treewide: remove redundant IS_ERR() before error code check
[linux/fpc-iii.git] / drivers / clocksource / arm_arch_timer.c
blob9a5464c625b45a04d7f52d6bc8b96bbfd99066b8
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * linux/drivers/clocksource/arm_arch_timer.c
5 * Copyright (C) 2011 ARM Ltd.
6 * All Rights Reserved
7 */
9 #define pr_fmt(fmt) "arch_timer: " fmt
11 #include <linux/init.h>
12 #include <linux/kernel.h>
13 #include <linux/device.h>
14 #include <linux/smp.h>
15 #include <linux/cpu.h>
16 #include <linux/cpu_pm.h>
17 #include <linux/clockchips.h>
18 #include <linux/clocksource.h>
19 #include <linux/interrupt.h>
20 #include <linux/of_irq.h>
21 #include <linux/of_address.h>
22 #include <linux/io.h>
23 #include <linux/slab.h>
24 #include <linux/sched/clock.h>
25 #include <linux/sched_clock.h>
26 #include <linux/acpi.h>
28 #include <asm/arch_timer.h>
29 #include <asm/virt.h>
31 #include <clocksource/arm_arch_timer.h>
33 #define CNTTIDR 0x08
34 #define CNTTIDR_VIRT(n) (BIT(1) << ((n) * 4))
36 #define CNTACR(n) (0x40 + ((n) * 4))
37 #define CNTACR_RPCT BIT(0)
38 #define CNTACR_RVCT BIT(1)
39 #define CNTACR_RFRQ BIT(2)
40 #define CNTACR_RVOFF BIT(3)
41 #define CNTACR_RWVT BIT(4)
42 #define CNTACR_RWPT BIT(5)
44 #define CNTVCT_LO 0x08
45 #define CNTVCT_HI 0x0c
46 #define CNTFRQ 0x10
47 #define CNTP_TVAL 0x28
48 #define CNTP_CTL 0x2c
49 #define CNTV_TVAL 0x38
50 #define CNTV_CTL 0x3c
52 static unsigned arch_timers_present __initdata;
54 static void __iomem *arch_counter_base;
56 struct arch_timer {
57 void __iomem *base;
58 struct clock_event_device evt;
61 #define to_arch_timer(e) container_of(e, struct arch_timer, evt)
63 static u32 arch_timer_rate;
64 static int arch_timer_ppi[ARCH_TIMER_MAX_TIMER_PPI];
66 static struct clock_event_device __percpu *arch_timer_evt;
68 static enum arch_timer_ppi_nr arch_timer_uses_ppi = ARCH_TIMER_VIRT_PPI;
69 static bool arch_timer_c3stop;
70 static bool arch_timer_mem_use_virtual;
71 static bool arch_counter_suspend_stop;
72 static bool vdso_default = true;
74 static cpumask_t evtstrm_available = CPU_MASK_NONE;
75 static bool evtstrm_enable = IS_ENABLED(CONFIG_ARM_ARCH_TIMER_EVTSTREAM);
77 static int __init early_evtstrm_cfg(char *buf)
79 return strtobool(buf, &evtstrm_enable);
81 early_param("clocksource.arm_arch_timer.evtstrm", early_evtstrm_cfg);
84 * Architected system timer support.
87 static __always_inline
88 void arch_timer_reg_write(int access, enum arch_timer_reg reg, u32 val,
89 struct clock_event_device *clk)
91 if (access == ARCH_TIMER_MEM_PHYS_ACCESS) {
92 struct arch_timer *timer = to_arch_timer(clk);
93 switch (reg) {
94 case ARCH_TIMER_REG_CTRL:
95 writel_relaxed(val, timer->base + CNTP_CTL);
96 break;
97 case ARCH_TIMER_REG_TVAL:
98 writel_relaxed(val, timer->base + CNTP_TVAL);
99 break;
101 } else if (access == ARCH_TIMER_MEM_VIRT_ACCESS) {
102 struct arch_timer *timer = to_arch_timer(clk);
103 switch (reg) {
104 case ARCH_TIMER_REG_CTRL:
105 writel_relaxed(val, timer->base + CNTV_CTL);
106 break;
107 case ARCH_TIMER_REG_TVAL:
108 writel_relaxed(val, timer->base + CNTV_TVAL);
109 break;
111 } else {
112 arch_timer_reg_write_cp15(access, reg, val);
116 static __always_inline
117 u32 arch_timer_reg_read(int access, enum arch_timer_reg reg,
118 struct clock_event_device *clk)
120 u32 val;
122 if (access == ARCH_TIMER_MEM_PHYS_ACCESS) {
123 struct arch_timer *timer = to_arch_timer(clk);
124 switch (reg) {
125 case ARCH_TIMER_REG_CTRL:
126 val = readl_relaxed(timer->base + CNTP_CTL);
127 break;
128 case ARCH_TIMER_REG_TVAL:
129 val = readl_relaxed(timer->base + CNTP_TVAL);
130 break;
132 } else if (access == ARCH_TIMER_MEM_VIRT_ACCESS) {
133 struct arch_timer *timer = to_arch_timer(clk);
134 switch (reg) {
135 case ARCH_TIMER_REG_CTRL:
136 val = readl_relaxed(timer->base + CNTV_CTL);
137 break;
138 case ARCH_TIMER_REG_TVAL:
139 val = readl_relaxed(timer->base + CNTV_TVAL);
140 break;
142 } else {
143 val = arch_timer_reg_read_cp15(access, reg);
146 return val;
149 static notrace u64 arch_counter_get_cntpct_stable(void)
151 return __arch_counter_get_cntpct_stable();
154 static notrace u64 arch_counter_get_cntpct(void)
156 return __arch_counter_get_cntpct();
159 static notrace u64 arch_counter_get_cntvct_stable(void)
161 return __arch_counter_get_cntvct_stable();
164 static notrace u64 arch_counter_get_cntvct(void)
166 return __arch_counter_get_cntvct();
170 * Default to cp15 based access because arm64 uses this function for
171 * sched_clock() before DT is probed and the cp15 method is guaranteed
172 * to exist on arm64. arm doesn't use this before DT is probed so even
173 * if we don't have the cp15 accessors we won't have a problem.
175 u64 (*arch_timer_read_counter)(void) = arch_counter_get_cntvct;
176 EXPORT_SYMBOL_GPL(arch_timer_read_counter);
178 static u64 arch_counter_read(struct clocksource *cs)
180 return arch_timer_read_counter();
183 static u64 arch_counter_read_cc(const struct cyclecounter *cc)
185 return arch_timer_read_counter();
188 static struct clocksource clocksource_counter = {
189 .name = "arch_sys_counter",
190 .rating = 400,
191 .read = arch_counter_read,
192 .mask = CLOCKSOURCE_MASK(56),
193 .flags = CLOCK_SOURCE_IS_CONTINUOUS,
196 static struct cyclecounter cyclecounter __ro_after_init = {
197 .read = arch_counter_read_cc,
198 .mask = CLOCKSOURCE_MASK(56),
201 struct ate_acpi_oem_info {
202 char oem_id[ACPI_OEM_ID_SIZE + 1];
203 char oem_table_id[ACPI_OEM_TABLE_ID_SIZE + 1];
204 u32 oem_revision;
207 #ifdef CONFIG_FSL_ERRATUM_A008585
209 * The number of retries is an arbitrary value well beyond the highest number
210 * of iterations the loop has been observed to take.
212 #define __fsl_a008585_read_reg(reg) ({ \
213 u64 _old, _new; \
214 int _retries = 200; \
216 do { \
217 _old = read_sysreg(reg); \
218 _new = read_sysreg(reg); \
219 _retries--; \
220 } while (unlikely(_old != _new) && _retries); \
222 WARN_ON_ONCE(!_retries); \
223 _new; \
226 static u32 notrace fsl_a008585_read_cntp_tval_el0(void)
228 return __fsl_a008585_read_reg(cntp_tval_el0);
231 static u32 notrace fsl_a008585_read_cntv_tval_el0(void)
233 return __fsl_a008585_read_reg(cntv_tval_el0);
236 static u64 notrace fsl_a008585_read_cntpct_el0(void)
238 return __fsl_a008585_read_reg(cntpct_el0);
241 static u64 notrace fsl_a008585_read_cntvct_el0(void)
243 return __fsl_a008585_read_reg(cntvct_el0);
245 #endif
247 #ifdef CONFIG_HISILICON_ERRATUM_161010101
249 * Verify whether the value of the second read is larger than the first by
250 * less than 32 is the only way to confirm the value is correct, so clear the
251 * lower 5 bits to check whether the difference is greater than 32 or not.
252 * Theoretically the erratum should not occur more than twice in succession
253 * when reading the system counter, but it is possible that some interrupts
254 * may lead to more than twice read errors, triggering the warning, so setting
255 * the number of retries far beyond the number of iterations the loop has been
256 * observed to take.
258 #define __hisi_161010101_read_reg(reg) ({ \
259 u64 _old, _new; \
260 int _retries = 50; \
262 do { \
263 _old = read_sysreg(reg); \
264 _new = read_sysreg(reg); \
265 _retries--; \
266 } while (unlikely((_new - _old) >> 5) && _retries); \
268 WARN_ON_ONCE(!_retries); \
269 _new; \
272 static u32 notrace hisi_161010101_read_cntp_tval_el0(void)
274 return __hisi_161010101_read_reg(cntp_tval_el0);
277 static u32 notrace hisi_161010101_read_cntv_tval_el0(void)
279 return __hisi_161010101_read_reg(cntv_tval_el0);
282 static u64 notrace hisi_161010101_read_cntpct_el0(void)
284 return __hisi_161010101_read_reg(cntpct_el0);
287 static u64 notrace hisi_161010101_read_cntvct_el0(void)
289 return __hisi_161010101_read_reg(cntvct_el0);
292 static struct ate_acpi_oem_info hisi_161010101_oem_info[] = {
294 * Note that trailing spaces are required to properly match
295 * the OEM table information.
298 .oem_id = "HISI ",
299 .oem_table_id = "HIP05 ",
300 .oem_revision = 0,
303 .oem_id = "HISI ",
304 .oem_table_id = "HIP06 ",
305 .oem_revision = 0,
308 .oem_id = "HISI ",
309 .oem_table_id = "HIP07 ",
310 .oem_revision = 0,
312 { /* Sentinel indicating the end of the OEM array */ },
314 #endif
316 #ifdef CONFIG_ARM64_ERRATUM_858921
317 static u64 notrace arm64_858921_read_cntpct_el0(void)
319 u64 old, new;
321 old = read_sysreg(cntpct_el0);
322 new = read_sysreg(cntpct_el0);
323 return (((old ^ new) >> 32) & 1) ? old : new;
326 static u64 notrace arm64_858921_read_cntvct_el0(void)
328 u64 old, new;
330 old = read_sysreg(cntvct_el0);
331 new = read_sysreg(cntvct_el0);
332 return (((old ^ new) >> 32) & 1) ? old : new;
334 #endif
336 #ifdef CONFIG_SUN50I_ERRATUM_UNKNOWN1
338 * The low bits of the counter registers are indeterminate while bit 10 or
339 * greater is rolling over. Since the counter value can jump both backward
340 * (7ff -> 000 -> 800) and forward (7ff -> fff -> 800), ignore register values
341 * with all ones or all zeros in the low bits. Bound the loop by the maximum
342 * number of CPU cycles in 3 consecutive 24 MHz counter periods.
344 #define __sun50i_a64_read_reg(reg) ({ \
345 u64 _val; \
346 int _retries = 150; \
348 do { \
349 _val = read_sysreg(reg); \
350 _retries--; \
351 } while (((_val + 1) & GENMASK(9, 0)) <= 1 && _retries); \
353 WARN_ON_ONCE(!_retries); \
354 _val; \
357 static u64 notrace sun50i_a64_read_cntpct_el0(void)
359 return __sun50i_a64_read_reg(cntpct_el0);
362 static u64 notrace sun50i_a64_read_cntvct_el0(void)
364 return __sun50i_a64_read_reg(cntvct_el0);
367 static u32 notrace sun50i_a64_read_cntp_tval_el0(void)
369 return read_sysreg(cntp_cval_el0) - sun50i_a64_read_cntpct_el0();
372 static u32 notrace sun50i_a64_read_cntv_tval_el0(void)
374 return read_sysreg(cntv_cval_el0) - sun50i_a64_read_cntvct_el0();
376 #endif
378 #ifdef CONFIG_ARM_ARCH_TIMER_OOL_WORKAROUND
379 DEFINE_PER_CPU(const struct arch_timer_erratum_workaround *, timer_unstable_counter_workaround);
380 EXPORT_SYMBOL_GPL(timer_unstable_counter_workaround);
382 static atomic_t timer_unstable_counter_workaround_in_use = ATOMIC_INIT(0);
384 static void erratum_set_next_event_tval_generic(const int access, unsigned long evt,
385 struct clock_event_device *clk)
387 unsigned long ctrl;
388 u64 cval;
390 ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL, clk);
391 ctrl |= ARCH_TIMER_CTRL_ENABLE;
392 ctrl &= ~ARCH_TIMER_CTRL_IT_MASK;
394 if (access == ARCH_TIMER_PHYS_ACCESS) {
395 cval = evt + arch_counter_get_cntpct();
396 write_sysreg(cval, cntp_cval_el0);
397 } else {
398 cval = evt + arch_counter_get_cntvct();
399 write_sysreg(cval, cntv_cval_el0);
402 arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl, clk);
405 static __maybe_unused int erratum_set_next_event_tval_virt(unsigned long evt,
406 struct clock_event_device *clk)
408 erratum_set_next_event_tval_generic(ARCH_TIMER_VIRT_ACCESS, evt, clk);
409 return 0;
412 static __maybe_unused int erratum_set_next_event_tval_phys(unsigned long evt,
413 struct clock_event_device *clk)
415 erratum_set_next_event_tval_generic(ARCH_TIMER_PHYS_ACCESS, evt, clk);
416 return 0;
419 static const struct arch_timer_erratum_workaround ool_workarounds[] = {
420 #ifdef CONFIG_FSL_ERRATUM_A008585
422 .match_type = ate_match_dt,
423 .id = "fsl,erratum-a008585",
424 .desc = "Freescale erratum a005858",
425 .read_cntp_tval_el0 = fsl_a008585_read_cntp_tval_el0,
426 .read_cntv_tval_el0 = fsl_a008585_read_cntv_tval_el0,
427 .read_cntpct_el0 = fsl_a008585_read_cntpct_el0,
428 .read_cntvct_el0 = fsl_a008585_read_cntvct_el0,
429 .set_next_event_phys = erratum_set_next_event_tval_phys,
430 .set_next_event_virt = erratum_set_next_event_tval_virt,
432 #endif
433 #ifdef CONFIG_HISILICON_ERRATUM_161010101
435 .match_type = ate_match_dt,
436 .id = "hisilicon,erratum-161010101",
437 .desc = "HiSilicon erratum 161010101",
438 .read_cntp_tval_el0 = hisi_161010101_read_cntp_tval_el0,
439 .read_cntv_tval_el0 = hisi_161010101_read_cntv_tval_el0,
440 .read_cntpct_el0 = hisi_161010101_read_cntpct_el0,
441 .read_cntvct_el0 = hisi_161010101_read_cntvct_el0,
442 .set_next_event_phys = erratum_set_next_event_tval_phys,
443 .set_next_event_virt = erratum_set_next_event_tval_virt,
446 .match_type = ate_match_acpi_oem_info,
447 .id = hisi_161010101_oem_info,
448 .desc = "HiSilicon erratum 161010101",
449 .read_cntp_tval_el0 = hisi_161010101_read_cntp_tval_el0,
450 .read_cntv_tval_el0 = hisi_161010101_read_cntv_tval_el0,
451 .read_cntpct_el0 = hisi_161010101_read_cntpct_el0,
452 .read_cntvct_el0 = hisi_161010101_read_cntvct_el0,
453 .set_next_event_phys = erratum_set_next_event_tval_phys,
454 .set_next_event_virt = erratum_set_next_event_tval_virt,
456 #endif
457 #ifdef CONFIG_ARM64_ERRATUM_858921
459 .match_type = ate_match_local_cap_id,
460 .id = (void *)ARM64_WORKAROUND_858921,
461 .desc = "ARM erratum 858921",
462 .read_cntpct_el0 = arm64_858921_read_cntpct_el0,
463 .read_cntvct_el0 = arm64_858921_read_cntvct_el0,
465 #endif
466 #ifdef CONFIG_SUN50I_ERRATUM_UNKNOWN1
468 .match_type = ate_match_dt,
469 .id = "allwinner,erratum-unknown1",
470 .desc = "Allwinner erratum UNKNOWN1",
471 .read_cntp_tval_el0 = sun50i_a64_read_cntp_tval_el0,
472 .read_cntv_tval_el0 = sun50i_a64_read_cntv_tval_el0,
473 .read_cntpct_el0 = sun50i_a64_read_cntpct_el0,
474 .read_cntvct_el0 = sun50i_a64_read_cntvct_el0,
475 .set_next_event_phys = erratum_set_next_event_tval_phys,
476 .set_next_event_virt = erratum_set_next_event_tval_virt,
478 #endif
481 typedef bool (*ate_match_fn_t)(const struct arch_timer_erratum_workaround *,
482 const void *);
484 static
485 bool arch_timer_check_dt_erratum(const struct arch_timer_erratum_workaround *wa,
486 const void *arg)
488 const struct device_node *np = arg;
490 return of_property_read_bool(np, wa->id);
493 static
494 bool arch_timer_check_local_cap_erratum(const struct arch_timer_erratum_workaround *wa,
495 const void *arg)
497 return this_cpu_has_cap((uintptr_t)wa->id);
501 static
502 bool arch_timer_check_acpi_oem_erratum(const struct arch_timer_erratum_workaround *wa,
503 const void *arg)
505 static const struct ate_acpi_oem_info empty_oem_info = {};
506 const struct ate_acpi_oem_info *info = wa->id;
507 const struct acpi_table_header *table = arg;
509 /* Iterate over the ACPI OEM info array, looking for a match */
510 while (memcmp(info, &empty_oem_info, sizeof(*info))) {
511 if (!memcmp(info->oem_id, table->oem_id, ACPI_OEM_ID_SIZE) &&
512 !memcmp(info->oem_table_id, table->oem_table_id, ACPI_OEM_TABLE_ID_SIZE) &&
513 info->oem_revision == table->oem_revision)
514 return true;
516 info++;
519 return false;
522 static const struct arch_timer_erratum_workaround *
523 arch_timer_iterate_errata(enum arch_timer_erratum_match_type type,
524 ate_match_fn_t match_fn,
525 void *arg)
527 int i;
529 for (i = 0; i < ARRAY_SIZE(ool_workarounds); i++) {
530 if (ool_workarounds[i].match_type != type)
531 continue;
533 if (match_fn(&ool_workarounds[i], arg))
534 return &ool_workarounds[i];
537 return NULL;
540 static
541 void arch_timer_enable_workaround(const struct arch_timer_erratum_workaround *wa,
542 bool local)
544 int i;
546 if (local) {
547 __this_cpu_write(timer_unstable_counter_workaround, wa);
548 } else {
549 for_each_possible_cpu(i)
550 per_cpu(timer_unstable_counter_workaround, i) = wa;
553 if (wa->read_cntvct_el0 || wa->read_cntpct_el0)
554 atomic_set(&timer_unstable_counter_workaround_in_use, 1);
557 * Don't use the vdso fastpath if errata require using the
558 * out-of-line counter accessor. We may change our mind pretty
559 * late in the game (with a per-CPU erratum, for example), so
560 * change both the default value and the vdso itself.
562 if (wa->read_cntvct_el0) {
563 clocksource_counter.archdata.vdso_direct = false;
564 vdso_default = false;
568 static void arch_timer_check_ool_workaround(enum arch_timer_erratum_match_type type,
569 void *arg)
571 const struct arch_timer_erratum_workaround *wa, *__wa;
572 ate_match_fn_t match_fn = NULL;
573 bool local = false;
575 switch (type) {
576 case ate_match_dt:
577 match_fn = arch_timer_check_dt_erratum;
578 break;
579 case ate_match_local_cap_id:
580 match_fn = arch_timer_check_local_cap_erratum;
581 local = true;
582 break;
583 case ate_match_acpi_oem_info:
584 match_fn = arch_timer_check_acpi_oem_erratum;
585 break;
586 default:
587 WARN_ON(1);
588 return;
591 wa = arch_timer_iterate_errata(type, match_fn, arg);
592 if (!wa)
593 return;
595 __wa = __this_cpu_read(timer_unstable_counter_workaround);
596 if (__wa && wa != __wa)
597 pr_warn("Can't enable workaround for %s (clashes with %s\n)",
598 wa->desc, __wa->desc);
600 if (__wa)
601 return;
603 arch_timer_enable_workaround(wa, local);
604 pr_info("Enabling %s workaround for %s\n",
605 local ? "local" : "global", wa->desc);
608 static bool arch_timer_this_cpu_has_cntvct_wa(void)
610 return has_erratum_handler(read_cntvct_el0);
613 static bool arch_timer_counter_has_wa(void)
615 return atomic_read(&timer_unstable_counter_workaround_in_use);
617 #else
618 #define arch_timer_check_ool_workaround(t,a) do { } while(0)
619 #define arch_timer_this_cpu_has_cntvct_wa() ({false;})
620 #define arch_timer_counter_has_wa() ({false;})
621 #endif /* CONFIG_ARM_ARCH_TIMER_OOL_WORKAROUND */
623 static __always_inline irqreturn_t timer_handler(const int access,
624 struct clock_event_device *evt)
626 unsigned long ctrl;
628 ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL, evt);
629 if (ctrl & ARCH_TIMER_CTRL_IT_STAT) {
630 ctrl |= ARCH_TIMER_CTRL_IT_MASK;
631 arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl, evt);
632 evt->event_handler(evt);
633 return IRQ_HANDLED;
636 return IRQ_NONE;
639 static irqreturn_t arch_timer_handler_virt(int irq, void *dev_id)
641 struct clock_event_device *evt = dev_id;
643 return timer_handler(ARCH_TIMER_VIRT_ACCESS, evt);
646 static irqreturn_t arch_timer_handler_phys(int irq, void *dev_id)
648 struct clock_event_device *evt = dev_id;
650 return timer_handler(ARCH_TIMER_PHYS_ACCESS, evt);
653 static irqreturn_t arch_timer_handler_phys_mem(int irq, void *dev_id)
655 struct clock_event_device *evt = dev_id;
657 return timer_handler(ARCH_TIMER_MEM_PHYS_ACCESS, evt);
660 static irqreturn_t arch_timer_handler_virt_mem(int irq, void *dev_id)
662 struct clock_event_device *evt = dev_id;
664 return timer_handler(ARCH_TIMER_MEM_VIRT_ACCESS, evt);
667 static __always_inline int timer_shutdown(const int access,
668 struct clock_event_device *clk)
670 unsigned long ctrl;
672 ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL, clk);
673 ctrl &= ~ARCH_TIMER_CTRL_ENABLE;
674 arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl, clk);
676 return 0;
679 static int arch_timer_shutdown_virt(struct clock_event_device *clk)
681 return timer_shutdown(ARCH_TIMER_VIRT_ACCESS, clk);
684 static int arch_timer_shutdown_phys(struct clock_event_device *clk)
686 return timer_shutdown(ARCH_TIMER_PHYS_ACCESS, clk);
689 static int arch_timer_shutdown_virt_mem(struct clock_event_device *clk)
691 return timer_shutdown(ARCH_TIMER_MEM_VIRT_ACCESS, clk);
694 static int arch_timer_shutdown_phys_mem(struct clock_event_device *clk)
696 return timer_shutdown(ARCH_TIMER_MEM_PHYS_ACCESS, clk);
699 static __always_inline void set_next_event(const int access, unsigned long evt,
700 struct clock_event_device *clk)
702 unsigned long ctrl;
703 ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL, clk);
704 ctrl |= ARCH_TIMER_CTRL_ENABLE;
705 ctrl &= ~ARCH_TIMER_CTRL_IT_MASK;
706 arch_timer_reg_write(access, ARCH_TIMER_REG_TVAL, evt, clk);
707 arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl, clk);
710 static int arch_timer_set_next_event_virt(unsigned long evt,
711 struct clock_event_device *clk)
713 set_next_event(ARCH_TIMER_VIRT_ACCESS, evt, clk);
714 return 0;
717 static int arch_timer_set_next_event_phys(unsigned long evt,
718 struct clock_event_device *clk)
720 set_next_event(ARCH_TIMER_PHYS_ACCESS, evt, clk);
721 return 0;
724 static int arch_timer_set_next_event_virt_mem(unsigned long evt,
725 struct clock_event_device *clk)
727 set_next_event(ARCH_TIMER_MEM_VIRT_ACCESS, evt, clk);
728 return 0;
731 static int arch_timer_set_next_event_phys_mem(unsigned long evt,
732 struct clock_event_device *clk)
734 set_next_event(ARCH_TIMER_MEM_PHYS_ACCESS, evt, clk);
735 return 0;
738 static void __arch_timer_setup(unsigned type,
739 struct clock_event_device *clk)
741 clk->features = CLOCK_EVT_FEAT_ONESHOT;
743 if (type == ARCH_TIMER_TYPE_CP15) {
744 typeof(clk->set_next_event) sne;
746 arch_timer_check_ool_workaround(ate_match_local_cap_id, NULL);
748 if (arch_timer_c3stop)
749 clk->features |= CLOCK_EVT_FEAT_C3STOP;
750 clk->name = "arch_sys_timer";
751 clk->rating = 450;
752 clk->cpumask = cpumask_of(smp_processor_id());
753 clk->irq = arch_timer_ppi[arch_timer_uses_ppi];
754 switch (arch_timer_uses_ppi) {
755 case ARCH_TIMER_VIRT_PPI:
756 clk->set_state_shutdown = arch_timer_shutdown_virt;
757 clk->set_state_oneshot_stopped = arch_timer_shutdown_virt;
758 sne = erratum_handler(set_next_event_virt);
759 break;
760 case ARCH_TIMER_PHYS_SECURE_PPI:
761 case ARCH_TIMER_PHYS_NONSECURE_PPI:
762 case ARCH_TIMER_HYP_PPI:
763 clk->set_state_shutdown = arch_timer_shutdown_phys;
764 clk->set_state_oneshot_stopped = arch_timer_shutdown_phys;
765 sne = erratum_handler(set_next_event_phys);
766 break;
767 default:
768 BUG();
771 clk->set_next_event = sne;
772 } else {
773 clk->features |= CLOCK_EVT_FEAT_DYNIRQ;
774 clk->name = "arch_mem_timer";
775 clk->rating = 400;
776 clk->cpumask = cpu_possible_mask;
777 if (arch_timer_mem_use_virtual) {
778 clk->set_state_shutdown = arch_timer_shutdown_virt_mem;
779 clk->set_state_oneshot_stopped = arch_timer_shutdown_virt_mem;
780 clk->set_next_event =
781 arch_timer_set_next_event_virt_mem;
782 } else {
783 clk->set_state_shutdown = arch_timer_shutdown_phys_mem;
784 clk->set_state_oneshot_stopped = arch_timer_shutdown_phys_mem;
785 clk->set_next_event =
786 arch_timer_set_next_event_phys_mem;
790 clk->set_state_shutdown(clk);
792 clockevents_config_and_register(clk, arch_timer_rate, 0xf, 0x7fffffff);
795 static void arch_timer_evtstrm_enable(int divider)
797 u32 cntkctl = arch_timer_get_cntkctl();
799 cntkctl &= ~ARCH_TIMER_EVT_TRIGGER_MASK;
800 /* Set the divider and enable virtual event stream */
801 cntkctl |= (divider << ARCH_TIMER_EVT_TRIGGER_SHIFT)
802 | ARCH_TIMER_VIRT_EVT_EN;
803 arch_timer_set_cntkctl(cntkctl);
804 arch_timer_set_evtstrm_feature();
805 cpumask_set_cpu(smp_processor_id(), &evtstrm_available);
808 static void arch_timer_configure_evtstream(void)
810 int evt_stream_div, pos;
812 /* Find the closest power of two to the divisor */
813 evt_stream_div = arch_timer_rate / ARCH_TIMER_EVT_STREAM_FREQ;
814 pos = fls(evt_stream_div);
815 if (pos > 1 && !(evt_stream_div & (1 << (pos - 2))))
816 pos--;
817 /* enable event stream */
818 arch_timer_evtstrm_enable(min(pos, 15));
821 static void arch_counter_set_user_access(void)
823 u32 cntkctl = arch_timer_get_cntkctl();
825 /* Disable user access to the timers and both counters */
826 /* Also disable virtual event stream */
827 cntkctl &= ~(ARCH_TIMER_USR_PT_ACCESS_EN
828 | ARCH_TIMER_USR_VT_ACCESS_EN
829 | ARCH_TIMER_USR_VCT_ACCESS_EN
830 | ARCH_TIMER_VIRT_EVT_EN
831 | ARCH_TIMER_USR_PCT_ACCESS_EN);
834 * Enable user access to the virtual counter if it doesn't
835 * need to be workaround. The vdso may have been already
836 * disabled though.
838 if (arch_timer_this_cpu_has_cntvct_wa())
839 pr_info("CPU%d: Trapping CNTVCT access\n", smp_processor_id());
840 else
841 cntkctl |= ARCH_TIMER_USR_VCT_ACCESS_EN;
843 arch_timer_set_cntkctl(cntkctl);
846 static bool arch_timer_has_nonsecure_ppi(void)
848 return (arch_timer_uses_ppi == ARCH_TIMER_PHYS_SECURE_PPI &&
849 arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI]);
852 static u32 check_ppi_trigger(int irq)
854 u32 flags = irq_get_trigger_type(irq);
856 if (flags != IRQF_TRIGGER_HIGH && flags != IRQF_TRIGGER_LOW) {
857 pr_warn("WARNING: Invalid trigger for IRQ%d, assuming level low\n", irq);
858 pr_warn("WARNING: Please fix your firmware\n");
859 flags = IRQF_TRIGGER_LOW;
862 return flags;
865 static int arch_timer_starting_cpu(unsigned int cpu)
867 struct clock_event_device *clk = this_cpu_ptr(arch_timer_evt);
868 u32 flags;
870 __arch_timer_setup(ARCH_TIMER_TYPE_CP15, clk);
872 flags = check_ppi_trigger(arch_timer_ppi[arch_timer_uses_ppi]);
873 enable_percpu_irq(arch_timer_ppi[arch_timer_uses_ppi], flags);
875 if (arch_timer_has_nonsecure_ppi()) {
876 flags = check_ppi_trigger(arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI]);
877 enable_percpu_irq(arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI],
878 flags);
881 arch_counter_set_user_access();
882 if (evtstrm_enable)
883 arch_timer_configure_evtstream();
885 return 0;
889 * For historical reasons, when probing with DT we use whichever (non-zero)
890 * rate was probed first, and don't verify that others match. If the first node
891 * probed has a clock-frequency property, this overrides the HW register.
893 static void arch_timer_of_configure_rate(u32 rate, struct device_node *np)
895 /* Who has more than one independent system counter? */
896 if (arch_timer_rate)
897 return;
899 if (of_property_read_u32(np, "clock-frequency", &arch_timer_rate))
900 arch_timer_rate = rate;
902 /* Check the timer frequency. */
903 if (arch_timer_rate == 0)
904 pr_warn("frequency not available\n");
907 static void arch_timer_banner(unsigned type)
909 pr_info("%s%s%s timer(s) running at %lu.%02luMHz (%s%s%s).\n",
910 type & ARCH_TIMER_TYPE_CP15 ? "cp15" : "",
911 type == (ARCH_TIMER_TYPE_CP15 | ARCH_TIMER_TYPE_MEM) ?
912 " and " : "",
913 type & ARCH_TIMER_TYPE_MEM ? "mmio" : "",
914 (unsigned long)arch_timer_rate / 1000000,
915 (unsigned long)(arch_timer_rate / 10000) % 100,
916 type & ARCH_TIMER_TYPE_CP15 ?
917 (arch_timer_uses_ppi == ARCH_TIMER_VIRT_PPI) ? "virt" : "phys" :
919 type == (ARCH_TIMER_TYPE_CP15 | ARCH_TIMER_TYPE_MEM) ? "/" : "",
920 type & ARCH_TIMER_TYPE_MEM ?
921 arch_timer_mem_use_virtual ? "virt" : "phys" :
922 "");
925 u32 arch_timer_get_rate(void)
927 return arch_timer_rate;
930 bool arch_timer_evtstrm_available(void)
933 * We might get called from a preemptible context. This is fine
934 * because availability of the event stream should be always the same
935 * for a preemptible context and context where we might resume a task.
937 return cpumask_test_cpu(raw_smp_processor_id(), &evtstrm_available);
940 static u64 arch_counter_get_cntvct_mem(void)
942 u32 vct_lo, vct_hi, tmp_hi;
944 do {
945 vct_hi = readl_relaxed(arch_counter_base + CNTVCT_HI);
946 vct_lo = readl_relaxed(arch_counter_base + CNTVCT_LO);
947 tmp_hi = readl_relaxed(arch_counter_base + CNTVCT_HI);
948 } while (vct_hi != tmp_hi);
950 return ((u64) vct_hi << 32) | vct_lo;
953 static struct arch_timer_kvm_info arch_timer_kvm_info;
955 struct arch_timer_kvm_info *arch_timer_get_kvm_info(void)
957 return &arch_timer_kvm_info;
960 static void __init arch_counter_register(unsigned type)
962 u64 start_count;
964 /* Register the CP15 based counter if we have one */
965 if (type & ARCH_TIMER_TYPE_CP15) {
966 u64 (*rd)(void);
968 if ((IS_ENABLED(CONFIG_ARM64) && !is_hyp_mode_available()) ||
969 arch_timer_uses_ppi == ARCH_TIMER_VIRT_PPI) {
970 if (arch_timer_counter_has_wa())
971 rd = arch_counter_get_cntvct_stable;
972 else
973 rd = arch_counter_get_cntvct;
974 } else {
975 if (arch_timer_counter_has_wa())
976 rd = arch_counter_get_cntpct_stable;
977 else
978 rd = arch_counter_get_cntpct;
981 arch_timer_read_counter = rd;
982 clocksource_counter.archdata.vdso_direct = vdso_default;
983 } else {
984 arch_timer_read_counter = arch_counter_get_cntvct_mem;
987 if (!arch_counter_suspend_stop)
988 clocksource_counter.flags |= CLOCK_SOURCE_SUSPEND_NONSTOP;
989 start_count = arch_timer_read_counter();
990 clocksource_register_hz(&clocksource_counter, arch_timer_rate);
991 cyclecounter.mult = clocksource_counter.mult;
992 cyclecounter.shift = clocksource_counter.shift;
993 timecounter_init(&arch_timer_kvm_info.timecounter,
994 &cyclecounter, start_count);
996 /* 56 bits minimum, so we assume worst case rollover */
997 sched_clock_register(arch_timer_read_counter, 56, arch_timer_rate);
1000 static void arch_timer_stop(struct clock_event_device *clk)
1002 pr_debug("disable IRQ%d cpu #%d\n", clk->irq, smp_processor_id());
1004 disable_percpu_irq(arch_timer_ppi[arch_timer_uses_ppi]);
1005 if (arch_timer_has_nonsecure_ppi())
1006 disable_percpu_irq(arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI]);
1008 clk->set_state_shutdown(clk);
1011 static int arch_timer_dying_cpu(unsigned int cpu)
1013 struct clock_event_device *clk = this_cpu_ptr(arch_timer_evt);
1015 cpumask_clear_cpu(smp_processor_id(), &evtstrm_available);
1017 arch_timer_stop(clk);
1018 return 0;
1021 #ifdef CONFIG_CPU_PM
1022 static DEFINE_PER_CPU(unsigned long, saved_cntkctl);
1023 static int arch_timer_cpu_pm_notify(struct notifier_block *self,
1024 unsigned long action, void *hcpu)
1026 if (action == CPU_PM_ENTER) {
1027 __this_cpu_write(saved_cntkctl, arch_timer_get_cntkctl());
1029 cpumask_clear_cpu(smp_processor_id(), &evtstrm_available);
1030 } else if (action == CPU_PM_ENTER_FAILED || action == CPU_PM_EXIT) {
1031 arch_timer_set_cntkctl(__this_cpu_read(saved_cntkctl));
1033 if (arch_timer_have_evtstrm_feature())
1034 cpumask_set_cpu(smp_processor_id(), &evtstrm_available);
1036 return NOTIFY_OK;
1039 static struct notifier_block arch_timer_cpu_pm_notifier = {
1040 .notifier_call = arch_timer_cpu_pm_notify,
1043 static int __init arch_timer_cpu_pm_init(void)
1045 return cpu_pm_register_notifier(&arch_timer_cpu_pm_notifier);
1048 static void __init arch_timer_cpu_pm_deinit(void)
1050 WARN_ON(cpu_pm_unregister_notifier(&arch_timer_cpu_pm_notifier));
1053 #else
1054 static int __init arch_timer_cpu_pm_init(void)
1056 return 0;
1059 static void __init arch_timer_cpu_pm_deinit(void)
1062 #endif
1064 static int __init arch_timer_register(void)
1066 int err;
1067 int ppi;
1069 arch_timer_evt = alloc_percpu(struct clock_event_device);
1070 if (!arch_timer_evt) {
1071 err = -ENOMEM;
1072 goto out;
1075 ppi = arch_timer_ppi[arch_timer_uses_ppi];
1076 switch (arch_timer_uses_ppi) {
1077 case ARCH_TIMER_VIRT_PPI:
1078 err = request_percpu_irq(ppi, arch_timer_handler_virt,
1079 "arch_timer", arch_timer_evt);
1080 break;
1081 case ARCH_TIMER_PHYS_SECURE_PPI:
1082 case ARCH_TIMER_PHYS_NONSECURE_PPI:
1083 err = request_percpu_irq(ppi, arch_timer_handler_phys,
1084 "arch_timer", arch_timer_evt);
1085 if (!err && arch_timer_has_nonsecure_ppi()) {
1086 ppi = arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI];
1087 err = request_percpu_irq(ppi, arch_timer_handler_phys,
1088 "arch_timer", arch_timer_evt);
1089 if (err)
1090 free_percpu_irq(arch_timer_ppi[ARCH_TIMER_PHYS_SECURE_PPI],
1091 arch_timer_evt);
1093 break;
1094 case ARCH_TIMER_HYP_PPI:
1095 err = request_percpu_irq(ppi, arch_timer_handler_phys,
1096 "arch_timer", arch_timer_evt);
1097 break;
1098 default:
1099 BUG();
1102 if (err) {
1103 pr_err("can't register interrupt %d (%d)\n", ppi, err);
1104 goto out_free;
1107 err = arch_timer_cpu_pm_init();
1108 if (err)
1109 goto out_unreg_notify;
1111 /* Register and immediately configure the timer on the boot CPU */
1112 err = cpuhp_setup_state(CPUHP_AP_ARM_ARCH_TIMER_STARTING,
1113 "clockevents/arm/arch_timer:starting",
1114 arch_timer_starting_cpu, arch_timer_dying_cpu);
1115 if (err)
1116 goto out_unreg_cpupm;
1117 return 0;
1119 out_unreg_cpupm:
1120 arch_timer_cpu_pm_deinit();
1122 out_unreg_notify:
1123 free_percpu_irq(arch_timer_ppi[arch_timer_uses_ppi], arch_timer_evt);
1124 if (arch_timer_has_nonsecure_ppi())
1125 free_percpu_irq(arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI],
1126 arch_timer_evt);
1128 out_free:
1129 free_percpu(arch_timer_evt);
1130 out:
1131 return err;
1134 static int __init arch_timer_mem_register(void __iomem *base, unsigned int irq)
1136 int ret;
1137 irq_handler_t func;
1138 struct arch_timer *t;
1140 t = kzalloc(sizeof(*t), GFP_KERNEL);
1141 if (!t)
1142 return -ENOMEM;
1144 t->base = base;
1145 t->evt.irq = irq;
1146 __arch_timer_setup(ARCH_TIMER_TYPE_MEM, &t->evt);
1148 if (arch_timer_mem_use_virtual)
1149 func = arch_timer_handler_virt_mem;
1150 else
1151 func = arch_timer_handler_phys_mem;
1153 ret = request_irq(irq, func, IRQF_TIMER, "arch_mem_timer", &t->evt);
1154 if (ret) {
1155 pr_err("Failed to request mem timer irq\n");
1156 kfree(t);
1159 return ret;
1162 static const struct of_device_id arch_timer_of_match[] __initconst = {
1163 { .compatible = "arm,armv7-timer", },
1164 { .compatible = "arm,armv8-timer", },
1168 static const struct of_device_id arch_timer_mem_of_match[] __initconst = {
1169 { .compatible = "arm,armv7-timer-mem", },
1173 static bool __init arch_timer_needs_of_probing(void)
1175 struct device_node *dn;
1176 bool needs_probing = false;
1177 unsigned int mask = ARCH_TIMER_TYPE_CP15 | ARCH_TIMER_TYPE_MEM;
1179 /* We have two timers, and both device-tree nodes are probed. */
1180 if ((arch_timers_present & mask) == mask)
1181 return false;
1184 * Only one type of timer is probed,
1185 * check if we have another type of timer node in device-tree.
1187 if (arch_timers_present & ARCH_TIMER_TYPE_CP15)
1188 dn = of_find_matching_node(NULL, arch_timer_mem_of_match);
1189 else
1190 dn = of_find_matching_node(NULL, arch_timer_of_match);
1192 if (dn && of_device_is_available(dn))
1193 needs_probing = true;
1195 of_node_put(dn);
1197 return needs_probing;
1200 static int __init arch_timer_common_init(void)
1202 arch_timer_banner(arch_timers_present);
1203 arch_counter_register(arch_timers_present);
1204 return arch_timer_arch_init();
1208 * arch_timer_select_ppi() - Select suitable PPI for the current system.
1210 * If HYP mode is available, we know that the physical timer
1211 * has been configured to be accessible from PL1. Use it, so
1212 * that a guest can use the virtual timer instead.
1214 * On ARMv8.1 with VH extensions, the kernel runs in HYP. VHE
1215 * accesses to CNTP_*_EL1 registers are silently redirected to
1216 * their CNTHP_*_EL2 counterparts, and use a different PPI
1217 * number.
1219 * If no interrupt provided for virtual timer, we'll have to
1220 * stick to the physical timer. It'd better be accessible...
1221 * For arm64 we never use the secure interrupt.
1223 * Return: a suitable PPI type for the current system.
1225 static enum arch_timer_ppi_nr __init arch_timer_select_ppi(void)
1227 if (is_kernel_in_hyp_mode())
1228 return ARCH_TIMER_HYP_PPI;
1230 if (!is_hyp_mode_available() && arch_timer_ppi[ARCH_TIMER_VIRT_PPI])
1231 return ARCH_TIMER_VIRT_PPI;
1233 if (IS_ENABLED(CONFIG_ARM64))
1234 return ARCH_TIMER_PHYS_NONSECURE_PPI;
1236 return ARCH_TIMER_PHYS_SECURE_PPI;
1239 static void __init arch_timer_populate_kvm_info(void)
1241 arch_timer_kvm_info.virtual_irq = arch_timer_ppi[ARCH_TIMER_VIRT_PPI];
1242 if (is_kernel_in_hyp_mode())
1243 arch_timer_kvm_info.physical_irq = arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI];
1246 static int __init arch_timer_of_init(struct device_node *np)
1248 int i, ret;
1249 u32 rate;
1251 if (arch_timers_present & ARCH_TIMER_TYPE_CP15) {
1252 pr_warn("multiple nodes in dt, skipping\n");
1253 return 0;
1256 arch_timers_present |= ARCH_TIMER_TYPE_CP15;
1257 for (i = ARCH_TIMER_PHYS_SECURE_PPI; i < ARCH_TIMER_MAX_TIMER_PPI; i++)
1258 arch_timer_ppi[i] = irq_of_parse_and_map(np, i);
1260 arch_timer_populate_kvm_info();
1262 rate = arch_timer_get_cntfrq();
1263 arch_timer_of_configure_rate(rate, np);
1265 arch_timer_c3stop = !of_property_read_bool(np, "always-on");
1267 /* Check for globally applicable workarounds */
1268 arch_timer_check_ool_workaround(ate_match_dt, np);
1271 * If we cannot rely on firmware initializing the timer registers then
1272 * we should use the physical timers instead.
1274 if (IS_ENABLED(CONFIG_ARM) &&
1275 of_property_read_bool(np, "arm,cpu-registers-not-fw-configured"))
1276 arch_timer_uses_ppi = ARCH_TIMER_PHYS_SECURE_PPI;
1277 else
1278 arch_timer_uses_ppi = arch_timer_select_ppi();
1280 if (!arch_timer_ppi[arch_timer_uses_ppi]) {
1281 pr_err("No interrupt available, giving up\n");
1282 return -EINVAL;
1285 /* On some systems, the counter stops ticking when in suspend. */
1286 arch_counter_suspend_stop = of_property_read_bool(np,
1287 "arm,no-tick-in-suspend");
1289 ret = arch_timer_register();
1290 if (ret)
1291 return ret;
1293 if (arch_timer_needs_of_probing())
1294 return 0;
1296 return arch_timer_common_init();
1298 TIMER_OF_DECLARE(armv7_arch_timer, "arm,armv7-timer", arch_timer_of_init);
1299 TIMER_OF_DECLARE(armv8_arch_timer, "arm,armv8-timer", arch_timer_of_init);
1301 static u32 __init
1302 arch_timer_mem_frame_get_cntfrq(struct arch_timer_mem_frame *frame)
1304 void __iomem *base;
1305 u32 rate;
1307 base = ioremap(frame->cntbase, frame->size);
1308 if (!base) {
1309 pr_err("Unable to map frame @ %pa\n", &frame->cntbase);
1310 return 0;
1313 rate = readl_relaxed(base + CNTFRQ);
1315 iounmap(base);
1317 return rate;
1320 static struct arch_timer_mem_frame * __init
1321 arch_timer_mem_find_best_frame(struct arch_timer_mem *timer_mem)
1323 struct arch_timer_mem_frame *frame, *best_frame = NULL;
1324 void __iomem *cntctlbase;
1325 u32 cnttidr;
1326 int i;
1328 cntctlbase = ioremap(timer_mem->cntctlbase, timer_mem->size);
1329 if (!cntctlbase) {
1330 pr_err("Can't map CNTCTLBase @ %pa\n",
1331 &timer_mem->cntctlbase);
1332 return NULL;
1335 cnttidr = readl_relaxed(cntctlbase + CNTTIDR);
1338 * Try to find a virtual capable frame. Otherwise fall back to a
1339 * physical capable frame.
1341 for (i = 0; i < ARCH_TIMER_MEM_MAX_FRAMES; i++) {
1342 u32 cntacr = CNTACR_RFRQ | CNTACR_RWPT | CNTACR_RPCT |
1343 CNTACR_RWVT | CNTACR_RVOFF | CNTACR_RVCT;
1345 frame = &timer_mem->frame[i];
1346 if (!frame->valid)
1347 continue;
1349 /* Try enabling everything, and see what sticks */
1350 writel_relaxed(cntacr, cntctlbase + CNTACR(i));
1351 cntacr = readl_relaxed(cntctlbase + CNTACR(i));
1353 if ((cnttidr & CNTTIDR_VIRT(i)) &&
1354 !(~cntacr & (CNTACR_RWVT | CNTACR_RVCT))) {
1355 best_frame = frame;
1356 arch_timer_mem_use_virtual = true;
1357 break;
1360 if (~cntacr & (CNTACR_RWPT | CNTACR_RPCT))
1361 continue;
1363 best_frame = frame;
1366 iounmap(cntctlbase);
1368 return best_frame;
1371 static int __init
1372 arch_timer_mem_frame_register(struct arch_timer_mem_frame *frame)
1374 void __iomem *base;
1375 int ret, irq = 0;
1377 if (arch_timer_mem_use_virtual)
1378 irq = frame->virt_irq;
1379 else
1380 irq = frame->phys_irq;
1382 if (!irq) {
1383 pr_err("Frame missing %s irq.\n",
1384 arch_timer_mem_use_virtual ? "virt" : "phys");
1385 return -EINVAL;
1388 if (!request_mem_region(frame->cntbase, frame->size,
1389 "arch_mem_timer"))
1390 return -EBUSY;
1392 base = ioremap(frame->cntbase, frame->size);
1393 if (!base) {
1394 pr_err("Can't map frame's registers\n");
1395 return -ENXIO;
1398 ret = arch_timer_mem_register(base, irq);
1399 if (ret) {
1400 iounmap(base);
1401 return ret;
1404 arch_counter_base = base;
1405 arch_timers_present |= ARCH_TIMER_TYPE_MEM;
1407 return 0;
1410 static int __init arch_timer_mem_of_init(struct device_node *np)
1412 struct arch_timer_mem *timer_mem;
1413 struct arch_timer_mem_frame *frame;
1414 struct device_node *frame_node;
1415 struct resource res;
1416 int ret = -EINVAL;
1417 u32 rate;
1419 timer_mem = kzalloc(sizeof(*timer_mem), GFP_KERNEL);
1420 if (!timer_mem)
1421 return -ENOMEM;
1423 if (of_address_to_resource(np, 0, &res))
1424 goto out;
1425 timer_mem->cntctlbase = res.start;
1426 timer_mem->size = resource_size(&res);
1428 for_each_available_child_of_node(np, frame_node) {
1429 u32 n;
1430 struct arch_timer_mem_frame *frame;
1432 if (of_property_read_u32(frame_node, "frame-number", &n)) {
1433 pr_err(FW_BUG "Missing frame-number.\n");
1434 of_node_put(frame_node);
1435 goto out;
1437 if (n >= ARCH_TIMER_MEM_MAX_FRAMES) {
1438 pr_err(FW_BUG "Wrong frame-number, only 0-%u are permitted.\n",
1439 ARCH_TIMER_MEM_MAX_FRAMES - 1);
1440 of_node_put(frame_node);
1441 goto out;
1443 frame = &timer_mem->frame[n];
1445 if (frame->valid) {
1446 pr_err(FW_BUG "Duplicated frame-number.\n");
1447 of_node_put(frame_node);
1448 goto out;
1451 if (of_address_to_resource(frame_node, 0, &res)) {
1452 of_node_put(frame_node);
1453 goto out;
1455 frame->cntbase = res.start;
1456 frame->size = resource_size(&res);
1458 frame->virt_irq = irq_of_parse_and_map(frame_node,
1459 ARCH_TIMER_VIRT_SPI);
1460 frame->phys_irq = irq_of_parse_and_map(frame_node,
1461 ARCH_TIMER_PHYS_SPI);
1463 frame->valid = true;
1466 frame = arch_timer_mem_find_best_frame(timer_mem);
1467 if (!frame) {
1468 pr_err("Unable to find a suitable frame in timer @ %pa\n",
1469 &timer_mem->cntctlbase);
1470 ret = -EINVAL;
1471 goto out;
1474 rate = arch_timer_mem_frame_get_cntfrq(frame);
1475 arch_timer_of_configure_rate(rate, np);
1477 ret = arch_timer_mem_frame_register(frame);
1478 if (!ret && !arch_timer_needs_of_probing())
1479 ret = arch_timer_common_init();
1480 out:
1481 kfree(timer_mem);
1482 return ret;
1484 TIMER_OF_DECLARE(armv7_arch_timer_mem, "arm,armv7-timer-mem",
1485 arch_timer_mem_of_init);
1487 #ifdef CONFIG_ACPI_GTDT
1488 static int __init
1489 arch_timer_mem_verify_cntfrq(struct arch_timer_mem *timer_mem)
1491 struct arch_timer_mem_frame *frame;
1492 u32 rate;
1493 int i;
1495 for (i = 0; i < ARCH_TIMER_MEM_MAX_FRAMES; i++) {
1496 frame = &timer_mem->frame[i];
1498 if (!frame->valid)
1499 continue;
1501 rate = arch_timer_mem_frame_get_cntfrq(frame);
1502 if (rate == arch_timer_rate)
1503 continue;
1505 pr_err(FW_BUG "CNTFRQ mismatch: frame @ %pa: (0x%08lx), CPU: (0x%08lx)\n",
1506 &frame->cntbase,
1507 (unsigned long)rate, (unsigned long)arch_timer_rate);
1509 return -EINVAL;
1512 return 0;
1515 static int __init arch_timer_mem_acpi_init(int platform_timer_count)
1517 struct arch_timer_mem *timers, *timer;
1518 struct arch_timer_mem_frame *frame, *best_frame = NULL;
1519 int timer_count, i, ret = 0;
1521 timers = kcalloc(platform_timer_count, sizeof(*timers),
1522 GFP_KERNEL);
1523 if (!timers)
1524 return -ENOMEM;
1526 ret = acpi_arch_timer_mem_init(timers, &timer_count);
1527 if (ret || !timer_count)
1528 goto out;
1531 * While unlikely, it's theoretically possible that none of the frames
1532 * in a timer expose the combination of feature we want.
1534 for (i = 0; i < timer_count; i++) {
1535 timer = &timers[i];
1537 frame = arch_timer_mem_find_best_frame(timer);
1538 if (!best_frame)
1539 best_frame = frame;
1541 ret = arch_timer_mem_verify_cntfrq(timer);
1542 if (ret) {
1543 pr_err("Disabling MMIO timers due to CNTFRQ mismatch\n");
1544 goto out;
1547 if (!best_frame) /* implies !frame */
1549 * Only complain about missing suitable frames if we
1550 * haven't already found one in a previous iteration.
1552 pr_err("Unable to find a suitable frame in timer @ %pa\n",
1553 &timer->cntctlbase);
1556 if (best_frame)
1557 ret = arch_timer_mem_frame_register(best_frame);
1558 out:
1559 kfree(timers);
1560 return ret;
1563 /* Initialize per-processor generic timer and memory-mapped timer(if present) */
1564 static int __init arch_timer_acpi_init(struct acpi_table_header *table)
1566 int ret, platform_timer_count;
1568 if (arch_timers_present & ARCH_TIMER_TYPE_CP15) {
1569 pr_warn("already initialized, skipping\n");
1570 return -EINVAL;
1573 arch_timers_present |= ARCH_TIMER_TYPE_CP15;
1575 ret = acpi_gtdt_init(table, &platform_timer_count);
1576 if (ret) {
1577 pr_err("Failed to init GTDT table.\n");
1578 return ret;
1581 arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI] =
1582 acpi_gtdt_map_ppi(ARCH_TIMER_PHYS_NONSECURE_PPI);
1584 arch_timer_ppi[ARCH_TIMER_VIRT_PPI] =
1585 acpi_gtdt_map_ppi(ARCH_TIMER_VIRT_PPI);
1587 arch_timer_ppi[ARCH_TIMER_HYP_PPI] =
1588 acpi_gtdt_map_ppi(ARCH_TIMER_HYP_PPI);
1590 arch_timer_populate_kvm_info();
1593 * When probing via ACPI, we have no mechanism to override the sysreg
1594 * CNTFRQ value. This *must* be correct.
1596 arch_timer_rate = arch_timer_get_cntfrq();
1597 if (!arch_timer_rate) {
1598 pr_err(FW_BUG "frequency not available.\n");
1599 return -EINVAL;
1602 arch_timer_uses_ppi = arch_timer_select_ppi();
1603 if (!arch_timer_ppi[arch_timer_uses_ppi]) {
1604 pr_err("No interrupt available, giving up\n");
1605 return -EINVAL;
1608 /* Always-on capability */
1609 arch_timer_c3stop = acpi_gtdt_c3stop(arch_timer_uses_ppi);
1611 /* Check for globally applicable workarounds */
1612 arch_timer_check_ool_workaround(ate_match_acpi_oem_info, table);
1614 ret = arch_timer_register();
1615 if (ret)
1616 return ret;
1618 if (platform_timer_count &&
1619 arch_timer_mem_acpi_init(platform_timer_count))
1620 pr_err("Failed to initialize memory-mapped timer.\n");
1622 return arch_timer_common_init();
1624 TIMER_ACPI_DECLARE(arch_timer, ACPI_SIG_GTDT, arch_timer_acpi_init);
1625 #endif