1 // SPDX-License-Identifier: GPL-2.0-only
3 * mm.c - Micro Memory(tm) PCI memory board block device driver - v2.3
5 * (C) 2001 San Mehat <nettwerk@valinux.com>
6 * (C) 2001 Johannes Erdfelt <jerdfelt@valinux.com>
7 * (C) 2001 NeilBrown <neilb@cse.unsw.edu.au>
9 * This driver for the Micro Memory PCI Memory Module with Battery Backup
10 * is Copyright Micro Memory Inc 2001-2002. All rights reserved.
12 * This driver provides a standard block device interface for Micro Memory(tm)
13 * PCI based RAM boards.
14 * 10/05/01: Phap Nguyen - Rebuilt the driver
15 * 10/22/01: Phap Nguyen - v2.1 Added disk partitioning
16 * 29oct2001:NeilBrown - Use make_request_fn instead of request_fn
17 * - use stand disk partitioning (so fdisk works).
18 * 08nov2001:NeilBrown - change driver name from "mm" to "umem"
19 * - incorporate into main kernel
20 * 08apr2002:NeilBrown - Move some of interrupt handle to tasklet
21 * - use spin_lock_bh instead of _irq
22 * - Never block on make_request. queue
24 * - unregister umem from devfs at mod unload
25 * - Change version to 2.3
26 * 07Nov2001:Phap Nguyen - Select pci read command: 06, 12, 15 (Decimal)
27 * 07Jan2002: P. Nguyen - Used PCI Memory Write & Invalidate for DMA
28 * 15May2002:NeilBrown - convert to bio for 2.5
29 * 17May2002:NeilBrown - remove init_mem initialisation. Instead detect
30 * - a sequence of writes that cover the card, and
31 * - set initialised bit then.
34 #undef DEBUG /* #define DEBUG if you want debugging info (pr_debug) */
36 #include <linux/bio.h>
37 #include <linux/kernel.h>
39 #include <linux/mman.h>
40 #include <linux/gfp.h>
41 #include <linux/ioctl.h>
42 #include <linux/module.h>
43 #include <linux/init.h>
44 #include <linux/interrupt.h>
45 #include <linux/timer.h>
46 #include <linux/pci.h>
47 #include <linux/dma-mapping.h>
49 #include <linux/fcntl.h> /* O_ACCMODE */
50 #include <linux/hdreg.h> /* HDIO_GETGEO */
54 #include <linux/uaccess.h>
58 #define MM_RAHEAD 2 /* two sectors */
59 #define MM_BLKSIZE 1024 /* 1k blocks */
60 #define MM_HARDSECT 512 /* 512-byte hardware sectors */
61 #define MM_SHIFT 6 /* max 64 partitions on 4 cards */
67 #define DRIVER_NAME "umem"
68 #define DRIVER_VERSION "v2.3"
69 #define DRIVER_AUTHOR "San Mehat, Johannes Erdfelt, NeilBrown"
70 #define DRIVER_DESC "Micro Memory(tm) PCI memory board block driver"
73 /* #define HW_TRACE(x) writeb(x,cards[0].csr_remap + MEMCTRLSTATUS_MAGIC) */
76 #define DEBUG_LED_ON_TRANSFER 0x01
77 #define DEBUG_BATTERY_POLLING 0x02
79 module_param(debug
, int, 0644);
80 MODULE_PARM_DESC(debug
, "Debug bitmask");
82 static int pci_read_cmd
= 0x0C; /* Read Multiple */
83 module_param(pci_read_cmd
, int, 0);
84 MODULE_PARM_DESC(pci_read_cmd
, "PCI read command");
86 static int pci_write_cmd
= 0x0F; /* Write and Invalidate */
87 module_param(pci_write_cmd
, int, 0);
88 MODULE_PARM_DESC(pci_write_cmd
, "PCI write command");
94 #include <linux/blkdev.h>
95 #include <linux/blkpg.h>
100 unsigned char __iomem
*csr_remap
;
101 unsigned int mm_size
; /* size in kbytes */
103 unsigned int init_size
; /* initial segment, in sectors,
107 struct bio
*bio
, *currentbio
, **biotail
;
108 struct bvec_iter current_iter
;
110 struct request_queue
*queue
;
114 struct mm_dma_desc
*desc
;
116 struct bio
*bio
, **biotail
;
117 struct bvec_iter iter
;
119 #define DESC_PER_PAGE ((PAGE_SIZE*2)/sizeof(struct mm_dma_desc))
123 struct tasklet_struct tasklet
;
124 unsigned int dma_status
;
129 unsigned long last_change
;
138 static struct cardinfo cards
[MM_MAXCARDS
];
139 static struct timer_list battery_timer
;
141 static int num_cards
;
143 static struct gendisk
*mm_gendisk
[MM_MAXCARDS
];
145 static void check_batteries(struct cardinfo
*card
);
147 static int get_userbit(struct cardinfo
*card
, int bit
)
151 led
= readb(card
->csr_remap
+ MEMCTRLCMD_LEDCTRL
);
155 static int set_userbit(struct cardinfo
*card
, int bit
, unsigned char state
)
159 led
= readb(card
->csr_remap
+ MEMCTRLCMD_LEDCTRL
);
164 writeb(led
, card
->csr_remap
+ MEMCTRLCMD_LEDCTRL
);
170 * NOTE: For the power LED, use the LED_POWER_* macros since they differ
172 static void set_led(struct cardinfo
*card
, int shift
, unsigned char state
)
176 led
= readb(card
->csr_remap
+ MEMCTRLCMD_LEDCTRL
);
177 if (state
== LED_FLIP
)
180 led
&= ~(0x03 << shift
);
181 led
|= (state
<< shift
);
183 writeb(led
, card
->csr_remap
+ MEMCTRLCMD_LEDCTRL
);
188 static void dump_regs(struct cardinfo
*card
)
194 for (i
= 0; i
< 8; i
++) {
195 printk(KERN_DEBUG
"%p ", p
);
197 for (i1
= 0; i1
< 16; i1
++)
198 printk("%02x ", *p
++);
205 static void dump_dmastat(struct cardinfo
*card
, unsigned int dmastat
)
207 dev_printk(KERN_DEBUG
, &card
->dev
->dev
, "DMAstat - ");
208 if (dmastat
& DMASCR_ANY_ERR
)
209 printk(KERN_CONT
"ANY_ERR ");
210 if (dmastat
& DMASCR_MBE_ERR
)
211 printk(KERN_CONT
"MBE_ERR ");
212 if (dmastat
& DMASCR_PARITY_ERR_REP
)
213 printk(KERN_CONT
"PARITY_ERR_REP ");
214 if (dmastat
& DMASCR_PARITY_ERR_DET
)
215 printk(KERN_CONT
"PARITY_ERR_DET ");
216 if (dmastat
& DMASCR_SYSTEM_ERR_SIG
)
217 printk(KERN_CONT
"SYSTEM_ERR_SIG ");
218 if (dmastat
& DMASCR_TARGET_ABT
)
219 printk(KERN_CONT
"TARGET_ABT ");
220 if (dmastat
& DMASCR_MASTER_ABT
)
221 printk(KERN_CONT
"MASTER_ABT ");
222 if (dmastat
& DMASCR_CHAIN_COMPLETE
)
223 printk(KERN_CONT
"CHAIN_COMPLETE ");
224 if (dmastat
& DMASCR_DMA_COMPLETE
)
225 printk(KERN_CONT
"DMA_COMPLETE ");
230 * Theory of request handling
232 * Each bio is assigned to one mm_dma_desc - which may not be enough FIXME
233 * We have two pages of mm_dma_desc, holding about 64 descriptors
234 * each. These are allocated at init time.
235 * One page is "Ready" and is either full, or can have request added.
236 * The other page might be "Active", which DMA is happening on it.
238 * Whenever IO on the active page completes, the Ready page is activated
239 * and the ex-Active page is clean out and made Ready.
240 * Otherwise the Ready page is only activated when it becomes full.
242 * If a request arrives while both pages a full, it is queued, and b_rdev is
243 * overloaded to record whether it was a read or a write.
245 * The interrupt handler only polls the device to clear the interrupt.
246 * The processing of the result is done in a tasklet.
249 static void mm_start_io(struct cardinfo
*card
)
251 /* we have the lock, we know there is
252 * no IO active, and we know that card->Active
255 struct mm_dma_desc
*desc
;
256 struct mm_page
*page
;
259 /* make the last descriptor end the chain */
260 page
= &card
->mm_pages
[card
->Active
];
261 pr_debug("start_io: %d %d->%d\n",
262 card
->Active
, page
->headcnt
, page
->cnt
- 1);
263 desc
= &page
->desc
[page
->cnt
-1];
265 desc
->control_bits
|= cpu_to_le32(DMASCR_CHAIN_COMP_EN
);
266 desc
->control_bits
&= ~cpu_to_le32(DMASCR_CHAIN_EN
);
267 desc
->sem_control_bits
= desc
->control_bits
;
270 if (debug
& DEBUG_LED_ON_TRANSFER
)
271 set_led(card
, LED_REMOVE
, LED_ON
);
273 desc
= &page
->desc
[page
->headcnt
];
274 writel(0, card
->csr_remap
+ DMA_PCI_ADDR
);
275 writel(0, card
->csr_remap
+ DMA_PCI_ADDR
+ 4);
277 writel(0, card
->csr_remap
+ DMA_LOCAL_ADDR
);
278 writel(0, card
->csr_remap
+ DMA_LOCAL_ADDR
+ 4);
280 writel(0, card
->csr_remap
+ DMA_TRANSFER_SIZE
);
281 writel(0, card
->csr_remap
+ DMA_TRANSFER_SIZE
+ 4);
283 writel(0, card
->csr_remap
+ DMA_SEMAPHORE_ADDR
);
284 writel(0, card
->csr_remap
+ DMA_SEMAPHORE_ADDR
+ 4);
286 offset
= ((char *)desc
) - ((char *)page
->desc
);
287 writel(cpu_to_le32((page
->page_dma
+offset
) & 0xffffffff),
288 card
->csr_remap
+ DMA_DESCRIPTOR_ADDR
);
289 /* Force the value to u64 before shifting otherwise >> 32 is undefined C
290 * and on some ports will do nothing ! */
291 writel(cpu_to_le32(((u64
)page
->page_dma
)>>32),
292 card
->csr_remap
+ DMA_DESCRIPTOR_ADDR
+ 4);
295 writel(cpu_to_le32(DMASCR_GO
| DMASCR_CHAIN_EN
| pci_cmds
),
296 card
->csr_remap
+ DMA_STATUS_CTRL
);
299 static int add_bio(struct cardinfo
*card
);
301 static void activate(struct cardinfo
*card
)
303 /* if No page is Active, and Ready is
304 * not empty, then switch Ready page
305 * to active and start IO.
306 * Then add any bh's that are available to Ready
310 while (add_bio(card
))
313 if (card
->Active
== -1 &&
314 card
->mm_pages
[card
->Ready
].cnt
> 0) {
315 card
->Active
= card
->Ready
;
316 card
->Ready
= 1-card
->Ready
;
320 } while (card
->Active
== -1 && add_bio(card
));
323 static inline void reset_page(struct mm_page
*page
)
328 page
->biotail
= &page
->bio
;
332 * If there is room on Ready page, take
333 * one bh off list and add it.
334 * return 1 if there was room, else 0.
336 static int add_bio(struct cardinfo
*card
)
339 struct mm_dma_desc
*desc
;
340 dma_addr_t dma_handle
;
345 bio
= card
->currentbio
;
346 if (!bio
&& card
->bio
) {
347 card
->currentbio
= card
->bio
;
348 card
->current_iter
= card
->bio
->bi_iter
;
349 card
->bio
= card
->bio
->bi_next
;
350 if (card
->bio
== NULL
)
351 card
->biotail
= &card
->bio
;
352 card
->currentbio
->bi_next
= NULL
;
358 if (card
->mm_pages
[card
->Ready
].cnt
>= DESC_PER_PAGE
)
361 vec
= bio_iter_iovec(bio
, card
->current_iter
);
363 dma_handle
= dma_map_page(&card
->dev
->dev
,
367 bio_op(bio
) == REQ_OP_READ
?
368 DMA_FROM_DEVICE
: DMA_TO_DEVICE
);
370 p
= &card
->mm_pages
[card
->Ready
];
371 desc
= &p
->desc
[p
->cnt
];
374 p
->iter
= card
->current_iter
;
375 if ((p
->biotail
) != &bio
->bi_next
) {
377 p
->biotail
= &(bio
->bi_next
);
381 desc
->data_dma_handle
= dma_handle
;
383 desc
->pci_addr
= cpu_to_le64((u64
)desc
->data_dma_handle
);
384 desc
->local_addr
= cpu_to_le64(card
->current_iter
.bi_sector
<< 9);
385 desc
->transfer_size
= cpu_to_le32(vec
.bv_len
);
386 offset
= (((char *)&desc
->sem_control_bits
) - ((char *)p
->desc
));
387 desc
->sem_addr
= cpu_to_le64((u64
)(p
->page_dma
+offset
));
388 desc
->zero1
= desc
->zero2
= 0;
389 offset
= (((char *)(desc
+1)) - ((char *)p
->desc
));
390 desc
->next_desc_addr
= cpu_to_le64(p
->page_dma
+offset
);
391 desc
->control_bits
= cpu_to_le32(DMASCR_GO
|DMASCR_ERR_INT_EN
|
392 DMASCR_PARITY_INT_EN
|
396 if (bio_op(bio
) == REQ_OP_WRITE
)
397 desc
->control_bits
|= cpu_to_le32(DMASCR_TRANSFER_READ
);
398 desc
->sem_control_bits
= desc
->control_bits
;
401 bio_advance_iter(bio
, &card
->current_iter
, vec
.bv_len
);
402 if (!card
->current_iter
.bi_size
)
403 card
->currentbio
= NULL
;
408 static void process_page(unsigned long data
)
410 /* check if any of the requests in the page are DMA_COMPLETE,
411 * and deal with them appropriately.
412 * If we find a descriptor without DMA_COMPLETE in the semaphore, then
413 * dma must have hit an error on that descriptor, so use dma_status
414 * instead and assume that all following descriptors must be re-tried.
416 struct mm_page
*page
;
417 struct bio
*return_bio
= NULL
;
418 struct cardinfo
*card
= (struct cardinfo
*)data
;
419 unsigned int dma_status
= card
->dma_status
;
421 spin_lock(&card
->lock
);
422 if (card
->Active
< 0)
424 page
= &card
->mm_pages
[card
->Active
];
426 while (page
->headcnt
< page
->cnt
) {
427 struct bio
*bio
= page
->bio
;
428 struct mm_dma_desc
*desc
= &page
->desc
[page
->headcnt
];
429 int control
= le32_to_cpu(desc
->sem_control_bits
);
433 if (!(control
& DMASCR_DMA_COMPLETE
)) {
434 control
= dma_status
;
439 vec
= bio_iter_iovec(bio
, page
->iter
);
440 bio_advance_iter(bio
, &page
->iter
, vec
.bv_len
);
442 if (!page
->iter
.bi_size
) {
443 page
->bio
= bio
->bi_next
;
445 page
->iter
= page
->bio
->bi_iter
;
448 dma_unmap_page(&card
->dev
->dev
, desc
->data_dma_handle
,
450 (control
& DMASCR_TRANSFER_READ
) ?
451 DMA_TO_DEVICE
: DMA_FROM_DEVICE
);
452 if (control
& DMASCR_HARD_ERROR
) {
454 bio
->bi_status
= BLK_STS_IOERR
;
455 dev_printk(KERN_WARNING
, &card
->dev
->dev
,
456 "I/O error on sector %d/%d\n",
457 le32_to_cpu(desc
->local_addr
)>>9,
458 le32_to_cpu(desc
->transfer_size
));
459 dump_dmastat(card
, control
);
460 } else if (op_is_write(bio_op(bio
)) &&
461 le32_to_cpu(desc
->local_addr
) >> 9 ==
463 card
->init_size
+= le32_to_cpu(desc
->transfer_size
) >> 9;
464 if (card
->init_size
>> 1 >= card
->mm_size
) {
465 dev_printk(KERN_INFO
, &card
->dev
->dev
,
466 "memory now initialised\n");
467 set_userbit(card
, MEMORY_INITIALIZED
, 1);
470 if (bio
!= page
->bio
) {
471 bio
->bi_next
= return_bio
;
479 if (debug
& DEBUG_LED_ON_TRANSFER
)
480 set_led(card
, LED_REMOVE
, LED_OFF
);
482 if (card
->check_batteries
) {
483 card
->check_batteries
= 0;
484 check_batteries(card
);
486 if (page
->headcnt
>= page
->cnt
) {
491 /* haven't finished with this one yet */
492 pr_debug("do some more\n");
496 spin_unlock(&card
->lock
);
499 struct bio
*bio
= return_bio
;
501 return_bio
= bio
->bi_next
;
507 static void mm_unplug(struct blk_plug_cb
*cb
, bool from_schedule
)
509 struct cardinfo
*card
= cb
->data
;
511 spin_lock_irq(&card
->lock
);
513 spin_unlock_irq(&card
->lock
);
517 static int mm_check_plugged(struct cardinfo
*card
)
519 return !!blk_check_plugged(mm_unplug
, card
, sizeof(struct blk_plug_cb
));
522 static blk_qc_t
mm_make_request(struct request_queue
*q
, struct bio
*bio
)
524 struct cardinfo
*card
= q
->queuedata
;
525 pr_debug("mm_make_request %llu %u\n",
526 (unsigned long long)bio
->bi_iter
.bi_sector
,
527 bio
->bi_iter
.bi_size
);
529 blk_queue_split(q
, &bio
);
531 spin_lock_irq(&card
->lock
);
532 *card
->biotail
= bio
;
534 card
->biotail
= &bio
->bi_next
;
535 if (op_is_sync(bio
->bi_opf
) || !mm_check_plugged(card
))
537 spin_unlock_irq(&card
->lock
);
539 return BLK_QC_T_NONE
;
542 static irqreturn_t
mm_interrupt(int irq
, void *__card
)
544 struct cardinfo
*card
= (struct cardinfo
*) __card
;
545 unsigned int dma_status
;
546 unsigned short cfg_status
;
550 dma_status
= le32_to_cpu(readl(card
->csr_remap
+ DMA_STATUS_CTRL
));
552 if (!(dma_status
& (DMASCR_ERROR_MASK
| DMASCR_CHAIN_COMPLETE
))) {
553 /* interrupt wasn't for me ... */
557 /* clear COMPLETION interrupts */
558 if (card
->flags
& UM_FLAG_NO_BYTE_STATUS
)
559 writel(cpu_to_le32(DMASCR_DMA_COMPLETE
|DMASCR_CHAIN_COMPLETE
),
560 card
->csr_remap
+ DMA_STATUS_CTRL
);
562 writeb((DMASCR_DMA_COMPLETE
|DMASCR_CHAIN_COMPLETE
) >> 16,
563 card
->csr_remap
+ DMA_STATUS_CTRL
+ 2);
565 /* log errors and clear interrupt status */
566 if (dma_status
& DMASCR_ANY_ERR
) {
567 unsigned int data_log1
, data_log2
;
568 unsigned int addr_log1
, addr_log2
;
569 unsigned char stat
, count
, syndrome
, check
;
571 stat
= readb(card
->csr_remap
+ MEMCTRLCMD_ERRSTATUS
);
573 data_log1
= le32_to_cpu(readl(card
->csr_remap
+
575 data_log2
= le32_to_cpu(readl(card
->csr_remap
+
576 ERROR_DATA_LOG
+ 4));
577 addr_log1
= le32_to_cpu(readl(card
->csr_remap
+
579 addr_log2
= readb(card
->csr_remap
+ ERROR_ADDR_LOG
+ 4);
581 count
= readb(card
->csr_remap
+ ERROR_COUNT
);
582 syndrome
= readb(card
->csr_remap
+ ERROR_SYNDROME
);
583 check
= readb(card
->csr_remap
+ ERROR_CHECK
);
585 dump_dmastat(card
, dma_status
);
588 dev_printk(KERN_ERR
, &card
->dev
->dev
,
589 "Memory access error detected (err count %d)\n",
592 dev_printk(KERN_ERR
, &card
->dev
->dev
,
593 "Multi-bit EDC error\n");
595 dev_printk(KERN_ERR
, &card
->dev
->dev
,
596 "Fault Address 0x%02x%08x, Fault Data 0x%08x%08x\n",
597 addr_log2
, addr_log1
, data_log2
, data_log1
);
598 dev_printk(KERN_ERR
, &card
->dev
->dev
,
599 "Fault Check 0x%02x, Fault Syndrome 0x%02x\n",
602 writeb(0, card
->csr_remap
+ ERROR_COUNT
);
605 if (dma_status
& DMASCR_PARITY_ERR_REP
) {
606 dev_printk(KERN_ERR
, &card
->dev
->dev
,
607 "PARITY ERROR REPORTED\n");
608 pci_read_config_word(card
->dev
, PCI_STATUS
, &cfg_status
);
609 pci_write_config_word(card
->dev
, PCI_STATUS
, cfg_status
);
612 if (dma_status
& DMASCR_PARITY_ERR_DET
) {
613 dev_printk(KERN_ERR
, &card
->dev
->dev
,
614 "PARITY ERROR DETECTED\n");
615 pci_read_config_word(card
->dev
, PCI_STATUS
, &cfg_status
);
616 pci_write_config_word(card
->dev
, PCI_STATUS
, cfg_status
);
619 if (dma_status
& DMASCR_SYSTEM_ERR_SIG
) {
620 dev_printk(KERN_ERR
, &card
->dev
->dev
, "SYSTEM ERROR\n");
621 pci_read_config_word(card
->dev
, PCI_STATUS
, &cfg_status
);
622 pci_write_config_word(card
->dev
, PCI_STATUS
, cfg_status
);
625 if (dma_status
& DMASCR_TARGET_ABT
) {
626 dev_printk(KERN_ERR
, &card
->dev
->dev
, "TARGET ABORT\n");
627 pci_read_config_word(card
->dev
, PCI_STATUS
, &cfg_status
);
628 pci_write_config_word(card
->dev
, PCI_STATUS
, cfg_status
);
631 if (dma_status
& DMASCR_MASTER_ABT
) {
632 dev_printk(KERN_ERR
, &card
->dev
->dev
, "MASTER ABORT\n");
633 pci_read_config_word(card
->dev
, PCI_STATUS
, &cfg_status
);
634 pci_write_config_word(card
->dev
, PCI_STATUS
, cfg_status
);
637 /* and process the DMA descriptors */
638 card
->dma_status
= dma_status
;
639 tasklet_schedule(&card
->tasklet
);
647 * If both batteries are good, no LED
648 * If either battery has been warned, solid LED
649 * If both batteries are bad, flash the LED quickly
650 * If either battery is bad, flash the LED semi quickly
652 static void set_fault_to_battery_status(struct cardinfo
*card
)
654 if (card
->battery
[0].good
&& card
->battery
[1].good
)
655 set_led(card
, LED_FAULT
, LED_OFF
);
656 else if (card
->battery
[0].warned
|| card
->battery
[1].warned
)
657 set_led(card
, LED_FAULT
, LED_ON
);
658 else if (!card
->battery
[0].good
&& !card
->battery
[1].good
)
659 set_led(card
, LED_FAULT
, LED_FLASH_7_0
);
661 set_led(card
, LED_FAULT
, LED_FLASH_3_5
);
664 static void init_battery_timer(void);
666 static int check_battery(struct cardinfo
*card
, int battery
, int status
)
668 if (status
!= card
->battery
[battery
].good
) {
669 card
->battery
[battery
].good
= !card
->battery
[battery
].good
;
670 card
->battery
[battery
].last_change
= jiffies
;
672 if (card
->battery
[battery
].good
) {
673 dev_printk(KERN_ERR
, &card
->dev
->dev
,
674 "Battery %d now good\n", battery
+ 1);
675 card
->battery
[battery
].warned
= 0;
677 dev_printk(KERN_ERR
, &card
->dev
->dev
,
678 "Battery %d now FAILED\n", battery
+ 1);
681 } else if (!card
->battery
[battery
].good
&&
682 !card
->battery
[battery
].warned
&&
683 time_after_eq(jiffies
, card
->battery
[battery
].last_change
+
684 (HZ
* 60 * 60 * 5))) {
685 dev_printk(KERN_ERR
, &card
->dev
->dev
,
686 "Battery %d still FAILED after 5 hours\n", battery
+ 1);
687 card
->battery
[battery
].warned
= 1;
695 static void check_batteries(struct cardinfo
*card
)
697 /* NOTE: this must *never* be called while the card
698 * is doing (bus-to-card) DMA, or you will need the
701 unsigned char status
;
704 status
= readb(card
->csr_remap
+ MEMCTRLSTATUS_BATTERY
);
705 if (debug
& DEBUG_BATTERY_POLLING
)
706 dev_printk(KERN_DEBUG
, &card
->dev
->dev
,
707 "checking battery status, 1 = %s, 2 = %s\n",
708 (status
& BATTERY_1_FAILURE
) ? "FAILURE" : "OK",
709 (status
& BATTERY_2_FAILURE
) ? "FAILURE" : "OK");
711 ret1
= check_battery(card
, 0, !(status
& BATTERY_1_FAILURE
));
712 ret2
= check_battery(card
, 1, !(status
& BATTERY_2_FAILURE
));
715 set_fault_to_battery_status(card
);
718 static void check_all_batteries(struct timer_list
*unused
)
722 for (i
= 0; i
< num_cards
; i
++)
723 if (!(cards
[i
].flags
& UM_FLAG_NO_BATT
)) {
724 struct cardinfo
*card
= &cards
[i
];
725 spin_lock_bh(&card
->lock
);
726 if (card
->Active
>= 0)
727 card
->check_batteries
= 1;
729 check_batteries(card
);
730 spin_unlock_bh(&card
->lock
);
733 init_battery_timer();
736 static void init_battery_timer(void)
738 timer_setup(&battery_timer
, check_all_batteries
, 0);
739 battery_timer
.expires
= jiffies
+ (HZ
* 60);
740 add_timer(&battery_timer
);
743 static void del_battery_timer(void)
745 del_timer(&battery_timer
);
749 * Note no locks taken out here. In a worst case scenario, we could drop
750 * a chunk of system memory. But that should never happen, since validation
751 * happens at open or mount time, when locks are held.
753 * That's crap, since doing that while some partitions are opened
754 * or mounted will give you really nasty results.
756 static int mm_revalidate(struct gendisk
*disk
)
758 struct cardinfo
*card
= disk
->private_data
;
759 set_capacity(disk
, card
->mm_size
<< 1);
763 static int mm_getgeo(struct block_device
*bdev
, struct hd_geometry
*geo
)
765 struct cardinfo
*card
= bdev
->bd_disk
->private_data
;
766 int size
= card
->mm_size
* (1024 / MM_HARDSECT
);
769 * get geometry: we have to fake one... trim the size to a
770 * multiple of 2048 (1M): tell we have 32 sectors, 64 heads,
771 * whatever cylinders.
775 geo
->cylinders
= size
/ (geo
->heads
* geo
->sectors
);
779 static const struct block_device_operations mm_fops
= {
780 .owner
= THIS_MODULE
,
782 .revalidate_disk
= mm_revalidate
,
785 static int mm_pci_probe(struct pci_dev
*dev
, const struct pci_device_id
*id
)
788 struct cardinfo
*card
= &cards
[num_cards
];
789 unsigned char mem_present
;
790 unsigned char batt_status
;
791 unsigned int saved_bar
, data
;
792 unsigned long csr_base
;
793 unsigned long csr_len
;
795 static int printed_version
;
797 if (!printed_version
++)
798 printk(KERN_INFO DRIVER_VERSION
" : " DRIVER_DESC
"\n");
800 ret
= pci_enable_device(dev
);
804 pci_write_config_byte(dev
, PCI_LATENCY_TIMER
, 0xF8);
809 csr_base
= pci_resource_start(dev
, 0);
810 csr_len
= pci_resource_len(dev
, 0);
811 if (!csr_base
|| !csr_len
)
814 dev_printk(KERN_INFO
, &dev
->dev
,
815 "Micro Memory(tm) controller found (PCI Mem Module (Battery Backup))\n");
817 if (dma_set_mask(&dev
->dev
, DMA_BIT_MASK(64)) &&
818 dma_set_mask(&dev
->dev
, DMA_BIT_MASK(32))) {
819 dev_printk(KERN_WARNING
, &dev
->dev
, "NO suitable DMA found\n");
823 ret
= pci_request_regions(dev
, DRIVER_NAME
);
825 dev_printk(KERN_ERR
, &card
->dev
->dev
,
826 "Unable to request memory region\n");
830 card
->csr_remap
= ioremap(csr_base
, csr_len
);
831 if (!card
->csr_remap
) {
832 dev_printk(KERN_ERR
, &card
->dev
->dev
,
833 "Unable to remap memory region\n");
836 goto failed_remap_csr
;
839 dev_printk(KERN_INFO
, &card
->dev
->dev
,
840 "CSR 0x%08lx -> 0x%p (0x%lx)\n",
841 csr_base
, card
->csr_remap
, csr_len
);
843 switch (card
->dev
->device
) {
845 card
->flags
|= UM_FLAG_NO_BYTE_STATUS
| UM_FLAG_NO_BATTREG
;
850 card
->flags
|= UM_FLAG_NO_BYTE_STATUS
;
855 card
->flags
|= UM_FLAG_NO_BYTE_STATUS
|
856 UM_FLAG_NO_BATTREG
| UM_FLAG_NO_BATT
;
861 magic_number
= 0x100;
865 if (readb(card
->csr_remap
+ MEMCTRLSTATUS_MAGIC
) != magic_number
) {
866 dev_printk(KERN_ERR
, &card
->dev
->dev
, "Magic number invalid\n");
871 card
->mm_pages
[0].desc
= dma_alloc_coherent(&card
->dev
->dev
,
872 PAGE_SIZE
* 2, &card
->mm_pages
[0].page_dma
, GFP_KERNEL
);
873 card
->mm_pages
[1].desc
= dma_alloc_coherent(&card
->dev
->dev
,
874 PAGE_SIZE
* 2, &card
->mm_pages
[1].page_dma
, GFP_KERNEL
);
875 if (card
->mm_pages
[0].desc
== NULL
||
876 card
->mm_pages
[1].desc
== NULL
) {
877 dev_printk(KERN_ERR
, &card
->dev
->dev
, "alloc failed\n");
880 reset_page(&card
->mm_pages
[0]);
881 reset_page(&card
->mm_pages
[1]);
882 card
->Ready
= 0; /* page 0 is ready */
883 card
->Active
= -1; /* no page is active */
885 card
->biotail
= &card
->bio
;
886 spin_lock_init(&card
->lock
);
888 card
->queue
= blk_alloc_queue_node(GFP_KERNEL
, NUMA_NO_NODE
);
892 blk_queue_make_request(card
->queue
, mm_make_request
);
893 card
->queue
->queuedata
= card
;
895 tasklet_init(&card
->tasklet
, process_page
, (unsigned long)card
);
897 card
->check_batteries
= 0;
899 mem_present
= readb(card
->csr_remap
+ MEMCTRLSTATUS_MEMORY
);
900 switch (mem_present
) {
902 card
->mm_size
= 1024 * 128;
905 card
->mm_size
= 1024 * 256;
908 card
->mm_size
= 1024 * 512;
911 card
->mm_size
= 1024 * 1024;
914 card
->mm_size
= 1024 * 2048;
921 /* Clear the LED's we control */
922 set_led(card
, LED_REMOVE
, LED_OFF
);
923 set_led(card
, LED_FAULT
, LED_OFF
);
925 batt_status
= readb(card
->csr_remap
+ MEMCTRLSTATUS_BATTERY
);
927 card
->battery
[0].good
= !(batt_status
& BATTERY_1_FAILURE
);
928 card
->battery
[1].good
= !(batt_status
& BATTERY_2_FAILURE
);
929 card
->battery
[0].last_change
= card
->battery
[1].last_change
= jiffies
;
931 if (card
->flags
& UM_FLAG_NO_BATT
)
932 dev_printk(KERN_INFO
, &card
->dev
->dev
,
933 "Size %d KB\n", card
->mm_size
);
935 dev_printk(KERN_INFO
, &card
->dev
->dev
,
936 "Size %d KB, Battery 1 %s (%s), Battery 2 %s (%s)\n",
938 batt_status
& BATTERY_1_DISABLED
? "Disabled" : "Enabled",
939 card
->battery
[0].good
? "OK" : "FAILURE",
940 batt_status
& BATTERY_2_DISABLED
? "Disabled" : "Enabled",
941 card
->battery
[1].good
? "OK" : "FAILURE");
943 set_fault_to_battery_status(card
);
946 pci_read_config_dword(dev
, PCI_BASE_ADDRESS_1
, &saved_bar
);
948 pci_write_config_dword(dev
, PCI_BASE_ADDRESS_1
, data
);
949 pci_read_config_dword(dev
, PCI_BASE_ADDRESS_1
, &data
);
950 pci_write_config_dword(dev
, PCI_BASE_ADDRESS_1
, saved_bar
);
955 if (request_irq(dev
->irq
, mm_interrupt
, IRQF_SHARED
, DRIVER_NAME
,
957 dev_printk(KERN_ERR
, &card
->dev
->dev
,
958 "Unable to allocate IRQ\n");
963 dev_printk(KERN_INFO
, &card
->dev
->dev
,
964 "Window size %d bytes, IRQ %d\n", data
, dev
->irq
);
966 pci_set_drvdata(dev
, card
);
968 if (pci_write_cmd
!= 0x0F) /* If not Memory Write & Invalidate */
969 pci_write_cmd
= 0x07; /* then Memory Write command */
971 if (pci_write_cmd
& 0x08) { /* use Memory Write and Invalidate */
972 unsigned short cfg_command
;
973 pci_read_config_word(dev
, PCI_COMMAND
, &cfg_command
);
974 cfg_command
|= 0x10; /* Memory Write & Invalidate Enable */
975 pci_write_config_word(dev
, PCI_COMMAND
, cfg_command
);
977 pci_cmds
= (pci_read_cmd
<< 28) | (pci_write_cmd
<< 24);
981 if (!get_userbit(card
, MEMORY_INITIALIZED
)) {
982 dev_printk(KERN_INFO
, &card
->dev
->dev
,
983 "memory NOT initialized. Consider over-writing whole device.\n");
986 dev_printk(KERN_INFO
, &card
->dev
->dev
,
987 "memory already initialized\n");
988 card
->init_size
= card
->mm_size
;
992 writeb(EDC_STORE_CORRECT
, card
->csr_remap
+ MEMCTRLCMD_ERRCTRL
);
998 if (card
->mm_pages
[0].desc
)
999 dma_free_coherent(&card
->dev
->dev
, PAGE_SIZE
* 2,
1000 card
->mm_pages
[0].desc
,
1001 card
->mm_pages
[0].page_dma
);
1002 if (card
->mm_pages
[1].desc
)
1003 dma_free_coherent(&card
->dev
->dev
, PAGE_SIZE
* 2,
1004 card
->mm_pages
[1].desc
,
1005 card
->mm_pages
[1].page_dma
);
1007 iounmap(card
->csr_remap
);
1009 pci_release_regions(dev
);
1015 static void mm_pci_remove(struct pci_dev
*dev
)
1017 struct cardinfo
*card
= pci_get_drvdata(dev
);
1019 tasklet_kill(&card
->tasklet
);
1020 free_irq(dev
->irq
, card
);
1021 iounmap(card
->csr_remap
);
1023 if (card
->mm_pages
[0].desc
)
1024 dma_free_coherent(&card
->dev
->dev
, PAGE_SIZE
* 2,
1025 card
->mm_pages
[0].desc
,
1026 card
->mm_pages
[0].page_dma
);
1027 if (card
->mm_pages
[1].desc
)
1028 dma_free_coherent(&card
->dev
->dev
, PAGE_SIZE
* 2,
1029 card
->mm_pages
[1].desc
,
1030 card
->mm_pages
[1].page_dma
);
1031 blk_cleanup_queue(card
->queue
);
1033 pci_release_regions(dev
);
1034 pci_disable_device(dev
);
1037 static const struct pci_device_id mm_pci_ids
[] = {
1038 {PCI_DEVICE(PCI_VENDOR_ID_MICRO_MEMORY
, PCI_DEVICE_ID_MICRO_MEMORY_5415CN
)},
1039 {PCI_DEVICE(PCI_VENDOR_ID_MICRO_MEMORY
, PCI_DEVICE_ID_MICRO_MEMORY_5425CN
)},
1040 {PCI_DEVICE(PCI_VENDOR_ID_MICRO_MEMORY
, PCI_DEVICE_ID_MICRO_MEMORY_6155
)},
1044 .subvendor
= 0x1332,
1045 .subdevice
= 0x5460,
1048 }, { /* end: all zeroes */ }
1051 MODULE_DEVICE_TABLE(pci
, mm_pci_ids
);
1053 static struct pci_driver mm_pci_driver
= {
1054 .name
= DRIVER_NAME
,
1055 .id_table
= mm_pci_ids
,
1056 .probe
= mm_pci_probe
,
1057 .remove
= mm_pci_remove
,
1060 static int __init
mm_init(void)
1065 retval
= pci_register_driver(&mm_pci_driver
);
1069 err
= major_nr
= register_blkdev(0, DRIVER_NAME
);
1071 pci_unregister_driver(&mm_pci_driver
);
1075 for (i
= 0; i
< num_cards
; i
++) {
1076 mm_gendisk
[i
] = alloc_disk(1 << MM_SHIFT
);
1081 for (i
= 0; i
< num_cards
; i
++) {
1082 struct gendisk
*disk
= mm_gendisk
[i
];
1083 sprintf(disk
->disk_name
, "umem%c", 'a'+i
);
1084 spin_lock_init(&cards
[i
].lock
);
1085 disk
->major
= major_nr
;
1086 disk
->first_minor
= i
<< MM_SHIFT
;
1087 disk
->fops
= &mm_fops
;
1088 disk
->private_data
= &cards
[i
];
1089 disk
->queue
= cards
[i
].queue
;
1090 set_capacity(disk
, cards
[i
].mm_size
<< 1);
1094 init_battery_timer();
1095 printk(KERN_INFO
"MM: desc_per_page = %ld\n", DESC_PER_PAGE
);
1096 /* printk("mm_init: Done. 10-19-01 9:00\n"); */
1100 pci_unregister_driver(&mm_pci_driver
);
1101 unregister_blkdev(major_nr
, DRIVER_NAME
);
1103 put_disk(mm_gendisk
[i
]);
1107 static void __exit
mm_cleanup(void)
1111 del_battery_timer();
1113 for (i
= 0; i
< num_cards
; i
++) {
1114 del_gendisk(mm_gendisk
[i
]);
1115 put_disk(mm_gendisk
[i
]);
1118 pci_unregister_driver(&mm_pci_driver
);
1120 unregister_blkdev(major_nr
, DRIVER_NAME
);
1123 module_init(mm_init
);
1124 module_exit(mm_cleanup
);
1126 MODULE_AUTHOR(DRIVER_AUTHOR
);
1127 MODULE_DESCRIPTION(DRIVER_DESC
);
1128 MODULE_LICENSE("GPL");