2 * linux/drivers/block/loop.c
4 * Written by Theodore Ts'o, 3/29/93
6 * Copyright 1993 by Theodore Ts'o. Redistribution of this file is
7 * permitted under the GNU General Public License.
9 * DES encryption plus some minor changes by Werner Almesberger, 30-MAY-1993
10 * more DES encryption plus IDEA encryption by Nicholas J. Leon, June 20, 1996
12 * Modularized and updated for 1.1.16 kernel - Mitch Dsouza 28th May 1994
13 * Adapted for 1.3.59 kernel - Andries Brouwer, 1 Feb 1996
15 * Fixed do_loop_request() re-entrancy - Vincent.Renardias@waw.com Mar 20, 1997
17 * Added devfs support - Richard Gooch <rgooch@atnf.csiro.au> 16-Jan-1998
19 * Handle sparse backing files correctly - Kenn Humborg, Jun 28, 1998
21 * Loadable modules and other fixes by AK, 1998
23 * Make real block number available to downstream transfer functions, enables
24 * CBC (and relatives) mode encryption requiring unique IVs per data block.
25 * Reed H. Petty, rhp@draper.net
27 * Maximum number of loop devices now dynamic via max_loop module parameter.
28 * Russell Kroll <rkroll@exploits.org> 19990701
30 * Maximum number of loop devices when compiled-in now selectable by passing
31 * max_loop=<1-255> to the kernel on boot.
32 * Erik I. Bolsø, <eriki@himolde.no>, Oct 31, 1999
34 * Completely rewrite request handling to be make_request_fn style and
35 * non blocking, pushing work to a helper thread. Lots of fixes from
37 * Jens Axboe <axboe@suse.de>, Nov 2000
39 * Support up to 256 loop devices
40 * Heinz Mauelshagen <mge@sistina.com>, Feb 2002
42 * Support for falling back on the write file operation when the address space
43 * operations write_begin is not available on the backing filesystem.
44 * Anton Altaparmakov, 16 Feb 2005
47 * - Advisory locking is ignored here.
48 * - Should use an own CAP_* category instead of CAP_SYS_ADMIN
52 #include <linux/module.h>
53 #include <linux/moduleparam.h>
54 #include <linux/sched.h>
56 #include <linux/file.h>
57 #include <linux/stat.h>
58 #include <linux/errno.h>
59 #include <linux/major.h>
60 #include <linux/wait.h>
61 #include <linux/blkdev.h>
62 #include <linux/blkpg.h>
63 #include <linux/init.h>
64 #include <linux/swap.h>
65 #include <linux/slab.h>
66 #include <linux/compat.h>
67 #include <linux/suspend.h>
68 #include <linux/freezer.h>
69 #include <linux/mutex.h>
70 #include <linux/writeback.h>
71 #include <linux/completion.h>
72 #include <linux/highmem.h>
73 #include <linux/kthread.h>
74 #include <linux/splice.h>
75 #include <linux/sysfs.h>
76 #include <linux/miscdevice.h>
77 #include <linux/falloc.h>
78 #include <linux/uio.h>
79 #include <linux/ioprio.h>
80 #include <linux/blk-cgroup.h>
84 #include <linux/uaccess.h>
86 static DEFINE_IDR(loop_index_idr
);
87 static DEFINE_MUTEX(loop_ctl_mutex
);
90 static int part_shift
;
92 static int transfer_xor(struct loop_device
*lo
, int cmd
,
93 struct page
*raw_page
, unsigned raw_off
,
94 struct page
*loop_page
, unsigned loop_off
,
95 int size
, sector_t real_block
)
97 char *raw_buf
= kmap_atomic(raw_page
) + raw_off
;
98 char *loop_buf
= kmap_atomic(loop_page
) + loop_off
;
110 key
= lo
->lo_encrypt_key
;
111 keysize
= lo
->lo_encrypt_key_size
;
112 for (i
= 0; i
< size
; i
++)
113 *out
++ = *in
++ ^ key
[(i
& 511) % keysize
];
115 kunmap_atomic(loop_buf
);
116 kunmap_atomic(raw_buf
);
121 static int xor_init(struct loop_device
*lo
, const struct loop_info64
*info
)
123 if (unlikely(info
->lo_encrypt_key_size
<= 0))
128 static struct loop_func_table none_funcs
= {
129 .number
= LO_CRYPT_NONE
,
132 static struct loop_func_table xor_funcs
= {
133 .number
= LO_CRYPT_XOR
,
134 .transfer
= transfer_xor
,
138 /* xfer_funcs[0] is special - its release function is never called */
139 static struct loop_func_table
*xfer_funcs
[MAX_LO_CRYPT
] = {
144 static loff_t
get_size(loff_t offset
, loff_t sizelimit
, struct file
*file
)
148 /* Compute loopsize in bytes */
149 loopsize
= i_size_read(file
->f_mapping
->host
);
152 /* offset is beyond i_size, weird but possible */
156 if (sizelimit
> 0 && sizelimit
< loopsize
)
157 loopsize
= sizelimit
;
159 * Unfortunately, if we want to do I/O on the device,
160 * the number of 512-byte sectors has to fit into a sector_t.
162 return loopsize
>> 9;
165 static loff_t
get_loop_size(struct loop_device
*lo
, struct file
*file
)
167 return get_size(lo
->lo_offset
, lo
->lo_sizelimit
, file
);
170 static void __loop_update_dio(struct loop_device
*lo
, bool dio
)
172 struct file
*file
= lo
->lo_backing_file
;
173 struct address_space
*mapping
= file
->f_mapping
;
174 struct inode
*inode
= mapping
->host
;
175 unsigned short sb_bsize
= 0;
176 unsigned dio_align
= 0;
179 if (inode
->i_sb
->s_bdev
) {
180 sb_bsize
= bdev_logical_block_size(inode
->i_sb
->s_bdev
);
181 dio_align
= sb_bsize
- 1;
185 * We support direct I/O only if lo_offset is aligned with the
186 * logical I/O size of backing device, and the logical block
187 * size of loop is bigger than the backing device's and the loop
188 * needn't transform transfer.
190 * TODO: the above condition may be loosed in the future, and
191 * direct I/O may be switched runtime at that time because most
192 * of requests in sane applications should be PAGE_SIZE aligned
195 if (queue_logical_block_size(lo
->lo_queue
) >= sb_bsize
&&
196 !(lo
->lo_offset
& dio_align
) &&
197 mapping
->a_ops
->direct_IO
&&
206 if (lo
->use_dio
== use_dio
)
209 /* flush dirty pages before changing direct IO */
213 * The flag of LO_FLAGS_DIRECT_IO is handled similarly with
214 * LO_FLAGS_READ_ONLY, both are set from kernel, and losetup
215 * will get updated by ioctl(LOOP_GET_STATUS)
217 blk_mq_freeze_queue(lo
->lo_queue
);
218 lo
->use_dio
= use_dio
;
220 blk_queue_flag_clear(QUEUE_FLAG_NOMERGES
, lo
->lo_queue
);
221 lo
->lo_flags
|= LO_FLAGS_DIRECT_IO
;
223 blk_queue_flag_set(QUEUE_FLAG_NOMERGES
, lo
->lo_queue
);
224 lo
->lo_flags
&= ~LO_FLAGS_DIRECT_IO
;
226 blk_mq_unfreeze_queue(lo
->lo_queue
);
230 figure_loop_size(struct loop_device
*lo
, loff_t offset
, loff_t sizelimit
)
232 loff_t size
= get_size(offset
, sizelimit
, lo
->lo_backing_file
);
233 sector_t x
= (sector_t
)size
;
234 struct block_device
*bdev
= lo
->lo_device
;
236 if (unlikely((loff_t
)x
!= size
))
238 if (lo
->lo_offset
!= offset
)
239 lo
->lo_offset
= offset
;
240 if (lo
->lo_sizelimit
!= sizelimit
)
241 lo
->lo_sizelimit
= sizelimit
;
242 set_capacity(lo
->lo_disk
, x
);
243 bd_set_size(bdev
, (loff_t
)get_capacity(bdev
->bd_disk
) << 9);
244 /* let user-space know about the new size */
245 kobject_uevent(&disk_to_dev(bdev
->bd_disk
)->kobj
, KOBJ_CHANGE
);
250 lo_do_transfer(struct loop_device
*lo
, int cmd
,
251 struct page
*rpage
, unsigned roffs
,
252 struct page
*lpage
, unsigned loffs
,
253 int size
, sector_t rblock
)
257 ret
= lo
->transfer(lo
, cmd
, rpage
, roffs
, lpage
, loffs
, size
, rblock
);
261 printk_ratelimited(KERN_ERR
262 "loop: Transfer error at byte offset %llu, length %i.\n",
263 (unsigned long long)rblock
<< 9, size
);
267 static int lo_write_bvec(struct file
*file
, struct bio_vec
*bvec
, loff_t
*ppos
)
272 iov_iter_bvec(&i
, WRITE
, bvec
, 1, bvec
->bv_len
);
274 file_start_write(file
);
275 bw
= vfs_iter_write(file
, &i
, ppos
, 0);
276 file_end_write(file
);
278 if (likely(bw
== bvec
->bv_len
))
281 printk_ratelimited(KERN_ERR
282 "loop: Write error at byte offset %llu, length %i.\n",
283 (unsigned long long)*ppos
, bvec
->bv_len
);
289 static int lo_write_simple(struct loop_device
*lo
, struct request
*rq
,
293 struct req_iterator iter
;
296 rq_for_each_segment(bvec
, rq
, iter
) {
297 ret
= lo_write_bvec(lo
->lo_backing_file
, &bvec
, &pos
);
307 * This is the slow, transforming version that needs to double buffer the
308 * data as it cannot do the transformations in place without having direct
309 * access to the destination pages of the backing file.
311 static int lo_write_transfer(struct loop_device
*lo
, struct request
*rq
,
314 struct bio_vec bvec
, b
;
315 struct req_iterator iter
;
319 page
= alloc_page(GFP_NOIO
);
323 rq_for_each_segment(bvec
, rq
, iter
) {
324 ret
= lo_do_transfer(lo
, WRITE
, page
, 0, bvec
.bv_page
,
325 bvec
.bv_offset
, bvec
.bv_len
, pos
>> 9);
331 b
.bv_len
= bvec
.bv_len
;
332 ret
= lo_write_bvec(lo
->lo_backing_file
, &b
, &pos
);
341 static int lo_read_simple(struct loop_device
*lo
, struct request
*rq
,
345 struct req_iterator iter
;
349 rq_for_each_segment(bvec
, rq
, iter
) {
350 iov_iter_bvec(&i
, READ
, &bvec
, 1, bvec
.bv_len
);
351 len
= vfs_iter_read(lo
->lo_backing_file
, &i
, &pos
, 0);
355 flush_dcache_page(bvec
.bv_page
);
357 if (len
!= bvec
.bv_len
) {
360 __rq_for_each_bio(bio
, rq
)
370 static int lo_read_transfer(struct loop_device
*lo
, struct request
*rq
,
373 struct bio_vec bvec
, b
;
374 struct req_iterator iter
;
380 page
= alloc_page(GFP_NOIO
);
384 rq_for_each_segment(bvec
, rq
, iter
) {
389 b
.bv_len
= bvec
.bv_len
;
391 iov_iter_bvec(&i
, READ
, &b
, 1, b
.bv_len
);
392 len
= vfs_iter_read(lo
->lo_backing_file
, &i
, &pos
, 0);
398 ret
= lo_do_transfer(lo
, READ
, page
, 0, bvec
.bv_page
,
399 bvec
.bv_offset
, len
, offset
>> 9);
403 flush_dcache_page(bvec
.bv_page
);
405 if (len
!= bvec
.bv_len
) {
408 __rq_for_each_bio(bio
, rq
)
420 static int lo_fallocate(struct loop_device
*lo
, struct request
*rq
, loff_t pos
,
424 * We use fallocate to manipulate the space mappings used by the image
425 * a.k.a. discard/zerorange. However we do not support this if
426 * encryption is enabled, because it may give an attacker useful
429 struct file
*file
= lo
->lo_backing_file
;
432 mode
|= FALLOC_FL_KEEP_SIZE
;
434 if ((!file
->f_op
->fallocate
) || lo
->lo_encrypt_key_size
) {
439 ret
= file
->f_op
->fallocate(file
, mode
, pos
, blk_rq_bytes(rq
));
440 if (unlikely(ret
&& ret
!= -EINVAL
&& ret
!= -EOPNOTSUPP
))
446 static int lo_req_flush(struct loop_device
*lo
, struct request
*rq
)
448 struct file
*file
= lo
->lo_backing_file
;
449 int ret
= vfs_fsync(file
, 0);
450 if (unlikely(ret
&& ret
!= -EINVAL
))
456 static void lo_complete_rq(struct request
*rq
)
458 struct loop_cmd
*cmd
= blk_mq_rq_to_pdu(rq
);
459 blk_status_t ret
= BLK_STS_OK
;
461 if (!cmd
->use_aio
|| cmd
->ret
< 0 || cmd
->ret
== blk_rq_bytes(rq
) ||
462 req_op(rq
) != REQ_OP_READ
) {
469 * Short READ - if we got some data, advance our request and
470 * retry it. If we got no data, end the rest with EIO.
473 blk_update_request(rq
, BLK_STS_OK
, cmd
->ret
);
475 blk_mq_requeue_request(rq
, true);
478 struct bio
*bio
= rq
->bio
;
487 blk_mq_end_request(rq
, ret
);
491 static void lo_rw_aio_do_completion(struct loop_cmd
*cmd
)
493 struct request
*rq
= blk_mq_rq_from_pdu(cmd
);
495 if (!atomic_dec_and_test(&cmd
->ref
))
499 blk_mq_complete_request(rq
);
502 static void lo_rw_aio_complete(struct kiocb
*iocb
, long ret
, long ret2
)
504 struct loop_cmd
*cmd
= container_of(iocb
, struct loop_cmd
, iocb
);
509 lo_rw_aio_do_completion(cmd
);
512 static int lo_rw_aio(struct loop_device
*lo
, struct loop_cmd
*cmd
,
515 struct iov_iter iter
;
516 struct req_iterator rq_iter
;
517 struct bio_vec
*bvec
;
518 struct request
*rq
= blk_mq_rq_from_pdu(cmd
);
519 struct bio
*bio
= rq
->bio
;
520 struct file
*file
= lo
->lo_backing_file
;
526 rq_for_each_bvec(tmp
, rq
, rq_iter
)
529 if (rq
->bio
!= rq
->biotail
) {
531 bvec
= kmalloc_array(nr_bvec
, sizeof(struct bio_vec
),
538 * The bios of the request may be started from the middle of
539 * the 'bvec' because of bio splitting, so we can't directly
540 * copy bio->bi_iov_vec to new bvec. The rq_for_each_bvec
541 * API will take care of all details for us.
543 rq_for_each_bvec(tmp
, rq
, rq_iter
) {
551 * Same here, this bio may be started from the middle of the
552 * 'bvec' because of bio splitting, so offset from the bvec
553 * must be passed to iov iterator
555 offset
= bio
->bi_iter
.bi_bvec_done
;
556 bvec
= __bvec_iter_bvec(bio
->bi_io_vec
, bio
->bi_iter
);
558 atomic_set(&cmd
->ref
, 2);
560 iov_iter_bvec(&iter
, rw
, bvec
, nr_bvec
, blk_rq_bytes(rq
));
561 iter
.iov_offset
= offset
;
563 cmd
->iocb
.ki_pos
= pos
;
564 cmd
->iocb
.ki_filp
= file
;
565 cmd
->iocb
.ki_complete
= lo_rw_aio_complete
;
566 cmd
->iocb
.ki_flags
= IOCB_DIRECT
;
567 cmd
->iocb
.ki_ioprio
= IOPRIO_PRIO_VALUE(IOPRIO_CLASS_NONE
, 0);
569 kthread_associate_blkcg(cmd
->css
);
572 ret
= call_write_iter(file
, &cmd
->iocb
, &iter
);
574 ret
= call_read_iter(file
, &cmd
->iocb
, &iter
);
576 lo_rw_aio_do_completion(cmd
);
577 kthread_associate_blkcg(NULL
);
579 if (ret
!= -EIOCBQUEUED
)
580 cmd
->iocb
.ki_complete(&cmd
->iocb
, ret
, 0);
584 static int do_req_filebacked(struct loop_device
*lo
, struct request
*rq
)
586 struct loop_cmd
*cmd
= blk_mq_rq_to_pdu(rq
);
587 loff_t pos
= ((loff_t
) blk_rq_pos(rq
) << 9) + lo
->lo_offset
;
590 * lo_write_simple and lo_read_simple should have been covered
591 * by io submit style function like lo_rw_aio(), one blocker
592 * is that lo_read_simple() need to call flush_dcache_page after
593 * the page is written from kernel, and it isn't easy to handle
594 * this in io submit style function which submits all segments
595 * of the req at one time. And direct read IO doesn't need to
596 * run flush_dcache_page().
598 switch (req_op(rq
)) {
600 return lo_req_flush(lo
, rq
);
601 case REQ_OP_WRITE_ZEROES
:
603 * If the caller doesn't want deallocation, call zeroout to
604 * write zeroes the range. Otherwise, punch them out.
606 return lo_fallocate(lo
, rq
, pos
,
607 (rq
->cmd_flags
& REQ_NOUNMAP
) ?
608 FALLOC_FL_ZERO_RANGE
:
609 FALLOC_FL_PUNCH_HOLE
);
611 return lo_fallocate(lo
, rq
, pos
, FALLOC_FL_PUNCH_HOLE
);
614 return lo_write_transfer(lo
, rq
, pos
);
615 else if (cmd
->use_aio
)
616 return lo_rw_aio(lo
, cmd
, pos
, WRITE
);
618 return lo_write_simple(lo
, rq
, pos
);
621 return lo_read_transfer(lo
, rq
, pos
);
622 else if (cmd
->use_aio
)
623 return lo_rw_aio(lo
, cmd
, pos
, READ
);
625 return lo_read_simple(lo
, rq
, pos
);
632 static inline void loop_update_dio(struct loop_device
*lo
)
634 __loop_update_dio(lo
, io_is_direct(lo
->lo_backing_file
) |
638 static void loop_reread_partitions(struct loop_device
*lo
,
639 struct block_device
*bdev
)
643 mutex_lock(&bdev
->bd_mutex
);
644 rc
= bdev_disk_changed(bdev
, false);
645 mutex_unlock(&bdev
->bd_mutex
);
647 pr_warn("%s: partition scan of loop%d (%s) failed (rc=%d)\n",
648 __func__
, lo
->lo_number
, lo
->lo_file_name
, rc
);
651 static inline int is_loop_device(struct file
*file
)
653 struct inode
*i
= file
->f_mapping
->host
;
655 return i
&& S_ISBLK(i
->i_mode
) && MAJOR(i
->i_rdev
) == LOOP_MAJOR
;
658 static int loop_validate_file(struct file
*file
, struct block_device
*bdev
)
660 struct inode
*inode
= file
->f_mapping
->host
;
661 struct file
*f
= file
;
663 /* Avoid recursion */
664 while (is_loop_device(f
)) {
665 struct loop_device
*l
;
667 if (f
->f_mapping
->host
->i_bdev
== bdev
)
670 l
= f
->f_mapping
->host
->i_bdev
->bd_disk
->private_data
;
671 if (l
->lo_state
!= Lo_bound
) {
674 f
= l
->lo_backing_file
;
676 if (!S_ISREG(inode
->i_mode
) && !S_ISBLK(inode
->i_mode
))
682 * loop_change_fd switched the backing store of a loopback device to
683 * a new file. This is useful for operating system installers to free up
684 * the original file and in High Availability environments to switch to
685 * an alternative location for the content in case of server meltdown.
686 * This can only work if the loop device is used read-only, and if the
687 * new backing store is the same size and type as the old backing store.
689 static int loop_change_fd(struct loop_device
*lo
, struct block_device
*bdev
,
692 struct file
*file
= NULL
, *old_file
;
696 error
= mutex_lock_killable(&loop_ctl_mutex
);
700 if (lo
->lo_state
!= Lo_bound
)
703 /* the loop device has to be read-only */
705 if (!(lo
->lo_flags
& LO_FLAGS_READ_ONLY
))
713 error
= loop_validate_file(file
, bdev
);
717 old_file
= lo
->lo_backing_file
;
721 /* size of the new backing store needs to be the same */
722 if (get_loop_size(lo
, file
) != get_loop_size(lo
, old_file
))
726 blk_mq_freeze_queue(lo
->lo_queue
);
727 mapping_set_gfp_mask(old_file
->f_mapping
, lo
->old_gfp_mask
);
728 lo
->lo_backing_file
= file
;
729 lo
->old_gfp_mask
= mapping_gfp_mask(file
->f_mapping
);
730 mapping_set_gfp_mask(file
->f_mapping
,
731 lo
->old_gfp_mask
& ~(__GFP_IO
|__GFP_FS
));
733 blk_mq_unfreeze_queue(lo
->lo_queue
);
734 partscan
= lo
->lo_flags
& LO_FLAGS_PARTSCAN
;
735 mutex_unlock(&loop_ctl_mutex
);
737 * We must drop file reference outside of loop_ctl_mutex as dropping
738 * the file ref can take bd_mutex which creates circular locking
743 loop_reread_partitions(lo
, bdev
);
747 mutex_unlock(&loop_ctl_mutex
);
753 /* loop sysfs attributes */
755 static ssize_t
loop_attr_show(struct device
*dev
, char *page
,
756 ssize_t (*callback
)(struct loop_device
*, char *))
758 struct gendisk
*disk
= dev_to_disk(dev
);
759 struct loop_device
*lo
= disk
->private_data
;
761 return callback(lo
, page
);
764 #define LOOP_ATTR_RO(_name) \
765 static ssize_t loop_attr_##_name##_show(struct loop_device *, char *); \
766 static ssize_t loop_attr_do_show_##_name(struct device *d, \
767 struct device_attribute *attr, char *b) \
769 return loop_attr_show(d, b, loop_attr_##_name##_show); \
771 static struct device_attribute loop_attr_##_name = \
772 __ATTR(_name, 0444, loop_attr_do_show_##_name, NULL);
774 static ssize_t
loop_attr_backing_file_show(struct loop_device
*lo
, char *buf
)
779 spin_lock_irq(&lo
->lo_lock
);
780 if (lo
->lo_backing_file
)
781 p
= file_path(lo
->lo_backing_file
, buf
, PAGE_SIZE
- 1);
782 spin_unlock_irq(&lo
->lo_lock
);
784 if (IS_ERR_OR_NULL(p
))
788 memmove(buf
, p
, ret
);
796 static ssize_t
loop_attr_offset_show(struct loop_device
*lo
, char *buf
)
798 return sprintf(buf
, "%llu\n", (unsigned long long)lo
->lo_offset
);
801 static ssize_t
loop_attr_sizelimit_show(struct loop_device
*lo
, char *buf
)
803 return sprintf(buf
, "%llu\n", (unsigned long long)lo
->lo_sizelimit
);
806 static ssize_t
loop_attr_autoclear_show(struct loop_device
*lo
, char *buf
)
808 int autoclear
= (lo
->lo_flags
& LO_FLAGS_AUTOCLEAR
);
810 return sprintf(buf
, "%s\n", autoclear
? "1" : "0");
813 static ssize_t
loop_attr_partscan_show(struct loop_device
*lo
, char *buf
)
815 int partscan
= (lo
->lo_flags
& LO_FLAGS_PARTSCAN
);
817 return sprintf(buf
, "%s\n", partscan
? "1" : "0");
820 static ssize_t
loop_attr_dio_show(struct loop_device
*lo
, char *buf
)
822 int dio
= (lo
->lo_flags
& LO_FLAGS_DIRECT_IO
);
824 return sprintf(buf
, "%s\n", dio
? "1" : "0");
827 LOOP_ATTR_RO(backing_file
);
828 LOOP_ATTR_RO(offset
);
829 LOOP_ATTR_RO(sizelimit
);
830 LOOP_ATTR_RO(autoclear
);
831 LOOP_ATTR_RO(partscan
);
834 static struct attribute
*loop_attrs
[] = {
835 &loop_attr_backing_file
.attr
,
836 &loop_attr_offset
.attr
,
837 &loop_attr_sizelimit
.attr
,
838 &loop_attr_autoclear
.attr
,
839 &loop_attr_partscan
.attr
,
844 static struct attribute_group loop_attribute_group
= {
849 static void loop_sysfs_init(struct loop_device
*lo
)
851 lo
->sysfs_inited
= !sysfs_create_group(&disk_to_dev(lo
->lo_disk
)->kobj
,
852 &loop_attribute_group
);
855 static void loop_sysfs_exit(struct loop_device
*lo
)
857 if (lo
->sysfs_inited
)
858 sysfs_remove_group(&disk_to_dev(lo
->lo_disk
)->kobj
,
859 &loop_attribute_group
);
862 static void loop_config_discard(struct loop_device
*lo
)
864 struct file
*file
= lo
->lo_backing_file
;
865 struct inode
*inode
= file
->f_mapping
->host
;
866 struct request_queue
*q
= lo
->lo_queue
;
869 * We use punch hole to reclaim the free space used by the
870 * image a.k.a. discard. However we do not support discard if
871 * encryption is enabled, because it may give an attacker
872 * useful information.
874 if ((!file
->f_op
->fallocate
) ||
875 lo
->lo_encrypt_key_size
) {
876 q
->limits
.discard_granularity
= 0;
877 q
->limits
.discard_alignment
= 0;
878 blk_queue_max_discard_sectors(q
, 0);
879 blk_queue_max_write_zeroes_sectors(q
, 0);
880 blk_queue_flag_clear(QUEUE_FLAG_DISCARD
, q
);
884 q
->limits
.discard_granularity
= inode
->i_sb
->s_blocksize
;
885 q
->limits
.discard_alignment
= 0;
887 blk_queue_max_discard_sectors(q
, UINT_MAX
>> 9);
888 blk_queue_max_write_zeroes_sectors(q
, UINT_MAX
>> 9);
889 blk_queue_flag_set(QUEUE_FLAG_DISCARD
, q
);
892 static void loop_unprepare_queue(struct loop_device
*lo
)
894 kthread_flush_worker(&lo
->worker
);
895 kthread_stop(lo
->worker_task
);
898 static int loop_kthread_worker_fn(void *worker_ptr
)
900 current
->flags
|= PF_LESS_THROTTLE
| PF_MEMALLOC_NOIO
;
901 return kthread_worker_fn(worker_ptr
);
904 static int loop_prepare_queue(struct loop_device
*lo
)
906 kthread_init_worker(&lo
->worker
);
907 lo
->worker_task
= kthread_run(loop_kthread_worker_fn
,
908 &lo
->worker
, "loop%d", lo
->lo_number
);
909 if (IS_ERR(lo
->worker_task
))
911 set_user_nice(lo
->worker_task
, MIN_NICE
);
915 static void loop_update_rotational(struct loop_device
*lo
)
917 struct file
*file
= lo
->lo_backing_file
;
918 struct inode
*file_inode
= file
->f_mapping
->host
;
919 struct block_device
*file_bdev
= file_inode
->i_sb
->s_bdev
;
920 struct request_queue
*q
= lo
->lo_queue
;
923 /* not all filesystems (e.g. tmpfs) have a sb->s_bdev */
925 nonrot
= blk_queue_nonrot(bdev_get_queue(file_bdev
));
928 blk_queue_flag_set(QUEUE_FLAG_NONROT
, q
);
930 blk_queue_flag_clear(QUEUE_FLAG_NONROT
, q
);
933 static int loop_set_fd(struct loop_device
*lo
, fmode_t mode
,
934 struct block_device
*bdev
, unsigned int arg
)
938 struct address_space
*mapping
;
939 struct block_device
*claimed_bdev
= NULL
;
945 /* This is safe, since we have a reference from open(). */
946 __module_get(THIS_MODULE
);
954 * If we don't hold exclusive handle for the device, upgrade to it
955 * here to avoid changing device under exclusive owner.
957 if (!(mode
& FMODE_EXCL
)) {
958 claimed_bdev
= bd_start_claiming(bdev
, loop_set_fd
);
959 if (IS_ERR(claimed_bdev
)) {
960 error
= PTR_ERR(claimed_bdev
);
965 error
= mutex_lock_killable(&loop_ctl_mutex
);
970 if (lo
->lo_state
!= Lo_unbound
)
973 error
= loop_validate_file(file
, bdev
);
977 mapping
= file
->f_mapping
;
978 inode
= mapping
->host
;
980 if (!(file
->f_mode
& FMODE_WRITE
) || !(mode
& FMODE_WRITE
) ||
981 !file
->f_op
->write_iter
)
982 lo_flags
|= LO_FLAGS_READ_ONLY
;
985 size
= get_loop_size(lo
, file
);
986 if ((loff_t
)(sector_t
)size
!= size
)
988 error
= loop_prepare_queue(lo
);
994 set_device_ro(bdev
, (lo_flags
& LO_FLAGS_READ_ONLY
) != 0);
997 lo
->lo_device
= bdev
;
998 lo
->lo_flags
= lo_flags
;
999 lo
->lo_backing_file
= file
;
1000 lo
->transfer
= NULL
;
1002 lo
->lo_sizelimit
= 0;
1003 lo
->old_gfp_mask
= mapping_gfp_mask(mapping
);
1004 mapping_set_gfp_mask(mapping
, lo
->old_gfp_mask
& ~(__GFP_IO
|__GFP_FS
));
1006 if (!(lo_flags
& LO_FLAGS_READ_ONLY
) && file
->f_op
->fsync
)
1007 blk_queue_write_cache(lo
->lo_queue
, true, false);
1009 if (io_is_direct(lo
->lo_backing_file
) && inode
->i_sb
->s_bdev
) {
1010 /* In case of direct I/O, match underlying block size */
1011 unsigned short bsize
= bdev_logical_block_size(
1012 inode
->i_sb
->s_bdev
);
1014 blk_queue_logical_block_size(lo
->lo_queue
, bsize
);
1015 blk_queue_physical_block_size(lo
->lo_queue
, bsize
);
1016 blk_queue_io_min(lo
->lo_queue
, bsize
);
1019 loop_update_rotational(lo
);
1020 loop_update_dio(lo
);
1021 set_capacity(lo
->lo_disk
, size
);
1022 bd_set_size(bdev
, size
<< 9);
1023 loop_sysfs_init(lo
);
1024 /* let user-space know about the new size */
1025 kobject_uevent(&disk_to_dev(bdev
->bd_disk
)->kobj
, KOBJ_CHANGE
);
1027 set_blocksize(bdev
, S_ISBLK(inode
->i_mode
) ?
1028 block_size(inode
->i_bdev
) : PAGE_SIZE
);
1030 lo
->lo_state
= Lo_bound
;
1032 lo
->lo_flags
|= LO_FLAGS_PARTSCAN
;
1033 partscan
= lo
->lo_flags
& LO_FLAGS_PARTSCAN
;
1035 /* Grab the block_device to prevent its destruction after we
1036 * put /dev/loopXX inode. Later in __loop_clr_fd() we bdput(bdev).
1039 mutex_unlock(&loop_ctl_mutex
);
1041 loop_reread_partitions(lo
, bdev
);
1043 bd_abort_claiming(bdev
, claimed_bdev
, loop_set_fd
);
1047 mutex_unlock(&loop_ctl_mutex
);
1050 bd_abort_claiming(bdev
, claimed_bdev
, loop_set_fd
);
1054 /* This is safe: open() is still holding a reference. */
1055 module_put(THIS_MODULE
);
1060 loop_release_xfer(struct loop_device
*lo
)
1063 struct loop_func_table
*xfer
= lo
->lo_encryption
;
1067 err
= xfer
->release(lo
);
1068 lo
->transfer
= NULL
;
1069 lo
->lo_encryption
= NULL
;
1070 module_put(xfer
->owner
);
1076 loop_init_xfer(struct loop_device
*lo
, struct loop_func_table
*xfer
,
1077 const struct loop_info64
*i
)
1082 struct module
*owner
= xfer
->owner
;
1084 if (!try_module_get(owner
))
1087 err
= xfer
->init(lo
, i
);
1091 lo
->lo_encryption
= xfer
;
1096 static int __loop_clr_fd(struct loop_device
*lo
, bool release
)
1098 struct file
*filp
= NULL
;
1099 gfp_t gfp
= lo
->old_gfp_mask
;
1100 struct block_device
*bdev
= lo
->lo_device
;
1102 bool partscan
= false;
1105 mutex_lock(&loop_ctl_mutex
);
1106 if (WARN_ON_ONCE(lo
->lo_state
!= Lo_rundown
)) {
1111 filp
= lo
->lo_backing_file
;
1117 /* freeze request queue during the transition */
1118 blk_mq_freeze_queue(lo
->lo_queue
);
1120 spin_lock_irq(&lo
->lo_lock
);
1121 lo
->lo_backing_file
= NULL
;
1122 spin_unlock_irq(&lo
->lo_lock
);
1124 loop_release_xfer(lo
);
1125 lo
->transfer
= NULL
;
1127 lo
->lo_device
= NULL
;
1128 lo
->lo_encryption
= NULL
;
1130 lo
->lo_sizelimit
= 0;
1131 lo
->lo_encrypt_key_size
= 0;
1132 memset(lo
->lo_encrypt_key
, 0, LO_KEY_SIZE
);
1133 memset(lo
->lo_crypt_name
, 0, LO_NAME_SIZE
);
1134 memset(lo
->lo_file_name
, 0, LO_NAME_SIZE
);
1135 blk_queue_logical_block_size(lo
->lo_queue
, 512);
1136 blk_queue_physical_block_size(lo
->lo_queue
, 512);
1137 blk_queue_io_min(lo
->lo_queue
, 512);
1140 invalidate_bdev(bdev
);
1141 bdev
->bd_inode
->i_mapping
->wb_err
= 0;
1143 set_capacity(lo
->lo_disk
, 0);
1144 loop_sysfs_exit(lo
);
1146 bd_set_size(bdev
, 0);
1147 /* let user-space know about this change */
1148 kobject_uevent(&disk_to_dev(bdev
->bd_disk
)->kobj
, KOBJ_CHANGE
);
1150 mapping_set_gfp_mask(filp
->f_mapping
, gfp
);
1151 /* This is safe: open() is still holding a reference. */
1152 module_put(THIS_MODULE
);
1153 blk_mq_unfreeze_queue(lo
->lo_queue
);
1155 partscan
= lo
->lo_flags
& LO_FLAGS_PARTSCAN
&& bdev
;
1156 lo_number
= lo
->lo_number
;
1157 loop_unprepare_queue(lo
);
1159 mutex_unlock(&loop_ctl_mutex
);
1162 * bd_mutex has been held already in release path, so don't
1163 * acquire it if this function is called in such case.
1165 * If the reread partition isn't from release path, lo_refcnt
1166 * must be at least one and it can only become zero when the
1167 * current holder is released.
1170 mutex_lock(&bdev
->bd_mutex
);
1171 err
= bdev_disk_changed(bdev
, false);
1173 mutex_unlock(&bdev
->bd_mutex
);
1175 pr_warn("%s: partition scan of loop%d failed (rc=%d)\n",
1176 __func__
, lo_number
, err
);
1177 /* Device is gone, no point in returning error */
1182 * lo->lo_state is set to Lo_unbound here after above partscan has
1185 * There cannot be anybody else entering __loop_clr_fd() as
1186 * lo->lo_backing_file is already cleared and Lo_rundown state
1187 * protects us from all the other places trying to change the 'lo'
1190 mutex_lock(&loop_ctl_mutex
);
1193 lo
->lo_disk
->flags
|= GENHD_FL_NO_PART_SCAN
;
1194 lo
->lo_state
= Lo_unbound
;
1195 mutex_unlock(&loop_ctl_mutex
);
1198 * Need not hold loop_ctl_mutex to fput backing file.
1199 * Calling fput holding loop_ctl_mutex triggers a circular
1200 * lock dependency possibility warning as fput can take
1201 * bd_mutex which is usually taken before loop_ctl_mutex.
1208 static int loop_clr_fd(struct loop_device
*lo
)
1212 err
= mutex_lock_killable(&loop_ctl_mutex
);
1215 if (lo
->lo_state
!= Lo_bound
) {
1216 mutex_unlock(&loop_ctl_mutex
);
1220 * If we've explicitly asked to tear down the loop device,
1221 * and it has an elevated reference count, set it for auto-teardown when
1222 * the last reference goes away. This stops $!~#$@ udev from
1223 * preventing teardown because it decided that it needs to run blkid on
1224 * the loopback device whenever they appear. xfstests is notorious for
1225 * failing tests because blkid via udev races with a losetup
1226 * <dev>/do something like mkfs/losetup -d <dev> causing the losetup -d
1227 * command to fail with EBUSY.
1229 if (atomic_read(&lo
->lo_refcnt
) > 1) {
1230 lo
->lo_flags
|= LO_FLAGS_AUTOCLEAR
;
1231 mutex_unlock(&loop_ctl_mutex
);
1234 lo
->lo_state
= Lo_rundown
;
1235 mutex_unlock(&loop_ctl_mutex
);
1237 return __loop_clr_fd(lo
, false);
1241 loop_set_status(struct loop_device
*lo
, const struct loop_info64
*info
)
1244 struct loop_func_table
*xfer
;
1245 kuid_t uid
= current_uid();
1246 struct block_device
*bdev
;
1247 bool partscan
= false;
1249 err
= mutex_lock_killable(&loop_ctl_mutex
);
1252 if (lo
->lo_encrypt_key_size
&&
1253 !uid_eq(lo
->lo_key_owner
, uid
) &&
1254 !capable(CAP_SYS_ADMIN
)) {
1258 if (lo
->lo_state
!= Lo_bound
) {
1262 if ((unsigned int) info
->lo_encrypt_key_size
> LO_KEY_SIZE
) {
1267 if (lo
->lo_offset
!= info
->lo_offset
||
1268 lo
->lo_sizelimit
!= info
->lo_sizelimit
) {
1269 sync_blockdev(lo
->lo_device
);
1270 kill_bdev(lo
->lo_device
);
1273 /* I/O need to be drained during transfer transition */
1274 blk_mq_freeze_queue(lo
->lo_queue
);
1276 err
= loop_release_xfer(lo
);
1280 if (info
->lo_encrypt_type
) {
1281 unsigned int type
= info
->lo_encrypt_type
;
1283 if (type
>= MAX_LO_CRYPT
) {
1287 xfer
= xfer_funcs
[type
];
1295 err
= loop_init_xfer(lo
, xfer
, info
);
1299 if (lo
->lo_offset
!= info
->lo_offset
||
1300 lo
->lo_sizelimit
!= info
->lo_sizelimit
) {
1301 /* kill_bdev should have truncated all the pages */
1302 if (lo
->lo_device
->bd_inode
->i_mapping
->nrpages
) {
1304 pr_warn("%s: loop%d (%s) has still dirty pages (nrpages=%lu)\n",
1305 __func__
, lo
->lo_number
, lo
->lo_file_name
,
1306 lo
->lo_device
->bd_inode
->i_mapping
->nrpages
);
1309 if (figure_loop_size(lo
, info
->lo_offset
, info
->lo_sizelimit
)) {
1315 loop_config_discard(lo
);
1317 memcpy(lo
->lo_file_name
, info
->lo_file_name
, LO_NAME_SIZE
);
1318 memcpy(lo
->lo_crypt_name
, info
->lo_crypt_name
, LO_NAME_SIZE
);
1319 lo
->lo_file_name
[LO_NAME_SIZE
-1] = 0;
1320 lo
->lo_crypt_name
[LO_NAME_SIZE
-1] = 0;
1324 lo
->transfer
= xfer
->transfer
;
1325 lo
->ioctl
= xfer
->ioctl
;
1327 if ((lo
->lo_flags
& LO_FLAGS_AUTOCLEAR
) !=
1328 (info
->lo_flags
& LO_FLAGS_AUTOCLEAR
))
1329 lo
->lo_flags
^= LO_FLAGS_AUTOCLEAR
;
1331 lo
->lo_encrypt_key_size
= info
->lo_encrypt_key_size
;
1332 lo
->lo_init
[0] = info
->lo_init
[0];
1333 lo
->lo_init
[1] = info
->lo_init
[1];
1334 if (info
->lo_encrypt_key_size
) {
1335 memcpy(lo
->lo_encrypt_key
, info
->lo_encrypt_key
,
1336 info
->lo_encrypt_key_size
);
1337 lo
->lo_key_owner
= uid
;
1340 /* update dio if lo_offset or transfer is changed */
1341 __loop_update_dio(lo
, lo
->use_dio
);
1344 blk_mq_unfreeze_queue(lo
->lo_queue
);
1346 if (!err
&& (info
->lo_flags
& LO_FLAGS_PARTSCAN
) &&
1347 !(lo
->lo_flags
& LO_FLAGS_PARTSCAN
)) {
1348 lo
->lo_flags
|= LO_FLAGS_PARTSCAN
;
1349 lo
->lo_disk
->flags
&= ~GENHD_FL_NO_PART_SCAN
;
1350 bdev
= lo
->lo_device
;
1354 mutex_unlock(&loop_ctl_mutex
);
1356 loop_reread_partitions(lo
, bdev
);
1362 loop_get_status(struct loop_device
*lo
, struct loop_info64
*info
)
1368 ret
= mutex_lock_killable(&loop_ctl_mutex
);
1371 if (lo
->lo_state
!= Lo_bound
) {
1372 mutex_unlock(&loop_ctl_mutex
);
1376 memset(info
, 0, sizeof(*info
));
1377 info
->lo_number
= lo
->lo_number
;
1378 info
->lo_offset
= lo
->lo_offset
;
1379 info
->lo_sizelimit
= lo
->lo_sizelimit
;
1380 info
->lo_flags
= lo
->lo_flags
;
1381 memcpy(info
->lo_file_name
, lo
->lo_file_name
, LO_NAME_SIZE
);
1382 memcpy(info
->lo_crypt_name
, lo
->lo_crypt_name
, LO_NAME_SIZE
);
1383 info
->lo_encrypt_type
=
1384 lo
->lo_encryption
? lo
->lo_encryption
->number
: 0;
1385 if (lo
->lo_encrypt_key_size
&& capable(CAP_SYS_ADMIN
)) {
1386 info
->lo_encrypt_key_size
= lo
->lo_encrypt_key_size
;
1387 memcpy(info
->lo_encrypt_key
, lo
->lo_encrypt_key
,
1388 lo
->lo_encrypt_key_size
);
1391 /* Drop loop_ctl_mutex while we call into the filesystem. */
1392 path
= lo
->lo_backing_file
->f_path
;
1394 mutex_unlock(&loop_ctl_mutex
);
1395 ret
= vfs_getattr(&path
, &stat
, STATX_INO
, AT_STATX_SYNC_AS_STAT
);
1397 info
->lo_device
= huge_encode_dev(stat
.dev
);
1398 info
->lo_inode
= stat
.ino
;
1399 info
->lo_rdevice
= huge_encode_dev(stat
.rdev
);
1406 loop_info64_from_old(const struct loop_info
*info
, struct loop_info64
*info64
)
1408 memset(info64
, 0, sizeof(*info64
));
1409 info64
->lo_number
= info
->lo_number
;
1410 info64
->lo_device
= info
->lo_device
;
1411 info64
->lo_inode
= info
->lo_inode
;
1412 info64
->lo_rdevice
= info
->lo_rdevice
;
1413 info64
->lo_offset
= info
->lo_offset
;
1414 info64
->lo_sizelimit
= 0;
1415 info64
->lo_encrypt_type
= info
->lo_encrypt_type
;
1416 info64
->lo_encrypt_key_size
= info
->lo_encrypt_key_size
;
1417 info64
->lo_flags
= info
->lo_flags
;
1418 info64
->lo_init
[0] = info
->lo_init
[0];
1419 info64
->lo_init
[1] = info
->lo_init
[1];
1420 if (info
->lo_encrypt_type
== LO_CRYPT_CRYPTOAPI
)
1421 memcpy(info64
->lo_crypt_name
, info
->lo_name
, LO_NAME_SIZE
);
1423 memcpy(info64
->lo_file_name
, info
->lo_name
, LO_NAME_SIZE
);
1424 memcpy(info64
->lo_encrypt_key
, info
->lo_encrypt_key
, LO_KEY_SIZE
);
1428 loop_info64_to_old(const struct loop_info64
*info64
, struct loop_info
*info
)
1430 memset(info
, 0, sizeof(*info
));
1431 info
->lo_number
= info64
->lo_number
;
1432 info
->lo_device
= info64
->lo_device
;
1433 info
->lo_inode
= info64
->lo_inode
;
1434 info
->lo_rdevice
= info64
->lo_rdevice
;
1435 info
->lo_offset
= info64
->lo_offset
;
1436 info
->lo_encrypt_type
= info64
->lo_encrypt_type
;
1437 info
->lo_encrypt_key_size
= info64
->lo_encrypt_key_size
;
1438 info
->lo_flags
= info64
->lo_flags
;
1439 info
->lo_init
[0] = info64
->lo_init
[0];
1440 info
->lo_init
[1] = info64
->lo_init
[1];
1441 if (info
->lo_encrypt_type
== LO_CRYPT_CRYPTOAPI
)
1442 memcpy(info
->lo_name
, info64
->lo_crypt_name
, LO_NAME_SIZE
);
1444 memcpy(info
->lo_name
, info64
->lo_file_name
, LO_NAME_SIZE
);
1445 memcpy(info
->lo_encrypt_key
, info64
->lo_encrypt_key
, LO_KEY_SIZE
);
1447 /* error in case values were truncated */
1448 if (info
->lo_device
!= info64
->lo_device
||
1449 info
->lo_rdevice
!= info64
->lo_rdevice
||
1450 info
->lo_inode
!= info64
->lo_inode
||
1451 info
->lo_offset
!= info64
->lo_offset
)
1458 loop_set_status_old(struct loop_device
*lo
, const struct loop_info __user
*arg
)
1460 struct loop_info info
;
1461 struct loop_info64 info64
;
1463 if (copy_from_user(&info
, arg
, sizeof (struct loop_info
)))
1465 loop_info64_from_old(&info
, &info64
);
1466 return loop_set_status(lo
, &info64
);
1470 loop_set_status64(struct loop_device
*lo
, const struct loop_info64 __user
*arg
)
1472 struct loop_info64 info64
;
1474 if (copy_from_user(&info64
, arg
, sizeof (struct loop_info64
)))
1476 return loop_set_status(lo
, &info64
);
1480 loop_get_status_old(struct loop_device
*lo
, struct loop_info __user
*arg
) {
1481 struct loop_info info
;
1482 struct loop_info64 info64
;
1487 err
= loop_get_status(lo
, &info64
);
1489 err
= loop_info64_to_old(&info64
, &info
);
1490 if (!err
&& copy_to_user(arg
, &info
, sizeof(info
)))
1497 loop_get_status64(struct loop_device
*lo
, struct loop_info64 __user
*arg
) {
1498 struct loop_info64 info64
;
1503 err
= loop_get_status(lo
, &info64
);
1504 if (!err
&& copy_to_user(arg
, &info64
, sizeof(info64
)))
1510 static int loop_set_capacity(struct loop_device
*lo
)
1512 if (unlikely(lo
->lo_state
!= Lo_bound
))
1515 return figure_loop_size(lo
, lo
->lo_offset
, lo
->lo_sizelimit
);
1518 static int loop_set_dio(struct loop_device
*lo
, unsigned long arg
)
1521 if (lo
->lo_state
!= Lo_bound
)
1524 __loop_update_dio(lo
, !!arg
);
1525 if (lo
->use_dio
== !!arg
)
1532 static int loop_set_block_size(struct loop_device
*lo
, unsigned long arg
)
1536 if (lo
->lo_state
!= Lo_bound
)
1539 if (arg
< 512 || arg
> PAGE_SIZE
|| !is_power_of_2(arg
))
1542 if (lo
->lo_queue
->limits
.logical_block_size
!= arg
) {
1543 sync_blockdev(lo
->lo_device
);
1544 kill_bdev(lo
->lo_device
);
1547 blk_mq_freeze_queue(lo
->lo_queue
);
1549 /* kill_bdev should have truncated all the pages */
1550 if (lo
->lo_queue
->limits
.logical_block_size
!= arg
&&
1551 lo
->lo_device
->bd_inode
->i_mapping
->nrpages
) {
1553 pr_warn("%s: loop%d (%s) has still dirty pages (nrpages=%lu)\n",
1554 __func__
, lo
->lo_number
, lo
->lo_file_name
,
1555 lo
->lo_device
->bd_inode
->i_mapping
->nrpages
);
1559 blk_queue_logical_block_size(lo
->lo_queue
, arg
);
1560 blk_queue_physical_block_size(lo
->lo_queue
, arg
);
1561 blk_queue_io_min(lo
->lo_queue
, arg
);
1562 loop_update_dio(lo
);
1564 blk_mq_unfreeze_queue(lo
->lo_queue
);
1569 static int lo_simple_ioctl(struct loop_device
*lo
, unsigned int cmd
,
1574 err
= mutex_lock_killable(&loop_ctl_mutex
);
1578 case LOOP_SET_CAPACITY
:
1579 err
= loop_set_capacity(lo
);
1581 case LOOP_SET_DIRECT_IO
:
1582 err
= loop_set_dio(lo
, arg
);
1584 case LOOP_SET_BLOCK_SIZE
:
1585 err
= loop_set_block_size(lo
, arg
);
1588 err
= lo
->ioctl
? lo
->ioctl(lo
, cmd
, arg
) : -EINVAL
;
1590 mutex_unlock(&loop_ctl_mutex
);
1594 static int lo_ioctl(struct block_device
*bdev
, fmode_t mode
,
1595 unsigned int cmd
, unsigned long arg
)
1597 struct loop_device
*lo
= bdev
->bd_disk
->private_data
;
1602 return loop_set_fd(lo
, mode
, bdev
, arg
);
1603 case LOOP_CHANGE_FD
:
1604 return loop_change_fd(lo
, bdev
, arg
);
1606 return loop_clr_fd(lo
);
1607 case LOOP_SET_STATUS
:
1609 if ((mode
& FMODE_WRITE
) || capable(CAP_SYS_ADMIN
)) {
1610 err
= loop_set_status_old(lo
,
1611 (struct loop_info __user
*)arg
);
1614 case LOOP_GET_STATUS
:
1615 return loop_get_status_old(lo
, (struct loop_info __user
*) arg
);
1616 case LOOP_SET_STATUS64
:
1618 if ((mode
& FMODE_WRITE
) || capable(CAP_SYS_ADMIN
)) {
1619 err
= loop_set_status64(lo
,
1620 (struct loop_info64 __user
*) arg
);
1623 case LOOP_GET_STATUS64
:
1624 return loop_get_status64(lo
, (struct loop_info64 __user
*) arg
);
1625 case LOOP_SET_CAPACITY
:
1626 case LOOP_SET_DIRECT_IO
:
1627 case LOOP_SET_BLOCK_SIZE
:
1628 if (!(mode
& FMODE_WRITE
) && !capable(CAP_SYS_ADMIN
))
1632 err
= lo_simple_ioctl(lo
, cmd
, arg
);
1639 #ifdef CONFIG_COMPAT
1640 struct compat_loop_info
{
1641 compat_int_t lo_number
; /* ioctl r/o */
1642 compat_dev_t lo_device
; /* ioctl r/o */
1643 compat_ulong_t lo_inode
; /* ioctl r/o */
1644 compat_dev_t lo_rdevice
; /* ioctl r/o */
1645 compat_int_t lo_offset
;
1646 compat_int_t lo_encrypt_type
;
1647 compat_int_t lo_encrypt_key_size
; /* ioctl w/o */
1648 compat_int_t lo_flags
; /* ioctl r/o */
1649 char lo_name
[LO_NAME_SIZE
];
1650 unsigned char lo_encrypt_key
[LO_KEY_SIZE
]; /* ioctl w/o */
1651 compat_ulong_t lo_init
[2];
1656 * Transfer 32-bit compatibility structure in userspace to 64-bit loop info
1657 * - noinlined to reduce stack space usage in main part of driver
1660 loop_info64_from_compat(const struct compat_loop_info __user
*arg
,
1661 struct loop_info64
*info64
)
1663 struct compat_loop_info info
;
1665 if (copy_from_user(&info
, arg
, sizeof(info
)))
1668 memset(info64
, 0, sizeof(*info64
));
1669 info64
->lo_number
= info
.lo_number
;
1670 info64
->lo_device
= info
.lo_device
;
1671 info64
->lo_inode
= info
.lo_inode
;
1672 info64
->lo_rdevice
= info
.lo_rdevice
;
1673 info64
->lo_offset
= info
.lo_offset
;
1674 info64
->lo_sizelimit
= 0;
1675 info64
->lo_encrypt_type
= info
.lo_encrypt_type
;
1676 info64
->lo_encrypt_key_size
= info
.lo_encrypt_key_size
;
1677 info64
->lo_flags
= info
.lo_flags
;
1678 info64
->lo_init
[0] = info
.lo_init
[0];
1679 info64
->lo_init
[1] = info
.lo_init
[1];
1680 if (info
.lo_encrypt_type
== LO_CRYPT_CRYPTOAPI
)
1681 memcpy(info64
->lo_crypt_name
, info
.lo_name
, LO_NAME_SIZE
);
1683 memcpy(info64
->lo_file_name
, info
.lo_name
, LO_NAME_SIZE
);
1684 memcpy(info64
->lo_encrypt_key
, info
.lo_encrypt_key
, LO_KEY_SIZE
);
1689 * Transfer 64-bit loop info to 32-bit compatibility structure in userspace
1690 * - noinlined to reduce stack space usage in main part of driver
1693 loop_info64_to_compat(const struct loop_info64
*info64
,
1694 struct compat_loop_info __user
*arg
)
1696 struct compat_loop_info info
;
1698 memset(&info
, 0, sizeof(info
));
1699 info
.lo_number
= info64
->lo_number
;
1700 info
.lo_device
= info64
->lo_device
;
1701 info
.lo_inode
= info64
->lo_inode
;
1702 info
.lo_rdevice
= info64
->lo_rdevice
;
1703 info
.lo_offset
= info64
->lo_offset
;
1704 info
.lo_encrypt_type
= info64
->lo_encrypt_type
;
1705 info
.lo_encrypt_key_size
= info64
->lo_encrypt_key_size
;
1706 info
.lo_flags
= info64
->lo_flags
;
1707 info
.lo_init
[0] = info64
->lo_init
[0];
1708 info
.lo_init
[1] = info64
->lo_init
[1];
1709 if (info
.lo_encrypt_type
== LO_CRYPT_CRYPTOAPI
)
1710 memcpy(info
.lo_name
, info64
->lo_crypt_name
, LO_NAME_SIZE
);
1712 memcpy(info
.lo_name
, info64
->lo_file_name
, LO_NAME_SIZE
);
1713 memcpy(info
.lo_encrypt_key
, info64
->lo_encrypt_key
, LO_KEY_SIZE
);
1715 /* error in case values were truncated */
1716 if (info
.lo_device
!= info64
->lo_device
||
1717 info
.lo_rdevice
!= info64
->lo_rdevice
||
1718 info
.lo_inode
!= info64
->lo_inode
||
1719 info
.lo_offset
!= info64
->lo_offset
||
1720 info
.lo_init
[0] != info64
->lo_init
[0] ||
1721 info
.lo_init
[1] != info64
->lo_init
[1])
1724 if (copy_to_user(arg
, &info
, sizeof(info
)))
1730 loop_set_status_compat(struct loop_device
*lo
,
1731 const struct compat_loop_info __user
*arg
)
1733 struct loop_info64 info64
;
1736 ret
= loop_info64_from_compat(arg
, &info64
);
1739 return loop_set_status(lo
, &info64
);
1743 loop_get_status_compat(struct loop_device
*lo
,
1744 struct compat_loop_info __user
*arg
)
1746 struct loop_info64 info64
;
1751 err
= loop_get_status(lo
, &info64
);
1753 err
= loop_info64_to_compat(&info64
, arg
);
1757 static int lo_compat_ioctl(struct block_device
*bdev
, fmode_t mode
,
1758 unsigned int cmd
, unsigned long arg
)
1760 struct loop_device
*lo
= bdev
->bd_disk
->private_data
;
1764 case LOOP_SET_STATUS
:
1765 err
= loop_set_status_compat(lo
,
1766 (const struct compat_loop_info __user
*)arg
);
1768 case LOOP_GET_STATUS
:
1769 err
= loop_get_status_compat(lo
,
1770 (struct compat_loop_info __user
*)arg
);
1772 case LOOP_SET_CAPACITY
:
1774 case LOOP_GET_STATUS64
:
1775 case LOOP_SET_STATUS64
:
1776 arg
= (unsigned long) compat_ptr(arg
);
1779 case LOOP_CHANGE_FD
:
1780 case LOOP_SET_BLOCK_SIZE
:
1781 case LOOP_SET_DIRECT_IO
:
1782 err
= lo_ioctl(bdev
, mode
, cmd
, arg
);
1792 static int lo_open(struct block_device
*bdev
, fmode_t mode
)
1794 struct loop_device
*lo
;
1797 err
= mutex_lock_killable(&loop_ctl_mutex
);
1800 lo
= bdev
->bd_disk
->private_data
;
1806 atomic_inc(&lo
->lo_refcnt
);
1808 mutex_unlock(&loop_ctl_mutex
);
1812 static void lo_release(struct gendisk
*disk
, fmode_t mode
)
1814 struct loop_device
*lo
;
1816 mutex_lock(&loop_ctl_mutex
);
1817 lo
= disk
->private_data
;
1818 if (atomic_dec_return(&lo
->lo_refcnt
))
1821 if (lo
->lo_flags
& LO_FLAGS_AUTOCLEAR
) {
1822 if (lo
->lo_state
!= Lo_bound
)
1824 lo
->lo_state
= Lo_rundown
;
1825 mutex_unlock(&loop_ctl_mutex
);
1827 * In autoclear mode, stop the loop thread
1828 * and remove configuration after last close.
1830 __loop_clr_fd(lo
, true);
1832 } else if (lo
->lo_state
== Lo_bound
) {
1834 * Otherwise keep thread (if running) and config,
1835 * but flush possible ongoing bios in thread.
1837 blk_mq_freeze_queue(lo
->lo_queue
);
1838 blk_mq_unfreeze_queue(lo
->lo_queue
);
1842 mutex_unlock(&loop_ctl_mutex
);
1845 static const struct block_device_operations lo_fops
= {
1846 .owner
= THIS_MODULE
,
1848 .release
= lo_release
,
1850 #ifdef CONFIG_COMPAT
1851 .compat_ioctl
= lo_compat_ioctl
,
1856 * And now the modules code and kernel interface.
1858 static int max_loop
;
1859 module_param(max_loop
, int, 0444);
1860 MODULE_PARM_DESC(max_loop
, "Maximum number of loop devices");
1861 module_param(max_part
, int, 0444);
1862 MODULE_PARM_DESC(max_part
, "Maximum number of partitions per loop device");
1863 MODULE_LICENSE("GPL");
1864 MODULE_ALIAS_BLOCKDEV_MAJOR(LOOP_MAJOR
);
1866 int loop_register_transfer(struct loop_func_table
*funcs
)
1868 unsigned int n
= funcs
->number
;
1870 if (n
>= MAX_LO_CRYPT
|| xfer_funcs
[n
])
1872 xfer_funcs
[n
] = funcs
;
1876 static int unregister_transfer_cb(int id
, void *ptr
, void *data
)
1878 struct loop_device
*lo
= ptr
;
1879 struct loop_func_table
*xfer
= data
;
1881 mutex_lock(&loop_ctl_mutex
);
1882 if (lo
->lo_encryption
== xfer
)
1883 loop_release_xfer(lo
);
1884 mutex_unlock(&loop_ctl_mutex
);
1888 int loop_unregister_transfer(int number
)
1890 unsigned int n
= number
;
1891 struct loop_func_table
*xfer
;
1893 if (n
== 0 || n
>= MAX_LO_CRYPT
|| (xfer
= xfer_funcs
[n
]) == NULL
)
1896 xfer_funcs
[n
] = NULL
;
1897 idr_for_each(&loop_index_idr
, &unregister_transfer_cb
, xfer
);
1901 EXPORT_SYMBOL(loop_register_transfer
);
1902 EXPORT_SYMBOL(loop_unregister_transfer
);
1904 static blk_status_t
loop_queue_rq(struct blk_mq_hw_ctx
*hctx
,
1905 const struct blk_mq_queue_data
*bd
)
1907 struct request
*rq
= bd
->rq
;
1908 struct loop_cmd
*cmd
= blk_mq_rq_to_pdu(rq
);
1909 struct loop_device
*lo
= rq
->q
->queuedata
;
1911 blk_mq_start_request(rq
);
1913 if (lo
->lo_state
!= Lo_bound
)
1914 return BLK_STS_IOERR
;
1916 switch (req_op(rq
)) {
1918 case REQ_OP_DISCARD
:
1919 case REQ_OP_WRITE_ZEROES
:
1920 cmd
->use_aio
= false;
1923 cmd
->use_aio
= lo
->use_dio
;
1927 /* always use the first bio's css */
1928 #ifdef CONFIG_BLK_CGROUP
1929 if (cmd
->use_aio
&& rq
->bio
&& rq
->bio
->bi_blkg
) {
1930 cmd
->css
= &bio_blkcg(rq
->bio
)->css
;
1935 kthread_queue_work(&lo
->worker
, &cmd
->work
);
1940 static void loop_handle_cmd(struct loop_cmd
*cmd
)
1942 struct request
*rq
= blk_mq_rq_from_pdu(cmd
);
1943 const bool write
= op_is_write(req_op(rq
));
1944 struct loop_device
*lo
= rq
->q
->queuedata
;
1947 if (write
&& (lo
->lo_flags
& LO_FLAGS_READ_ONLY
)) {
1952 ret
= do_req_filebacked(lo
, rq
);
1954 /* complete non-aio request */
1955 if (!cmd
->use_aio
|| ret
) {
1956 cmd
->ret
= ret
? -EIO
: 0;
1957 blk_mq_complete_request(rq
);
1961 static void loop_queue_work(struct kthread_work
*work
)
1963 struct loop_cmd
*cmd
=
1964 container_of(work
, struct loop_cmd
, work
);
1966 loop_handle_cmd(cmd
);
1969 static int loop_init_request(struct blk_mq_tag_set
*set
, struct request
*rq
,
1970 unsigned int hctx_idx
, unsigned int numa_node
)
1972 struct loop_cmd
*cmd
= blk_mq_rq_to_pdu(rq
);
1974 kthread_init_work(&cmd
->work
, loop_queue_work
);
1978 static const struct blk_mq_ops loop_mq_ops
= {
1979 .queue_rq
= loop_queue_rq
,
1980 .init_request
= loop_init_request
,
1981 .complete
= lo_complete_rq
,
1984 static int loop_add(struct loop_device
**l
, int i
)
1986 struct loop_device
*lo
;
1987 struct gendisk
*disk
;
1991 lo
= kzalloc(sizeof(*lo
), GFP_KERNEL
);
1995 lo
->lo_state
= Lo_unbound
;
1997 /* allocate id, if @id >= 0, we're requesting that specific id */
1999 err
= idr_alloc(&loop_index_idr
, lo
, i
, i
+ 1, GFP_KERNEL
);
2003 err
= idr_alloc(&loop_index_idr
, lo
, 0, 0, GFP_KERNEL
);
2010 lo
->tag_set
.ops
= &loop_mq_ops
;
2011 lo
->tag_set
.nr_hw_queues
= 1;
2012 lo
->tag_set
.queue_depth
= 128;
2013 lo
->tag_set
.numa_node
= NUMA_NO_NODE
;
2014 lo
->tag_set
.cmd_size
= sizeof(struct loop_cmd
);
2015 lo
->tag_set
.flags
= BLK_MQ_F_SHOULD_MERGE
;
2016 lo
->tag_set
.driver_data
= lo
;
2018 err
= blk_mq_alloc_tag_set(&lo
->tag_set
);
2022 lo
->lo_queue
= blk_mq_init_queue(&lo
->tag_set
);
2023 if (IS_ERR(lo
->lo_queue
)) {
2024 err
= PTR_ERR(lo
->lo_queue
);
2025 goto out_cleanup_tags
;
2027 lo
->lo_queue
->queuedata
= lo
;
2029 blk_queue_max_hw_sectors(lo
->lo_queue
, BLK_DEF_MAX_SECTORS
);
2032 * By default, we do buffer IO, so it doesn't make sense to enable
2033 * merge because the I/O submitted to backing file is handled page by
2034 * page. For directio mode, merge does help to dispatch bigger request
2035 * to underlayer disk. We will enable merge once directio is enabled.
2037 blk_queue_flag_set(QUEUE_FLAG_NOMERGES
, lo
->lo_queue
);
2040 disk
= lo
->lo_disk
= alloc_disk(1 << part_shift
);
2042 goto out_free_queue
;
2045 * Disable partition scanning by default. The in-kernel partition
2046 * scanning can be requested individually per-device during its
2047 * setup. Userspace can always add and remove partitions from all
2048 * devices. The needed partition minors are allocated from the
2049 * extended minor space, the main loop device numbers will continue
2050 * to match the loop minors, regardless of the number of partitions
2053 * If max_part is given, partition scanning is globally enabled for
2054 * all loop devices. The minors for the main loop devices will be
2055 * multiples of max_part.
2057 * Note: Global-for-all-devices, set-only-at-init, read-only module
2058 * parameteters like 'max_loop' and 'max_part' make things needlessly
2059 * complicated, are too static, inflexible and may surprise
2060 * userspace tools. Parameters like this in general should be avoided.
2063 disk
->flags
|= GENHD_FL_NO_PART_SCAN
;
2064 disk
->flags
|= GENHD_FL_EXT_DEVT
;
2065 atomic_set(&lo
->lo_refcnt
, 0);
2067 spin_lock_init(&lo
->lo_lock
);
2068 disk
->major
= LOOP_MAJOR
;
2069 disk
->first_minor
= i
<< part_shift
;
2070 disk
->fops
= &lo_fops
;
2071 disk
->private_data
= lo
;
2072 disk
->queue
= lo
->lo_queue
;
2073 sprintf(disk
->disk_name
, "loop%d", i
);
2076 return lo
->lo_number
;
2079 blk_cleanup_queue(lo
->lo_queue
);
2081 blk_mq_free_tag_set(&lo
->tag_set
);
2083 idr_remove(&loop_index_idr
, i
);
2090 static void loop_remove(struct loop_device
*lo
)
2092 del_gendisk(lo
->lo_disk
);
2093 blk_cleanup_queue(lo
->lo_queue
);
2094 blk_mq_free_tag_set(&lo
->tag_set
);
2095 put_disk(lo
->lo_disk
);
2099 static int find_free_cb(int id
, void *ptr
, void *data
)
2101 struct loop_device
*lo
= ptr
;
2102 struct loop_device
**l
= data
;
2104 if (lo
->lo_state
== Lo_unbound
) {
2111 static int loop_lookup(struct loop_device
**l
, int i
)
2113 struct loop_device
*lo
;
2119 err
= idr_for_each(&loop_index_idr
, &find_free_cb
, &lo
);
2122 ret
= lo
->lo_number
;
2127 /* lookup and return a specific i */
2128 lo
= idr_find(&loop_index_idr
, i
);
2131 ret
= lo
->lo_number
;
2137 static struct kobject
*loop_probe(dev_t dev
, int *part
, void *data
)
2139 struct loop_device
*lo
;
2140 struct kobject
*kobj
;
2143 mutex_lock(&loop_ctl_mutex
);
2144 err
= loop_lookup(&lo
, MINOR(dev
) >> part_shift
);
2146 err
= loop_add(&lo
, MINOR(dev
) >> part_shift
);
2150 kobj
= get_disk_and_module(lo
->lo_disk
);
2151 mutex_unlock(&loop_ctl_mutex
);
2157 static long loop_control_ioctl(struct file
*file
, unsigned int cmd
,
2160 struct loop_device
*lo
;
2163 ret
= mutex_lock_killable(&loop_ctl_mutex
);
2170 ret
= loop_lookup(&lo
, parm
);
2175 ret
= loop_add(&lo
, parm
);
2177 case LOOP_CTL_REMOVE
:
2178 ret
= loop_lookup(&lo
, parm
);
2181 if (lo
->lo_state
!= Lo_unbound
) {
2185 if (atomic_read(&lo
->lo_refcnt
) > 0) {
2189 lo
->lo_disk
->private_data
= NULL
;
2190 idr_remove(&loop_index_idr
, lo
->lo_number
);
2193 case LOOP_CTL_GET_FREE
:
2194 ret
= loop_lookup(&lo
, -1);
2197 ret
= loop_add(&lo
, -1);
2199 mutex_unlock(&loop_ctl_mutex
);
2204 static const struct file_operations loop_ctl_fops
= {
2205 .open
= nonseekable_open
,
2206 .unlocked_ioctl
= loop_control_ioctl
,
2207 .compat_ioctl
= loop_control_ioctl
,
2208 .owner
= THIS_MODULE
,
2209 .llseek
= noop_llseek
,
2212 static struct miscdevice loop_misc
= {
2213 .minor
= LOOP_CTRL_MINOR
,
2214 .name
= "loop-control",
2215 .fops
= &loop_ctl_fops
,
2218 MODULE_ALIAS_MISCDEV(LOOP_CTRL_MINOR
);
2219 MODULE_ALIAS("devname:loop-control");
2221 static int __init
loop_init(void)
2224 unsigned long range
;
2225 struct loop_device
*lo
;
2230 part_shift
= fls(max_part
);
2233 * Adjust max_part according to part_shift as it is exported
2234 * to user space so that user can decide correct minor number
2235 * if [s]he want to create more devices.
2237 * Note that -1 is required because partition 0 is reserved
2238 * for the whole disk.
2240 max_part
= (1UL << part_shift
) - 1;
2243 if ((1UL << part_shift
) > DISK_MAX_PARTS
) {
2248 if (max_loop
> 1UL << (MINORBITS
- part_shift
)) {
2254 * If max_loop is specified, create that many devices upfront.
2255 * This also becomes a hard limit. If max_loop is not specified,
2256 * create CONFIG_BLK_DEV_LOOP_MIN_COUNT loop devices at module
2257 * init time. Loop devices can be requested on-demand with the
2258 * /dev/loop-control interface, or be instantiated by accessing
2259 * a 'dead' device node.
2263 range
= max_loop
<< part_shift
;
2265 nr
= CONFIG_BLK_DEV_LOOP_MIN_COUNT
;
2266 range
= 1UL << MINORBITS
;
2269 err
= misc_register(&loop_misc
);
2274 if (register_blkdev(LOOP_MAJOR
, "loop")) {
2279 blk_register_region(MKDEV(LOOP_MAJOR
, 0), range
,
2280 THIS_MODULE
, loop_probe
, NULL
, NULL
);
2282 /* pre-create number of devices given by config or max_loop */
2283 mutex_lock(&loop_ctl_mutex
);
2284 for (i
= 0; i
< nr
; i
++)
2286 mutex_unlock(&loop_ctl_mutex
);
2288 printk(KERN_INFO
"loop: module loaded\n");
2292 misc_deregister(&loop_misc
);
2297 static int loop_exit_cb(int id
, void *ptr
, void *data
)
2299 struct loop_device
*lo
= ptr
;
2305 static void __exit
loop_exit(void)
2307 unsigned long range
;
2309 range
= max_loop
? max_loop
<< part_shift
: 1UL << MINORBITS
;
2311 idr_for_each(&loop_index_idr
, &loop_exit_cb
, NULL
);
2312 idr_destroy(&loop_index_idr
);
2314 blk_unregister_region(MKDEV(LOOP_MAJOR
, 0), range
);
2315 unregister_blkdev(LOOP_MAJOR
, "loop");
2317 misc_deregister(&loop_misc
);
2320 module_init(loop_init
);
2321 module_exit(loop_exit
);
2324 static int __init
max_loop_setup(char *str
)
2326 max_loop
= simple_strtol(str
, NULL
, 0);
2330 __setup("max_loop=", max_loop_setup
);