reg
, *val
);
2547 if (!map
->cache_bypass
)
2548 regcache_write(map
, reg
, *val
);
2555 * regmap_read() - Read a value from a single register
2557 * @map: Register map to read from
2558 * @reg: Register to be read from
2559 * @val: Pointer to store read value
2561 * A value of zero will be returned on success, a negative errno will
2562 * be returned in error cases.
2564 int regmap_read(struct regmap
*map
, unsigned int reg
, unsigned int *val
)
2568 if (!IS_ALIGNED(reg
, map
->reg_stride
))
2571 map
->lock(map
->lock_arg
);
2573 ret
= _regmap_read(map
, reg
, val
);
2575 map
->unlock(map
->lock_arg
);
2579 EXPORT_SYMBOL_GPL(regmap_read
);
2582 * regmap_raw_read() - Read raw data from the device
2584 * @map: Register map to read from
2585 * @reg: First register to be read from
2586 * @val: Pointer to store read value
2587 * @val_len: Size of data to read
2589 * A value of zero will be returned on success, a negative errno will
2590 * be returned in error cases.
2592 int regmap_raw_read(struct regmap
*map
, unsigned int reg
, void *val
,
2595 size_t val_bytes
= map
->format
.val_bytes
;
2596 size_t val_count
= val_len
/ val_bytes
;
2602 if (val_len
% map
->format
.val_bytes
)
2604 if (!IS_ALIGNED(reg
, map
->reg_stride
))
2609 map
->lock(map
->lock_arg
);
2611 if (regmap_volatile_range(map
, reg
, val_count
) || map
->cache_bypass
||
2612 map
->cache_type
== REGCACHE_NONE
) {
2613 size_t chunk_count
, chunk_bytes
;
2614 size_t chunk_regs
= val_count
;
2616 if (!map
->bus
->read
) {
2621 if (map
->use_single_read
)
2623 else if (map
->max_raw_read
&& val_len
> map
->max_raw_read
)
2624 chunk_regs
= map
->max_raw_read
/ val_bytes
;
2626 chunk_count
= val_count
/ chunk_regs
;
2627 chunk_bytes
= chunk_regs
* val_bytes
;
2629 /* Read bytes that fit into whole chunks */
2630 for (i
= 0; i
< chunk_count
; i
++) {
2631 ret
= _regmap_raw_read(map
, reg
, val
, chunk_bytes
);
2635 reg
+= regmap_get_offset(map
, chunk_regs
);
2637 val_len
-= chunk_bytes
;
2640 /* Read remaining bytes */
2642 ret
= _regmap_raw_read(map
, reg
, val
, val_len
);
2647 /* Otherwise go word by word for the cache; should be low
2648 * cost as we expect to hit the cache.
2650 for (i
= 0; i
< val_count
; i
++) {
2651 ret
= _regmap_read(map
, reg
+ regmap_get_offset(map
, i
),
2656 map
->format
.format_val(val
+ (i
* val_bytes
), v
, 0);
2661 map
->unlock(map
->lock_arg
);
2665 EXPORT_SYMBOL_GPL(regmap_raw_read
);
2668 * regmap_noinc_read(): Read data from a register without incrementing the
2671 * @map: Register map to read from
2672 * @reg: Register to read from
2673 * @val: Pointer to data buffer
2674 * @val_len: Length of output buffer in bytes.
2676 * The regmap API usually assumes that bulk bus read operations will read a
2677 * range of registers. Some devices have certain registers for which a read
2678 * operation read will read from an internal FIFO.
2680 * The target register must be volatile but registers after it can be
2681 * completely unrelated cacheable registers.
2683 * This will attempt multiple reads as required to read val_len bytes.
2685 * A value of zero will be returned on success, a negative errno will be
2686 * returned in error cases.
2688 int regmap_noinc_read(struct regmap
*map
, unsigned int reg
,
2689 void *val
, size_t val_len
)
2696 if (!map
->bus
->read
)
2698 if (val_len
% map
->format
.val_bytes
)
2700 if (!IS_ALIGNED(reg
, map
->reg_stride
))
2705 map
->lock(map
->lock_arg
);
2707 if (!regmap_volatile(map
, reg
) || !regmap_readable_noinc(map
, reg
)) {
2713 if (map
->max_raw_read
&& map
->max_raw_read
< val_len
)
2714 read_len
= map
->max_raw_read
;
2717 ret
= _regmap_raw_read(map
, reg
, val
, read_len
);
2720 val
= ((u8
*)val
) + read_len
;
2721 val_len
-= read_len
;
2725 map
->unlock(map
->lock_arg
);
2728 EXPORT_SYMBOL_GPL(regmap_noinc_read
);
2731 * regmap_field_read(): Read a value to a single register field
2733 * @field: Register field to read from
2734 * @val: Pointer to store read value
2736 * A value of zero will be returned on success, a negative errno will
2737 * be returned in error cases.
2739 int regmap_field_read(struct regmap_field
*field
, unsigned int *val
)
2742 unsigned int reg_val
;
2743 ret
= regmap_read(field
->regmap
, field
->reg
, ®_val
);
2747 reg_val
&= field
->mask
;
2748 reg_val
>>= field
->shift
;
2753 EXPORT_SYMBOL_GPL(regmap_field_read
);
2756 * regmap_fields_read() - Read a value to a single register field with port ID
2758 * @field: Register field to read from
2760 * @val: Pointer to store read value
2762 * A value of zero will be returned on success, a negative errno will
2763 * be returned in error cases.
2765 int regmap_fields_read(struct regmap_field
*field
, unsigned int id
,
2769 unsigned int reg_val
;
2771 if (id
>= field
->id_size
)
2774 ret
= regmap_read(field
->regmap
,
2775 field
->reg
+ (field
->id_offset
* id
),
2780 reg_val
&= field
->mask
;
2781 reg_val
>>= field
->shift
;
2786 EXPORT_SYMBOL_GPL(regmap_fields_read
);
2789 * regmap_bulk_read() - Read multiple registers from the device
2791 * @map: Register map to read from
2792 * @reg: First register to be read from
2793 * @val: Pointer to store read value, in native register size for device
2794 * @val_count: Number of registers to read
2796 * A value of zero will be returned on success, a negative errno will
2797 * be returned in error cases.
2799 int regmap_bulk_read(struct regmap
*map
, unsigned int reg
, void *val
,
2803 size_t val_bytes
= map
->format
.val_bytes
;
2804 bool vol
= regmap_volatile_range(map
, reg
, val_count
);
2806 if (!IS_ALIGNED(reg
, map
->reg_stride
))
2811 if (map
->bus
&& map
->format
.parse_inplace
&& (vol
|| map
->cache_type
== REGCACHE_NONE
)) {
2812 ret
= regmap_raw_read(map
, reg
, val
, val_bytes
* val_count
);
2816 for (i
= 0; i
< val_count
* val_bytes
; i
+= val_bytes
)
2817 map
->format
.parse_inplace(val
+ i
);
2826 map
->lock(map
->lock_arg
);
2828 for (i
= 0; i
< val_count
; i
++) {
2831 ret
= _regmap_read(map
, reg
+ regmap_get_offset(map
, i
),
2836 switch (map
->format
.val_bytes
) {
2858 map
->unlock(map
->lock_arg
);
2863 EXPORT_SYMBOL_GPL(regmap_bulk_read
);
2865 static int _regmap_update_bits(struct regmap
*map
, unsigned int reg
,
2866 unsigned int mask
, unsigned int val
,
2867 bool *change
, bool force_write
)
2870 unsigned int tmp
, orig
;
2875 if (regmap_volatile(map
, reg
) && map
->reg_update_bits
) {
2876 ret
= map
->reg_update_bits(map
->bus_context
, reg
, mask
, val
);
2877 if (ret
== 0 && change
)
2880 ret
= _regmap_read(map
, reg
, &orig
);
2887 if (force_write
|| (tmp
!= orig
)) {
2888 ret
= _regmap_write(map
, reg
, tmp
);
2889 if (ret
== 0 && change
)
2898 * regmap_update_bits_base() - Perform a read/modify/write cycle on a register
2900 * @map: Register map to update
2901 * @reg: Register to update
2902 * @mask: Bitmask to change
2903 * @val: New value for bitmask
2904 * @change: Boolean indicating if a write was done
2905 * @async: Boolean indicating asynchronously
2906 * @force: Boolean indicating use force update
2908 * Perform a read/modify/write cycle on a register map with change, async, force
2913 * With most buses the read must be done synchronously so this is most useful
2914 * for devices with a cache which do not need to interact with the hardware to
2915 * determine the current register value.
2917 * Returns zero for success, a negative number on error.
2919 int regmap_update_bits_base(struct regmap
*map
, unsigned int reg
,
2920 unsigned int mask
, unsigned int val
,
2921 bool *change
, bool async
, bool force
)
2925 map
->lock(map
->lock_arg
);
2929 ret
= _regmap_update_bits(map
, reg
, mask
, val
, change
, force
);
2933 map
->unlock(map
->lock_arg
);
2937 EXPORT_SYMBOL_GPL(regmap_update_bits_base
);
2939 void regmap_async_complete_cb(struct regmap_async
*async
, int ret
)
2941 struct regmap
*map
= async
->map
;
2944 trace_regmap_async_io_complete(map
);
2946 spin_lock(&map
->async_lock
);
2947 list_move(&async
->list
, &map
->async_free
);
2948 wake
= list_empty(&map
->async_list
);
2951 map
->async_ret
= ret
;
2953 spin_unlock(&map
->async_lock
);
2956 wake_up(&map
->async_waitq
);
2958 EXPORT_SYMBOL_GPL(regmap_async_complete_cb
);
2960 static int regmap_async_is_done(struct regmap
*map
)
2962 unsigned long flags
;
2965 spin_lock_irqsave(&map
->async_lock
, flags
);
2966 ret
= list_empty(&map
->async_list
);
2967 spin_unlock_irqrestore(&map
->async_lock
, flags
);
2973 * regmap_async_complete - Ensure all asynchronous I/O has completed.
2975 * @map: Map to operate on.
2977 * Blocks until any pending asynchronous I/O has completed. Returns
2978 * an error code for any failed I/O operations.
2980 int regmap_async_complete(struct regmap
*map
)
2982 unsigned long flags
;
2985 /* Nothing to do with no async support */
2986 if (!map
->bus
|| !map
->bus
->async_write
)
2989 trace_regmap_async_complete_start(map
);
2991 wait_event(map
->async_waitq
, regmap_async_is_done(map
));
2993 spin_lock_irqsave(&map
->async_lock
, flags
);
2994 ret
= map
->async_ret
;
2996 spin_unlock_irqrestore(&map
->async_lock
, flags
);
2998 trace_regmap_async_complete_done(map
);
3002 EXPORT_SYMBOL_GPL(regmap_async_complete
);
3005 * regmap_register_patch - Register and apply register updates to be applied
3006 * on device initialistion
3008 * @map: Register map to apply updates to.
3009 * @regs: Values to update.
3010 * @num_regs: Number of entries in regs.
3012 * Register a set of register updates to be applied to the device
3013 * whenever the device registers are synchronised with the cache and
3014 * apply them immediately. Typically this is used to apply
3015 * corrections to be applied to the device defaults on startup, such
3016 * as the updates some vendors provide to undocumented registers.
3018 * The caller must ensure that this function cannot be called
3019 * concurrently with either itself or regcache_sync().
3021 int regmap_register_patch(struct regmap
*map
, const struct reg_sequence
*regs
,
3024 struct reg_sequence
*p
;
3028 if (WARN_ONCE(num_regs
<= 0, "invalid registers number (%d)\n",
3032 p
= krealloc(map
->patch
,
3033 sizeof(struct reg_sequence
) * (map
->patch_regs
+ num_regs
),
3036 memcpy(p
+ map
->patch_regs
, regs
, num_regs
* sizeof(*regs
));
3038 map
->patch_regs
+= num_regs
;
3043 map
->lock(map
->lock_arg
);
3045 bypass
= map
->cache_bypass
;
3047 map
->cache_bypass
= true;
3050 ret
= _regmap_multi_reg_write(map
, regs
, num_regs
);
3053 map
->cache_bypass
= bypass
;
3055 map
->unlock(map
->lock_arg
);
3057 regmap_async_complete(map
);
3061 EXPORT_SYMBOL_GPL(regmap_register_patch
);
3064 * regmap_get_val_bytes() - Report the size of a register value
3066 * @map: Register map to operate on.
3068 * Report the size of a register value, mainly intended to for use by
3069 * generic infrastructure built on top of regmap.
3071 int regmap_get_val_bytes(struct regmap
*map
)
3073 if (map
->format
.format_write
)
3076 return map
->format
.val_bytes
;
3078 EXPORT_SYMBOL_GPL(regmap_get_val_bytes
);
3081 * regmap_get_max_register() - Report the max register value
3083 * @map: Register map to operate on.
3085 * Report the max register value, mainly intended to for use by
3086 * generic infrastructure built on top of regmap.
3088 int regmap_get_max_register(struct regmap
*map
)
3090 return map
->max_register
? map
->max_register
: -EINVAL
;
3092 EXPORT_SYMBOL_GPL(regmap_get_max_register
);
3095 * regmap_get_reg_stride() - Report the register address stride
3097 * @map: Register map to operate on.
3099 * Report the register address stride, mainly intended to for use by
3100 * generic infrastructure built on top of regmap.
3102 int regmap_get_reg_stride(struct regmap
*map
)
3104 return map
->reg_stride
;
3106 EXPORT_SYMBOL_GPL(regmap_get_reg_stride
);
3108 int regmap_parse_val(struct regmap
*map
, const void *buf
,
3111 if (!map
->format
.parse_val
)
3114 *val
= map
->format
.parse_val(buf
);
3118 EXPORT_SYMBOL_GPL(regmap_parse_val
);
3120 static int __init
regmap_initcall(void)
3122 regmap_debugfs_initcall();
3126 postcore_initcall(regmap_initcall
);