treewide: remove redundant IS_ERR() before error code check
[linux/fpc-iii.git] / drivers / cpufreq / sa1110-cpufreq.c
blobd9d04d935b3ae82d1e7f61dab55577764f60718c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * linux/arch/arm/mach-sa1100/cpu-sa1110.c
5 * Copyright (C) 2001 Russell King
7 * Note: there are two erratas that apply to the SA1110 here:
8 * 7 - SDRAM auto-power-up failure (rev A0)
9 * 13 - Corruption of internal register reads/writes following
10 * SDRAM reads (rev A0, B0, B1)
12 * We ignore rev. A0 and B0 devices; I don't think they're worth supporting.
14 * The SDRAM type can be passed on the command line as cpu_sa1110.sdram=type
16 #include <linux/cpufreq.h>
17 #include <linux/delay.h>
18 #include <linux/init.h>
19 #include <linux/io.h>
20 #include <linux/kernel.h>
21 #include <linux/moduleparam.h>
22 #include <linux/types.h>
24 #include <asm/cputype.h>
25 #include <asm/mach-types.h>
27 #include <mach/generic.h>
28 #include <mach/hardware.h>
30 #undef DEBUG
32 struct sdram_params {
33 const char name[20];
34 u_char rows; /* bits */
35 u_char cas_latency; /* cycles */
36 u_char tck; /* clock cycle time (ns) */
37 u_char trcd; /* activate to r/w (ns) */
38 u_char trp; /* precharge to activate (ns) */
39 u_char twr; /* write recovery time (ns) */
40 u_short refresh; /* refresh time for array (us) */
43 struct sdram_info {
44 u_int mdcnfg;
45 u_int mdrefr;
46 u_int mdcas[3];
49 static struct sdram_params sdram_tbl[] __initdata = {
50 { /* Toshiba TC59SM716 CL2 */
51 .name = "TC59SM716-CL2",
52 .rows = 12,
53 .tck = 10,
54 .trcd = 20,
55 .trp = 20,
56 .twr = 10,
57 .refresh = 64000,
58 .cas_latency = 2,
59 }, { /* Toshiba TC59SM716 CL3 */
60 .name = "TC59SM716-CL3",
61 .rows = 12,
62 .tck = 8,
63 .trcd = 20,
64 .trp = 20,
65 .twr = 8,
66 .refresh = 64000,
67 .cas_latency = 3,
68 }, { /* Samsung K4S641632D TC75 */
69 .name = "K4S641632D",
70 .rows = 14,
71 .tck = 9,
72 .trcd = 27,
73 .trp = 20,
74 .twr = 9,
75 .refresh = 64000,
76 .cas_latency = 3,
77 }, { /* Samsung K4S281632B-1H */
78 .name = "K4S281632B-1H",
79 .rows = 12,
80 .tck = 10,
81 .trp = 20,
82 .twr = 10,
83 .refresh = 64000,
84 .cas_latency = 3,
85 }, { /* Samsung KM416S4030CT */
86 .name = "KM416S4030CT",
87 .rows = 13,
88 .tck = 8,
89 .trcd = 24, /* 3 CLKs */
90 .trp = 24, /* 3 CLKs */
91 .twr = 16, /* Trdl: 2 CLKs */
92 .refresh = 64000,
93 .cas_latency = 3,
94 }, { /* Winbond W982516AH75L CL3 */
95 .name = "W982516AH75L",
96 .rows = 16,
97 .tck = 8,
98 .trcd = 20,
99 .trp = 20,
100 .twr = 8,
101 .refresh = 64000,
102 .cas_latency = 3,
103 }, { /* Micron MT48LC8M16A2TG-75 */
104 .name = "MT48LC8M16A2TG-75",
105 .rows = 12,
106 .tck = 8,
107 .trcd = 20,
108 .trp = 20,
109 .twr = 8,
110 .refresh = 64000,
111 .cas_latency = 3,
115 static struct sdram_params sdram_params;
118 * Given a period in ns and frequency in khz, calculate the number of
119 * cycles of frequency in period. Note that we round up to the next
120 * cycle, even if we are only slightly over.
122 static inline u_int ns_to_cycles(u_int ns, u_int khz)
124 return (ns * khz + 999999) / 1000000;
128 * Create the MDCAS register bit pattern.
130 static inline void set_mdcas(u_int *mdcas, int delayed, u_int rcd)
132 u_int shift;
134 rcd = 2 * rcd - 1;
135 shift = delayed + 1 + rcd;
137 mdcas[0] = (1 << rcd) - 1;
138 mdcas[0] |= 0x55555555 << shift;
139 mdcas[1] = mdcas[2] = 0x55555555 << (shift & 1);
142 static void
143 sdram_calculate_timing(struct sdram_info *sd, u_int cpu_khz,
144 struct sdram_params *sdram)
146 u_int mem_khz, sd_khz, trp, twr;
148 mem_khz = cpu_khz / 2;
149 sd_khz = mem_khz;
152 * If SDCLK would invalidate the SDRAM timings,
153 * run SDCLK at half speed.
155 * CPU steppings prior to B2 must either run the memory at
156 * half speed or use delayed read latching (errata 13).
158 if ((ns_to_cycles(sdram->tck, sd_khz) > 1) ||
159 (read_cpuid_revision() < ARM_CPU_REV_SA1110_B2 && sd_khz < 62000))
160 sd_khz /= 2;
162 sd->mdcnfg = MDCNFG & 0x007f007f;
164 twr = ns_to_cycles(sdram->twr, mem_khz);
166 /* trp should always be >1 */
167 trp = ns_to_cycles(sdram->trp, mem_khz) - 1;
168 if (trp < 1)
169 trp = 1;
171 sd->mdcnfg |= trp << 8;
172 sd->mdcnfg |= trp << 24;
173 sd->mdcnfg |= sdram->cas_latency << 12;
174 sd->mdcnfg |= sdram->cas_latency << 28;
175 sd->mdcnfg |= twr << 14;
176 sd->mdcnfg |= twr << 30;
178 sd->mdrefr = MDREFR & 0xffbffff0;
179 sd->mdrefr |= 7;
181 if (sd_khz != mem_khz)
182 sd->mdrefr |= MDREFR_K1DB2;
184 /* initial number of '1's in MDCAS + 1 */
185 set_mdcas(sd->mdcas, sd_khz >= 62000,
186 ns_to_cycles(sdram->trcd, mem_khz));
188 #ifdef DEBUG
189 printk(KERN_DEBUG "MDCNFG: %08x MDREFR: %08x MDCAS0: %08x MDCAS1: %08x MDCAS2: %08x\n",
190 sd->mdcnfg, sd->mdrefr, sd->mdcas[0], sd->mdcas[1],
191 sd->mdcas[2]);
192 #endif
196 * Set the SDRAM refresh rate.
198 static inline void sdram_set_refresh(u_int dri)
200 MDREFR = (MDREFR & 0xffff000f) | (dri << 4);
201 (void) MDREFR;
205 * Update the refresh period. We do this such that we always refresh
206 * the SDRAMs within their permissible period. The refresh period is
207 * always a multiple of the memory clock (fixed at cpu_clock / 2).
209 * FIXME: we don't currently take account of burst accesses here,
210 * but neither do Intels DM nor Angel.
212 static void
213 sdram_update_refresh(u_int cpu_khz, struct sdram_params *sdram)
215 u_int ns_row = (sdram->refresh * 1000) >> sdram->rows;
216 u_int dri = ns_to_cycles(ns_row, cpu_khz / 2) / 32;
218 #ifdef DEBUG
219 mdelay(250);
220 printk(KERN_DEBUG "new dri value = %d\n", dri);
221 #endif
223 sdram_set_refresh(dri);
227 * Ok, set the CPU frequency.
229 static int sa1110_target(struct cpufreq_policy *policy, unsigned int ppcr)
231 struct sdram_params *sdram = &sdram_params;
232 struct sdram_info sd;
233 unsigned long flags;
234 unsigned int unused;
236 sdram_calculate_timing(&sd, sa11x0_freq_table[ppcr].frequency, sdram);
238 #if 0
240 * These values are wrong according to the SA1110 documentation
241 * and errata, but they seem to work. Need to get a storage
242 * scope on to the SDRAM signals to work out why.
244 if (policy->max < 147500) {
245 sd.mdrefr |= MDREFR_K1DB2;
246 sd.mdcas[0] = 0xaaaaaa7f;
247 } else {
248 sd.mdrefr &= ~MDREFR_K1DB2;
249 sd.mdcas[0] = 0xaaaaaa9f;
251 sd.mdcas[1] = 0xaaaaaaaa;
252 sd.mdcas[2] = 0xaaaaaaaa;
253 #endif
256 * The clock could be going away for some time. Set the SDRAMs
257 * to refresh rapidly (every 64 memory clock cycles). To get
258 * through the whole array, we need to wait 262144 mclk cycles.
259 * We wait 20ms to be safe.
261 sdram_set_refresh(2);
262 if (!irqs_disabled())
263 msleep(20);
264 else
265 mdelay(20);
268 * Reprogram the DRAM timings with interrupts disabled, and
269 * ensure that we are doing this within a complete cache line.
270 * This means that we won't access SDRAM for the duration of
271 * the programming.
273 local_irq_save(flags);
274 asm("mcr p15, 0, %0, c7, c10, 4" : : "r" (0));
275 udelay(10);
276 __asm__ __volatile__("\n\
277 b 2f \n\
278 .align 5 \n\
279 1: str %3, [%1, #0] @ MDCNFG \n\
280 str %4, [%1, #28] @ MDREFR \n\
281 str %5, [%1, #4] @ MDCAS0 \n\
282 str %6, [%1, #8] @ MDCAS1 \n\
283 str %7, [%1, #12] @ MDCAS2 \n\
284 str %8, [%2, #0] @ PPCR \n\
285 ldr %0, [%1, #0] \n\
286 b 3f \n\
287 2: b 1b \n\
288 3: nop \n\
289 nop"
290 : "=&r" (unused)
291 : "r" (&MDCNFG), "r" (&PPCR), "0" (sd.mdcnfg),
292 "r" (sd.mdrefr), "r" (sd.mdcas[0]),
293 "r" (sd.mdcas[1]), "r" (sd.mdcas[2]), "r" (ppcr));
294 local_irq_restore(flags);
297 * Now, return the SDRAM refresh back to normal.
299 sdram_update_refresh(sa11x0_freq_table[ppcr].frequency, sdram);
301 return 0;
304 static int __init sa1110_cpu_init(struct cpufreq_policy *policy)
306 cpufreq_generic_init(policy, sa11x0_freq_table, 0);
307 return 0;
310 /* sa1110_driver needs __refdata because it must remain after init registers
311 * it with cpufreq_register_driver() */
312 static struct cpufreq_driver sa1110_driver __refdata = {
313 .flags = CPUFREQ_STICKY | CPUFREQ_NEED_INITIAL_FREQ_CHECK |
314 CPUFREQ_NO_AUTO_DYNAMIC_SWITCHING,
315 .verify = cpufreq_generic_frequency_table_verify,
316 .target_index = sa1110_target,
317 .get = sa11x0_getspeed,
318 .init = sa1110_cpu_init,
319 .name = "sa1110",
322 static struct sdram_params *sa1110_find_sdram(const char *name)
324 struct sdram_params *sdram;
326 for (sdram = sdram_tbl; sdram < sdram_tbl + ARRAY_SIZE(sdram_tbl);
327 sdram++)
328 if (strcmp(name, sdram->name) == 0)
329 return sdram;
331 return NULL;
334 static char sdram_name[16];
336 static int __init sa1110_clk_init(void)
338 struct sdram_params *sdram;
339 const char *name = sdram_name;
341 if (!cpu_is_sa1110())
342 return -ENODEV;
344 if (!name[0]) {
345 if (machine_is_assabet())
346 name = "TC59SM716-CL3";
347 if (machine_is_pt_system3())
348 name = "K4S641632D";
349 if (machine_is_h3100())
350 name = "KM416S4030CT";
351 if (machine_is_jornada720() || machine_is_h3600())
352 name = "K4S281632B-1H";
353 if (machine_is_nanoengine())
354 name = "MT48LC8M16A2TG-75";
357 sdram = sa1110_find_sdram(name);
358 if (sdram) {
359 printk(KERN_DEBUG "SDRAM: tck: %d trcd: %d trp: %d"
360 " twr: %d refresh: %d cas_latency: %d\n",
361 sdram->tck, sdram->trcd, sdram->trp,
362 sdram->twr, sdram->refresh, sdram->cas_latency);
364 memcpy(&sdram_params, sdram, sizeof(sdram_params));
366 return cpufreq_register_driver(&sa1110_driver);
369 return 0;
372 module_param_string(sdram, sdram_name, sizeof(sdram_name), 0);
373 arch_initcall(sa1110_clk_init);