treewide: remove redundant IS_ERR() before error code check
[linux/fpc-iii.git] / drivers / crypto / ccp / ccp-crypto-sha.c
blob474e6f1a6a84ecf7998ba4b1b7945ff09e143c09
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * AMD Cryptographic Coprocessor (CCP) SHA crypto API support
5 * Copyright (C) 2013,2018 Advanced Micro Devices, Inc.
7 * Author: Tom Lendacky <thomas.lendacky@amd.com>
8 * Author: Gary R Hook <gary.hook@amd.com>
9 */
11 #include <linux/module.h>
12 #include <linux/sched.h>
13 #include <linux/delay.h>
14 #include <linux/scatterlist.h>
15 #include <linux/crypto.h>
16 #include <crypto/algapi.h>
17 #include <crypto/hash.h>
18 #include <crypto/hmac.h>
19 #include <crypto/internal/hash.h>
20 #include <crypto/sha.h>
21 #include <crypto/scatterwalk.h>
23 #include "ccp-crypto.h"
25 static int ccp_sha_complete(struct crypto_async_request *async_req, int ret)
27 struct ahash_request *req = ahash_request_cast(async_req);
28 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
29 struct ccp_sha_req_ctx *rctx = ahash_request_ctx(req);
30 unsigned int digest_size = crypto_ahash_digestsize(tfm);
32 if (ret)
33 goto e_free;
35 if (rctx->hash_rem) {
36 /* Save remaining data to buffer */
37 unsigned int offset = rctx->nbytes - rctx->hash_rem;
39 scatterwalk_map_and_copy(rctx->buf, rctx->src,
40 offset, rctx->hash_rem, 0);
41 rctx->buf_count = rctx->hash_rem;
42 } else {
43 rctx->buf_count = 0;
46 /* Update result area if supplied */
47 if (req->result && rctx->final)
48 memcpy(req->result, rctx->ctx, digest_size);
50 e_free:
51 sg_free_table(&rctx->data_sg);
53 return ret;
56 static int ccp_do_sha_update(struct ahash_request *req, unsigned int nbytes,
57 unsigned int final)
59 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
60 struct ccp_ctx *ctx = crypto_ahash_ctx(tfm);
61 struct ccp_sha_req_ctx *rctx = ahash_request_ctx(req);
62 struct scatterlist *sg;
63 unsigned int block_size =
64 crypto_tfm_alg_blocksize(crypto_ahash_tfm(tfm));
65 unsigned int sg_count;
66 gfp_t gfp;
67 u64 len;
68 int ret;
70 len = (u64)rctx->buf_count + (u64)nbytes;
72 if (!final && (len <= block_size)) {
73 scatterwalk_map_and_copy(rctx->buf + rctx->buf_count, req->src,
74 0, nbytes, 0);
75 rctx->buf_count += nbytes;
77 return 0;
80 rctx->src = req->src;
81 rctx->nbytes = nbytes;
83 rctx->final = final;
84 rctx->hash_rem = final ? 0 : len & (block_size - 1);
85 rctx->hash_cnt = len - rctx->hash_rem;
86 if (!final && !rctx->hash_rem) {
87 /* CCP can't do zero length final, so keep some data around */
88 rctx->hash_cnt -= block_size;
89 rctx->hash_rem = block_size;
92 /* Initialize the context scatterlist */
93 sg_init_one(&rctx->ctx_sg, rctx->ctx, sizeof(rctx->ctx));
95 sg = NULL;
96 if (rctx->buf_count && nbytes) {
97 /* Build the data scatterlist table - allocate enough entries
98 * for both data pieces (buffer and input data)
100 gfp = req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP ?
101 GFP_KERNEL : GFP_ATOMIC;
102 sg_count = sg_nents(req->src) + 1;
103 ret = sg_alloc_table(&rctx->data_sg, sg_count, gfp);
104 if (ret)
105 return ret;
107 sg_init_one(&rctx->buf_sg, rctx->buf, rctx->buf_count);
108 sg = ccp_crypto_sg_table_add(&rctx->data_sg, &rctx->buf_sg);
109 if (!sg) {
110 ret = -EINVAL;
111 goto e_free;
113 sg = ccp_crypto_sg_table_add(&rctx->data_sg, req->src);
114 if (!sg) {
115 ret = -EINVAL;
116 goto e_free;
118 sg_mark_end(sg);
120 sg = rctx->data_sg.sgl;
121 } else if (rctx->buf_count) {
122 sg_init_one(&rctx->buf_sg, rctx->buf, rctx->buf_count);
124 sg = &rctx->buf_sg;
125 } else if (nbytes) {
126 sg = req->src;
129 rctx->msg_bits += (rctx->hash_cnt << 3); /* Total in bits */
131 memset(&rctx->cmd, 0, sizeof(rctx->cmd));
132 INIT_LIST_HEAD(&rctx->cmd.entry);
133 rctx->cmd.engine = CCP_ENGINE_SHA;
134 rctx->cmd.u.sha.type = rctx->type;
135 rctx->cmd.u.sha.ctx = &rctx->ctx_sg;
137 switch (rctx->type) {
138 case CCP_SHA_TYPE_1:
139 rctx->cmd.u.sha.ctx_len = SHA1_DIGEST_SIZE;
140 break;
141 case CCP_SHA_TYPE_224:
142 rctx->cmd.u.sha.ctx_len = SHA224_DIGEST_SIZE;
143 break;
144 case CCP_SHA_TYPE_256:
145 rctx->cmd.u.sha.ctx_len = SHA256_DIGEST_SIZE;
146 break;
147 case CCP_SHA_TYPE_384:
148 rctx->cmd.u.sha.ctx_len = SHA384_DIGEST_SIZE;
149 break;
150 case CCP_SHA_TYPE_512:
151 rctx->cmd.u.sha.ctx_len = SHA512_DIGEST_SIZE;
152 break;
153 default:
154 /* Should never get here */
155 break;
158 rctx->cmd.u.sha.src = sg;
159 rctx->cmd.u.sha.src_len = rctx->hash_cnt;
160 rctx->cmd.u.sha.opad = ctx->u.sha.key_len ?
161 &ctx->u.sha.opad_sg : NULL;
162 rctx->cmd.u.sha.opad_len = ctx->u.sha.key_len ?
163 ctx->u.sha.opad_count : 0;
164 rctx->cmd.u.sha.first = rctx->first;
165 rctx->cmd.u.sha.final = rctx->final;
166 rctx->cmd.u.sha.msg_bits = rctx->msg_bits;
168 rctx->first = 0;
170 ret = ccp_crypto_enqueue_request(&req->base, &rctx->cmd);
172 return ret;
174 e_free:
175 sg_free_table(&rctx->data_sg);
177 return ret;
180 static int ccp_sha_init(struct ahash_request *req)
182 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
183 struct ccp_ctx *ctx = crypto_ahash_ctx(tfm);
184 struct ccp_sha_req_ctx *rctx = ahash_request_ctx(req);
185 struct ccp_crypto_ahash_alg *alg =
186 ccp_crypto_ahash_alg(crypto_ahash_tfm(tfm));
187 unsigned int block_size =
188 crypto_tfm_alg_blocksize(crypto_ahash_tfm(tfm));
190 memset(rctx, 0, sizeof(*rctx));
192 rctx->type = alg->type;
193 rctx->first = 1;
195 if (ctx->u.sha.key_len) {
196 /* Buffer the HMAC key for first update */
197 memcpy(rctx->buf, ctx->u.sha.ipad, block_size);
198 rctx->buf_count = block_size;
201 return 0;
204 static int ccp_sha_update(struct ahash_request *req)
206 return ccp_do_sha_update(req, req->nbytes, 0);
209 static int ccp_sha_final(struct ahash_request *req)
211 return ccp_do_sha_update(req, 0, 1);
214 static int ccp_sha_finup(struct ahash_request *req)
216 return ccp_do_sha_update(req, req->nbytes, 1);
219 static int ccp_sha_digest(struct ahash_request *req)
221 int ret;
223 ret = ccp_sha_init(req);
224 if (ret)
225 return ret;
227 return ccp_sha_finup(req);
230 static int ccp_sha_export(struct ahash_request *req, void *out)
232 struct ccp_sha_req_ctx *rctx = ahash_request_ctx(req);
233 struct ccp_sha_exp_ctx state;
235 /* Don't let anything leak to 'out' */
236 memset(&state, 0, sizeof(state));
238 state.type = rctx->type;
239 state.msg_bits = rctx->msg_bits;
240 state.first = rctx->first;
241 memcpy(state.ctx, rctx->ctx, sizeof(state.ctx));
242 state.buf_count = rctx->buf_count;
243 memcpy(state.buf, rctx->buf, sizeof(state.buf));
245 /* 'out' may not be aligned so memcpy from local variable */
246 memcpy(out, &state, sizeof(state));
248 return 0;
251 static int ccp_sha_import(struct ahash_request *req, const void *in)
253 struct ccp_sha_req_ctx *rctx = ahash_request_ctx(req);
254 struct ccp_sha_exp_ctx state;
256 /* 'in' may not be aligned so memcpy to local variable */
257 memcpy(&state, in, sizeof(state));
259 memset(rctx, 0, sizeof(*rctx));
260 rctx->type = state.type;
261 rctx->msg_bits = state.msg_bits;
262 rctx->first = state.first;
263 memcpy(rctx->ctx, state.ctx, sizeof(rctx->ctx));
264 rctx->buf_count = state.buf_count;
265 memcpy(rctx->buf, state.buf, sizeof(rctx->buf));
267 return 0;
270 static int ccp_sha_setkey(struct crypto_ahash *tfm, const u8 *key,
271 unsigned int key_len)
273 struct ccp_ctx *ctx = crypto_tfm_ctx(crypto_ahash_tfm(tfm));
274 struct crypto_shash *shash = ctx->u.sha.hmac_tfm;
276 SHASH_DESC_ON_STACK(sdesc, shash);
278 unsigned int block_size = crypto_shash_blocksize(shash);
279 unsigned int digest_size = crypto_shash_digestsize(shash);
280 int i, ret;
282 /* Set to zero until complete */
283 ctx->u.sha.key_len = 0;
285 /* Clear key area to provide zero padding for keys smaller
286 * than the block size
288 memset(ctx->u.sha.key, 0, sizeof(ctx->u.sha.key));
290 if (key_len > block_size) {
291 /* Must hash the input key */
292 sdesc->tfm = shash;
294 ret = crypto_shash_digest(sdesc, key, key_len,
295 ctx->u.sha.key);
296 if (ret)
297 return -EINVAL;
299 key_len = digest_size;
300 } else {
301 memcpy(ctx->u.sha.key, key, key_len);
304 for (i = 0; i < block_size; i++) {
305 ctx->u.sha.ipad[i] = ctx->u.sha.key[i] ^ HMAC_IPAD_VALUE;
306 ctx->u.sha.opad[i] = ctx->u.sha.key[i] ^ HMAC_OPAD_VALUE;
309 sg_init_one(&ctx->u.sha.opad_sg, ctx->u.sha.opad, block_size);
310 ctx->u.sha.opad_count = block_size;
312 ctx->u.sha.key_len = key_len;
314 return 0;
317 static int ccp_sha_cra_init(struct crypto_tfm *tfm)
319 struct ccp_ctx *ctx = crypto_tfm_ctx(tfm);
320 struct crypto_ahash *ahash = __crypto_ahash_cast(tfm);
322 ctx->complete = ccp_sha_complete;
323 ctx->u.sha.key_len = 0;
325 crypto_ahash_set_reqsize(ahash, sizeof(struct ccp_sha_req_ctx));
327 return 0;
330 static void ccp_sha_cra_exit(struct crypto_tfm *tfm)
334 static int ccp_hmac_sha_cra_init(struct crypto_tfm *tfm)
336 struct ccp_ctx *ctx = crypto_tfm_ctx(tfm);
337 struct ccp_crypto_ahash_alg *alg = ccp_crypto_ahash_alg(tfm);
338 struct crypto_shash *hmac_tfm;
340 hmac_tfm = crypto_alloc_shash(alg->child_alg, 0, 0);
341 if (IS_ERR(hmac_tfm)) {
342 pr_warn("could not load driver %s need for HMAC support\n",
343 alg->child_alg);
344 return PTR_ERR(hmac_tfm);
347 ctx->u.sha.hmac_tfm = hmac_tfm;
349 return ccp_sha_cra_init(tfm);
352 static void ccp_hmac_sha_cra_exit(struct crypto_tfm *tfm)
354 struct ccp_ctx *ctx = crypto_tfm_ctx(tfm);
356 if (ctx->u.sha.hmac_tfm)
357 crypto_free_shash(ctx->u.sha.hmac_tfm);
359 ccp_sha_cra_exit(tfm);
362 struct ccp_sha_def {
363 unsigned int version;
364 const char *name;
365 const char *drv_name;
366 enum ccp_sha_type type;
367 u32 digest_size;
368 u32 block_size;
371 static struct ccp_sha_def sha_algs[] = {
373 .version = CCP_VERSION(3, 0),
374 .name = "sha1",
375 .drv_name = "sha1-ccp",
376 .type = CCP_SHA_TYPE_1,
377 .digest_size = SHA1_DIGEST_SIZE,
378 .block_size = SHA1_BLOCK_SIZE,
381 .version = CCP_VERSION(3, 0),
382 .name = "sha224",
383 .drv_name = "sha224-ccp",
384 .type = CCP_SHA_TYPE_224,
385 .digest_size = SHA224_DIGEST_SIZE,
386 .block_size = SHA224_BLOCK_SIZE,
389 .version = CCP_VERSION(3, 0),
390 .name = "sha256",
391 .drv_name = "sha256-ccp",
392 .type = CCP_SHA_TYPE_256,
393 .digest_size = SHA256_DIGEST_SIZE,
394 .block_size = SHA256_BLOCK_SIZE,
397 .version = CCP_VERSION(5, 0),
398 .name = "sha384",
399 .drv_name = "sha384-ccp",
400 .type = CCP_SHA_TYPE_384,
401 .digest_size = SHA384_DIGEST_SIZE,
402 .block_size = SHA384_BLOCK_SIZE,
405 .version = CCP_VERSION(5, 0),
406 .name = "sha512",
407 .drv_name = "sha512-ccp",
408 .type = CCP_SHA_TYPE_512,
409 .digest_size = SHA512_DIGEST_SIZE,
410 .block_size = SHA512_BLOCK_SIZE,
414 static int ccp_register_hmac_alg(struct list_head *head,
415 const struct ccp_sha_def *def,
416 const struct ccp_crypto_ahash_alg *base_alg)
418 struct ccp_crypto_ahash_alg *ccp_alg;
419 struct ahash_alg *alg;
420 struct hash_alg_common *halg;
421 struct crypto_alg *base;
422 int ret;
424 ccp_alg = kzalloc(sizeof(*ccp_alg), GFP_KERNEL);
425 if (!ccp_alg)
426 return -ENOMEM;
428 /* Copy the base algorithm and only change what's necessary */
429 *ccp_alg = *base_alg;
430 INIT_LIST_HEAD(&ccp_alg->entry);
432 strncpy(ccp_alg->child_alg, def->name, CRYPTO_MAX_ALG_NAME);
434 alg = &ccp_alg->alg;
435 alg->setkey = ccp_sha_setkey;
437 halg = &alg->halg;
439 base = &halg->base;
440 snprintf(base->cra_name, CRYPTO_MAX_ALG_NAME, "hmac(%s)", def->name);
441 snprintf(base->cra_driver_name, CRYPTO_MAX_ALG_NAME, "hmac-%s",
442 def->drv_name);
443 base->cra_init = ccp_hmac_sha_cra_init;
444 base->cra_exit = ccp_hmac_sha_cra_exit;
446 ret = crypto_register_ahash(alg);
447 if (ret) {
448 pr_err("%s ahash algorithm registration error (%d)\n",
449 base->cra_name, ret);
450 kfree(ccp_alg);
451 return ret;
454 list_add(&ccp_alg->entry, head);
456 return ret;
459 static int ccp_register_sha_alg(struct list_head *head,
460 const struct ccp_sha_def *def)
462 struct ccp_crypto_ahash_alg *ccp_alg;
463 struct ahash_alg *alg;
464 struct hash_alg_common *halg;
465 struct crypto_alg *base;
466 int ret;
468 ccp_alg = kzalloc(sizeof(*ccp_alg), GFP_KERNEL);
469 if (!ccp_alg)
470 return -ENOMEM;
472 INIT_LIST_HEAD(&ccp_alg->entry);
474 ccp_alg->type = def->type;
476 alg = &ccp_alg->alg;
477 alg->init = ccp_sha_init;
478 alg->update = ccp_sha_update;
479 alg->final = ccp_sha_final;
480 alg->finup = ccp_sha_finup;
481 alg->digest = ccp_sha_digest;
482 alg->export = ccp_sha_export;
483 alg->import = ccp_sha_import;
485 halg = &alg->halg;
486 halg->digestsize = def->digest_size;
487 halg->statesize = sizeof(struct ccp_sha_exp_ctx);
489 base = &halg->base;
490 snprintf(base->cra_name, CRYPTO_MAX_ALG_NAME, "%s", def->name);
491 snprintf(base->cra_driver_name, CRYPTO_MAX_ALG_NAME, "%s",
492 def->drv_name);
493 base->cra_flags = CRYPTO_ALG_ASYNC |
494 CRYPTO_ALG_KERN_DRIVER_ONLY |
495 CRYPTO_ALG_NEED_FALLBACK;
496 base->cra_blocksize = def->block_size;
497 base->cra_ctxsize = sizeof(struct ccp_ctx);
498 base->cra_priority = CCP_CRA_PRIORITY;
499 base->cra_init = ccp_sha_cra_init;
500 base->cra_exit = ccp_sha_cra_exit;
501 base->cra_module = THIS_MODULE;
503 ret = crypto_register_ahash(alg);
504 if (ret) {
505 pr_err("%s ahash algorithm registration error (%d)\n",
506 base->cra_name, ret);
507 kfree(ccp_alg);
508 return ret;
511 list_add(&ccp_alg->entry, head);
513 ret = ccp_register_hmac_alg(head, def, ccp_alg);
515 return ret;
518 int ccp_register_sha_algs(struct list_head *head)
520 int i, ret;
521 unsigned int ccpversion = ccp_version();
523 for (i = 0; i < ARRAY_SIZE(sha_algs); i++) {
524 if (sha_algs[i].version > ccpversion)
525 continue;
526 ret = ccp_register_sha_alg(head, &sha_algs[i]);
527 if (ret)
528 return ret;
531 return 0;