1 // SPDX-License-Identifier: GPL-2.0-only
3 * linux/drivers/clocksource/arm_arch_timer.c
5 * Copyright (C) 2011 ARM Ltd.
9 #define pr_fmt(fmt) "arch_timer: " fmt
11 #include <linux/init.h>
12 #include <linux/kernel.h>
13 #include <linux/device.h>
14 #include <linux/smp.h>
15 #include <linux/cpu.h>
16 #include <linux/cpu_pm.h>
17 #include <linux/clockchips.h>
18 #include <linux/clocksource.h>
19 #include <linux/interrupt.h>
20 #include <linux/of_irq.h>
21 #include <linux/of_address.h>
23 #include <linux/slab.h>
24 #include <linux/sched/clock.h>
25 #include <linux/sched_clock.h>
26 #include <linux/acpi.h>
28 #include <asm/arch_timer.h>
31 #include <clocksource/arm_arch_timer.h>
34 #define CNTTIDR_VIRT(n) (BIT(1) << ((n) * 4))
36 #define CNTACR(n) (0x40 + ((n) * 4))
37 #define CNTACR_RPCT BIT(0)
38 #define CNTACR_RVCT BIT(1)
39 #define CNTACR_RFRQ BIT(2)
40 #define CNTACR_RVOFF BIT(3)
41 #define CNTACR_RWVT BIT(4)
42 #define CNTACR_RWPT BIT(5)
44 #define CNTVCT_LO 0x08
45 #define CNTVCT_HI 0x0c
47 #define CNTP_TVAL 0x28
49 #define CNTV_TVAL 0x38
52 static unsigned arch_timers_present __initdata
;
54 static void __iomem
*arch_counter_base
;
58 struct clock_event_device evt
;
61 #define to_arch_timer(e) container_of(e, struct arch_timer, evt)
63 static u32 arch_timer_rate
;
64 static int arch_timer_ppi
[ARCH_TIMER_MAX_TIMER_PPI
];
66 static struct clock_event_device __percpu
*arch_timer_evt
;
68 static enum arch_timer_ppi_nr arch_timer_uses_ppi
= ARCH_TIMER_VIRT_PPI
;
69 static bool arch_timer_c3stop
;
70 static bool arch_timer_mem_use_virtual
;
71 static bool arch_counter_suspend_stop
;
72 static bool vdso_default
= true;
74 static cpumask_t evtstrm_available
= CPU_MASK_NONE
;
75 static bool evtstrm_enable
= IS_ENABLED(CONFIG_ARM_ARCH_TIMER_EVTSTREAM
);
77 static int __init
early_evtstrm_cfg(char *buf
)
79 return strtobool(buf
, &evtstrm_enable
);
81 early_param("clocksource.arm_arch_timer.evtstrm", early_evtstrm_cfg
);
84 * Architected system timer support.
87 static __always_inline
88 void arch_timer_reg_write(int access
, enum arch_timer_reg reg
, u32 val
,
89 struct clock_event_device
*clk
)
91 if (access
== ARCH_TIMER_MEM_PHYS_ACCESS
) {
92 struct arch_timer
*timer
= to_arch_timer(clk
);
94 case ARCH_TIMER_REG_CTRL
:
95 writel_relaxed(val
, timer
->base
+ CNTP_CTL
);
97 case ARCH_TIMER_REG_TVAL
:
98 writel_relaxed(val
, timer
->base
+ CNTP_TVAL
);
101 } else if (access
== ARCH_TIMER_MEM_VIRT_ACCESS
) {
102 struct arch_timer
*timer
= to_arch_timer(clk
);
104 case ARCH_TIMER_REG_CTRL
:
105 writel_relaxed(val
, timer
->base
+ CNTV_CTL
);
107 case ARCH_TIMER_REG_TVAL
:
108 writel_relaxed(val
, timer
->base
+ CNTV_TVAL
);
112 arch_timer_reg_write_cp15(access
, reg
, val
);
116 static __always_inline
117 u32
arch_timer_reg_read(int access
, enum arch_timer_reg reg
,
118 struct clock_event_device
*clk
)
122 if (access
== ARCH_TIMER_MEM_PHYS_ACCESS
) {
123 struct arch_timer
*timer
= to_arch_timer(clk
);
125 case ARCH_TIMER_REG_CTRL
:
126 val
= readl_relaxed(timer
->base
+ CNTP_CTL
);
128 case ARCH_TIMER_REG_TVAL
:
129 val
= readl_relaxed(timer
->base
+ CNTP_TVAL
);
132 } else if (access
== ARCH_TIMER_MEM_VIRT_ACCESS
) {
133 struct arch_timer
*timer
= to_arch_timer(clk
);
135 case ARCH_TIMER_REG_CTRL
:
136 val
= readl_relaxed(timer
->base
+ CNTV_CTL
);
138 case ARCH_TIMER_REG_TVAL
:
139 val
= readl_relaxed(timer
->base
+ CNTV_TVAL
);
143 val
= arch_timer_reg_read_cp15(access
, reg
);
149 static notrace u64
arch_counter_get_cntpct_stable(void)
151 return __arch_counter_get_cntpct_stable();
154 static notrace u64
arch_counter_get_cntpct(void)
156 return __arch_counter_get_cntpct();
159 static notrace u64
arch_counter_get_cntvct_stable(void)
161 return __arch_counter_get_cntvct_stable();
164 static notrace u64
arch_counter_get_cntvct(void)
166 return __arch_counter_get_cntvct();
170 * Default to cp15 based access because arm64 uses this function for
171 * sched_clock() before DT is probed and the cp15 method is guaranteed
172 * to exist on arm64. arm doesn't use this before DT is probed so even
173 * if we don't have the cp15 accessors we won't have a problem.
175 u64 (*arch_timer_read_counter
)(void) = arch_counter_get_cntvct
;
176 EXPORT_SYMBOL_GPL(arch_timer_read_counter
);
178 static u64
arch_counter_read(struct clocksource
*cs
)
180 return arch_timer_read_counter();
183 static u64
arch_counter_read_cc(const struct cyclecounter
*cc
)
185 return arch_timer_read_counter();
188 static struct clocksource clocksource_counter
= {
189 .name
= "arch_sys_counter",
191 .read
= arch_counter_read
,
192 .mask
= CLOCKSOURCE_MASK(56),
193 .flags
= CLOCK_SOURCE_IS_CONTINUOUS
,
196 static struct cyclecounter cyclecounter __ro_after_init
= {
197 .read
= arch_counter_read_cc
,
198 .mask
= CLOCKSOURCE_MASK(56),
201 struct ate_acpi_oem_info
{
202 char oem_id
[ACPI_OEM_ID_SIZE
+ 1];
203 char oem_table_id
[ACPI_OEM_TABLE_ID_SIZE
+ 1];
207 #ifdef CONFIG_FSL_ERRATUM_A008585
209 * The number of retries is an arbitrary value well beyond the highest number
210 * of iterations the loop has been observed to take.
212 #define __fsl_a008585_read_reg(reg) ({ \
214 int _retries = 200; \
217 _old = read_sysreg(reg); \
218 _new = read_sysreg(reg); \
220 } while (unlikely(_old != _new) && _retries); \
222 WARN_ON_ONCE(!_retries); \
226 static u32 notrace
fsl_a008585_read_cntp_tval_el0(void)
228 return __fsl_a008585_read_reg(cntp_tval_el0
);
231 static u32 notrace
fsl_a008585_read_cntv_tval_el0(void)
233 return __fsl_a008585_read_reg(cntv_tval_el0
);
236 static u64 notrace
fsl_a008585_read_cntpct_el0(void)
238 return __fsl_a008585_read_reg(cntpct_el0
);
241 static u64 notrace
fsl_a008585_read_cntvct_el0(void)
243 return __fsl_a008585_read_reg(cntvct_el0
);
247 #ifdef CONFIG_HISILICON_ERRATUM_161010101
249 * Verify whether the value of the second read is larger than the first by
250 * less than 32 is the only way to confirm the value is correct, so clear the
251 * lower 5 bits to check whether the difference is greater than 32 or not.
252 * Theoretically the erratum should not occur more than twice in succession
253 * when reading the system counter, but it is possible that some interrupts
254 * may lead to more than twice read errors, triggering the warning, so setting
255 * the number of retries far beyond the number of iterations the loop has been
258 #define __hisi_161010101_read_reg(reg) ({ \
263 _old = read_sysreg(reg); \
264 _new = read_sysreg(reg); \
266 } while (unlikely((_new - _old) >> 5) && _retries); \
268 WARN_ON_ONCE(!_retries); \
272 static u32 notrace
hisi_161010101_read_cntp_tval_el0(void)
274 return __hisi_161010101_read_reg(cntp_tval_el0
);
277 static u32 notrace
hisi_161010101_read_cntv_tval_el0(void)
279 return __hisi_161010101_read_reg(cntv_tval_el0
);
282 static u64 notrace
hisi_161010101_read_cntpct_el0(void)
284 return __hisi_161010101_read_reg(cntpct_el0
);
287 static u64 notrace
hisi_161010101_read_cntvct_el0(void)
289 return __hisi_161010101_read_reg(cntvct_el0
);
292 static struct ate_acpi_oem_info hisi_161010101_oem_info
[] = {
294 * Note that trailing spaces are required to properly match
295 * the OEM table information.
299 .oem_table_id
= "HIP05 ",
304 .oem_table_id
= "HIP06 ",
309 .oem_table_id
= "HIP07 ",
312 { /* Sentinel indicating the end of the OEM array */ },
316 #ifdef CONFIG_ARM64_ERRATUM_858921
317 static u64 notrace
arm64_858921_read_cntpct_el0(void)
321 old
= read_sysreg(cntpct_el0
);
322 new = read_sysreg(cntpct_el0
);
323 return (((old
^ new) >> 32) & 1) ? old
: new;
326 static u64 notrace
arm64_858921_read_cntvct_el0(void)
330 old
= read_sysreg(cntvct_el0
);
331 new = read_sysreg(cntvct_el0
);
332 return (((old
^ new) >> 32) & 1) ? old
: new;
336 #ifdef CONFIG_SUN50I_ERRATUM_UNKNOWN1
338 * The low bits of the counter registers are indeterminate while bit 10 or
339 * greater is rolling over. Since the counter value can jump both backward
340 * (7ff -> 000 -> 800) and forward (7ff -> fff -> 800), ignore register values
341 * with all ones or all zeros in the low bits. Bound the loop by the maximum
342 * number of CPU cycles in 3 consecutive 24 MHz counter periods.
344 #define __sun50i_a64_read_reg(reg) ({ \
346 int _retries = 150; \
349 _val = read_sysreg(reg); \
351 } while (((_val + 1) & GENMASK(9, 0)) <= 1 && _retries); \
353 WARN_ON_ONCE(!_retries); \
357 static u64 notrace
sun50i_a64_read_cntpct_el0(void)
359 return __sun50i_a64_read_reg(cntpct_el0
);
362 static u64 notrace
sun50i_a64_read_cntvct_el0(void)
364 return __sun50i_a64_read_reg(cntvct_el0
);
367 static u32 notrace
sun50i_a64_read_cntp_tval_el0(void)
369 return read_sysreg(cntp_cval_el0
) - sun50i_a64_read_cntpct_el0();
372 static u32 notrace
sun50i_a64_read_cntv_tval_el0(void)
374 return read_sysreg(cntv_cval_el0
) - sun50i_a64_read_cntvct_el0();
378 #ifdef CONFIG_ARM_ARCH_TIMER_OOL_WORKAROUND
379 DEFINE_PER_CPU(const struct arch_timer_erratum_workaround
*, timer_unstable_counter_workaround
);
380 EXPORT_SYMBOL_GPL(timer_unstable_counter_workaround
);
382 static atomic_t timer_unstable_counter_workaround_in_use
= ATOMIC_INIT(0);
384 static void erratum_set_next_event_tval_generic(const int access
, unsigned long evt
,
385 struct clock_event_device
*clk
)
390 ctrl
= arch_timer_reg_read(access
, ARCH_TIMER_REG_CTRL
, clk
);
391 ctrl
|= ARCH_TIMER_CTRL_ENABLE
;
392 ctrl
&= ~ARCH_TIMER_CTRL_IT_MASK
;
394 if (access
== ARCH_TIMER_PHYS_ACCESS
) {
395 cval
= evt
+ arch_counter_get_cntpct();
396 write_sysreg(cval
, cntp_cval_el0
);
398 cval
= evt
+ arch_counter_get_cntvct();
399 write_sysreg(cval
, cntv_cval_el0
);
402 arch_timer_reg_write(access
, ARCH_TIMER_REG_CTRL
, ctrl
, clk
);
405 static __maybe_unused
int erratum_set_next_event_tval_virt(unsigned long evt
,
406 struct clock_event_device
*clk
)
408 erratum_set_next_event_tval_generic(ARCH_TIMER_VIRT_ACCESS
, evt
, clk
);
412 static __maybe_unused
int erratum_set_next_event_tval_phys(unsigned long evt
,
413 struct clock_event_device
*clk
)
415 erratum_set_next_event_tval_generic(ARCH_TIMER_PHYS_ACCESS
, evt
, clk
);
419 static const struct arch_timer_erratum_workaround ool_workarounds
[] = {
420 #ifdef CONFIG_FSL_ERRATUM_A008585
422 .match_type
= ate_match_dt
,
423 .id
= "fsl,erratum-a008585",
424 .desc
= "Freescale erratum a005858",
425 .read_cntp_tval_el0
= fsl_a008585_read_cntp_tval_el0
,
426 .read_cntv_tval_el0
= fsl_a008585_read_cntv_tval_el0
,
427 .read_cntpct_el0
= fsl_a008585_read_cntpct_el0
,
428 .read_cntvct_el0
= fsl_a008585_read_cntvct_el0
,
429 .set_next_event_phys
= erratum_set_next_event_tval_phys
,
430 .set_next_event_virt
= erratum_set_next_event_tval_virt
,
433 #ifdef CONFIG_HISILICON_ERRATUM_161010101
435 .match_type
= ate_match_dt
,
436 .id
= "hisilicon,erratum-161010101",
437 .desc
= "HiSilicon erratum 161010101",
438 .read_cntp_tval_el0
= hisi_161010101_read_cntp_tval_el0
,
439 .read_cntv_tval_el0
= hisi_161010101_read_cntv_tval_el0
,
440 .read_cntpct_el0
= hisi_161010101_read_cntpct_el0
,
441 .read_cntvct_el0
= hisi_161010101_read_cntvct_el0
,
442 .set_next_event_phys
= erratum_set_next_event_tval_phys
,
443 .set_next_event_virt
= erratum_set_next_event_tval_virt
,
446 .match_type
= ate_match_acpi_oem_info
,
447 .id
= hisi_161010101_oem_info
,
448 .desc
= "HiSilicon erratum 161010101",
449 .read_cntp_tval_el0
= hisi_161010101_read_cntp_tval_el0
,
450 .read_cntv_tval_el0
= hisi_161010101_read_cntv_tval_el0
,
451 .read_cntpct_el0
= hisi_161010101_read_cntpct_el0
,
452 .read_cntvct_el0
= hisi_161010101_read_cntvct_el0
,
453 .set_next_event_phys
= erratum_set_next_event_tval_phys
,
454 .set_next_event_virt
= erratum_set_next_event_tval_virt
,
457 #ifdef CONFIG_ARM64_ERRATUM_858921
459 .match_type
= ate_match_local_cap_id
,
460 .id
= (void *)ARM64_WORKAROUND_858921
,
461 .desc
= "ARM erratum 858921",
462 .read_cntpct_el0
= arm64_858921_read_cntpct_el0
,
463 .read_cntvct_el0
= arm64_858921_read_cntvct_el0
,
466 #ifdef CONFIG_SUN50I_ERRATUM_UNKNOWN1
468 .match_type
= ate_match_dt
,
469 .id
= "allwinner,erratum-unknown1",
470 .desc
= "Allwinner erratum UNKNOWN1",
471 .read_cntp_tval_el0
= sun50i_a64_read_cntp_tval_el0
,
472 .read_cntv_tval_el0
= sun50i_a64_read_cntv_tval_el0
,
473 .read_cntpct_el0
= sun50i_a64_read_cntpct_el0
,
474 .read_cntvct_el0
= sun50i_a64_read_cntvct_el0
,
475 .set_next_event_phys
= erratum_set_next_event_tval_phys
,
476 .set_next_event_virt
= erratum_set_next_event_tval_virt
,
481 typedef bool (*ate_match_fn_t
)(const struct arch_timer_erratum_workaround
*,
485 bool arch_timer_check_dt_erratum(const struct arch_timer_erratum_workaround
*wa
,
488 const struct device_node
*np
= arg
;
490 return of_property_read_bool(np
, wa
->id
);
494 bool arch_timer_check_local_cap_erratum(const struct arch_timer_erratum_workaround
*wa
,
497 return this_cpu_has_cap((uintptr_t)wa
->id
);
502 bool arch_timer_check_acpi_oem_erratum(const struct arch_timer_erratum_workaround
*wa
,
505 static const struct ate_acpi_oem_info empty_oem_info
= {};
506 const struct ate_acpi_oem_info
*info
= wa
->id
;
507 const struct acpi_table_header
*table
= arg
;
509 /* Iterate over the ACPI OEM info array, looking for a match */
510 while (memcmp(info
, &empty_oem_info
, sizeof(*info
))) {
511 if (!memcmp(info
->oem_id
, table
->oem_id
, ACPI_OEM_ID_SIZE
) &&
512 !memcmp(info
->oem_table_id
, table
->oem_table_id
, ACPI_OEM_TABLE_ID_SIZE
) &&
513 info
->oem_revision
== table
->oem_revision
)
522 static const struct arch_timer_erratum_workaround
*
523 arch_timer_iterate_errata(enum arch_timer_erratum_match_type type
,
524 ate_match_fn_t match_fn
,
529 for (i
= 0; i
< ARRAY_SIZE(ool_workarounds
); i
++) {
530 if (ool_workarounds
[i
].match_type
!= type
)
533 if (match_fn(&ool_workarounds
[i
], arg
))
534 return &ool_workarounds
[i
];
541 void arch_timer_enable_workaround(const struct arch_timer_erratum_workaround
*wa
,
547 __this_cpu_write(timer_unstable_counter_workaround
, wa
);
549 for_each_possible_cpu(i
)
550 per_cpu(timer_unstable_counter_workaround
, i
) = wa
;
553 if (wa
->read_cntvct_el0
|| wa
->read_cntpct_el0
)
554 atomic_set(&timer_unstable_counter_workaround_in_use
, 1);
557 * Don't use the vdso fastpath if errata require using the
558 * out-of-line counter accessor. We may change our mind pretty
559 * late in the game (with a per-CPU erratum, for example), so
560 * change both the default value and the vdso itself.
562 if (wa
->read_cntvct_el0
) {
563 clocksource_counter
.archdata
.vdso_direct
= false;
564 vdso_default
= false;
568 static void arch_timer_check_ool_workaround(enum arch_timer_erratum_match_type type
,
571 const struct arch_timer_erratum_workaround
*wa
, *__wa
;
572 ate_match_fn_t match_fn
= NULL
;
577 match_fn
= arch_timer_check_dt_erratum
;
579 case ate_match_local_cap_id
:
580 match_fn
= arch_timer_check_local_cap_erratum
;
583 case ate_match_acpi_oem_info
:
584 match_fn
= arch_timer_check_acpi_oem_erratum
;
591 wa
= arch_timer_iterate_errata(type
, match_fn
, arg
);
595 __wa
= __this_cpu_read(timer_unstable_counter_workaround
);
596 if (__wa
&& wa
!= __wa
)
597 pr_warn("Can't enable workaround for %s (clashes with %s\n)",
598 wa
->desc
, __wa
->desc
);
603 arch_timer_enable_workaround(wa
, local
);
604 pr_info("Enabling %s workaround for %s\n",
605 local
? "local" : "global", wa
->desc
);
608 static bool arch_timer_this_cpu_has_cntvct_wa(void)
610 return has_erratum_handler(read_cntvct_el0
);
613 static bool arch_timer_counter_has_wa(void)
615 return atomic_read(&timer_unstable_counter_workaround_in_use
);
618 #define arch_timer_check_ool_workaround(t,a) do { } while(0)
619 #define arch_timer_this_cpu_has_cntvct_wa() ({false;})
620 #define arch_timer_counter_has_wa() ({false;})
621 #endif /* CONFIG_ARM_ARCH_TIMER_OOL_WORKAROUND */
623 static __always_inline irqreturn_t
timer_handler(const int access
,
624 struct clock_event_device
*evt
)
628 ctrl
= arch_timer_reg_read(access
, ARCH_TIMER_REG_CTRL
, evt
);
629 if (ctrl
& ARCH_TIMER_CTRL_IT_STAT
) {
630 ctrl
|= ARCH_TIMER_CTRL_IT_MASK
;
631 arch_timer_reg_write(access
, ARCH_TIMER_REG_CTRL
, ctrl
, evt
);
632 evt
->event_handler(evt
);
639 static irqreturn_t
arch_timer_handler_virt(int irq
, void *dev_id
)
641 struct clock_event_device
*evt
= dev_id
;
643 return timer_handler(ARCH_TIMER_VIRT_ACCESS
, evt
);
646 static irqreturn_t
arch_timer_handler_phys(int irq
, void *dev_id
)
648 struct clock_event_device
*evt
= dev_id
;
650 return timer_handler(ARCH_TIMER_PHYS_ACCESS
, evt
);
653 static irqreturn_t
arch_timer_handler_phys_mem(int irq
, void *dev_id
)
655 struct clock_event_device
*evt
= dev_id
;
657 return timer_handler(ARCH_TIMER_MEM_PHYS_ACCESS
, evt
);
660 static irqreturn_t
arch_timer_handler_virt_mem(int irq
, void *dev_id
)
662 struct clock_event_device
*evt
= dev_id
;
664 return timer_handler(ARCH_TIMER_MEM_VIRT_ACCESS
, evt
);
667 static __always_inline
int timer_shutdown(const int access
,
668 struct clock_event_device
*clk
)
672 ctrl
= arch_timer_reg_read(access
, ARCH_TIMER_REG_CTRL
, clk
);
673 ctrl
&= ~ARCH_TIMER_CTRL_ENABLE
;
674 arch_timer_reg_write(access
, ARCH_TIMER_REG_CTRL
, ctrl
, clk
);
679 static int arch_timer_shutdown_virt(struct clock_event_device
*clk
)
681 return timer_shutdown(ARCH_TIMER_VIRT_ACCESS
, clk
);
684 static int arch_timer_shutdown_phys(struct clock_event_device
*clk
)
686 return timer_shutdown(ARCH_TIMER_PHYS_ACCESS
, clk
);
689 static int arch_timer_shutdown_virt_mem(struct clock_event_device
*clk
)
691 return timer_shutdown(ARCH_TIMER_MEM_VIRT_ACCESS
, clk
);
694 static int arch_timer_shutdown_phys_mem(struct clock_event_device
*clk
)
696 return timer_shutdown(ARCH_TIMER_MEM_PHYS_ACCESS
, clk
);
699 static __always_inline
void set_next_event(const int access
, unsigned long evt
,
700 struct clock_event_device
*clk
)
703 ctrl
= arch_timer_reg_read(access
, ARCH_TIMER_REG_CTRL
, clk
);
704 ctrl
|= ARCH_TIMER_CTRL_ENABLE
;
705 ctrl
&= ~ARCH_TIMER_CTRL_IT_MASK
;
706 arch_timer_reg_write(access
, ARCH_TIMER_REG_TVAL
, evt
, clk
);
707 arch_timer_reg_write(access
, ARCH_TIMER_REG_CTRL
, ctrl
, clk
);
710 static int arch_timer_set_next_event_virt(unsigned long evt
,
711 struct clock_event_device
*clk
)
713 set_next_event(ARCH_TIMER_VIRT_ACCESS
, evt
, clk
);
717 static int arch_timer_set_next_event_phys(unsigned long evt
,
718 struct clock_event_device
*clk
)
720 set_next_event(ARCH_TIMER_PHYS_ACCESS
, evt
, clk
);
724 static int arch_timer_set_next_event_virt_mem(unsigned long evt
,
725 struct clock_event_device
*clk
)
727 set_next_event(ARCH_TIMER_MEM_VIRT_ACCESS
, evt
, clk
);
731 static int arch_timer_set_next_event_phys_mem(unsigned long evt
,
732 struct clock_event_device
*clk
)
734 set_next_event(ARCH_TIMER_MEM_PHYS_ACCESS
, evt
, clk
);
738 static void __arch_timer_setup(unsigned type
,
739 struct clock_event_device
*clk
)
741 clk
->features
= CLOCK_EVT_FEAT_ONESHOT
;
743 if (type
== ARCH_TIMER_TYPE_CP15
) {
744 typeof(clk
->set_next_event
) sne
;
746 arch_timer_check_ool_workaround(ate_match_local_cap_id
, NULL
);
748 if (arch_timer_c3stop
)
749 clk
->features
|= CLOCK_EVT_FEAT_C3STOP
;
750 clk
->name
= "arch_sys_timer";
752 clk
->cpumask
= cpumask_of(smp_processor_id());
753 clk
->irq
= arch_timer_ppi
[arch_timer_uses_ppi
];
754 switch (arch_timer_uses_ppi
) {
755 case ARCH_TIMER_VIRT_PPI
:
756 clk
->set_state_shutdown
= arch_timer_shutdown_virt
;
757 clk
->set_state_oneshot_stopped
= arch_timer_shutdown_virt
;
758 sne
= erratum_handler(set_next_event_virt
);
760 case ARCH_TIMER_PHYS_SECURE_PPI
:
761 case ARCH_TIMER_PHYS_NONSECURE_PPI
:
762 case ARCH_TIMER_HYP_PPI
:
763 clk
->set_state_shutdown
= arch_timer_shutdown_phys
;
764 clk
->set_state_oneshot_stopped
= arch_timer_shutdown_phys
;
765 sne
= erratum_handler(set_next_event_phys
);
771 clk
->set_next_event
= sne
;
773 clk
->features
|= CLOCK_EVT_FEAT_DYNIRQ
;
774 clk
->name
= "arch_mem_timer";
776 clk
->cpumask
= cpu_possible_mask
;
777 if (arch_timer_mem_use_virtual
) {
778 clk
->set_state_shutdown
= arch_timer_shutdown_virt_mem
;
779 clk
->set_state_oneshot_stopped
= arch_timer_shutdown_virt_mem
;
780 clk
->set_next_event
=
781 arch_timer_set_next_event_virt_mem
;
783 clk
->set_state_shutdown
= arch_timer_shutdown_phys_mem
;
784 clk
->set_state_oneshot_stopped
= arch_timer_shutdown_phys_mem
;
785 clk
->set_next_event
=
786 arch_timer_set_next_event_phys_mem
;
790 clk
->set_state_shutdown(clk
);
792 clockevents_config_and_register(clk
, arch_timer_rate
, 0xf, 0x7fffffff);
795 static void arch_timer_evtstrm_enable(int divider
)
797 u32 cntkctl
= arch_timer_get_cntkctl();
799 cntkctl
&= ~ARCH_TIMER_EVT_TRIGGER_MASK
;
800 /* Set the divider and enable virtual event stream */
801 cntkctl
|= (divider
<< ARCH_TIMER_EVT_TRIGGER_SHIFT
)
802 | ARCH_TIMER_VIRT_EVT_EN
;
803 arch_timer_set_cntkctl(cntkctl
);
804 arch_timer_set_evtstrm_feature();
805 cpumask_set_cpu(smp_processor_id(), &evtstrm_available
);
808 static void arch_timer_configure_evtstream(void)
810 int evt_stream_div
, pos
;
812 /* Find the closest power of two to the divisor */
813 evt_stream_div
= arch_timer_rate
/ ARCH_TIMER_EVT_STREAM_FREQ
;
814 pos
= fls(evt_stream_div
);
815 if (pos
> 1 && !(evt_stream_div
& (1 << (pos
- 2))))
817 /* enable event stream */
818 arch_timer_evtstrm_enable(min(pos
, 15));
821 static void arch_counter_set_user_access(void)
823 u32 cntkctl
= arch_timer_get_cntkctl();
825 /* Disable user access to the timers and both counters */
826 /* Also disable virtual event stream */
827 cntkctl
&= ~(ARCH_TIMER_USR_PT_ACCESS_EN
828 | ARCH_TIMER_USR_VT_ACCESS_EN
829 | ARCH_TIMER_USR_VCT_ACCESS_EN
830 | ARCH_TIMER_VIRT_EVT_EN
831 | ARCH_TIMER_USR_PCT_ACCESS_EN
);
834 * Enable user access to the virtual counter if it doesn't
835 * need to be workaround. The vdso may have been already
838 if (arch_timer_this_cpu_has_cntvct_wa())
839 pr_info("CPU%d: Trapping CNTVCT access\n", smp_processor_id());
841 cntkctl
|= ARCH_TIMER_USR_VCT_ACCESS_EN
;
843 arch_timer_set_cntkctl(cntkctl
);
846 static bool arch_timer_has_nonsecure_ppi(void)
848 return (arch_timer_uses_ppi
== ARCH_TIMER_PHYS_SECURE_PPI
&&
849 arch_timer_ppi
[ARCH_TIMER_PHYS_NONSECURE_PPI
]);
852 static u32
check_ppi_trigger(int irq
)
854 u32 flags
= irq_get_trigger_type(irq
);
856 if (flags
!= IRQF_TRIGGER_HIGH
&& flags
!= IRQF_TRIGGER_LOW
) {
857 pr_warn("WARNING: Invalid trigger for IRQ%d, assuming level low\n", irq
);
858 pr_warn("WARNING: Please fix your firmware\n");
859 flags
= IRQF_TRIGGER_LOW
;
865 static int arch_timer_starting_cpu(unsigned int cpu
)
867 struct clock_event_device
*clk
= this_cpu_ptr(arch_timer_evt
);
870 __arch_timer_setup(ARCH_TIMER_TYPE_CP15
, clk
);
872 flags
= check_ppi_trigger(arch_timer_ppi
[arch_timer_uses_ppi
]);
873 enable_percpu_irq(arch_timer_ppi
[arch_timer_uses_ppi
], flags
);
875 if (arch_timer_has_nonsecure_ppi()) {
876 flags
= check_ppi_trigger(arch_timer_ppi
[ARCH_TIMER_PHYS_NONSECURE_PPI
]);
877 enable_percpu_irq(arch_timer_ppi
[ARCH_TIMER_PHYS_NONSECURE_PPI
],
881 arch_counter_set_user_access();
883 arch_timer_configure_evtstream();
889 * For historical reasons, when probing with DT we use whichever (non-zero)
890 * rate was probed first, and don't verify that others match. If the first node
891 * probed has a clock-frequency property, this overrides the HW register.
893 static void arch_timer_of_configure_rate(u32 rate
, struct device_node
*np
)
895 /* Who has more than one independent system counter? */
899 if (of_property_read_u32(np
, "clock-frequency", &arch_timer_rate
))
900 arch_timer_rate
= rate
;
902 /* Check the timer frequency. */
903 if (arch_timer_rate
== 0)
904 pr_warn("frequency not available\n");
907 static void arch_timer_banner(unsigned type
)
909 pr_info("%s%s%s timer(s) running at %lu.%02luMHz (%s%s%s).\n",
910 type
& ARCH_TIMER_TYPE_CP15
? "cp15" : "",
911 type
== (ARCH_TIMER_TYPE_CP15
| ARCH_TIMER_TYPE_MEM
) ?
913 type
& ARCH_TIMER_TYPE_MEM
? "mmio" : "",
914 (unsigned long)arch_timer_rate
/ 1000000,
915 (unsigned long)(arch_timer_rate
/ 10000) % 100,
916 type
& ARCH_TIMER_TYPE_CP15
?
917 (arch_timer_uses_ppi
== ARCH_TIMER_VIRT_PPI
) ? "virt" : "phys" :
919 type
== (ARCH_TIMER_TYPE_CP15
| ARCH_TIMER_TYPE_MEM
) ? "/" : "",
920 type
& ARCH_TIMER_TYPE_MEM
?
921 arch_timer_mem_use_virtual
? "virt" : "phys" :
925 u32
arch_timer_get_rate(void)
927 return arch_timer_rate
;
930 bool arch_timer_evtstrm_available(void)
933 * We might get called from a preemptible context. This is fine
934 * because availability of the event stream should be always the same
935 * for a preemptible context and context where we might resume a task.
937 return cpumask_test_cpu(raw_smp_processor_id(), &evtstrm_available
);
940 static u64
arch_counter_get_cntvct_mem(void)
942 u32 vct_lo
, vct_hi
, tmp_hi
;
945 vct_hi
= readl_relaxed(arch_counter_base
+ CNTVCT_HI
);
946 vct_lo
= readl_relaxed(arch_counter_base
+ CNTVCT_LO
);
947 tmp_hi
= readl_relaxed(arch_counter_base
+ CNTVCT_HI
);
948 } while (vct_hi
!= tmp_hi
);
950 return ((u64
) vct_hi
<< 32) | vct_lo
;
953 static struct arch_timer_kvm_info arch_timer_kvm_info
;
955 struct arch_timer_kvm_info
*arch_timer_get_kvm_info(void)
957 return &arch_timer_kvm_info
;
960 static void __init
arch_counter_register(unsigned type
)
964 /* Register the CP15 based counter if we have one */
965 if (type
& ARCH_TIMER_TYPE_CP15
) {
968 if ((IS_ENABLED(CONFIG_ARM64
) && !is_hyp_mode_available()) ||
969 arch_timer_uses_ppi
== ARCH_TIMER_VIRT_PPI
) {
970 if (arch_timer_counter_has_wa())
971 rd
= arch_counter_get_cntvct_stable
;
973 rd
= arch_counter_get_cntvct
;
975 if (arch_timer_counter_has_wa())
976 rd
= arch_counter_get_cntpct_stable
;
978 rd
= arch_counter_get_cntpct
;
981 arch_timer_read_counter
= rd
;
982 clocksource_counter
.archdata
.vdso_direct
= vdso_default
;
984 arch_timer_read_counter
= arch_counter_get_cntvct_mem
;
987 if (!arch_counter_suspend_stop
)
988 clocksource_counter
.flags
|= CLOCK_SOURCE_SUSPEND_NONSTOP
;
989 start_count
= arch_timer_read_counter();
990 clocksource_register_hz(&clocksource_counter
, arch_timer_rate
);
991 cyclecounter
.mult
= clocksource_counter
.mult
;
992 cyclecounter
.shift
= clocksource_counter
.shift
;
993 timecounter_init(&arch_timer_kvm_info
.timecounter
,
994 &cyclecounter
, start_count
);
996 /* 56 bits minimum, so we assume worst case rollover */
997 sched_clock_register(arch_timer_read_counter
, 56, arch_timer_rate
);
1000 static void arch_timer_stop(struct clock_event_device
*clk
)
1002 pr_debug("disable IRQ%d cpu #%d\n", clk
->irq
, smp_processor_id());
1004 disable_percpu_irq(arch_timer_ppi
[arch_timer_uses_ppi
]);
1005 if (arch_timer_has_nonsecure_ppi())
1006 disable_percpu_irq(arch_timer_ppi
[ARCH_TIMER_PHYS_NONSECURE_PPI
]);
1008 clk
->set_state_shutdown(clk
);
1011 static int arch_timer_dying_cpu(unsigned int cpu
)
1013 struct clock_event_device
*clk
= this_cpu_ptr(arch_timer_evt
);
1015 cpumask_clear_cpu(smp_processor_id(), &evtstrm_available
);
1017 arch_timer_stop(clk
);
1021 #ifdef CONFIG_CPU_PM
1022 static DEFINE_PER_CPU(unsigned long, saved_cntkctl
);
1023 static int arch_timer_cpu_pm_notify(struct notifier_block
*self
,
1024 unsigned long action
, void *hcpu
)
1026 if (action
== CPU_PM_ENTER
) {
1027 __this_cpu_write(saved_cntkctl
, arch_timer_get_cntkctl());
1029 cpumask_clear_cpu(smp_processor_id(), &evtstrm_available
);
1030 } else if (action
== CPU_PM_ENTER_FAILED
|| action
== CPU_PM_EXIT
) {
1031 arch_timer_set_cntkctl(__this_cpu_read(saved_cntkctl
));
1033 if (arch_timer_have_evtstrm_feature())
1034 cpumask_set_cpu(smp_processor_id(), &evtstrm_available
);
1039 static struct notifier_block arch_timer_cpu_pm_notifier
= {
1040 .notifier_call
= arch_timer_cpu_pm_notify
,
1043 static int __init
arch_timer_cpu_pm_init(void)
1045 return cpu_pm_register_notifier(&arch_timer_cpu_pm_notifier
);
1048 static void __init
arch_timer_cpu_pm_deinit(void)
1050 WARN_ON(cpu_pm_unregister_notifier(&arch_timer_cpu_pm_notifier
));
1054 static int __init
arch_timer_cpu_pm_init(void)
1059 static void __init
arch_timer_cpu_pm_deinit(void)
1064 static int __init
arch_timer_register(void)
1069 arch_timer_evt
= alloc_percpu(struct clock_event_device
);
1070 if (!arch_timer_evt
) {
1075 ppi
= arch_timer_ppi
[arch_timer_uses_ppi
];
1076 switch (arch_timer_uses_ppi
) {
1077 case ARCH_TIMER_VIRT_PPI
:
1078 err
= request_percpu_irq(ppi
, arch_timer_handler_virt
,
1079 "arch_timer", arch_timer_evt
);
1081 case ARCH_TIMER_PHYS_SECURE_PPI
:
1082 case ARCH_TIMER_PHYS_NONSECURE_PPI
:
1083 err
= request_percpu_irq(ppi
, arch_timer_handler_phys
,
1084 "arch_timer", arch_timer_evt
);
1085 if (!err
&& arch_timer_has_nonsecure_ppi()) {
1086 ppi
= arch_timer_ppi
[ARCH_TIMER_PHYS_NONSECURE_PPI
];
1087 err
= request_percpu_irq(ppi
, arch_timer_handler_phys
,
1088 "arch_timer", arch_timer_evt
);
1090 free_percpu_irq(arch_timer_ppi
[ARCH_TIMER_PHYS_SECURE_PPI
],
1094 case ARCH_TIMER_HYP_PPI
:
1095 err
= request_percpu_irq(ppi
, arch_timer_handler_phys
,
1096 "arch_timer", arch_timer_evt
);
1103 pr_err("can't register interrupt %d (%d)\n", ppi
, err
);
1107 err
= arch_timer_cpu_pm_init();
1109 goto out_unreg_notify
;
1111 /* Register and immediately configure the timer on the boot CPU */
1112 err
= cpuhp_setup_state(CPUHP_AP_ARM_ARCH_TIMER_STARTING
,
1113 "clockevents/arm/arch_timer:starting",
1114 arch_timer_starting_cpu
, arch_timer_dying_cpu
);
1116 goto out_unreg_cpupm
;
1120 arch_timer_cpu_pm_deinit();
1123 free_percpu_irq(arch_timer_ppi
[arch_timer_uses_ppi
], arch_timer_evt
);
1124 if (arch_timer_has_nonsecure_ppi())
1125 free_percpu_irq(arch_timer_ppi
[ARCH_TIMER_PHYS_NONSECURE_PPI
],
1129 free_percpu(arch_timer_evt
);
1134 static int __init
arch_timer_mem_register(void __iomem
*base
, unsigned int irq
)
1138 struct arch_timer
*t
;
1140 t
= kzalloc(sizeof(*t
), GFP_KERNEL
);
1146 __arch_timer_setup(ARCH_TIMER_TYPE_MEM
, &t
->evt
);
1148 if (arch_timer_mem_use_virtual
)
1149 func
= arch_timer_handler_virt_mem
;
1151 func
= arch_timer_handler_phys_mem
;
1153 ret
= request_irq(irq
, func
, IRQF_TIMER
, "arch_mem_timer", &t
->evt
);
1155 pr_err("Failed to request mem timer irq\n");
1162 static const struct of_device_id arch_timer_of_match
[] __initconst
= {
1163 { .compatible
= "arm,armv7-timer", },
1164 { .compatible
= "arm,armv8-timer", },
1168 static const struct of_device_id arch_timer_mem_of_match
[] __initconst
= {
1169 { .compatible
= "arm,armv7-timer-mem", },
1173 static bool __init
arch_timer_needs_of_probing(void)
1175 struct device_node
*dn
;
1176 bool needs_probing
= false;
1177 unsigned int mask
= ARCH_TIMER_TYPE_CP15
| ARCH_TIMER_TYPE_MEM
;
1179 /* We have two timers, and both device-tree nodes are probed. */
1180 if ((arch_timers_present
& mask
) == mask
)
1184 * Only one type of timer is probed,
1185 * check if we have another type of timer node in device-tree.
1187 if (arch_timers_present
& ARCH_TIMER_TYPE_CP15
)
1188 dn
= of_find_matching_node(NULL
, arch_timer_mem_of_match
);
1190 dn
= of_find_matching_node(NULL
, arch_timer_of_match
);
1192 if (dn
&& of_device_is_available(dn
))
1193 needs_probing
= true;
1197 return needs_probing
;
1200 static int __init
arch_timer_common_init(void)
1202 arch_timer_banner(arch_timers_present
);
1203 arch_counter_register(arch_timers_present
);
1204 return arch_timer_arch_init();
1208 * arch_timer_select_ppi() - Select suitable PPI for the current system.
1210 * If HYP mode is available, we know that the physical timer
1211 * has been configured to be accessible from PL1. Use it, so
1212 * that a guest can use the virtual timer instead.
1214 * On ARMv8.1 with VH extensions, the kernel runs in HYP. VHE
1215 * accesses to CNTP_*_EL1 registers are silently redirected to
1216 * their CNTHP_*_EL2 counterparts, and use a different PPI
1219 * If no interrupt provided for virtual timer, we'll have to
1220 * stick to the physical timer. It'd better be accessible...
1221 * For arm64 we never use the secure interrupt.
1223 * Return: a suitable PPI type for the current system.
1225 static enum arch_timer_ppi_nr __init
arch_timer_select_ppi(void)
1227 if (is_kernel_in_hyp_mode())
1228 return ARCH_TIMER_HYP_PPI
;
1230 if (!is_hyp_mode_available() && arch_timer_ppi
[ARCH_TIMER_VIRT_PPI
])
1231 return ARCH_TIMER_VIRT_PPI
;
1233 if (IS_ENABLED(CONFIG_ARM64
))
1234 return ARCH_TIMER_PHYS_NONSECURE_PPI
;
1236 return ARCH_TIMER_PHYS_SECURE_PPI
;
1239 static void __init
arch_timer_populate_kvm_info(void)
1241 arch_timer_kvm_info
.virtual_irq
= arch_timer_ppi
[ARCH_TIMER_VIRT_PPI
];
1242 if (is_kernel_in_hyp_mode())
1243 arch_timer_kvm_info
.physical_irq
= arch_timer_ppi
[ARCH_TIMER_PHYS_NONSECURE_PPI
];
1246 static int __init
arch_timer_of_init(struct device_node
*np
)
1251 if (arch_timers_present
& ARCH_TIMER_TYPE_CP15
) {
1252 pr_warn("multiple nodes in dt, skipping\n");
1256 arch_timers_present
|= ARCH_TIMER_TYPE_CP15
;
1257 for (i
= ARCH_TIMER_PHYS_SECURE_PPI
; i
< ARCH_TIMER_MAX_TIMER_PPI
; i
++)
1258 arch_timer_ppi
[i
] = irq_of_parse_and_map(np
, i
);
1260 arch_timer_populate_kvm_info();
1262 rate
= arch_timer_get_cntfrq();
1263 arch_timer_of_configure_rate(rate
, np
);
1265 arch_timer_c3stop
= !of_property_read_bool(np
, "always-on");
1267 /* Check for globally applicable workarounds */
1268 arch_timer_check_ool_workaround(ate_match_dt
, np
);
1271 * If we cannot rely on firmware initializing the timer registers then
1272 * we should use the physical timers instead.
1274 if (IS_ENABLED(CONFIG_ARM
) &&
1275 of_property_read_bool(np
, "arm,cpu-registers-not-fw-configured"))
1276 arch_timer_uses_ppi
= ARCH_TIMER_PHYS_SECURE_PPI
;
1278 arch_timer_uses_ppi
= arch_timer_select_ppi();
1280 if (!arch_timer_ppi
[arch_timer_uses_ppi
]) {
1281 pr_err("No interrupt available, giving up\n");
1285 /* On some systems, the counter stops ticking when in suspend. */
1286 arch_counter_suspend_stop
= of_property_read_bool(np
,
1287 "arm,no-tick-in-suspend");
1289 ret
= arch_timer_register();
1293 if (arch_timer_needs_of_probing())
1296 return arch_timer_common_init();
1298 TIMER_OF_DECLARE(armv7_arch_timer
, "arm,armv7-timer", arch_timer_of_init
);
1299 TIMER_OF_DECLARE(armv8_arch_timer
, "arm,armv8-timer", arch_timer_of_init
);
1302 arch_timer_mem_frame_get_cntfrq(struct arch_timer_mem_frame
*frame
)
1307 base
= ioremap(frame
->cntbase
, frame
->size
);
1309 pr_err("Unable to map frame @ %pa\n", &frame
->cntbase
);
1313 rate
= readl_relaxed(base
+ CNTFRQ
);
1320 static struct arch_timer_mem_frame
* __init
1321 arch_timer_mem_find_best_frame(struct arch_timer_mem
*timer_mem
)
1323 struct arch_timer_mem_frame
*frame
, *best_frame
= NULL
;
1324 void __iomem
*cntctlbase
;
1328 cntctlbase
= ioremap(timer_mem
->cntctlbase
, timer_mem
->size
);
1330 pr_err("Can't map CNTCTLBase @ %pa\n",
1331 &timer_mem
->cntctlbase
);
1335 cnttidr
= readl_relaxed(cntctlbase
+ CNTTIDR
);
1338 * Try to find a virtual capable frame. Otherwise fall back to a
1339 * physical capable frame.
1341 for (i
= 0; i
< ARCH_TIMER_MEM_MAX_FRAMES
; i
++) {
1342 u32 cntacr
= CNTACR_RFRQ
| CNTACR_RWPT
| CNTACR_RPCT
|
1343 CNTACR_RWVT
| CNTACR_RVOFF
| CNTACR_RVCT
;
1345 frame
= &timer_mem
->frame
[i
];
1349 /* Try enabling everything, and see what sticks */
1350 writel_relaxed(cntacr
, cntctlbase
+ CNTACR(i
));
1351 cntacr
= readl_relaxed(cntctlbase
+ CNTACR(i
));
1353 if ((cnttidr
& CNTTIDR_VIRT(i
)) &&
1354 !(~cntacr
& (CNTACR_RWVT
| CNTACR_RVCT
))) {
1356 arch_timer_mem_use_virtual
= true;
1360 if (~cntacr
& (CNTACR_RWPT
| CNTACR_RPCT
))
1366 iounmap(cntctlbase
);
1372 arch_timer_mem_frame_register(struct arch_timer_mem_frame
*frame
)
1377 if (arch_timer_mem_use_virtual
)
1378 irq
= frame
->virt_irq
;
1380 irq
= frame
->phys_irq
;
1383 pr_err("Frame missing %s irq.\n",
1384 arch_timer_mem_use_virtual
? "virt" : "phys");
1388 if (!request_mem_region(frame
->cntbase
, frame
->size
,
1392 base
= ioremap(frame
->cntbase
, frame
->size
);
1394 pr_err("Can't map frame's registers\n");
1398 ret
= arch_timer_mem_register(base
, irq
);
1404 arch_counter_base
= base
;
1405 arch_timers_present
|= ARCH_TIMER_TYPE_MEM
;
1410 static int __init
arch_timer_mem_of_init(struct device_node
*np
)
1412 struct arch_timer_mem
*timer_mem
;
1413 struct arch_timer_mem_frame
*frame
;
1414 struct device_node
*frame_node
;
1415 struct resource res
;
1419 timer_mem
= kzalloc(sizeof(*timer_mem
), GFP_KERNEL
);
1423 if (of_address_to_resource(np
, 0, &res
))
1425 timer_mem
->cntctlbase
= res
.start
;
1426 timer_mem
->size
= resource_size(&res
);
1428 for_each_available_child_of_node(np
, frame_node
) {
1430 struct arch_timer_mem_frame
*frame
;
1432 if (of_property_read_u32(frame_node
, "frame-number", &n
)) {
1433 pr_err(FW_BUG
"Missing frame-number.\n");
1434 of_node_put(frame_node
);
1437 if (n
>= ARCH_TIMER_MEM_MAX_FRAMES
) {
1438 pr_err(FW_BUG
"Wrong frame-number, only 0-%u are permitted.\n",
1439 ARCH_TIMER_MEM_MAX_FRAMES
- 1);
1440 of_node_put(frame_node
);
1443 frame
= &timer_mem
->frame
[n
];
1446 pr_err(FW_BUG
"Duplicated frame-number.\n");
1447 of_node_put(frame_node
);
1451 if (of_address_to_resource(frame_node
, 0, &res
)) {
1452 of_node_put(frame_node
);
1455 frame
->cntbase
= res
.start
;
1456 frame
->size
= resource_size(&res
);
1458 frame
->virt_irq
= irq_of_parse_and_map(frame_node
,
1459 ARCH_TIMER_VIRT_SPI
);
1460 frame
->phys_irq
= irq_of_parse_and_map(frame_node
,
1461 ARCH_TIMER_PHYS_SPI
);
1463 frame
->valid
= true;
1466 frame
= arch_timer_mem_find_best_frame(timer_mem
);
1468 pr_err("Unable to find a suitable frame in timer @ %pa\n",
1469 &timer_mem
->cntctlbase
);
1474 rate
= arch_timer_mem_frame_get_cntfrq(frame
);
1475 arch_timer_of_configure_rate(rate
, np
);
1477 ret
= arch_timer_mem_frame_register(frame
);
1478 if (!ret
&& !arch_timer_needs_of_probing())
1479 ret
= arch_timer_common_init();
1484 TIMER_OF_DECLARE(armv7_arch_timer_mem
, "arm,armv7-timer-mem",
1485 arch_timer_mem_of_init
);
1487 #ifdef CONFIG_ACPI_GTDT
1489 arch_timer_mem_verify_cntfrq(struct arch_timer_mem
*timer_mem
)
1491 struct arch_timer_mem_frame
*frame
;
1495 for (i
= 0; i
< ARCH_TIMER_MEM_MAX_FRAMES
; i
++) {
1496 frame
= &timer_mem
->frame
[i
];
1501 rate
= arch_timer_mem_frame_get_cntfrq(frame
);
1502 if (rate
== arch_timer_rate
)
1505 pr_err(FW_BUG
"CNTFRQ mismatch: frame @ %pa: (0x%08lx), CPU: (0x%08lx)\n",
1507 (unsigned long)rate
, (unsigned long)arch_timer_rate
);
1515 static int __init
arch_timer_mem_acpi_init(int platform_timer_count
)
1517 struct arch_timer_mem
*timers
, *timer
;
1518 struct arch_timer_mem_frame
*frame
, *best_frame
= NULL
;
1519 int timer_count
, i
, ret
= 0;
1521 timers
= kcalloc(platform_timer_count
, sizeof(*timers
),
1526 ret
= acpi_arch_timer_mem_init(timers
, &timer_count
);
1527 if (ret
|| !timer_count
)
1531 * While unlikely, it's theoretically possible that none of the frames
1532 * in a timer expose the combination of feature we want.
1534 for (i
= 0; i
< timer_count
; i
++) {
1537 frame
= arch_timer_mem_find_best_frame(timer
);
1541 ret
= arch_timer_mem_verify_cntfrq(timer
);
1543 pr_err("Disabling MMIO timers due to CNTFRQ mismatch\n");
1547 if (!best_frame
) /* implies !frame */
1549 * Only complain about missing suitable frames if we
1550 * haven't already found one in a previous iteration.
1552 pr_err("Unable to find a suitable frame in timer @ %pa\n",
1553 &timer
->cntctlbase
);
1557 ret
= arch_timer_mem_frame_register(best_frame
);
1563 /* Initialize per-processor generic timer and memory-mapped timer(if present) */
1564 static int __init
arch_timer_acpi_init(struct acpi_table_header
*table
)
1566 int ret
, platform_timer_count
;
1568 if (arch_timers_present
& ARCH_TIMER_TYPE_CP15
) {
1569 pr_warn("already initialized, skipping\n");
1573 arch_timers_present
|= ARCH_TIMER_TYPE_CP15
;
1575 ret
= acpi_gtdt_init(table
, &platform_timer_count
);
1577 pr_err("Failed to init GTDT table.\n");
1581 arch_timer_ppi
[ARCH_TIMER_PHYS_NONSECURE_PPI
] =
1582 acpi_gtdt_map_ppi(ARCH_TIMER_PHYS_NONSECURE_PPI
);
1584 arch_timer_ppi
[ARCH_TIMER_VIRT_PPI
] =
1585 acpi_gtdt_map_ppi(ARCH_TIMER_VIRT_PPI
);
1587 arch_timer_ppi
[ARCH_TIMER_HYP_PPI
] =
1588 acpi_gtdt_map_ppi(ARCH_TIMER_HYP_PPI
);
1590 arch_timer_populate_kvm_info();
1593 * When probing via ACPI, we have no mechanism to override the sysreg
1594 * CNTFRQ value. This *must* be correct.
1596 arch_timer_rate
= arch_timer_get_cntfrq();
1597 if (!arch_timer_rate
) {
1598 pr_err(FW_BUG
"frequency not available.\n");
1602 arch_timer_uses_ppi
= arch_timer_select_ppi();
1603 if (!arch_timer_ppi
[arch_timer_uses_ppi
]) {
1604 pr_err("No interrupt available, giving up\n");
1608 /* Always-on capability */
1609 arch_timer_c3stop
= acpi_gtdt_c3stop(arch_timer_uses_ppi
);
1611 /* Check for globally applicable workarounds */
1612 arch_timer_check_ool_workaround(ate_match_acpi_oem_info
, table
);
1614 ret
= arch_timer_register();
1618 if (platform_timer_count
&&
1619 arch_timer_mem_acpi_init(platform_timer_count
))
1620 pr_err("Failed to initialize memory-mapped timer.\n");
1622 return arch_timer_common_init();
1624 TIMER_ACPI_DECLARE(arch_timer
, ACPI_SIG_GTDT
, arch_timer_acpi_init
);