treewide: remove redundant IS_ERR() before error code check
[linux/fpc-iii.git] / drivers / bluetooth / hci_h5.c
blob0b14547482a75669d4f020d6d6270af6c1ac9c98
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
4 * Bluetooth HCI Three-wire UART driver
6 * Copyright (C) 2012 Intel Corporation
7 */
9 #include <linux/acpi.h>
10 #include <linux/errno.h>
11 #include <linux/gpio/consumer.h>
12 #include <linux/kernel.h>
13 #include <linux/mod_devicetable.h>
14 #include <linux/serdev.h>
15 #include <linux/skbuff.h>
17 #include <net/bluetooth/bluetooth.h>
18 #include <net/bluetooth/hci_core.h>
20 #include "btrtl.h"
21 #include "hci_uart.h"
23 #define HCI_3WIRE_ACK_PKT 0
24 #define HCI_3WIRE_LINK_PKT 15
26 /* Sliding window size */
27 #define H5_TX_WIN_MAX 4
29 #define H5_ACK_TIMEOUT msecs_to_jiffies(250)
30 #define H5_SYNC_TIMEOUT msecs_to_jiffies(100)
33 * Maximum Three-wire packet:
34 * 4 byte header + max value for 12-bit length + 2 bytes for CRC
36 #define H5_MAX_LEN (4 + 0xfff + 2)
38 /* Convenience macros for reading Three-wire header values */
39 #define H5_HDR_SEQ(hdr) ((hdr)[0] & 0x07)
40 #define H5_HDR_ACK(hdr) (((hdr)[0] >> 3) & 0x07)
41 #define H5_HDR_CRC(hdr) (((hdr)[0] >> 6) & 0x01)
42 #define H5_HDR_RELIABLE(hdr) (((hdr)[0] >> 7) & 0x01)
43 #define H5_HDR_PKT_TYPE(hdr) ((hdr)[1] & 0x0f)
44 #define H5_HDR_LEN(hdr) ((((hdr)[1] >> 4) & 0x0f) + ((hdr)[2] << 4))
46 #define SLIP_DELIMITER 0xc0
47 #define SLIP_ESC 0xdb
48 #define SLIP_ESC_DELIM 0xdc
49 #define SLIP_ESC_ESC 0xdd
51 /* H5 state flags */
52 enum {
53 H5_RX_ESC, /* SLIP escape mode */
54 H5_TX_ACK_REQ, /* Pending ack to send */
57 struct h5 {
58 /* Must be the first member, hci_serdev.c expects this. */
59 struct hci_uart serdev_hu;
61 struct sk_buff_head unack; /* Unack'ed packets queue */
62 struct sk_buff_head rel; /* Reliable packets queue */
63 struct sk_buff_head unrel; /* Unreliable packets queue */
65 unsigned long flags;
67 struct sk_buff *rx_skb; /* Receive buffer */
68 size_t rx_pending; /* Expecting more bytes */
69 u8 rx_ack; /* Last ack number received */
71 int (*rx_func)(struct hci_uart *hu, u8 c);
73 struct timer_list timer; /* Retransmission timer */
74 struct hci_uart *hu; /* Parent HCI UART */
76 u8 tx_seq; /* Next seq number to send */
77 u8 tx_ack; /* Next ack number to send */
78 u8 tx_win; /* Sliding window size */
80 enum {
81 H5_UNINITIALIZED,
82 H5_INITIALIZED,
83 H5_ACTIVE,
84 } state;
86 enum {
87 H5_AWAKE,
88 H5_SLEEPING,
89 H5_WAKING_UP,
90 } sleep;
92 const struct h5_vnd *vnd;
93 const char *id;
95 struct gpio_desc *enable_gpio;
96 struct gpio_desc *device_wake_gpio;
99 struct h5_vnd {
100 int (*setup)(struct h5 *h5);
101 void (*open)(struct h5 *h5);
102 void (*close)(struct h5 *h5);
103 int (*suspend)(struct h5 *h5);
104 int (*resume)(struct h5 *h5);
105 const struct acpi_gpio_mapping *acpi_gpio_map;
108 static void h5_reset_rx(struct h5 *h5);
110 static void h5_link_control(struct hci_uart *hu, const void *data, size_t len)
112 struct h5 *h5 = hu->priv;
113 struct sk_buff *nskb;
115 nskb = alloc_skb(3, GFP_ATOMIC);
116 if (!nskb)
117 return;
119 hci_skb_pkt_type(nskb) = HCI_3WIRE_LINK_PKT;
121 skb_put_data(nskb, data, len);
123 skb_queue_tail(&h5->unrel, nskb);
126 static u8 h5_cfg_field(struct h5 *h5)
128 /* Sliding window size (first 3 bits) */
129 return h5->tx_win & 0x07;
132 static void h5_timed_event(struct timer_list *t)
134 const unsigned char sync_req[] = { 0x01, 0x7e };
135 unsigned char conf_req[3] = { 0x03, 0xfc };
136 struct h5 *h5 = from_timer(h5, t, timer);
137 struct hci_uart *hu = h5->hu;
138 struct sk_buff *skb;
139 unsigned long flags;
141 BT_DBG("%s", hu->hdev->name);
143 if (h5->state == H5_UNINITIALIZED)
144 h5_link_control(hu, sync_req, sizeof(sync_req));
146 if (h5->state == H5_INITIALIZED) {
147 conf_req[2] = h5_cfg_field(h5);
148 h5_link_control(hu, conf_req, sizeof(conf_req));
151 if (h5->state != H5_ACTIVE) {
152 mod_timer(&h5->timer, jiffies + H5_SYNC_TIMEOUT);
153 goto wakeup;
156 if (h5->sleep != H5_AWAKE) {
157 h5->sleep = H5_SLEEPING;
158 goto wakeup;
161 BT_DBG("hu %p retransmitting %u pkts", hu, h5->unack.qlen);
163 spin_lock_irqsave_nested(&h5->unack.lock, flags, SINGLE_DEPTH_NESTING);
165 while ((skb = __skb_dequeue_tail(&h5->unack)) != NULL) {
166 h5->tx_seq = (h5->tx_seq - 1) & 0x07;
167 skb_queue_head(&h5->rel, skb);
170 spin_unlock_irqrestore(&h5->unack.lock, flags);
172 wakeup:
173 hci_uart_tx_wakeup(hu);
176 static void h5_peer_reset(struct hci_uart *hu)
178 struct h5 *h5 = hu->priv;
180 BT_ERR("Peer device has reset");
182 h5->state = H5_UNINITIALIZED;
184 del_timer(&h5->timer);
186 skb_queue_purge(&h5->rel);
187 skb_queue_purge(&h5->unrel);
188 skb_queue_purge(&h5->unack);
190 h5->tx_seq = 0;
191 h5->tx_ack = 0;
193 /* Send reset request to upper stack */
194 hci_reset_dev(hu->hdev);
197 static int h5_open(struct hci_uart *hu)
199 struct h5 *h5;
200 const unsigned char sync[] = { 0x01, 0x7e };
202 BT_DBG("hu %p", hu);
204 if (hu->serdev) {
205 h5 = serdev_device_get_drvdata(hu->serdev);
206 } else {
207 h5 = kzalloc(sizeof(*h5), GFP_KERNEL);
208 if (!h5)
209 return -ENOMEM;
212 hu->priv = h5;
213 h5->hu = hu;
215 skb_queue_head_init(&h5->unack);
216 skb_queue_head_init(&h5->rel);
217 skb_queue_head_init(&h5->unrel);
219 h5_reset_rx(h5);
221 timer_setup(&h5->timer, h5_timed_event, 0);
223 h5->tx_win = H5_TX_WIN_MAX;
225 if (h5->vnd && h5->vnd->open)
226 h5->vnd->open(h5);
228 set_bit(HCI_UART_INIT_PENDING, &hu->hdev_flags);
230 /* Send initial sync request */
231 h5_link_control(hu, sync, sizeof(sync));
232 mod_timer(&h5->timer, jiffies + H5_SYNC_TIMEOUT);
234 return 0;
237 static int h5_close(struct hci_uart *hu)
239 struct h5 *h5 = hu->priv;
241 del_timer_sync(&h5->timer);
243 skb_queue_purge(&h5->unack);
244 skb_queue_purge(&h5->rel);
245 skb_queue_purge(&h5->unrel);
247 if (h5->vnd && h5->vnd->close)
248 h5->vnd->close(h5);
250 if (!hu->serdev)
251 kfree(h5);
253 return 0;
256 static int h5_setup(struct hci_uart *hu)
258 struct h5 *h5 = hu->priv;
260 if (h5->vnd && h5->vnd->setup)
261 return h5->vnd->setup(h5);
263 return 0;
266 static void h5_pkt_cull(struct h5 *h5)
268 struct sk_buff *skb, *tmp;
269 unsigned long flags;
270 int i, to_remove;
271 u8 seq;
273 spin_lock_irqsave(&h5->unack.lock, flags);
275 to_remove = skb_queue_len(&h5->unack);
276 if (to_remove == 0)
277 goto unlock;
279 seq = h5->tx_seq;
281 while (to_remove > 0) {
282 if (h5->rx_ack == seq)
283 break;
285 to_remove--;
286 seq = (seq - 1) & 0x07;
289 if (seq != h5->rx_ack)
290 BT_ERR("Controller acked invalid packet");
292 i = 0;
293 skb_queue_walk_safe(&h5->unack, skb, tmp) {
294 if (i++ >= to_remove)
295 break;
297 __skb_unlink(skb, &h5->unack);
298 kfree_skb(skb);
301 if (skb_queue_empty(&h5->unack))
302 del_timer(&h5->timer);
304 unlock:
305 spin_unlock_irqrestore(&h5->unack.lock, flags);
308 static void h5_handle_internal_rx(struct hci_uart *hu)
310 struct h5 *h5 = hu->priv;
311 const unsigned char sync_req[] = { 0x01, 0x7e };
312 const unsigned char sync_rsp[] = { 0x02, 0x7d };
313 unsigned char conf_req[3] = { 0x03, 0xfc };
314 const unsigned char conf_rsp[] = { 0x04, 0x7b };
315 const unsigned char wakeup_req[] = { 0x05, 0xfa };
316 const unsigned char woken_req[] = { 0x06, 0xf9 };
317 const unsigned char sleep_req[] = { 0x07, 0x78 };
318 const unsigned char *hdr = h5->rx_skb->data;
319 const unsigned char *data = &h5->rx_skb->data[4];
321 BT_DBG("%s", hu->hdev->name);
323 if (H5_HDR_PKT_TYPE(hdr) != HCI_3WIRE_LINK_PKT)
324 return;
326 if (H5_HDR_LEN(hdr) < 2)
327 return;
329 conf_req[2] = h5_cfg_field(h5);
331 if (memcmp(data, sync_req, 2) == 0) {
332 if (h5->state == H5_ACTIVE)
333 h5_peer_reset(hu);
334 h5_link_control(hu, sync_rsp, 2);
335 } else if (memcmp(data, sync_rsp, 2) == 0) {
336 if (h5->state == H5_ACTIVE)
337 h5_peer_reset(hu);
338 h5->state = H5_INITIALIZED;
339 h5_link_control(hu, conf_req, 3);
340 } else if (memcmp(data, conf_req, 2) == 0) {
341 h5_link_control(hu, conf_rsp, 2);
342 h5_link_control(hu, conf_req, 3);
343 } else if (memcmp(data, conf_rsp, 2) == 0) {
344 if (H5_HDR_LEN(hdr) > 2)
345 h5->tx_win = (data[2] & 0x07);
346 BT_DBG("Three-wire init complete. tx_win %u", h5->tx_win);
347 h5->state = H5_ACTIVE;
348 hci_uart_init_ready(hu);
349 return;
350 } else if (memcmp(data, sleep_req, 2) == 0) {
351 BT_DBG("Peer went to sleep");
352 h5->sleep = H5_SLEEPING;
353 return;
354 } else if (memcmp(data, woken_req, 2) == 0) {
355 BT_DBG("Peer woke up");
356 h5->sleep = H5_AWAKE;
357 } else if (memcmp(data, wakeup_req, 2) == 0) {
358 BT_DBG("Peer requested wakeup");
359 h5_link_control(hu, woken_req, 2);
360 h5->sleep = H5_AWAKE;
361 } else {
362 BT_DBG("Link Control: 0x%02hhx 0x%02hhx", data[0], data[1]);
363 return;
366 hci_uart_tx_wakeup(hu);
369 static void h5_complete_rx_pkt(struct hci_uart *hu)
371 struct h5 *h5 = hu->priv;
372 const unsigned char *hdr = h5->rx_skb->data;
374 if (H5_HDR_RELIABLE(hdr)) {
375 h5->tx_ack = (h5->tx_ack + 1) % 8;
376 set_bit(H5_TX_ACK_REQ, &h5->flags);
377 hci_uart_tx_wakeup(hu);
380 h5->rx_ack = H5_HDR_ACK(hdr);
382 h5_pkt_cull(h5);
384 switch (H5_HDR_PKT_TYPE(hdr)) {
385 case HCI_EVENT_PKT:
386 case HCI_ACLDATA_PKT:
387 case HCI_SCODATA_PKT:
388 case HCI_ISODATA_PKT:
389 hci_skb_pkt_type(h5->rx_skb) = H5_HDR_PKT_TYPE(hdr);
391 /* Remove Three-wire header */
392 skb_pull(h5->rx_skb, 4);
394 hci_recv_frame(hu->hdev, h5->rx_skb);
395 h5->rx_skb = NULL;
397 break;
399 default:
400 h5_handle_internal_rx(hu);
401 break;
404 h5_reset_rx(h5);
407 static int h5_rx_crc(struct hci_uart *hu, unsigned char c)
409 h5_complete_rx_pkt(hu);
411 return 0;
414 static int h5_rx_payload(struct hci_uart *hu, unsigned char c)
416 struct h5 *h5 = hu->priv;
417 const unsigned char *hdr = h5->rx_skb->data;
419 if (H5_HDR_CRC(hdr)) {
420 h5->rx_func = h5_rx_crc;
421 h5->rx_pending = 2;
422 } else {
423 h5_complete_rx_pkt(hu);
426 return 0;
429 static int h5_rx_3wire_hdr(struct hci_uart *hu, unsigned char c)
431 struct h5 *h5 = hu->priv;
432 const unsigned char *hdr = h5->rx_skb->data;
434 BT_DBG("%s rx: seq %u ack %u crc %u rel %u type %u len %u",
435 hu->hdev->name, H5_HDR_SEQ(hdr), H5_HDR_ACK(hdr),
436 H5_HDR_CRC(hdr), H5_HDR_RELIABLE(hdr), H5_HDR_PKT_TYPE(hdr),
437 H5_HDR_LEN(hdr));
439 if (((hdr[0] + hdr[1] + hdr[2] + hdr[3]) & 0xff) != 0xff) {
440 BT_ERR("Invalid header checksum");
441 h5_reset_rx(h5);
442 return 0;
445 if (H5_HDR_RELIABLE(hdr) && H5_HDR_SEQ(hdr) != h5->tx_ack) {
446 BT_ERR("Out-of-order packet arrived (%u != %u)",
447 H5_HDR_SEQ(hdr), h5->tx_ack);
448 h5_reset_rx(h5);
449 return 0;
452 if (h5->state != H5_ACTIVE &&
453 H5_HDR_PKT_TYPE(hdr) != HCI_3WIRE_LINK_PKT) {
454 BT_ERR("Non-link packet received in non-active state");
455 h5_reset_rx(h5);
456 return 0;
459 h5->rx_func = h5_rx_payload;
460 h5->rx_pending = H5_HDR_LEN(hdr);
462 return 0;
465 static int h5_rx_pkt_start(struct hci_uart *hu, unsigned char c)
467 struct h5 *h5 = hu->priv;
469 if (c == SLIP_DELIMITER)
470 return 1;
472 h5->rx_func = h5_rx_3wire_hdr;
473 h5->rx_pending = 4;
475 h5->rx_skb = bt_skb_alloc(H5_MAX_LEN, GFP_ATOMIC);
476 if (!h5->rx_skb) {
477 BT_ERR("Can't allocate mem for new packet");
478 h5_reset_rx(h5);
479 return -ENOMEM;
482 h5->rx_skb->dev = (void *)hu->hdev;
484 return 0;
487 static int h5_rx_delimiter(struct hci_uart *hu, unsigned char c)
489 struct h5 *h5 = hu->priv;
491 if (c == SLIP_DELIMITER)
492 h5->rx_func = h5_rx_pkt_start;
494 return 1;
497 static void h5_unslip_one_byte(struct h5 *h5, unsigned char c)
499 const u8 delim = SLIP_DELIMITER, esc = SLIP_ESC;
500 const u8 *byte = &c;
502 if (!test_bit(H5_RX_ESC, &h5->flags) && c == SLIP_ESC) {
503 set_bit(H5_RX_ESC, &h5->flags);
504 return;
507 if (test_and_clear_bit(H5_RX_ESC, &h5->flags)) {
508 switch (c) {
509 case SLIP_ESC_DELIM:
510 byte = &delim;
511 break;
512 case SLIP_ESC_ESC:
513 byte = &esc;
514 break;
515 default:
516 BT_ERR("Invalid esc byte 0x%02hhx", c);
517 h5_reset_rx(h5);
518 return;
522 skb_put_data(h5->rx_skb, byte, 1);
523 h5->rx_pending--;
525 BT_DBG("unslipped 0x%02hhx, rx_pending %zu", *byte, h5->rx_pending);
528 static void h5_reset_rx(struct h5 *h5)
530 if (h5->rx_skb) {
531 kfree_skb(h5->rx_skb);
532 h5->rx_skb = NULL;
535 h5->rx_func = h5_rx_delimiter;
536 h5->rx_pending = 0;
537 clear_bit(H5_RX_ESC, &h5->flags);
540 static int h5_recv(struct hci_uart *hu, const void *data, int count)
542 struct h5 *h5 = hu->priv;
543 const unsigned char *ptr = data;
545 BT_DBG("%s pending %zu count %d", hu->hdev->name, h5->rx_pending,
546 count);
548 while (count > 0) {
549 int processed;
551 if (h5->rx_pending > 0) {
552 if (*ptr == SLIP_DELIMITER) {
553 BT_ERR("Too short H5 packet");
554 h5_reset_rx(h5);
555 continue;
558 h5_unslip_one_byte(h5, *ptr);
560 ptr++; count--;
561 continue;
564 processed = h5->rx_func(hu, *ptr);
565 if (processed < 0)
566 return processed;
568 ptr += processed;
569 count -= processed;
572 return 0;
575 static int h5_enqueue(struct hci_uart *hu, struct sk_buff *skb)
577 struct h5 *h5 = hu->priv;
579 if (skb->len > 0xfff) {
580 BT_ERR("Packet too long (%u bytes)", skb->len);
581 kfree_skb(skb);
582 return 0;
585 if (h5->state != H5_ACTIVE) {
586 BT_ERR("Ignoring HCI data in non-active state");
587 kfree_skb(skb);
588 return 0;
591 switch (hci_skb_pkt_type(skb)) {
592 case HCI_ACLDATA_PKT:
593 case HCI_COMMAND_PKT:
594 skb_queue_tail(&h5->rel, skb);
595 break;
597 case HCI_SCODATA_PKT:
598 case HCI_ISODATA_PKT:
599 skb_queue_tail(&h5->unrel, skb);
600 break;
602 default:
603 BT_ERR("Unknown packet type %u", hci_skb_pkt_type(skb));
604 kfree_skb(skb);
605 break;
608 return 0;
611 static void h5_slip_delim(struct sk_buff *skb)
613 const char delim = SLIP_DELIMITER;
615 skb_put_data(skb, &delim, 1);
618 static void h5_slip_one_byte(struct sk_buff *skb, u8 c)
620 const char esc_delim[2] = { SLIP_ESC, SLIP_ESC_DELIM };
621 const char esc_esc[2] = { SLIP_ESC, SLIP_ESC_ESC };
623 switch (c) {
624 case SLIP_DELIMITER:
625 skb_put_data(skb, &esc_delim, 2);
626 break;
627 case SLIP_ESC:
628 skb_put_data(skb, &esc_esc, 2);
629 break;
630 default:
631 skb_put_data(skb, &c, 1);
635 static bool valid_packet_type(u8 type)
637 switch (type) {
638 case HCI_ACLDATA_PKT:
639 case HCI_COMMAND_PKT:
640 case HCI_SCODATA_PKT:
641 case HCI_ISODATA_PKT:
642 case HCI_3WIRE_LINK_PKT:
643 case HCI_3WIRE_ACK_PKT:
644 return true;
645 default:
646 return false;
650 static struct sk_buff *h5_prepare_pkt(struct hci_uart *hu, u8 pkt_type,
651 const u8 *data, size_t len)
653 struct h5 *h5 = hu->priv;
654 struct sk_buff *nskb;
655 u8 hdr[4];
656 int i;
658 if (!valid_packet_type(pkt_type)) {
659 BT_ERR("Unknown packet type %u", pkt_type);
660 return NULL;
664 * Max len of packet: (original len + 4 (H5 hdr) + 2 (crc)) * 2
665 * (because bytes 0xc0 and 0xdb are escaped, worst case is when
666 * the packet is all made of 0xc0 and 0xdb) + 2 (0xc0
667 * delimiters at start and end).
669 nskb = alloc_skb((len + 6) * 2 + 2, GFP_ATOMIC);
670 if (!nskb)
671 return NULL;
673 hci_skb_pkt_type(nskb) = pkt_type;
675 h5_slip_delim(nskb);
677 hdr[0] = h5->tx_ack << 3;
678 clear_bit(H5_TX_ACK_REQ, &h5->flags);
680 /* Reliable packet? */
681 if (pkt_type == HCI_ACLDATA_PKT || pkt_type == HCI_COMMAND_PKT) {
682 hdr[0] |= 1 << 7;
683 hdr[0] |= h5->tx_seq;
684 h5->tx_seq = (h5->tx_seq + 1) % 8;
687 hdr[1] = pkt_type | ((len & 0x0f) << 4);
688 hdr[2] = len >> 4;
689 hdr[3] = ~((hdr[0] + hdr[1] + hdr[2]) & 0xff);
691 BT_DBG("%s tx: seq %u ack %u crc %u rel %u type %u len %u",
692 hu->hdev->name, H5_HDR_SEQ(hdr), H5_HDR_ACK(hdr),
693 H5_HDR_CRC(hdr), H5_HDR_RELIABLE(hdr), H5_HDR_PKT_TYPE(hdr),
694 H5_HDR_LEN(hdr));
696 for (i = 0; i < 4; i++)
697 h5_slip_one_byte(nskb, hdr[i]);
699 for (i = 0; i < len; i++)
700 h5_slip_one_byte(nskb, data[i]);
702 h5_slip_delim(nskb);
704 return nskb;
707 static struct sk_buff *h5_dequeue(struct hci_uart *hu)
709 struct h5 *h5 = hu->priv;
710 unsigned long flags;
711 struct sk_buff *skb, *nskb;
713 if (h5->sleep != H5_AWAKE) {
714 const unsigned char wakeup_req[] = { 0x05, 0xfa };
716 if (h5->sleep == H5_WAKING_UP)
717 return NULL;
719 h5->sleep = H5_WAKING_UP;
720 BT_DBG("Sending wakeup request");
722 mod_timer(&h5->timer, jiffies + HZ / 100);
723 return h5_prepare_pkt(hu, HCI_3WIRE_LINK_PKT, wakeup_req, 2);
726 skb = skb_dequeue(&h5->unrel);
727 if (skb) {
728 nskb = h5_prepare_pkt(hu, hci_skb_pkt_type(skb),
729 skb->data, skb->len);
730 if (nskb) {
731 kfree_skb(skb);
732 return nskb;
735 skb_queue_head(&h5->unrel, skb);
736 BT_ERR("Could not dequeue pkt because alloc_skb failed");
739 spin_lock_irqsave_nested(&h5->unack.lock, flags, SINGLE_DEPTH_NESTING);
741 if (h5->unack.qlen >= h5->tx_win)
742 goto unlock;
744 skb = skb_dequeue(&h5->rel);
745 if (skb) {
746 nskb = h5_prepare_pkt(hu, hci_skb_pkt_type(skb),
747 skb->data, skb->len);
748 if (nskb) {
749 __skb_queue_tail(&h5->unack, skb);
750 mod_timer(&h5->timer, jiffies + H5_ACK_TIMEOUT);
751 spin_unlock_irqrestore(&h5->unack.lock, flags);
752 return nskb;
755 skb_queue_head(&h5->rel, skb);
756 BT_ERR("Could not dequeue pkt because alloc_skb failed");
759 unlock:
760 spin_unlock_irqrestore(&h5->unack.lock, flags);
762 if (test_bit(H5_TX_ACK_REQ, &h5->flags))
763 return h5_prepare_pkt(hu, HCI_3WIRE_ACK_PKT, NULL, 0);
765 return NULL;
768 static int h5_flush(struct hci_uart *hu)
770 BT_DBG("hu %p", hu);
771 return 0;
774 static const struct hci_uart_proto h5p = {
775 .id = HCI_UART_3WIRE,
776 .name = "Three-wire (H5)",
777 .open = h5_open,
778 .close = h5_close,
779 .setup = h5_setup,
780 .recv = h5_recv,
781 .enqueue = h5_enqueue,
782 .dequeue = h5_dequeue,
783 .flush = h5_flush,
786 static int h5_serdev_probe(struct serdev_device *serdev)
788 const struct acpi_device_id *match;
789 struct device *dev = &serdev->dev;
790 struct h5 *h5;
792 h5 = devm_kzalloc(dev, sizeof(*h5), GFP_KERNEL);
793 if (!h5)
794 return -ENOMEM;
796 set_bit(HCI_UART_RESET_ON_INIT, &h5->serdev_hu.flags);
798 h5->hu = &h5->serdev_hu;
799 h5->serdev_hu.serdev = serdev;
800 serdev_device_set_drvdata(serdev, h5);
802 if (has_acpi_companion(dev)) {
803 match = acpi_match_device(dev->driver->acpi_match_table, dev);
804 if (!match)
805 return -ENODEV;
807 h5->vnd = (const struct h5_vnd *)match->driver_data;
808 h5->id = (char *)match->id;
810 if (h5->vnd->acpi_gpio_map)
811 devm_acpi_dev_add_driver_gpios(dev,
812 h5->vnd->acpi_gpio_map);
815 h5->enable_gpio = devm_gpiod_get_optional(dev, "enable", GPIOD_OUT_LOW);
816 if (IS_ERR(h5->enable_gpio))
817 return PTR_ERR(h5->enable_gpio);
819 h5->device_wake_gpio = devm_gpiod_get_optional(dev, "device-wake",
820 GPIOD_OUT_LOW);
821 if (IS_ERR(h5->device_wake_gpio))
822 return PTR_ERR(h5->device_wake_gpio);
824 return hci_uart_register_device(&h5->serdev_hu, &h5p);
827 static void h5_serdev_remove(struct serdev_device *serdev)
829 struct h5 *h5 = serdev_device_get_drvdata(serdev);
831 hci_uart_unregister_device(&h5->serdev_hu);
834 static int __maybe_unused h5_serdev_suspend(struct device *dev)
836 struct h5 *h5 = dev_get_drvdata(dev);
837 int ret = 0;
839 if (h5->vnd && h5->vnd->suspend)
840 ret = h5->vnd->suspend(h5);
842 return ret;
845 static int __maybe_unused h5_serdev_resume(struct device *dev)
847 struct h5 *h5 = dev_get_drvdata(dev);
848 int ret = 0;
850 if (h5->vnd && h5->vnd->resume)
851 ret = h5->vnd->resume(h5);
853 return ret;
856 #ifdef CONFIG_BT_HCIUART_RTL
857 static int h5_btrtl_setup(struct h5 *h5)
859 struct btrtl_device_info *btrtl_dev;
860 struct sk_buff *skb;
861 __le32 baudrate_data;
862 u32 device_baudrate;
863 unsigned int controller_baudrate;
864 bool flow_control;
865 int err;
867 btrtl_dev = btrtl_initialize(h5->hu->hdev, h5->id);
868 if (IS_ERR(btrtl_dev))
869 return PTR_ERR(btrtl_dev);
871 err = btrtl_get_uart_settings(h5->hu->hdev, btrtl_dev,
872 &controller_baudrate, &device_baudrate,
873 &flow_control);
874 if (err)
875 goto out_free;
877 baudrate_data = cpu_to_le32(device_baudrate);
878 skb = __hci_cmd_sync(h5->hu->hdev, 0xfc17, sizeof(baudrate_data),
879 &baudrate_data, HCI_INIT_TIMEOUT);
880 if (IS_ERR(skb)) {
881 rtl_dev_err(h5->hu->hdev, "set baud rate command failed\n");
882 err = PTR_ERR(skb);
883 goto out_free;
884 } else {
885 kfree_skb(skb);
887 /* Give the device some time to set up the new baudrate. */
888 usleep_range(10000, 20000);
890 serdev_device_set_baudrate(h5->hu->serdev, controller_baudrate);
891 serdev_device_set_flow_control(h5->hu->serdev, flow_control);
893 err = btrtl_download_firmware(h5->hu->hdev, btrtl_dev);
894 /* Give the device some time before the hci-core sends it a reset */
895 usleep_range(10000, 20000);
897 out_free:
898 btrtl_free(btrtl_dev);
900 return err;
903 static void h5_btrtl_open(struct h5 *h5)
905 /* Devices always start with these fixed parameters */
906 serdev_device_set_flow_control(h5->hu->serdev, false);
907 serdev_device_set_parity(h5->hu->serdev, SERDEV_PARITY_EVEN);
908 serdev_device_set_baudrate(h5->hu->serdev, 115200);
910 /* The controller needs up to 500ms to wakeup */
911 gpiod_set_value_cansleep(h5->enable_gpio, 1);
912 gpiod_set_value_cansleep(h5->device_wake_gpio, 1);
913 msleep(500);
916 static void h5_btrtl_close(struct h5 *h5)
918 gpiod_set_value_cansleep(h5->device_wake_gpio, 0);
919 gpiod_set_value_cansleep(h5->enable_gpio, 0);
922 /* Suspend/resume support. On many devices the RTL BT device loses power during
923 * suspend/resume, causing it to lose its firmware and all state. So we simply
924 * turn it off on suspend and reprobe on resume. This mirrors how RTL devices
925 * are handled in the USB driver, where the USB_QUIRK_RESET_RESUME is used which
926 * also causes a reprobe on resume.
928 static int h5_btrtl_suspend(struct h5 *h5)
930 serdev_device_set_flow_control(h5->hu->serdev, false);
931 gpiod_set_value_cansleep(h5->device_wake_gpio, 0);
932 gpiod_set_value_cansleep(h5->enable_gpio, 0);
933 return 0;
936 struct h5_btrtl_reprobe {
937 struct device *dev;
938 struct work_struct work;
941 static void h5_btrtl_reprobe_worker(struct work_struct *work)
943 struct h5_btrtl_reprobe *reprobe =
944 container_of(work, struct h5_btrtl_reprobe, work);
945 int ret;
947 ret = device_reprobe(reprobe->dev);
948 if (ret && ret != -EPROBE_DEFER)
949 dev_err(reprobe->dev, "Reprobe error %d\n", ret);
951 put_device(reprobe->dev);
952 kfree(reprobe);
953 module_put(THIS_MODULE);
956 static int h5_btrtl_resume(struct h5 *h5)
958 struct h5_btrtl_reprobe *reprobe;
960 reprobe = kzalloc(sizeof(*reprobe), GFP_KERNEL);
961 if (!reprobe)
962 return -ENOMEM;
964 __module_get(THIS_MODULE);
966 INIT_WORK(&reprobe->work, h5_btrtl_reprobe_worker);
967 reprobe->dev = get_device(&h5->hu->serdev->dev);
968 queue_work(system_long_wq, &reprobe->work);
969 return 0;
972 static const struct acpi_gpio_params btrtl_device_wake_gpios = { 0, 0, false };
973 static const struct acpi_gpio_params btrtl_enable_gpios = { 1, 0, false };
974 static const struct acpi_gpio_params btrtl_host_wake_gpios = { 2, 0, false };
975 static const struct acpi_gpio_mapping acpi_btrtl_gpios[] = {
976 { "device-wake-gpios", &btrtl_device_wake_gpios, 1 },
977 { "enable-gpios", &btrtl_enable_gpios, 1 },
978 { "host-wake-gpios", &btrtl_host_wake_gpios, 1 },
982 static struct h5_vnd rtl_vnd = {
983 .setup = h5_btrtl_setup,
984 .open = h5_btrtl_open,
985 .close = h5_btrtl_close,
986 .suspend = h5_btrtl_suspend,
987 .resume = h5_btrtl_resume,
988 .acpi_gpio_map = acpi_btrtl_gpios,
990 #endif
992 #ifdef CONFIG_ACPI
993 static const struct acpi_device_id h5_acpi_match[] = {
994 #ifdef CONFIG_BT_HCIUART_RTL
995 { "OBDA8723", (kernel_ulong_t)&rtl_vnd },
996 #endif
997 { },
999 MODULE_DEVICE_TABLE(acpi, h5_acpi_match);
1000 #endif
1002 static const struct dev_pm_ops h5_serdev_pm_ops = {
1003 SET_SYSTEM_SLEEP_PM_OPS(h5_serdev_suspend, h5_serdev_resume)
1006 static struct serdev_device_driver h5_serdev_driver = {
1007 .probe = h5_serdev_probe,
1008 .remove = h5_serdev_remove,
1009 .driver = {
1010 .name = "hci_uart_h5",
1011 .acpi_match_table = ACPI_PTR(h5_acpi_match),
1012 .pm = &h5_serdev_pm_ops,
1016 int __init h5_init(void)
1018 serdev_device_driver_register(&h5_serdev_driver);
1019 return hci_uart_register_proto(&h5p);
1022 int __exit h5_deinit(void)
1024 serdev_device_driver_unregister(&h5_serdev_driver);
1025 return hci_uart_unregister_proto(&h5p);