1 // SPDX-License-Identifier: GPL-2.0-or-later
3 * Freescale i.MX23/i.MX28 Data Co-Processor driver
5 * Copyright (C) 2013 Marek Vasut <marex@denx.de>
8 #include <linux/dma-mapping.h>
9 #include <linux/interrupt.h>
11 #include <linux/kernel.h>
12 #include <linux/kthread.h>
13 #include <linux/module.h>
15 #include <linux/platform_device.h>
16 #include <linux/stmp_device.h>
17 #include <linux/clk.h>
19 #include <crypto/aes.h>
20 #include <crypto/sha.h>
21 #include <crypto/internal/hash.h>
22 #include <crypto/internal/skcipher.h>
24 #define DCP_MAX_CHANS 4
25 #define DCP_BUF_SZ PAGE_SIZE
26 #define DCP_SHA_PAY_SZ 64
28 #define DCP_ALIGNMENT 64
31 * Null hashes to align with hw behavior on imx6sl and ull
32 * these are flipped for consistency with hw output
34 static const uint8_t sha1_null_hash
[] =
35 "\x09\x07\xd8\xaf\x90\x18\x60\x95\xef\xbf"
36 "\x55\x32\x0d\x4b\x6b\x5e\xee\xa3\x39\xda";
38 static const uint8_t sha256_null_hash
[] =
39 "\x55\xb8\x52\x78\x1b\x99\x95\xa4"
40 "\x4c\x93\x9b\x64\xe4\x41\xae\x27"
41 "\x24\xb9\x6f\x99\xc8\xf4\xfb\x9a"
42 "\x14\x1c\xfc\x98\x42\xc4\xb0\xe3";
44 /* DCP DMA descriptor. */
46 uint32_t next_cmd_addr
;
56 /* Coherent aligned block for bounce buffering. */
57 struct dcp_coherent_block
{
58 uint8_t aes_in_buf
[DCP_BUF_SZ
];
59 uint8_t aes_out_buf
[DCP_BUF_SZ
];
60 uint8_t sha_in_buf
[DCP_BUF_SZ
];
61 uint8_t sha_out_buf
[DCP_SHA_PAY_SZ
];
63 uint8_t aes_key
[2 * AES_KEYSIZE_128
];
65 struct dcp_dma_desc desc
[DCP_MAX_CHANS
];
74 struct dcp_coherent_block
*coh
;
76 struct completion completion
[DCP_MAX_CHANS
];
77 spinlock_t lock
[DCP_MAX_CHANS
];
78 struct task_struct
*thread
[DCP_MAX_CHANS
];
79 struct crypto_queue queue
[DCP_MAX_CHANS
];
84 DCP_CHAN_HASH_SHA
= 0,
88 struct dcp_async_ctx
{
93 /* SHA Hash-specific context */
98 /* Crypto-specific context */
99 struct crypto_sync_skcipher
*fallback
;
100 unsigned int key_len
;
101 uint8_t key
[AES_KEYSIZE_128
];
104 struct dcp_aes_req_ctx
{
109 struct dcp_sha_req_ctx
{
114 struct dcp_export_state
{
115 struct dcp_sha_req_ctx req_ctx
;
116 struct dcp_async_ctx async_ctx
;
120 * There can even be only one instance of the MXS DCP due to the
121 * design of Linux Crypto API.
123 static struct dcp
*global_sdcp
;
125 /* DCP register layout. */
126 #define MXS_DCP_CTRL 0x00
127 #define MXS_DCP_CTRL_GATHER_RESIDUAL_WRITES (1 << 23)
128 #define MXS_DCP_CTRL_ENABLE_CONTEXT_CACHING (1 << 22)
130 #define MXS_DCP_STAT 0x10
131 #define MXS_DCP_STAT_CLR 0x18
132 #define MXS_DCP_STAT_IRQ_MASK 0xf
134 #define MXS_DCP_CHANNELCTRL 0x20
135 #define MXS_DCP_CHANNELCTRL_ENABLE_CHANNEL_MASK 0xff
137 #define MXS_DCP_CAPABILITY1 0x40
138 #define MXS_DCP_CAPABILITY1_SHA256 (4 << 16)
139 #define MXS_DCP_CAPABILITY1_SHA1 (1 << 16)
140 #define MXS_DCP_CAPABILITY1_AES128 (1 << 0)
142 #define MXS_DCP_CONTEXT 0x50
144 #define MXS_DCP_CH_N_CMDPTR(n) (0x100 + ((n) * 0x40))
146 #define MXS_DCP_CH_N_SEMA(n) (0x110 + ((n) * 0x40))
148 #define MXS_DCP_CH_N_STAT(n) (0x120 + ((n) * 0x40))
149 #define MXS_DCP_CH_N_STAT_CLR(n) (0x128 + ((n) * 0x40))
151 /* DMA descriptor bits. */
152 #define MXS_DCP_CONTROL0_HASH_TERM (1 << 13)
153 #define MXS_DCP_CONTROL0_HASH_INIT (1 << 12)
154 #define MXS_DCP_CONTROL0_PAYLOAD_KEY (1 << 11)
155 #define MXS_DCP_CONTROL0_CIPHER_ENCRYPT (1 << 8)
156 #define MXS_DCP_CONTROL0_CIPHER_INIT (1 << 9)
157 #define MXS_DCP_CONTROL0_ENABLE_HASH (1 << 6)
158 #define MXS_DCP_CONTROL0_ENABLE_CIPHER (1 << 5)
159 #define MXS_DCP_CONTROL0_DECR_SEMAPHORE (1 << 1)
160 #define MXS_DCP_CONTROL0_INTERRUPT (1 << 0)
162 #define MXS_DCP_CONTROL1_HASH_SELECT_SHA256 (2 << 16)
163 #define MXS_DCP_CONTROL1_HASH_SELECT_SHA1 (0 << 16)
164 #define MXS_DCP_CONTROL1_CIPHER_MODE_CBC (1 << 4)
165 #define MXS_DCP_CONTROL1_CIPHER_MODE_ECB (0 << 4)
166 #define MXS_DCP_CONTROL1_CIPHER_SELECT_AES128 (0 << 0)
168 static int mxs_dcp_start_dma(struct dcp_async_ctx
*actx
)
170 struct dcp
*sdcp
= global_sdcp
;
171 const int chan
= actx
->chan
;
174 struct dcp_dma_desc
*desc
= &sdcp
->coh
->desc
[actx
->chan
];
176 dma_addr_t desc_phys
= dma_map_single(sdcp
->dev
, desc
, sizeof(*desc
),
179 reinit_completion(&sdcp
->completion
[chan
]);
181 /* Clear status register. */
182 writel(0xffffffff, sdcp
->base
+ MXS_DCP_CH_N_STAT_CLR(chan
));
184 /* Load the DMA descriptor. */
185 writel(desc_phys
, sdcp
->base
+ MXS_DCP_CH_N_CMDPTR(chan
));
187 /* Increment the semaphore to start the DMA transfer. */
188 writel(1, sdcp
->base
+ MXS_DCP_CH_N_SEMA(chan
));
190 ret
= wait_for_completion_timeout(&sdcp
->completion
[chan
],
191 msecs_to_jiffies(1000));
193 dev_err(sdcp
->dev
, "Channel %i timeout (DCP_STAT=0x%08x)\n",
194 chan
, readl(sdcp
->base
+ MXS_DCP_STAT
));
198 stat
= readl(sdcp
->base
+ MXS_DCP_CH_N_STAT(chan
));
200 dev_err(sdcp
->dev
, "Channel %i error (CH_STAT=0x%08x)\n",
205 dma_unmap_single(sdcp
->dev
, desc_phys
, sizeof(*desc
), DMA_TO_DEVICE
);
211 * Encryption (AES128)
213 static int mxs_dcp_run_aes(struct dcp_async_ctx
*actx
,
214 struct skcipher_request
*req
, int init
)
216 struct dcp
*sdcp
= global_sdcp
;
217 struct dcp_dma_desc
*desc
= &sdcp
->coh
->desc
[actx
->chan
];
218 struct dcp_aes_req_ctx
*rctx
= skcipher_request_ctx(req
);
221 dma_addr_t key_phys
= dma_map_single(sdcp
->dev
, sdcp
->coh
->aes_key
,
224 dma_addr_t src_phys
= dma_map_single(sdcp
->dev
, sdcp
->coh
->aes_in_buf
,
225 DCP_BUF_SZ
, DMA_TO_DEVICE
);
226 dma_addr_t dst_phys
= dma_map_single(sdcp
->dev
, sdcp
->coh
->aes_out_buf
,
227 DCP_BUF_SZ
, DMA_FROM_DEVICE
);
229 if (actx
->fill
% AES_BLOCK_SIZE
) {
230 dev_err(sdcp
->dev
, "Invalid block size!\n");
235 /* Fill in the DMA descriptor. */
236 desc
->control0
= MXS_DCP_CONTROL0_DECR_SEMAPHORE
|
237 MXS_DCP_CONTROL0_INTERRUPT
|
238 MXS_DCP_CONTROL0_ENABLE_CIPHER
;
240 /* Payload contains the key. */
241 desc
->control0
|= MXS_DCP_CONTROL0_PAYLOAD_KEY
;
244 desc
->control0
|= MXS_DCP_CONTROL0_CIPHER_ENCRYPT
;
246 desc
->control0
|= MXS_DCP_CONTROL0_CIPHER_INIT
;
248 desc
->control1
= MXS_DCP_CONTROL1_CIPHER_SELECT_AES128
;
251 desc
->control1
|= MXS_DCP_CONTROL1_CIPHER_MODE_ECB
;
253 desc
->control1
|= MXS_DCP_CONTROL1_CIPHER_MODE_CBC
;
255 desc
->next_cmd_addr
= 0;
256 desc
->source
= src_phys
;
257 desc
->destination
= dst_phys
;
258 desc
->size
= actx
->fill
;
259 desc
->payload
= key_phys
;
262 ret
= mxs_dcp_start_dma(actx
);
265 dma_unmap_single(sdcp
->dev
, key_phys
, 2 * AES_KEYSIZE_128
,
267 dma_unmap_single(sdcp
->dev
, src_phys
, DCP_BUF_SZ
, DMA_TO_DEVICE
);
268 dma_unmap_single(sdcp
->dev
, dst_phys
, DCP_BUF_SZ
, DMA_FROM_DEVICE
);
273 static int mxs_dcp_aes_block_crypt(struct crypto_async_request
*arq
)
275 struct dcp
*sdcp
= global_sdcp
;
277 struct skcipher_request
*req
= skcipher_request_cast(arq
);
278 struct dcp_async_ctx
*actx
= crypto_tfm_ctx(arq
->tfm
);
279 struct dcp_aes_req_ctx
*rctx
= skcipher_request_ctx(req
);
281 struct scatterlist
*dst
= req
->dst
;
282 struct scatterlist
*src
= req
->src
;
283 const int nents
= sg_nents(req
->src
);
285 const int out_off
= DCP_BUF_SZ
;
286 uint8_t *in_buf
= sdcp
->coh
->aes_in_buf
;
287 uint8_t *out_buf
= sdcp
->coh
->aes_out_buf
;
289 uint8_t *out_tmp
, *src_buf
, *dst_buf
= NULL
;
290 uint32_t dst_off
= 0;
291 uint32_t last_out_len
= 0;
293 uint8_t *key
= sdcp
->coh
->aes_key
;
297 unsigned int i
, len
, clen
, rem
= 0, tlen
= 0;
299 bool limit_hit
= false;
303 /* Copy the key from the temporary location. */
304 memcpy(key
, actx
->key
, actx
->key_len
);
307 /* Copy the CBC IV just past the key. */
308 memcpy(key
+ AES_KEYSIZE_128
, req
->iv
, AES_KEYSIZE_128
);
309 /* CBC needs the INIT set. */
312 memset(key
+ AES_KEYSIZE_128
, 0, AES_KEYSIZE_128
);
315 for_each_sg(req
->src
, src
, nents
, i
) {
316 src_buf
= sg_virt(src
);
317 len
= sg_dma_len(src
);
319 limit_hit
= tlen
> req
->cryptlen
;
322 len
= req
->cryptlen
- (tlen
- len
);
325 if (actx
->fill
+ len
> out_off
)
326 clen
= out_off
- actx
->fill
;
330 memcpy(in_buf
+ actx
->fill
, src_buf
, clen
);
336 * If we filled the buffer or this is the last SG,
339 if (actx
->fill
== out_off
|| sg_is_last(src
) ||
341 ret
= mxs_dcp_run_aes(actx
, req
, init
);
347 last_out_len
= actx
->fill
;
348 while (dst
&& actx
->fill
) {
350 dst_buf
= sg_virt(dst
);
353 rem
= min(sg_dma_len(dst
) - dst_off
,
356 memcpy(dst_buf
+ dst_off
, out_tmp
, rem
);
361 if (dst_off
== sg_dma_len(dst
)) {
375 /* Copy the IV for CBC for chaining */
378 memcpy(req
->iv
, out_buf
+(last_out_len
-AES_BLOCK_SIZE
),
381 memcpy(req
->iv
, in_buf
+(last_out_len
-AES_BLOCK_SIZE
),
388 static int dcp_chan_thread_aes(void *data
)
390 struct dcp
*sdcp
= global_sdcp
;
391 const int chan
= DCP_CHAN_CRYPTO
;
393 struct crypto_async_request
*backlog
;
394 struct crypto_async_request
*arq
;
398 while (!kthread_should_stop()) {
399 set_current_state(TASK_INTERRUPTIBLE
);
401 spin_lock(&sdcp
->lock
[chan
]);
402 backlog
= crypto_get_backlog(&sdcp
->queue
[chan
]);
403 arq
= crypto_dequeue_request(&sdcp
->queue
[chan
]);
404 spin_unlock(&sdcp
->lock
[chan
]);
406 if (!backlog
&& !arq
) {
411 set_current_state(TASK_RUNNING
);
414 backlog
->complete(backlog
, -EINPROGRESS
);
417 ret
= mxs_dcp_aes_block_crypt(arq
);
418 arq
->complete(arq
, ret
);
425 static int mxs_dcp_block_fallback(struct skcipher_request
*req
, int enc
)
427 struct crypto_skcipher
*tfm
= crypto_skcipher_reqtfm(req
);
428 struct dcp_async_ctx
*ctx
= crypto_skcipher_ctx(tfm
);
429 SYNC_SKCIPHER_REQUEST_ON_STACK(subreq
, ctx
->fallback
);
432 skcipher_request_set_sync_tfm(subreq
, ctx
->fallback
);
433 skcipher_request_set_callback(subreq
, req
->base
.flags
, NULL
, NULL
);
434 skcipher_request_set_crypt(subreq
, req
->src
, req
->dst
,
435 req
->cryptlen
, req
->iv
);
438 ret
= crypto_skcipher_encrypt(subreq
);
440 ret
= crypto_skcipher_decrypt(subreq
);
442 skcipher_request_zero(subreq
);
447 static int mxs_dcp_aes_enqueue(struct skcipher_request
*req
, int enc
, int ecb
)
449 struct dcp
*sdcp
= global_sdcp
;
450 struct crypto_async_request
*arq
= &req
->base
;
451 struct dcp_async_ctx
*actx
= crypto_tfm_ctx(arq
->tfm
);
452 struct dcp_aes_req_ctx
*rctx
= skcipher_request_ctx(req
);
455 if (unlikely(actx
->key_len
!= AES_KEYSIZE_128
))
456 return mxs_dcp_block_fallback(req
, enc
);
460 actx
->chan
= DCP_CHAN_CRYPTO
;
462 spin_lock(&sdcp
->lock
[actx
->chan
]);
463 ret
= crypto_enqueue_request(&sdcp
->queue
[actx
->chan
], &req
->base
);
464 spin_unlock(&sdcp
->lock
[actx
->chan
]);
466 wake_up_process(sdcp
->thread
[actx
->chan
]);
471 static int mxs_dcp_aes_ecb_decrypt(struct skcipher_request
*req
)
473 return mxs_dcp_aes_enqueue(req
, 0, 1);
476 static int mxs_dcp_aes_ecb_encrypt(struct skcipher_request
*req
)
478 return mxs_dcp_aes_enqueue(req
, 1, 1);
481 static int mxs_dcp_aes_cbc_decrypt(struct skcipher_request
*req
)
483 return mxs_dcp_aes_enqueue(req
, 0, 0);
486 static int mxs_dcp_aes_cbc_encrypt(struct skcipher_request
*req
)
488 return mxs_dcp_aes_enqueue(req
, 1, 0);
491 static int mxs_dcp_aes_setkey(struct crypto_skcipher
*tfm
, const u8
*key
,
494 struct dcp_async_ctx
*actx
= crypto_skcipher_ctx(tfm
);
497 * AES 128 is supposed by the hardware, store key into temporary
498 * buffer and exit. We must use the temporary buffer here, since
499 * there can still be an operation in progress.
502 if (len
== AES_KEYSIZE_128
) {
503 memcpy(actx
->key
, key
, len
);
508 * If the requested AES key size is not supported by the hardware,
509 * but is supported by in-kernel software implementation, we use
512 crypto_sync_skcipher_clear_flags(actx
->fallback
, CRYPTO_TFM_REQ_MASK
);
513 crypto_sync_skcipher_set_flags(actx
->fallback
,
514 tfm
->base
.crt_flags
& CRYPTO_TFM_REQ_MASK
);
515 return crypto_sync_skcipher_setkey(actx
->fallback
, key
, len
);
518 static int mxs_dcp_aes_fallback_init_tfm(struct crypto_skcipher
*tfm
)
520 const char *name
= crypto_tfm_alg_name(crypto_skcipher_tfm(tfm
));
521 struct dcp_async_ctx
*actx
= crypto_skcipher_ctx(tfm
);
522 struct crypto_sync_skcipher
*blk
;
524 blk
= crypto_alloc_sync_skcipher(name
, 0, CRYPTO_ALG_NEED_FALLBACK
);
528 actx
->fallback
= blk
;
529 crypto_skcipher_set_reqsize(tfm
, sizeof(struct dcp_aes_req_ctx
));
533 static void mxs_dcp_aes_fallback_exit_tfm(struct crypto_skcipher
*tfm
)
535 struct dcp_async_ctx
*actx
= crypto_skcipher_ctx(tfm
);
537 crypto_free_sync_skcipher(actx
->fallback
);
541 * Hashing (SHA1/SHA256)
543 static int mxs_dcp_run_sha(struct ahash_request
*req
)
545 struct dcp
*sdcp
= global_sdcp
;
548 struct crypto_ahash
*tfm
= crypto_ahash_reqtfm(req
);
549 struct dcp_async_ctx
*actx
= crypto_ahash_ctx(tfm
);
550 struct dcp_sha_req_ctx
*rctx
= ahash_request_ctx(req
);
551 struct dcp_dma_desc
*desc
= &sdcp
->coh
->desc
[actx
->chan
];
553 dma_addr_t digest_phys
= 0;
554 dma_addr_t buf_phys
= dma_map_single(sdcp
->dev
, sdcp
->coh
->sha_in_buf
,
555 DCP_BUF_SZ
, DMA_TO_DEVICE
);
557 /* Fill in the DMA descriptor. */
558 desc
->control0
= MXS_DCP_CONTROL0_DECR_SEMAPHORE
|
559 MXS_DCP_CONTROL0_INTERRUPT
|
560 MXS_DCP_CONTROL0_ENABLE_HASH
;
562 desc
->control0
|= MXS_DCP_CONTROL0_HASH_INIT
;
564 desc
->control1
= actx
->alg
;
565 desc
->next_cmd_addr
= 0;
566 desc
->source
= buf_phys
;
567 desc
->destination
= 0;
568 desc
->size
= actx
->fill
;
573 * Align driver with hw behavior when generating null hashes
575 if (rctx
->init
&& rctx
->fini
&& desc
->size
== 0) {
576 struct hash_alg_common
*halg
= crypto_hash_alg_common(tfm
);
577 const uint8_t *sha_buf
=
578 (actx
->alg
== MXS_DCP_CONTROL1_HASH_SELECT_SHA1
) ?
579 sha1_null_hash
: sha256_null_hash
;
580 memcpy(sdcp
->coh
->sha_out_buf
, sha_buf
, halg
->digestsize
);
585 /* Set HASH_TERM bit for last transfer block. */
587 digest_phys
= dma_map_single(sdcp
->dev
, sdcp
->coh
->sha_out_buf
,
588 DCP_SHA_PAY_SZ
, DMA_FROM_DEVICE
);
589 desc
->control0
|= MXS_DCP_CONTROL0_HASH_TERM
;
590 desc
->payload
= digest_phys
;
593 ret
= mxs_dcp_start_dma(actx
);
596 dma_unmap_single(sdcp
->dev
, digest_phys
, DCP_SHA_PAY_SZ
,
600 dma_unmap_single(sdcp
->dev
, buf_phys
, DCP_BUF_SZ
, DMA_TO_DEVICE
);
605 static int dcp_sha_req_to_buf(struct crypto_async_request
*arq
)
607 struct dcp
*sdcp
= global_sdcp
;
609 struct ahash_request
*req
= ahash_request_cast(arq
);
610 struct crypto_ahash
*tfm
= crypto_ahash_reqtfm(req
);
611 struct dcp_async_ctx
*actx
= crypto_ahash_ctx(tfm
);
612 struct dcp_sha_req_ctx
*rctx
= ahash_request_ctx(req
);
613 struct hash_alg_common
*halg
= crypto_hash_alg_common(tfm
);
614 const int nents
= sg_nents(req
->src
);
616 uint8_t *in_buf
= sdcp
->coh
->sha_in_buf
;
617 uint8_t *out_buf
= sdcp
->coh
->sha_out_buf
;
621 struct scatterlist
*src
;
623 unsigned int i
, len
, clen
;
626 int fin
= rctx
->fini
;
630 for_each_sg(req
->src
, src
, nents
, i
) {
631 src_buf
= sg_virt(src
);
632 len
= sg_dma_len(src
);
635 if (actx
->fill
+ len
> DCP_BUF_SZ
)
636 clen
= DCP_BUF_SZ
- actx
->fill
;
640 memcpy(in_buf
+ actx
->fill
, src_buf
, clen
);
646 * If we filled the buffer and still have some
647 * more data, submit the buffer.
649 if (len
&& actx
->fill
== DCP_BUF_SZ
) {
650 ret
= mxs_dcp_run_sha(req
);
662 /* Submit whatever is left. */
666 ret
= mxs_dcp_run_sha(req
);
672 /* For some reason the result is flipped */
673 for (i
= 0; i
< halg
->digestsize
; i
++)
674 req
->result
[i
] = out_buf
[halg
->digestsize
- i
- 1];
680 static int dcp_chan_thread_sha(void *data
)
682 struct dcp
*sdcp
= global_sdcp
;
683 const int chan
= DCP_CHAN_HASH_SHA
;
685 struct crypto_async_request
*backlog
;
686 struct crypto_async_request
*arq
;
689 while (!kthread_should_stop()) {
690 set_current_state(TASK_INTERRUPTIBLE
);
692 spin_lock(&sdcp
->lock
[chan
]);
693 backlog
= crypto_get_backlog(&sdcp
->queue
[chan
]);
694 arq
= crypto_dequeue_request(&sdcp
->queue
[chan
]);
695 spin_unlock(&sdcp
->lock
[chan
]);
697 if (!backlog
&& !arq
) {
702 set_current_state(TASK_RUNNING
);
705 backlog
->complete(backlog
, -EINPROGRESS
);
708 ret
= dcp_sha_req_to_buf(arq
);
709 arq
->complete(arq
, ret
);
716 static int dcp_sha_init(struct ahash_request
*req
)
718 struct crypto_ahash
*tfm
= crypto_ahash_reqtfm(req
);
719 struct dcp_async_ctx
*actx
= crypto_ahash_ctx(tfm
);
721 struct hash_alg_common
*halg
= crypto_hash_alg_common(tfm
);
724 * Start hashing session. The code below only inits the
725 * hashing session context, nothing more.
727 memset(actx
, 0, sizeof(*actx
));
729 if (strcmp(halg
->base
.cra_name
, "sha1") == 0)
730 actx
->alg
= MXS_DCP_CONTROL1_HASH_SELECT_SHA1
;
732 actx
->alg
= MXS_DCP_CONTROL1_HASH_SELECT_SHA256
;
736 actx
->chan
= DCP_CHAN_HASH_SHA
;
738 mutex_init(&actx
->mutex
);
743 static int dcp_sha_update_fx(struct ahash_request
*req
, int fini
)
745 struct dcp
*sdcp
= global_sdcp
;
747 struct dcp_sha_req_ctx
*rctx
= ahash_request_ctx(req
);
748 struct crypto_ahash
*tfm
= crypto_ahash_reqtfm(req
);
749 struct dcp_async_ctx
*actx
= crypto_ahash_ctx(tfm
);
754 * Ignore requests that have no data in them and are not
755 * the trailing requests in the stream of requests.
757 if (!req
->nbytes
&& !fini
)
760 mutex_lock(&actx
->mutex
);
769 spin_lock(&sdcp
->lock
[actx
->chan
]);
770 ret
= crypto_enqueue_request(&sdcp
->queue
[actx
->chan
], &req
->base
);
771 spin_unlock(&sdcp
->lock
[actx
->chan
]);
773 wake_up_process(sdcp
->thread
[actx
->chan
]);
774 mutex_unlock(&actx
->mutex
);
779 static int dcp_sha_update(struct ahash_request
*req
)
781 return dcp_sha_update_fx(req
, 0);
784 static int dcp_sha_final(struct ahash_request
*req
)
786 ahash_request_set_crypt(req
, NULL
, req
->result
, 0);
788 return dcp_sha_update_fx(req
, 1);
791 static int dcp_sha_finup(struct ahash_request
*req
)
793 return dcp_sha_update_fx(req
, 1);
796 static int dcp_sha_digest(struct ahash_request
*req
)
800 ret
= dcp_sha_init(req
);
804 return dcp_sha_finup(req
);
807 static int dcp_sha_import(struct ahash_request
*req
, const void *in
)
809 struct dcp_sha_req_ctx
*rctx
= ahash_request_ctx(req
);
810 struct crypto_ahash
*tfm
= crypto_ahash_reqtfm(req
);
811 struct dcp_async_ctx
*actx
= crypto_ahash_ctx(tfm
);
812 const struct dcp_export_state
*export
= in
;
814 memset(rctx
, 0, sizeof(struct dcp_sha_req_ctx
));
815 memset(actx
, 0, sizeof(struct dcp_async_ctx
));
816 memcpy(rctx
, &export
->req_ctx
, sizeof(struct dcp_sha_req_ctx
));
817 memcpy(actx
, &export
->async_ctx
, sizeof(struct dcp_async_ctx
));
822 static int dcp_sha_export(struct ahash_request
*req
, void *out
)
824 struct dcp_sha_req_ctx
*rctx_state
= ahash_request_ctx(req
);
825 struct crypto_ahash
*tfm
= crypto_ahash_reqtfm(req
);
826 struct dcp_async_ctx
*actx_state
= crypto_ahash_ctx(tfm
);
827 struct dcp_export_state
*export
= out
;
829 memcpy(&export
->req_ctx
, rctx_state
, sizeof(struct dcp_sha_req_ctx
));
830 memcpy(&export
->async_ctx
, actx_state
, sizeof(struct dcp_async_ctx
));
835 static int dcp_sha_cra_init(struct crypto_tfm
*tfm
)
837 crypto_ahash_set_reqsize(__crypto_ahash_cast(tfm
),
838 sizeof(struct dcp_sha_req_ctx
));
842 static void dcp_sha_cra_exit(struct crypto_tfm
*tfm
)
846 /* AES 128 ECB and AES 128 CBC */
847 static struct skcipher_alg dcp_aes_algs
[] = {
849 .base
.cra_name
= "ecb(aes)",
850 .base
.cra_driver_name
= "ecb-aes-dcp",
851 .base
.cra_priority
= 400,
852 .base
.cra_alignmask
= 15,
853 .base
.cra_flags
= CRYPTO_ALG_ASYNC
|
854 CRYPTO_ALG_NEED_FALLBACK
,
855 .base
.cra_blocksize
= AES_BLOCK_SIZE
,
856 .base
.cra_ctxsize
= sizeof(struct dcp_async_ctx
),
857 .base
.cra_module
= THIS_MODULE
,
859 .min_keysize
= AES_MIN_KEY_SIZE
,
860 .max_keysize
= AES_MAX_KEY_SIZE
,
861 .setkey
= mxs_dcp_aes_setkey
,
862 .encrypt
= mxs_dcp_aes_ecb_encrypt
,
863 .decrypt
= mxs_dcp_aes_ecb_decrypt
,
864 .init
= mxs_dcp_aes_fallback_init_tfm
,
865 .exit
= mxs_dcp_aes_fallback_exit_tfm
,
867 .base
.cra_name
= "cbc(aes)",
868 .base
.cra_driver_name
= "cbc-aes-dcp",
869 .base
.cra_priority
= 400,
870 .base
.cra_alignmask
= 15,
871 .base
.cra_flags
= CRYPTO_ALG_ASYNC
|
872 CRYPTO_ALG_NEED_FALLBACK
,
873 .base
.cra_blocksize
= AES_BLOCK_SIZE
,
874 .base
.cra_ctxsize
= sizeof(struct dcp_async_ctx
),
875 .base
.cra_module
= THIS_MODULE
,
877 .min_keysize
= AES_MIN_KEY_SIZE
,
878 .max_keysize
= AES_MAX_KEY_SIZE
,
879 .setkey
= mxs_dcp_aes_setkey
,
880 .encrypt
= mxs_dcp_aes_cbc_encrypt
,
881 .decrypt
= mxs_dcp_aes_cbc_decrypt
,
882 .ivsize
= AES_BLOCK_SIZE
,
883 .init
= mxs_dcp_aes_fallback_init_tfm
,
884 .exit
= mxs_dcp_aes_fallback_exit_tfm
,
889 static struct ahash_alg dcp_sha1_alg
= {
890 .init
= dcp_sha_init
,
891 .update
= dcp_sha_update
,
892 .final
= dcp_sha_final
,
893 .finup
= dcp_sha_finup
,
894 .digest
= dcp_sha_digest
,
895 .import
= dcp_sha_import
,
896 .export
= dcp_sha_export
,
898 .digestsize
= SHA1_DIGEST_SIZE
,
899 .statesize
= sizeof(struct dcp_export_state
),
902 .cra_driver_name
= "sha1-dcp",
905 .cra_flags
= CRYPTO_ALG_ASYNC
,
906 .cra_blocksize
= SHA1_BLOCK_SIZE
,
907 .cra_ctxsize
= sizeof(struct dcp_async_ctx
),
908 .cra_module
= THIS_MODULE
,
909 .cra_init
= dcp_sha_cra_init
,
910 .cra_exit
= dcp_sha_cra_exit
,
916 static struct ahash_alg dcp_sha256_alg
= {
917 .init
= dcp_sha_init
,
918 .update
= dcp_sha_update
,
919 .final
= dcp_sha_final
,
920 .finup
= dcp_sha_finup
,
921 .digest
= dcp_sha_digest
,
922 .import
= dcp_sha_import
,
923 .export
= dcp_sha_export
,
925 .digestsize
= SHA256_DIGEST_SIZE
,
926 .statesize
= sizeof(struct dcp_export_state
),
928 .cra_name
= "sha256",
929 .cra_driver_name
= "sha256-dcp",
932 .cra_flags
= CRYPTO_ALG_ASYNC
,
933 .cra_blocksize
= SHA256_BLOCK_SIZE
,
934 .cra_ctxsize
= sizeof(struct dcp_async_ctx
),
935 .cra_module
= THIS_MODULE
,
936 .cra_init
= dcp_sha_cra_init
,
937 .cra_exit
= dcp_sha_cra_exit
,
942 static irqreturn_t
mxs_dcp_irq(int irq
, void *context
)
944 struct dcp
*sdcp
= context
;
948 stat
= readl(sdcp
->base
+ MXS_DCP_STAT
);
949 stat
&= MXS_DCP_STAT_IRQ_MASK
;
953 /* Clear the interrupts. */
954 writel(stat
, sdcp
->base
+ MXS_DCP_STAT_CLR
);
956 /* Complete the DMA requests that finished. */
957 for (i
= 0; i
< DCP_MAX_CHANS
; i
++)
959 complete(&sdcp
->completion
[i
]);
964 static int mxs_dcp_probe(struct platform_device
*pdev
)
966 struct device
*dev
= &pdev
->dev
;
967 struct dcp
*sdcp
= NULL
;
969 int dcp_vmi_irq
, dcp_irq
;
972 dev_err(dev
, "Only one DCP instance allowed!\n");
976 dcp_vmi_irq
= platform_get_irq(pdev
, 0);
980 dcp_irq
= platform_get_irq(pdev
, 1);
984 sdcp
= devm_kzalloc(dev
, sizeof(*sdcp
), GFP_KERNEL
);
989 sdcp
->base
= devm_platform_ioremap_resource(pdev
, 0);
990 if (IS_ERR(sdcp
->base
))
991 return PTR_ERR(sdcp
->base
);
994 ret
= devm_request_irq(dev
, dcp_vmi_irq
, mxs_dcp_irq
, 0,
995 "dcp-vmi-irq", sdcp
);
997 dev_err(dev
, "Failed to claim DCP VMI IRQ!\n");
1001 ret
= devm_request_irq(dev
, dcp_irq
, mxs_dcp_irq
, 0,
1004 dev_err(dev
, "Failed to claim DCP IRQ!\n");
1008 /* Allocate coherent helper block. */
1009 sdcp
->coh
= devm_kzalloc(dev
, sizeof(*sdcp
->coh
) + DCP_ALIGNMENT
,
1014 /* Re-align the structure so it fits the DCP constraints. */
1015 sdcp
->coh
= PTR_ALIGN(sdcp
->coh
, DCP_ALIGNMENT
);
1017 /* DCP clock is optional, only used on some SOCs */
1018 sdcp
->dcp_clk
= devm_clk_get(dev
, "dcp");
1019 if (IS_ERR(sdcp
->dcp_clk
)) {
1020 if (sdcp
->dcp_clk
!= ERR_PTR(-ENOENT
))
1021 return PTR_ERR(sdcp
->dcp_clk
);
1022 sdcp
->dcp_clk
= NULL
;
1024 ret
= clk_prepare_enable(sdcp
->dcp_clk
);
1028 /* Restart the DCP block. */
1029 ret
= stmp_reset_block(sdcp
->base
);
1031 dev_err(dev
, "Failed reset\n");
1032 goto err_disable_unprepare_clk
;
1035 /* Initialize control register. */
1036 writel(MXS_DCP_CTRL_GATHER_RESIDUAL_WRITES
|
1037 MXS_DCP_CTRL_ENABLE_CONTEXT_CACHING
| 0xf,
1038 sdcp
->base
+ MXS_DCP_CTRL
);
1040 /* Enable all DCP DMA channels. */
1041 writel(MXS_DCP_CHANNELCTRL_ENABLE_CHANNEL_MASK
,
1042 sdcp
->base
+ MXS_DCP_CHANNELCTRL
);
1045 * We do not enable context switching. Give the context buffer a
1046 * pointer to an illegal address so if context switching is
1047 * inadvertantly enabled, the DCP will return an error instead of
1048 * trashing good memory. The DCP DMA cannot access ROM, so any ROM
1051 writel(0xffff0000, sdcp
->base
+ MXS_DCP_CONTEXT
);
1052 for (i
= 0; i
< DCP_MAX_CHANS
; i
++)
1053 writel(0xffffffff, sdcp
->base
+ MXS_DCP_CH_N_STAT_CLR(i
));
1054 writel(0xffffffff, sdcp
->base
+ MXS_DCP_STAT_CLR
);
1058 platform_set_drvdata(pdev
, sdcp
);
1060 for (i
= 0; i
< DCP_MAX_CHANS
; i
++) {
1061 spin_lock_init(&sdcp
->lock
[i
]);
1062 init_completion(&sdcp
->completion
[i
]);
1063 crypto_init_queue(&sdcp
->queue
[i
], 50);
1066 /* Create the SHA and AES handler threads. */
1067 sdcp
->thread
[DCP_CHAN_HASH_SHA
] = kthread_run(dcp_chan_thread_sha
,
1068 NULL
, "mxs_dcp_chan/sha");
1069 if (IS_ERR(sdcp
->thread
[DCP_CHAN_HASH_SHA
])) {
1070 dev_err(dev
, "Error starting SHA thread!\n");
1071 ret
= PTR_ERR(sdcp
->thread
[DCP_CHAN_HASH_SHA
]);
1072 goto err_disable_unprepare_clk
;
1075 sdcp
->thread
[DCP_CHAN_CRYPTO
] = kthread_run(dcp_chan_thread_aes
,
1076 NULL
, "mxs_dcp_chan/aes");
1077 if (IS_ERR(sdcp
->thread
[DCP_CHAN_CRYPTO
])) {
1078 dev_err(dev
, "Error starting SHA thread!\n");
1079 ret
= PTR_ERR(sdcp
->thread
[DCP_CHAN_CRYPTO
]);
1080 goto err_destroy_sha_thread
;
1083 /* Register the various crypto algorithms. */
1084 sdcp
->caps
= readl(sdcp
->base
+ MXS_DCP_CAPABILITY1
);
1086 if (sdcp
->caps
& MXS_DCP_CAPABILITY1_AES128
) {
1087 ret
= crypto_register_skciphers(dcp_aes_algs
,
1088 ARRAY_SIZE(dcp_aes_algs
));
1090 /* Failed to register algorithm. */
1091 dev_err(dev
, "Failed to register AES crypto!\n");
1092 goto err_destroy_aes_thread
;
1096 if (sdcp
->caps
& MXS_DCP_CAPABILITY1_SHA1
) {
1097 ret
= crypto_register_ahash(&dcp_sha1_alg
);
1099 dev_err(dev
, "Failed to register %s hash!\n",
1100 dcp_sha1_alg
.halg
.base
.cra_name
);
1101 goto err_unregister_aes
;
1105 if (sdcp
->caps
& MXS_DCP_CAPABILITY1_SHA256
) {
1106 ret
= crypto_register_ahash(&dcp_sha256_alg
);
1108 dev_err(dev
, "Failed to register %s hash!\n",
1109 dcp_sha256_alg
.halg
.base
.cra_name
);
1110 goto err_unregister_sha1
;
1116 err_unregister_sha1
:
1117 if (sdcp
->caps
& MXS_DCP_CAPABILITY1_SHA1
)
1118 crypto_unregister_ahash(&dcp_sha1_alg
);
1121 if (sdcp
->caps
& MXS_DCP_CAPABILITY1_AES128
)
1122 crypto_unregister_skciphers(dcp_aes_algs
, ARRAY_SIZE(dcp_aes_algs
));
1124 err_destroy_aes_thread
:
1125 kthread_stop(sdcp
->thread
[DCP_CHAN_CRYPTO
]);
1127 err_destroy_sha_thread
:
1128 kthread_stop(sdcp
->thread
[DCP_CHAN_HASH_SHA
]);
1130 err_disable_unprepare_clk
:
1131 clk_disable_unprepare(sdcp
->dcp_clk
);
1136 static int mxs_dcp_remove(struct platform_device
*pdev
)
1138 struct dcp
*sdcp
= platform_get_drvdata(pdev
);
1140 if (sdcp
->caps
& MXS_DCP_CAPABILITY1_SHA256
)
1141 crypto_unregister_ahash(&dcp_sha256_alg
);
1143 if (sdcp
->caps
& MXS_DCP_CAPABILITY1_SHA1
)
1144 crypto_unregister_ahash(&dcp_sha1_alg
);
1146 if (sdcp
->caps
& MXS_DCP_CAPABILITY1_AES128
)
1147 crypto_unregister_skciphers(dcp_aes_algs
, ARRAY_SIZE(dcp_aes_algs
));
1149 kthread_stop(sdcp
->thread
[DCP_CHAN_HASH_SHA
]);
1150 kthread_stop(sdcp
->thread
[DCP_CHAN_CRYPTO
]);
1152 clk_disable_unprepare(sdcp
->dcp_clk
);
1154 platform_set_drvdata(pdev
, NULL
);
1161 static const struct of_device_id mxs_dcp_dt_ids
[] = {
1162 { .compatible
= "fsl,imx23-dcp", .data
= NULL
, },
1163 { .compatible
= "fsl,imx28-dcp", .data
= NULL
, },
1167 MODULE_DEVICE_TABLE(of
, mxs_dcp_dt_ids
);
1169 static struct platform_driver mxs_dcp_driver
= {
1170 .probe
= mxs_dcp_probe
,
1171 .remove
= mxs_dcp_remove
,
1174 .of_match_table
= mxs_dcp_dt_ids
,
1178 module_platform_driver(mxs_dcp_driver
);
1180 MODULE_AUTHOR("Marek Vasut <marex@denx.de>");
1181 MODULE_DESCRIPTION("Freescale MXS DCP Driver");
1182 MODULE_LICENSE("GPL");
1183 MODULE_ALIAS("platform:mxs-dcp");