treewide: remove redundant IS_ERR() before error code check
[linux/fpc-iii.git] / drivers / crypto / chelsio / chtls / chtls_hw.c
blobf1820aca0d336902a1228db69e4f5c40b2e056f9
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Copyright (c) 2018 Chelsio Communications, Inc.
5 * Written by: Atul Gupta (atul.gupta@chelsio.com)
6 */
8 #include <linux/module.h>
9 #include <linux/list.h>
10 #include <linux/workqueue.h>
11 #include <linux/skbuff.h>
12 #include <linux/timer.h>
13 #include <linux/notifier.h>
14 #include <linux/inetdevice.h>
15 #include <linux/ip.h>
16 #include <linux/tcp.h>
17 #include <linux/tls.h>
18 #include <net/tls.h>
20 #include "chtls.h"
21 #include "chtls_cm.h"
23 static void __set_tcb_field_direct(struct chtls_sock *csk,
24 struct cpl_set_tcb_field *req, u16 word,
25 u64 mask, u64 val, u8 cookie, int no_reply)
27 struct ulptx_idata *sc;
29 INIT_TP_WR_CPL(req, CPL_SET_TCB_FIELD, csk->tid);
30 req->wr.wr_mid |= htonl(FW_WR_FLOWID_V(csk->tid));
31 req->reply_ctrl = htons(NO_REPLY_V(no_reply) |
32 QUEUENO_V(csk->rss_qid));
33 req->word_cookie = htons(TCB_WORD_V(word) | TCB_COOKIE_V(cookie));
34 req->mask = cpu_to_be64(mask);
35 req->val = cpu_to_be64(val);
36 sc = (struct ulptx_idata *)(req + 1);
37 sc->cmd_more = htonl(ULPTX_CMD_V(ULP_TX_SC_NOOP));
38 sc->len = htonl(0);
41 static void __set_tcb_field(struct sock *sk, struct sk_buff *skb, u16 word,
42 u64 mask, u64 val, u8 cookie, int no_reply)
44 struct cpl_set_tcb_field *req;
45 struct chtls_sock *csk;
46 struct ulptx_idata *sc;
47 unsigned int wrlen;
49 wrlen = roundup(sizeof(*req) + sizeof(*sc), 16);
50 csk = rcu_dereference_sk_user_data(sk);
52 req = (struct cpl_set_tcb_field *)__skb_put(skb, wrlen);
53 __set_tcb_field_direct(csk, req, word, mask, val, cookie, no_reply);
54 set_wr_txq(skb, CPL_PRIORITY_CONTROL, csk->port_id);
58 * Send control message to HW, message go as immediate data and packet
59 * is freed immediately.
61 static int chtls_set_tcb_field(struct sock *sk, u16 word, u64 mask, u64 val)
63 struct cpl_set_tcb_field *req;
64 unsigned int credits_needed;
65 struct chtls_sock *csk;
66 struct ulptx_idata *sc;
67 struct sk_buff *skb;
68 unsigned int wrlen;
69 int ret;
71 wrlen = roundup(sizeof(*req) + sizeof(*sc), 16);
73 skb = alloc_skb(wrlen, GFP_ATOMIC);
74 if (!skb)
75 return -ENOMEM;
77 credits_needed = DIV_ROUND_UP(wrlen, 16);
78 csk = rcu_dereference_sk_user_data(sk);
80 __set_tcb_field(sk, skb, word, mask, val, 0, 1);
81 skb_set_queue_mapping(skb, (csk->txq_idx << 1) | CPL_PRIORITY_DATA);
82 csk->wr_credits -= credits_needed;
83 csk->wr_unacked += credits_needed;
84 enqueue_wr(csk, skb);
85 ret = cxgb4_ofld_send(csk->egress_dev, skb);
86 if (ret < 0)
87 kfree_skb(skb);
88 return ret < 0 ? ret : 0;
92 * Set one of the t_flags bits in the TCB.
94 int chtls_set_tcb_tflag(struct sock *sk, unsigned int bit_pos, int val)
96 return chtls_set_tcb_field(sk, 1, 1ULL << bit_pos,
97 (u64)val << bit_pos);
100 static int chtls_set_tcb_keyid(struct sock *sk, int keyid)
102 return chtls_set_tcb_field(sk, 31, 0xFFFFFFFFULL, keyid);
105 static int chtls_set_tcb_seqno(struct sock *sk)
107 return chtls_set_tcb_field(sk, 28, ~0ULL, 0);
110 static int chtls_set_tcb_quiesce(struct sock *sk, int val)
112 return chtls_set_tcb_field(sk, 1, (1ULL << TF_RX_QUIESCE_S),
113 TF_RX_QUIESCE_V(val));
116 /* TLS Key bitmap processing */
117 int chtls_init_kmap(struct chtls_dev *cdev, struct cxgb4_lld_info *lldi)
119 unsigned int num_key_ctx, bsize;
120 int ksize;
122 num_key_ctx = (lldi->vr->key.size / TLS_KEY_CONTEXT_SZ);
123 bsize = BITS_TO_LONGS(num_key_ctx);
125 cdev->kmap.size = num_key_ctx;
126 cdev->kmap.available = bsize;
127 ksize = sizeof(*cdev->kmap.addr) * bsize;
128 cdev->kmap.addr = kvzalloc(ksize, GFP_KERNEL);
129 if (!cdev->kmap.addr)
130 return -ENOMEM;
132 cdev->kmap.start = lldi->vr->key.start;
133 spin_lock_init(&cdev->kmap.lock);
134 return 0;
137 static int get_new_keyid(struct chtls_sock *csk, u32 optname)
139 struct net_device *dev = csk->egress_dev;
140 struct chtls_dev *cdev = csk->cdev;
141 struct chtls_hws *hws;
142 struct adapter *adap;
143 int keyid;
145 adap = netdev2adap(dev);
146 hws = &csk->tlshws;
148 spin_lock_bh(&cdev->kmap.lock);
149 keyid = find_first_zero_bit(cdev->kmap.addr, cdev->kmap.size);
150 if (keyid < cdev->kmap.size) {
151 __set_bit(keyid, cdev->kmap.addr);
152 if (optname == TLS_RX)
153 hws->rxkey = keyid;
154 else
155 hws->txkey = keyid;
156 atomic_inc(&adap->chcr_stats.tls_key);
157 } else {
158 keyid = -1;
160 spin_unlock_bh(&cdev->kmap.lock);
161 return keyid;
164 void free_tls_keyid(struct sock *sk)
166 struct chtls_sock *csk = rcu_dereference_sk_user_data(sk);
167 struct net_device *dev = csk->egress_dev;
168 struct chtls_dev *cdev = csk->cdev;
169 struct chtls_hws *hws;
170 struct adapter *adap;
172 if (!cdev->kmap.addr)
173 return;
175 adap = netdev2adap(dev);
176 hws = &csk->tlshws;
178 spin_lock_bh(&cdev->kmap.lock);
179 if (hws->rxkey >= 0) {
180 __clear_bit(hws->rxkey, cdev->kmap.addr);
181 atomic_dec(&adap->chcr_stats.tls_key);
182 hws->rxkey = -1;
184 if (hws->txkey >= 0) {
185 __clear_bit(hws->txkey, cdev->kmap.addr);
186 atomic_dec(&adap->chcr_stats.tls_key);
187 hws->txkey = -1;
189 spin_unlock_bh(&cdev->kmap.lock);
192 unsigned int keyid_to_addr(int start_addr, int keyid)
194 return (start_addr + (keyid * TLS_KEY_CONTEXT_SZ)) >> 5;
197 static void chtls_rxkey_ivauth(struct _key_ctx *kctx)
199 kctx->iv_to_auth = cpu_to_be64(KEYCTX_TX_WR_IV_V(6ULL) |
200 KEYCTX_TX_WR_AAD_V(1ULL) |
201 KEYCTX_TX_WR_AADST_V(5ULL) |
202 KEYCTX_TX_WR_CIPHER_V(14ULL) |
203 KEYCTX_TX_WR_CIPHERST_V(0ULL) |
204 KEYCTX_TX_WR_AUTH_V(14ULL) |
205 KEYCTX_TX_WR_AUTHST_V(16ULL) |
206 KEYCTX_TX_WR_AUTHIN_V(16ULL));
209 static int chtls_key_info(struct chtls_sock *csk,
210 struct _key_ctx *kctx,
211 u32 keylen, u32 optname,
212 int cipher_type)
214 unsigned char key[AES_MAX_KEY_SIZE];
215 unsigned char *key_p, *salt;
216 unsigned char ghash_h[AEAD_H_SIZE];
217 int ck_size, key_ctx_size, kctx_mackey_size, salt_size;
218 struct crypto_aes_ctx aes;
219 int ret;
221 key_ctx_size = sizeof(struct _key_ctx) +
222 roundup(keylen, 16) + AEAD_H_SIZE;
224 /* GCM mode of AES supports 128 and 256 bit encryption, so
225 * prepare key context base on GCM cipher type
227 switch (cipher_type) {
228 case TLS_CIPHER_AES_GCM_128: {
229 struct tls12_crypto_info_aes_gcm_128 *gcm_ctx_128 =
230 (struct tls12_crypto_info_aes_gcm_128 *)
231 &csk->tlshws.crypto_info;
232 memcpy(key, gcm_ctx_128->key, keylen);
234 key_p = gcm_ctx_128->key;
235 salt = gcm_ctx_128->salt;
236 ck_size = CHCR_KEYCTX_CIPHER_KEY_SIZE_128;
237 salt_size = TLS_CIPHER_AES_GCM_128_SALT_SIZE;
238 kctx_mackey_size = CHCR_KEYCTX_MAC_KEY_SIZE_128;
239 break;
241 case TLS_CIPHER_AES_GCM_256: {
242 struct tls12_crypto_info_aes_gcm_256 *gcm_ctx_256 =
243 (struct tls12_crypto_info_aes_gcm_256 *)
244 &csk->tlshws.crypto_info;
245 memcpy(key, gcm_ctx_256->key, keylen);
247 key_p = gcm_ctx_256->key;
248 salt = gcm_ctx_256->salt;
249 ck_size = CHCR_KEYCTX_CIPHER_KEY_SIZE_256;
250 salt_size = TLS_CIPHER_AES_GCM_256_SALT_SIZE;
251 kctx_mackey_size = CHCR_KEYCTX_MAC_KEY_SIZE_256;
252 break;
254 default:
255 pr_err("GCM: Invalid key length %d\n", keylen);
256 return -EINVAL;
259 /* Calculate the H = CIPH(K, 0 repeated 16 times).
260 * It will go in key context
262 ret = aes_expandkey(&aes, key, keylen);
263 if (ret)
264 return ret;
266 memset(ghash_h, 0, AEAD_H_SIZE);
267 aes_encrypt(&aes, ghash_h, ghash_h);
268 memzero_explicit(&aes, sizeof(aes));
269 csk->tlshws.keylen = key_ctx_size;
271 /* Copy the Key context */
272 if (optname == TLS_RX) {
273 int key_ctx;
275 key_ctx = ((key_ctx_size >> 4) << 3);
276 kctx->ctx_hdr = FILL_KEY_CRX_HDR(ck_size,
277 kctx_mackey_size,
278 0, 0, key_ctx);
279 chtls_rxkey_ivauth(kctx);
280 } else {
281 kctx->ctx_hdr = FILL_KEY_CTX_HDR(ck_size,
282 kctx_mackey_size,
283 0, 0, key_ctx_size >> 4);
286 memcpy(kctx->salt, salt, salt_size);
287 memcpy(kctx->key, key_p, keylen);
288 memcpy(kctx->key + keylen, ghash_h, AEAD_H_SIZE);
289 /* erase key info from driver */
290 memset(key_p, 0, keylen);
292 return 0;
295 static void chtls_set_scmd(struct chtls_sock *csk)
297 struct chtls_hws *hws = &csk->tlshws;
299 hws->scmd.seqno_numivs =
300 SCMD_SEQ_NO_CTRL_V(3) |
301 SCMD_PROTO_VERSION_V(0) |
302 SCMD_ENC_DEC_CTRL_V(0) |
303 SCMD_CIPH_AUTH_SEQ_CTRL_V(1) |
304 SCMD_CIPH_MODE_V(2) |
305 SCMD_AUTH_MODE_V(4) |
306 SCMD_HMAC_CTRL_V(0) |
307 SCMD_IV_SIZE_V(4) |
308 SCMD_NUM_IVS_V(1);
310 hws->scmd.ivgen_hdrlen =
311 SCMD_IV_GEN_CTRL_V(1) |
312 SCMD_KEY_CTX_INLINE_V(0) |
313 SCMD_TLS_FRAG_ENABLE_V(1);
316 int chtls_setkey(struct chtls_sock *csk, u32 keylen,
317 u32 optname, int cipher_type)
319 struct tls_key_req *kwr;
320 struct chtls_dev *cdev;
321 struct _key_ctx *kctx;
322 int wrlen, klen, len;
323 struct sk_buff *skb;
324 struct sock *sk;
325 int keyid;
326 int kaddr;
327 int ret;
329 cdev = csk->cdev;
330 sk = csk->sk;
332 klen = roundup((keylen + AEAD_H_SIZE) + sizeof(*kctx), 32);
333 wrlen = roundup(sizeof(*kwr), 16);
334 len = klen + wrlen;
336 /* Flush out-standing data before new key takes effect */
337 if (optname == TLS_TX) {
338 lock_sock(sk);
339 if (skb_queue_len(&csk->txq))
340 chtls_push_frames(csk, 0);
341 release_sock(sk);
344 skb = alloc_skb(len, GFP_KERNEL);
345 if (!skb)
346 return -ENOMEM;
348 keyid = get_new_keyid(csk, optname);
349 if (keyid < 0) {
350 ret = -ENOSPC;
351 goto out_nokey;
354 kaddr = keyid_to_addr(cdev->kmap.start, keyid);
355 kwr = (struct tls_key_req *)__skb_put_zero(skb, len);
356 kwr->wr.op_to_compl =
357 cpu_to_be32(FW_WR_OP_V(FW_ULPTX_WR) | FW_WR_COMPL_F |
358 FW_WR_ATOMIC_V(1U));
359 kwr->wr.flowid_len16 =
360 cpu_to_be32(FW_WR_LEN16_V(DIV_ROUND_UP(len, 16) |
361 FW_WR_FLOWID_V(csk->tid)));
362 kwr->wr.protocol = 0;
363 kwr->wr.mfs = htons(TLS_MFS);
364 kwr->wr.reneg_to_write_rx = optname;
366 /* ulptx command */
367 kwr->req.cmd = cpu_to_be32(ULPTX_CMD_V(ULP_TX_MEM_WRITE) |
368 T5_ULP_MEMIO_ORDER_V(1) |
369 T5_ULP_MEMIO_IMM_V(1));
370 kwr->req.len16 = cpu_to_be32((csk->tid << 8) |
371 DIV_ROUND_UP(len - sizeof(kwr->wr), 16));
372 kwr->req.dlen = cpu_to_be32(ULP_MEMIO_DATA_LEN_V(klen >> 5));
373 kwr->req.lock_addr = cpu_to_be32(ULP_MEMIO_ADDR_V(kaddr));
375 /* sub command */
376 kwr->sc_imm.cmd_more = cpu_to_be32(ULPTX_CMD_V(ULP_TX_SC_IMM));
377 kwr->sc_imm.len = cpu_to_be32(klen);
379 lock_sock(sk);
380 /* key info */
381 kctx = (struct _key_ctx *)(kwr + 1);
382 ret = chtls_key_info(csk, kctx, keylen, optname, cipher_type);
383 if (ret)
384 goto out_notcb;
386 set_wr_txq(skb, CPL_PRIORITY_DATA, csk->tlshws.txqid);
387 csk->wr_credits -= DIV_ROUND_UP(len, 16);
388 csk->wr_unacked += DIV_ROUND_UP(len, 16);
389 enqueue_wr(csk, skb);
390 cxgb4_ofld_send(csk->egress_dev, skb);
392 chtls_set_scmd(csk);
393 /* Clear quiesce for Rx key */
394 if (optname == TLS_RX) {
395 ret = chtls_set_tcb_keyid(sk, keyid);
396 if (ret)
397 goto out_notcb;
398 ret = chtls_set_tcb_field(sk, 0,
399 TCB_ULP_RAW_V(TCB_ULP_RAW_M),
400 TCB_ULP_RAW_V((TF_TLS_KEY_SIZE_V(1) |
401 TF_TLS_CONTROL_V(1) |
402 TF_TLS_ACTIVE_V(1) |
403 TF_TLS_ENABLE_V(1))));
404 if (ret)
405 goto out_notcb;
406 ret = chtls_set_tcb_seqno(sk);
407 if (ret)
408 goto out_notcb;
409 ret = chtls_set_tcb_quiesce(sk, 0);
410 if (ret)
411 goto out_notcb;
412 csk->tlshws.rxkey = keyid;
413 } else {
414 csk->tlshws.tx_seq_no = 0;
415 csk->tlshws.txkey = keyid;
418 release_sock(sk);
419 return ret;
420 out_notcb:
421 release_sock(sk);
422 free_tls_keyid(sk);
423 out_nokey:
424 kfree_skb(skb);
425 return ret;