treewide: remove redundant IS_ERR() before error code check
[linux/fpc-iii.git] / drivers / crypto / mxs-dcp.c
blob435ac1c83df9072bd32378718cadeecb6ae52853
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * Freescale i.MX23/i.MX28 Data Co-Processor driver
5 * Copyright (C) 2013 Marek Vasut <marex@denx.de>
6 */
8 #include <linux/dma-mapping.h>
9 #include <linux/interrupt.h>
10 #include <linux/io.h>
11 #include <linux/kernel.h>
12 #include <linux/kthread.h>
13 #include <linux/module.h>
14 #include <linux/of.h>
15 #include <linux/platform_device.h>
16 #include <linux/stmp_device.h>
17 #include <linux/clk.h>
19 #include <crypto/aes.h>
20 #include <crypto/sha.h>
21 #include <crypto/internal/hash.h>
22 #include <crypto/internal/skcipher.h>
24 #define DCP_MAX_CHANS 4
25 #define DCP_BUF_SZ PAGE_SIZE
26 #define DCP_SHA_PAY_SZ 64
28 #define DCP_ALIGNMENT 64
31 * Null hashes to align with hw behavior on imx6sl and ull
32 * these are flipped for consistency with hw output
34 static const uint8_t sha1_null_hash[] =
35 "\x09\x07\xd8\xaf\x90\x18\x60\x95\xef\xbf"
36 "\x55\x32\x0d\x4b\x6b\x5e\xee\xa3\x39\xda";
38 static const uint8_t sha256_null_hash[] =
39 "\x55\xb8\x52\x78\x1b\x99\x95\xa4"
40 "\x4c\x93\x9b\x64\xe4\x41\xae\x27"
41 "\x24\xb9\x6f\x99\xc8\xf4\xfb\x9a"
42 "\x14\x1c\xfc\x98\x42\xc4\xb0\xe3";
44 /* DCP DMA descriptor. */
45 struct dcp_dma_desc {
46 uint32_t next_cmd_addr;
47 uint32_t control0;
48 uint32_t control1;
49 uint32_t source;
50 uint32_t destination;
51 uint32_t size;
52 uint32_t payload;
53 uint32_t status;
56 /* Coherent aligned block for bounce buffering. */
57 struct dcp_coherent_block {
58 uint8_t aes_in_buf[DCP_BUF_SZ];
59 uint8_t aes_out_buf[DCP_BUF_SZ];
60 uint8_t sha_in_buf[DCP_BUF_SZ];
61 uint8_t sha_out_buf[DCP_SHA_PAY_SZ];
63 uint8_t aes_key[2 * AES_KEYSIZE_128];
65 struct dcp_dma_desc desc[DCP_MAX_CHANS];
68 struct dcp {
69 struct device *dev;
70 void __iomem *base;
72 uint32_t caps;
74 struct dcp_coherent_block *coh;
76 struct completion completion[DCP_MAX_CHANS];
77 spinlock_t lock[DCP_MAX_CHANS];
78 struct task_struct *thread[DCP_MAX_CHANS];
79 struct crypto_queue queue[DCP_MAX_CHANS];
80 struct clk *dcp_clk;
83 enum dcp_chan {
84 DCP_CHAN_HASH_SHA = 0,
85 DCP_CHAN_CRYPTO = 2,
88 struct dcp_async_ctx {
89 /* Common context */
90 enum dcp_chan chan;
91 uint32_t fill;
93 /* SHA Hash-specific context */
94 struct mutex mutex;
95 uint32_t alg;
96 unsigned int hot:1;
98 /* Crypto-specific context */
99 struct crypto_sync_skcipher *fallback;
100 unsigned int key_len;
101 uint8_t key[AES_KEYSIZE_128];
104 struct dcp_aes_req_ctx {
105 unsigned int enc:1;
106 unsigned int ecb:1;
109 struct dcp_sha_req_ctx {
110 unsigned int init:1;
111 unsigned int fini:1;
114 struct dcp_export_state {
115 struct dcp_sha_req_ctx req_ctx;
116 struct dcp_async_ctx async_ctx;
120 * There can even be only one instance of the MXS DCP due to the
121 * design of Linux Crypto API.
123 static struct dcp *global_sdcp;
125 /* DCP register layout. */
126 #define MXS_DCP_CTRL 0x00
127 #define MXS_DCP_CTRL_GATHER_RESIDUAL_WRITES (1 << 23)
128 #define MXS_DCP_CTRL_ENABLE_CONTEXT_CACHING (1 << 22)
130 #define MXS_DCP_STAT 0x10
131 #define MXS_DCP_STAT_CLR 0x18
132 #define MXS_DCP_STAT_IRQ_MASK 0xf
134 #define MXS_DCP_CHANNELCTRL 0x20
135 #define MXS_DCP_CHANNELCTRL_ENABLE_CHANNEL_MASK 0xff
137 #define MXS_DCP_CAPABILITY1 0x40
138 #define MXS_DCP_CAPABILITY1_SHA256 (4 << 16)
139 #define MXS_DCP_CAPABILITY1_SHA1 (1 << 16)
140 #define MXS_DCP_CAPABILITY1_AES128 (1 << 0)
142 #define MXS_DCP_CONTEXT 0x50
144 #define MXS_DCP_CH_N_CMDPTR(n) (0x100 + ((n) * 0x40))
146 #define MXS_DCP_CH_N_SEMA(n) (0x110 + ((n) * 0x40))
148 #define MXS_DCP_CH_N_STAT(n) (0x120 + ((n) * 0x40))
149 #define MXS_DCP_CH_N_STAT_CLR(n) (0x128 + ((n) * 0x40))
151 /* DMA descriptor bits. */
152 #define MXS_DCP_CONTROL0_HASH_TERM (1 << 13)
153 #define MXS_DCP_CONTROL0_HASH_INIT (1 << 12)
154 #define MXS_DCP_CONTROL0_PAYLOAD_KEY (1 << 11)
155 #define MXS_DCP_CONTROL0_CIPHER_ENCRYPT (1 << 8)
156 #define MXS_DCP_CONTROL0_CIPHER_INIT (1 << 9)
157 #define MXS_DCP_CONTROL0_ENABLE_HASH (1 << 6)
158 #define MXS_DCP_CONTROL0_ENABLE_CIPHER (1 << 5)
159 #define MXS_DCP_CONTROL0_DECR_SEMAPHORE (1 << 1)
160 #define MXS_DCP_CONTROL0_INTERRUPT (1 << 0)
162 #define MXS_DCP_CONTROL1_HASH_SELECT_SHA256 (2 << 16)
163 #define MXS_DCP_CONTROL1_HASH_SELECT_SHA1 (0 << 16)
164 #define MXS_DCP_CONTROL1_CIPHER_MODE_CBC (1 << 4)
165 #define MXS_DCP_CONTROL1_CIPHER_MODE_ECB (0 << 4)
166 #define MXS_DCP_CONTROL1_CIPHER_SELECT_AES128 (0 << 0)
168 static int mxs_dcp_start_dma(struct dcp_async_ctx *actx)
170 struct dcp *sdcp = global_sdcp;
171 const int chan = actx->chan;
172 uint32_t stat;
173 unsigned long ret;
174 struct dcp_dma_desc *desc = &sdcp->coh->desc[actx->chan];
176 dma_addr_t desc_phys = dma_map_single(sdcp->dev, desc, sizeof(*desc),
177 DMA_TO_DEVICE);
179 reinit_completion(&sdcp->completion[chan]);
181 /* Clear status register. */
182 writel(0xffffffff, sdcp->base + MXS_DCP_CH_N_STAT_CLR(chan));
184 /* Load the DMA descriptor. */
185 writel(desc_phys, sdcp->base + MXS_DCP_CH_N_CMDPTR(chan));
187 /* Increment the semaphore to start the DMA transfer. */
188 writel(1, sdcp->base + MXS_DCP_CH_N_SEMA(chan));
190 ret = wait_for_completion_timeout(&sdcp->completion[chan],
191 msecs_to_jiffies(1000));
192 if (!ret) {
193 dev_err(sdcp->dev, "Channel %i timeout (DCP_STAT=0x%08x)\n",
194 chan, readl(sdcp->base + MXS_DCP_STAT));
195 return -ETIMEDOUT;
198 stat = readl(sdcp->base + MXS_DCP_CH_N_STAT(chan));
199 if (stat & 0xff) {
200 dev_err(sdcp->dev, "Channel %i error (CH_STAT=0x%08x)\n",
201 chan, stat);
202 return -EINVAL;
205 dma_unmap_single(sdcp->dev, desc_phys, sizeof(*desc), DMA_TO_DEVICE);
207 return 0;
211 * Encryption (AES128)
213 static int mxs_dcp_run_aes(struct dcp_async_ctx *actx,
214 struct skcipher_request *req, int init)
216 struct dcp *sdcp = global_sdcp;
217 struct dcp_dma_desc *desc = &sdcp->coh->desc[actx->chan];
218 struct dcp_aes_req_ctx *rctx = skcipher_request_ctx(req);
219 int ret;
221 dma_addr_t key_phys = dma_map_single(sdcp->dev, sdcp->coh->aes_key,
222 2 * AES_KEYSIZE_128,
223 DMA_TO_DEVICE);
224 dma_addr_t src_phys = dma_map_single(sdcp->dev, sdcp->coh->aes_in_buf,
225 DCP_BUF_SZ, DMA_TO_DEVICE);
226 dma_addr_t dst_phys = dma_map_single(sdcp->dev, sdcp->coh->aes_out_buf,
227 DCP_BUF_SZ, DMA_FROM_DEVICE);
229 if (actx->fill % AES_BLOCK_SIZE) {
230 dev_err(sdcp->dev, "Invalid block size!\n");
231 ret = -EINVAL;
232 goto aes_done_run;
235 /* Fill in the DMA descriptor. */
236 desc->control0 = MXS_DCP_CONTROL0_DECR_SEMAPHORE |
237 MXS_DCP_CONTROL0_INTERRUPT |
238 MXS_DCP_CONTROL0_ENABLE_CIPHER;
240 /* Payload contains the key. */
241 desc->control0 |= MXS_DCP_CONTROL0_PAYLOAD_KEY;
243 if (rctx->enc)
244 desc->control0 |= MXS_DCP_CONTROL0_CIPHER_ENCRYPT;
245 if (init)
246 desc->control0 |= MXS_DCP_CONTROL0_CIPHER_INIT;
248 desc->control1 = MXS_DCP_CONTROL1_CIPHER_SELECT_AES128;
250 if (rctx->ecb)
251 desc->control1 |= MXS_DCP_CONTROL1_CIPHER_MODE_ECB;
252 else
253 desc->control1 |= MXS_DCP_CONTROL1_CIPHER_MODE_CBC;
255 desc->next_cmd_addr = 0;
256 desc->source = src_phys;
257 desc->destination = dst_phys;
258 desc->size = actx->fill;
259 desc->payload = key_phys;
260 desc->status = 0;
262 ret = mxs_dcp_start_dma(actx);
264 aes_done_run:
265 dma_unmap_single(sdcp->dev, key_phys, 2 * AES_KEYSIZE_128,
266 DMA_TO_DEVICE);
267 dma_unmap_single(sdcp->dev, src_phys, DCP_BUF_SZ, DMA_TO_DEVICE);
268 dma_unmap_single(sdcp->dev, dst_phys, DCP_BUF_SZ, DMA_FROM_DEVICE);
270 return ret;
273 static int mxs_dcp_aes_block_crypt(struct crypto_async_request *arq)
275 struct dcp *sdcp = global_sdcp;
277 struct skcipher_request *req = skcipher_request_cast(arq);
278 struct dcp_async_ctx *actx = crypto_tfm_ctx(arq->tfm);
279 struct dcp_aes_req_ctx *rctx = skcipher_request_ctx(req);
281 struct scatterlist *dst = req->dst;
282 struct scatterlist *src = req->src;
283 const int nents = sg_nents(req->src);
285 const int out_off = DCP_BUF_SZ;
286 uint8_t *in_buf = sdcp->coh->aes_in_buf;
287 uint8_t *out_buf = sdcp->coh->aes_out_buf;
289 uint8_t *out_tmp, *src_buf, *dst_buf = NULL;
290 uint32_t dst_off = 0;
291 uint32_t last_out_len = 0;
293 uint8_t *key = sdcp->coh->aes_key;
295 int ret = 0;
296 int split = 0;
297 unsigned int i, len, clen, rem = 0, tlen = 0;
298 int init = 0;
299 bool limit_hit = false;
301 actx->fill = 0;
303 /* Copy the key from the temporary location. */
304 memcpy(key, actx->key, actx->key_len);
306 if (!rctx->ecb) {
307 /* Copy the CBC IV just past the key. */
308 memcpy(key + AES_KEYSIZE_128, req->iv, AES_KEYSIZE_128);
309 /* CBC needs the INIT set. */
310 init = 1;
311 } else {
312 memset(key + AES_KEYSIZE_128, 0, AES_KEYSIZE_128);
315 for_each_sg(req->src, src, nents, i) {
316 src_buf = sg_virt(src);
317 len = sg_dma_len(src);
318 tlen += len;
319 limit_hit = tlen > req->cryptlen;
321 if (limit_hit)
322 len = req->cryptlen - (tlen - len);
324 do {
325 if (actx->fill + len > out_off)
326 clen = out_off - actx->fill;
327 else
328 clen = len;
330 memcpy(in_buf + actx->fill, src_buf, clen);
331 len -= clen;
332 src_buf += clen;
333 actx->fill += clen;
336 * If we filled the buffer or this is the last SG,
337 * submit the buffer.
339 if (actx->fill == out_off || sg_is_last(src) ||
340 limit_hit) {
341 ret = mxs_dcp_run_aes(actx, req, init);
342 if (ret)
343 return ret;
344 init = 0;
346 out_tmp = out_buf;
347 last_out_len = actx->fill;
348 while (dst && actx->fill) {
349 if (!split) {
350 dst_buf = sg_virt(dst);
351 dst_off = 0;
353 rem = min(sg_dma_len(dst) - dst_off,
354 actx->fill);
356 memcpy(dst_buf + dst_off, out_tmp, rem);
357 out_tmp += rem;
358 dst_off += rem;
359 actx->fill -= rem;
361 if (dst_off == sg_dma_len(dst)) {
362 dst = sg_next(dst);
363 split = 0;
364 } else {
365 split = 1;
369 } while (len);
371 if (limit_hit)
372 break;
375 /* Copy the IV for CBC for chaining */
376 if (!rctx->ecb) {
377 if (rctx->enc)
378 memcpy(req->iv, out_buf+(last_out_len-AES_BLOCK_SIZE),
379 AES_BLOCK_SIZE);
380 else
381 memcpy(req->iv, in_buf+(last_out_len-AES_BLOCK_SIZE),
382 AES_BLOCK_SIZE);
385 return ret;
388 static int dcp_chan_thread_aes(void *data)
390 struct dcp *sdcp = global_sdcp;
391 const int chan = DCP_CHAN_CRYPTO;
393 struct crypto_async_request *backlog;
394 struct crypto_async_request *arq;
396 int ret;
398 while (!kthread_should_stop()) {
399 set_current_state(TASK_INTERRUPTIBLE);
401 spin_lock(&sdcp->lock[chan]);
402 backlog = crypto_get_backlog(&sdcp->queue[chan]);
403 arq = crypto_dequeue_request(&sdcp->queue[chan]);
404 spin_unlock(&sdcp->lock[chan]);
406 if (!backlog && !arq) {
407 schedule();
408 continue;
411 set_current_state(TASK_RUNNING);
413 if (backlog)
414 backlog->complete(backlog, -EINPROGRESS);
416 if (arq) {
417 ret = mxs_dcp_aes_block_crypt(arq);
418 arq->complete(arq, ret);
422 return 0;
425 static int mxs_dcp_block_fallback(struct skcipher_request *req, int enc)
427 struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
428 struct dcp_async_ctx *ctx = crypto_skcipher_ctx(tfm);
429 SYNC_SKCIPHER_REQUEST_ON_STACK(subreq, ctx->fallback);
430 int ret;
432 skcipher_request_set_sync_tfm(subreq, ctx->fallback);
433 skcipher_request_set_callback(subreq, req->base.flags, NULL, NULL);
434 skcipher_request_set_crypt(subreq, req->src, req->dst,
435 req->cryptlen, req->iv);
437 if (enc)
438 ret = crypto_skcipher_encrypt(subreq);
439 else
440 ret = crypto_skcipher_decrypt(subreq);
442 skcipher_request_zero(subreq);
444 return ret;
447 static int mxs_dcp_aes_enqueue(struct skcipher_request *req, int enc, int ecb)
449 struct dcp *sdcp = global_sdcp;
450 struct crypto_async_request *arq = &req->base;
451 struct dcp_async_ctx *actx = crypto_tfm_ctx(arq->tfm);
452 struct dcp_aes_req_ctx *rctx = skcipher_request_ctx(req);
453 int ret;
455 if (unlikely(actx->key_len != AES_KEYSIZE_128))
456 return mxs_dcp_block_fallback(req, enc);
458 rctx->enc = enc;
459 rctx->ecb = ecb;
460 actx->chan = DCP_CHAN_CRYPTO;
462 spin_lock(&sdcp->lock[actx->chan]);
463 ret = crypto_enqueue_request(&sdcp->queue[actx->chan], &req->base);
464 spin_unlock(&sdcp->lock[actx->chan]);
466 wake_up_process(sdcp->thread[actx->chan]);
468 return ret;
471 static int mxs_dcp_aes_ecb_decrypt(struct skcipher_request *req)
473 return mxs_dcp_aes_enqueue(req, 0, 1);
476 static int mxs_dcp_aes_ecb_encrypt(struct skcipher_request *req)
478 return mxs_dcp_aes_enqueue(req, 1, 1);
481 static int mxs_dcp_aes_cbc_decrypt(struct skcipher_request *req)
483 return mxs_dcp_aes_enqueue(req, 0, 0);
486 static int mxs_dcp_aes_cbc_encrypt(struct skcipher_request *req)
488 return mxs_dcp_aes_enqueue(req, 1, 0);
491 static int mxs_dcp_aes_setkey(struct crypto_skcipher *tfm, const u8 *key,
492 unsigned int len)
494 struct dcp_async_ctx *actx = crypto_skcipher_ctx(tfm);
497 * AES 128 is supposed by the hardware, store key into temporary
498 * buffer and exit. We must use the temporary buffer here, since
499 * there can still be an operation in progress.
501 actx->key_len = len;
502 if (len == AES_KEYSIZE_128) {
503 memcpy(actx->key, key, len);
504 return 0;
508 * If the requested AES key size is not supported by the hardware,
509 * but is supported by in-kernel software implementation, we use
510 * software fallback.
512 crypto_sync_skcipher_clear_flags(actx->fallback, CRYPTO_TFM_REQ_MASK);
513 crypto_sync_skcipher_set_flags(actx->fallback,
514 tfm->base.crt_flags & CRYPTO_TFM_REQ_MASK);
515 return crypto_sync_skcipher_setkey(actx->fallback, key, len);
518 static int mxs_dcp_aes_fallback_init_tfm(struct crypto_skcipher *tfm)
520 const char *name = crypto_tfm_alg_name(crypto_skcipher_tfm(tfm));
521 struct dcp_async_ctx *actx = crypto_skcipher_ctx(tfm);
522 struct crypto_sync_skcipher *blk;
524 blk = crypto_alloc_sync_skcipher(name, 0, CRYPTO_ALG_NEED_FALLBACK);
525 if (IS_ERR(blk))
526 return PTR_ERR(blk);
528 actx->fallback = blk;
529 crypto_skcipher_set_reqsize(tfm, sizeof(struct dcp_aes_req_ctx));
530 return 0;
533 static void mxs_dcp_aes_fallback_exit_tfm(struct crypto_skcipher *tfm)
535 struct dcp_async_ctx *actx = crypto_skcipher_ctx(tfm);
537 crypto_free_sync_skcipher(actx->fallback);
541 * Hashing (SHA1/SHA256)
543 static int mxs_dcp_run_sha(struct ahash_request *req)
545 struct dcp *sdcp = global_sdcp;
546 int ret;
548 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
549 struct dcp_async_ctx *actx = crypto_ahash_ctx(tfm);
550 struct dcp_sha_req_ctx *rctx = ahash_request_ctx(req);
551 struct dcp_dma_desc *desc = &sdcp->coh->desc[actx->chan];
553 dma_addr_t digest_phys = 0;
554 dma_addr_t buf_phys = dma_map_single(sdcp->dev, sdcp->coh->sha_in_buf,
555 DCP_BUF_SZ, DMA_TO_DEVICE);
557 /* Fill in the DMA descriptor. */
558 desc->control0 = MXS_DCP_CONTROL0_DECR_SEMAPHORE |
559 MXS_DCP_CONTROL0_INTERRUPT |
560 MXS_DCP_CONTROL0_ENABLE_HASH;
561 if (rctx->init)
562 desc->control0 |= MXS_DCP_CONTROL0_HASH_INIT;
564 desc->control1 = actx->alg;
565 desc->next_cmd_addr = 0;
566 desc->source = buf_phys;
567 desc->destination = 0;
568 desc->size = actx->fill;
569 desc->payload = 0;
570 desc->status = 0;
573 * Align driver with hw behavior when generating null hashes
575 if (rctx->init && rctx->fini && desc->size == 0) {
576 struct hash_alg_common *halg = crypto_hash_alg_common(tfm);
577 const uint8_t *sha_buf =
578 (actx->alg == MXS_DCP_CONTROL1_HASH_SELECT_SHA1) ?
579 sha1_null_hash : sha256_null_hash;
580 memcpy(sdcp->coh->sha_out_buf, sha_buf, halg->digestsize);
581 ret = 0;
582 goto done_run;
585 /* Set HASH_TERM bit for last transfer block. */
586 if (rctx->fini) {
587 digest_phys = dma_map_single(sdcp->dev, sdcp->coh->sha_out_buf,
588 DCP_SHA_PAY_SZ, DMA_FROM_DEVICE);
589 desc->control0 |= MXS_DCP_CONTROL0_HASH_TERM;
590 desc->payload = digest_phys;
593 ret = mxs_dcp_start_dma(actx);
595 if (rctx->fini)
596 dma_unmap_single(sdcp->dev, digest_phys, DCP_SHA_PAY_SZ,
597 DMA_FROM_DEVICE);
599 done_run:
600 dma_unmap_single(sdcp->dev, buf_phys, DCP_BUF_SZ, DMA_TO_DEVICE);
602 return ret;
605 static int dcp_sha_req_to_buf(struct crypto_async_request *arq)
607 struct dcp *sdcp = global_sdcp;
609 struct ahash_request *req = ahash_request_cast(arq);
610 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
611 struct dcp_async_ctx *actx = crypto_ahash_ctx(tfm);
612 struct dcp_sha_req_ctx *rctx = ahash_request_ctx(req);
613 struct hash_alg_common *halg = crypto_hash_alg_common(tfm);
614 const int nents = sg_nents(req->src);
616 uint8_t *in_buf = sdcp->coh->sha_in_buf;
617 uint8_t *out_buf = sdcp->coh->sha_out_buf;
619 uint8_t *src_buf;
621 struct scatterlist *src;
623 unsigned int i, len, clen;
624 int ret;
626 int fin = rctx->fini;
627 if (fin)
628 rctx->fini = 0;
630 for_each_sg(req->src, src, nents, i) {
631 src_buf = sg_virt(src);
632 len = sg_dma_len(src);
634 do {
635 if (actx->fill + len > DCP_BUF_SZ)
636 clen = DCP_BUF_SZ - actx->fill;
637 else
638 clen = len;
640 memcpy(in_buf + actx->fill, src_buf, clen);
641 len -= clen;
642 src_buf += clen;
643 actx->fill += clen;
646 * If we filled the buffer and still have some
647 * more data, submit the buffer.
649 if (len && actx->fill == DCP_BUF_SZ) {
650 ret = mxs_dcp_run_sha(req);
651 if (ret)
652 return ret;
653 actx->fill = 0;
654 rctx->init = 0;
656 } while (len);
659 if (fin) {
660 rctx->fini = 1;
662 /* Submit whatever is left. */
663 if (!req->result)
664 return -EINVAL;
666 ret = mxs_dcp_run_sha(req);
667 if (ret)
668 return ret;
670 actx->fill = 0;
672 /* For some reason the result is flipped */
673 for (i = 0; i < halg->digestsize; i++)
674 req->result[i] = out_buf[halg->digestsize - i - 1];
677 return 0;
680 static int dcp_chan_thread_sha(void *data)
682 struct dcp *sdcp = global_sdcp;
683 const int chan = DCP_CHAN_HASH_SHA;
685 struct crypto_async_request *backlog;
686 struct crypto_async_request *arq;
687 int ret;
689 while (!kthread_should_stop()) {
690 set_current_state(TASK_INTERRUPTIBLE);
692 spin_lock(&sdcp->lock[chan]);
693 backlog = crypto_get_backlog(&sdcp->queue[chan]);
694 arq = crypto_dequeue_request(&sdcp->queue[chan]);
695 spin_unlock(&sdcp->lock[chan]);
697 if (!backlog && !arq) {
698 schedule();
699 continue;
702 set_current_state(TASK_RUNNING);
704 if (backlog)
705 backlog->complete(backlog, -EINPROGRESS);
707 if (arq) {
708 ret = dcp_sha_req_to_buf(arq);
709 arq->complete(arq, ret);
713 return 0;
716 static int dcp_sha_init(struct ahash_request *req)
718 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
719 struct dcp_async_ctx *actx = crypto_ahash_ctx(tfm);
721 struct hash_alg_common *halg = crypto_hash_alg_common(tfm);
724 * Start hashing session. The code below only inits the
725 * hashing session context, nothing more.
727 memset(actx, 0, sizeof(*actx));
729 if (strcmp(halg->base.cra_name, "sha1") == 0)
730 actx->alg = MXS_DCP_CONTROL1_HASH_SELECT_SHA1;
731 else
732 actx->alg = MXS_DCP_CONTROL1_HASH_SELECT_SHA256;
734 actx->fill = 0;
735 actx->hot = 0;
736 actx->chan = DCP_CHAN_HASH_SHA;
738 mutex_init(&actx->mutex);
740 return 0;
743 static int dcp_sha_update_fx(struct ahash_request *req, int fini)
745 struct dcp *sdcp = global_sdcp;
747 struct dcp_sha_req_ctx *rctx = ahash_request_ctx(req);
748 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
749 struct dcp_async_ctx *actx = crypto_ahash_ctx(tfm);
751 int ret;
754 * Ignore requests that have no data in them and are not
755 * the trailing requests in the stream of requests.
757 if (!req->nbytes && !fini)
758 return 0;
760 mutex_lock(&actx->mutex);
762 rctx->fini = fini;
764 if (!actx->hot) {
765 actx->hot = 1;
766 rctx->init = 1;
769 spin_lock(&sdcp->lock[actx->chan]);
770 ret = crypto_enqueue_request(&sdcp->queue[actx->chan], &req->base);
771 spin_unlock(&sdcp->lock[actx->chan]);
773 wake_up_process(sdcp->thread[actx->chan]);
774 mutex_unlock(&actx->mutex);
776 return ret;
779 static int dcp_sha_update(struct ahash_request *req)
781 return dcp_sha_update_fx(req, 0);
784 static int dcp_sha_final(struct ahash_request *req)
786 ahash_request_set_crypt(req, NULL, req->result, 0);
787 req->nbytes = 0;
788 return dcp_sha_update_fx(req, 1);
791 static int dcp_sha_finup(struct ahash_request *req)
793 return dcp_sha_update_fx(req, 1);
796 static int dcp_sha_digest(struct ahash_request *req)
798 int ret;
800 ret = dcp_sha_init(req);
801 if (ret)
802 return ret;
804 return dcp_sha_finup(req);
807 static int dcp_sha_import(struct ahash_request *req, const void *in)
809 struct dcp_sha_req_ctx *rctx = ahash_request_ctx(req);
810 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
811 struct dcp_async_ctx *actx = crypto_ahash_ctx(tfm);
812 const struct dcp_export_state *export = in;
814 memset(rctx, 0, sizeof(struct dcp_sha_req_ctx));
815 memset(actx, 0, sizeof(struct dcp_async_ctx));
816 memcpy(rctx, &export->req_ctx, sizeof(struct dcp_sha_req_ctx));
817 memcpy(actx, &export->async_ctx, sizeof(struct dcp_async_ctx));
819 return 0;
822 static int dcp_sha_export(struct ahash_request *req, void *out)
824 struct dcp_sha_req_ctx *rctx_state = ahash_request_ctx(req);
825 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
826 struct dcp_async_ctx *actx_state = crypto_ahash_ctx(tfm);
827 struct dcp_export_state *export = out;
829 memcpy(&export->req_ctx, rctx_state, sizeof(struct dcp_sha_req_ctx));
830 memcpy(&export->async_ctx, actx_state, sizeof(struct dcp_async_ctx));
832 return 0;
835 static int dcp_sha_cra_init(struct crypto_tfm *tfm)
837 crypto_ahash_set_reqsize(__crypto_ahash_cast(tfm),
838 sizeof(struct dcp_sha_req_ctx));
839 return 0;
842 static void dcp_sha_cra_exit(struct crypto_tfm *tfm)
846 /* AES 128 ECB and AES 128 CBC */
847 static struct skcipher_alg dcp_aes_algs[] = {
849 .base.cra_name = "ecb(aes)",
850 .base.cra_driver_name = "ecb-aes-dcp",
851 .base.cra_priority = 400,
852 .base.cra_alignmask = 15,
853 .base.cra_flags = CRYPTO_ALG_ASYNC |
854 CRYPTO_ALG_NEED_FALLBACK,
855 .base.cra_blocksize = AES_BLOCK_SIZE,
856 .base.cra_ctxsize = sizeof(struct dcp_async_ctx),
857 .base.cra_module = THIS_MODULE,
859 .min_keysize = AES_MIN_KEY_SIZE,
860 .max_keysize = AES_MAX_KEY_SIZE,
861 .setkey = mxs_dcp_aes_setkey,
862 .encrypt = mxs_dcp_aes_ecb_encrypt,
863 .decrypt = mxs_dcp_aes_ecb_decrypt,
864 .init = mxs_dcp_aes_fallback_init_tfm,
865 .exit = mxs_dcp_aes_fallback_exit_tfm,
866 }, {
867 .base.cra_name = "cbc(aes)",
868 .base.cra_driver_name = "cbc-aes-dcp",
869 .base.cra_priority = 400,
870 .base.cra_alignmask = 15,
871 .base.cra_flags = CRYPTO_ALG_ASYNC |
872 CRYPTO_ALG_NEED_FALLBACK,
873 .base.cra_blocksize = AES_BLOCK_SIZE,
874 .base.cra_ctxsize = sizeof(struct dcp_async_ctx),
875 .base.cra_module = THIS_MODULE,
877 .min_keysize = AES_MIN_KEY_SIZE,
878 .max_keysize = AES_MAX_KEY_SIZE,
879 .setkey = mxs_dcp_aes_setkey,
880 .encrypt = mxs_dcp_aes_cbc_encrypt,
881 .decrypt = mxs_dcp_aes_cbc_decrypt,
882 .ivsize = AES_BLOCK_SIZE,
883 .init = mxs_dcp_aes_fallback_init_tfm,
884 .exit = mxs_dcp_aes_fallback_exit_tfm,
888 /* SHA1 */
889 static struct ahash_alg dcp_sha1_alg = {
890 .init = dcp_sha_init,
891 .update = dcp_sha_update,
892 .final = dcp_sha_final,
893 .finup = dcp_sha_finup,
894 .digest = dcp_sha_digest,
895 .import = dcp_sha_import,
896 .export = dcp_sha_export,
897 .halg = {
898 .digestsize = SHA1_DIGEST_SIZE,
899 .statesize = sizeof(struct dcp_export_state),
900 .base = {
901 .cra_name = "sha1",
902 .cra_driver_name = "sha1-dcp",
903 .cra_priority = 400,
904 .cra_alignmask = 63,
905 .cra_flags = CRYPTO_ALG_ASYNC,
906 .cra_blocksize = SHA1_BLOCK_SIZE,
907 .cra_ctxsize = sizeof(struct dcp_async_ctx),
908 .cra_module = THIS_MODULE,
909 .cra_init = dcp_sha_cra_init,
910 .cra_exit = dcp_sha_cra_exit,
915 /* SHA256 */
916 static struct ahash_alg dcp_sha256_alg = {
917 .init = dcp_sha_init,
918 .update = dcp_sha_update,
919 .final = dcp_sha_final,
920 .finup = dcp_sha_finup,
921 .digest = dcp_sha_digest,
922 .import = dcp_sha_import,
923 .export = dcp_sha_export,
924 .halg = {
925 .digestsize = SHA256_DIGEST_SIZE,
926 .statesize = sizeof(struct dcp_export_state),
927 .base = {
928 .cra_name = "sha256",
929 .cra_driver_name = "sha256-dcp",
930 .cra_priority = 400,
931 .cra_alignmask = 63,
932 .cra_flags = CRYPTO_ALG_ASYNC,
933 .cra_blocksize = SHA256_BLOCK_SIZE,
934 .cra_ctxsize = sizeof(struct dcp_async_ctx),
935 .cra_module = THIS_MODULE,
936 .cra_init = dcp_sha_cra_init,
937 .cra_exit = dcp_sha_cra_exit,
942 static irqreturn_t mxs_dcp_irq(int irq, void *context)
944 struct dcp *sdcp = context;
945 uint32_t stat;
946 int i;
948 stat = readl(sdcp->base + MXS_DCP_STAT);
949 stat &= MXS_DCP_STAT_IRQ_MASK;
950 if (!stat)
951 return IRQ_NONE;
953 /* Clear the interrupts. */
954 writel(stat, sdcp->base + MXS_DCP_STAT_CLR);
956 /* Complete the DMA requests that finished. */
957 for (i = 0; i < DCP_MAX_CHANS; i++)
958 if (stat & (1 << i))
959 complete(&sdcp->completion[i]);
961 return IRQ_HANDLED;
964 static int mxs_dcp_probe(struct platform_device *pdev)
966 struct device *dev = &pdev->dev;
967 struct dcp *sdcp = NULL;
968 int i, ret;
969 int dcp_vmi_irq, dcp_irq;
971 if (global_sdcp) {
972 dev_err(dev, "Only one DCP instance allowed!\n");
973 return -ENODEV;
976 dcp_vmi_irq = platform_get_irq(pdev, 0);
977 if (dcp_vmi_irq < 0)
978 return dcp_vmi_irq;
980 dcp_irq = platform_get_irq(pdev, 1);
981 if (dcp_irq < 0)
982 return dcp_irq;
984 sdcp = devm_kzalloc(dev, sizeof(*sdcp), GFP_KERNEL);
985 if (!sdcp)
986 return -ENOMEM;
988 sdcp->dev = dev;
989 sdcp->base = devm_platform_ioremap_resource(pdev, 0);
990 if (IS_ERR(sdcp->base))
991 return PTR_ERR(sdcp->base);
994 ret = devm_request_irq(dev, dcp_vmi_irq, mxs_dcp_irq, 0,
995 "dcp-vmi-irq", sdcp);
996 if (ret) {
997 dev_err(dev, "Failed to claim DCP VMI IRQ!\n");
998 return ret;
1001 ret = devm_request_irq(dev, dcp_irq, mxs_dcp_irq, 0,
1002 "dcp-irq", sdcp);
1003 if (ret) {
1004 dev_err(dev, "Failed to claim DCP IRQ!\n");
1005 return ret;
1008 /* Allocate coherent helper block. */
1009 sdcp->coh = devm_kzalloc(dev, sizeof(*sdcp->coh) + DCP_ALIGNMENT,
1010 GFP_KERNEL);
1011 if (!sdcp->coh)
1012 return -ENOMEM;
1014 /* Re-align the structure so it fits the DCP constraints. */
1015 sdcp->coh = PTR_ALIGN(sdcp->coh, DCP_ALIGNMENT);
1017 /* DCP clock is optional, only used on some SOCs */
1018 sdcp->dcp_clk = devm_clk_get(dev, "dcp");
1019 if (IS_ERR(sdcp->dcp_clk)) {
1020 if (sdcp->dcp_clk != ERR_PTR(-ENOENT))
1021 return PTR_ERR(sdcp->dcp_clk);
1022 sdcp->dcp_clk = NULL;
1024 ret = clk_prepare_enable(sdcp->dcp_clk);
1025 if (ret)
1026 return ret;
1028 /* Restart the DCP block. */
1029 ret = stmp_reset_block(sdcp->base);
1030 if (ret) {
1031 dev_err(dev, "Failed reset\n");
1032 goto err_disable_unprepare_clk;
1035 /* Initialize control register. */
1036 writel(MXS_DCP_CTRL_GATHER_RESIDUAL_WRITES |
1037 MXS_DCP_CTRL_ENABLE_CONTEXT_CACHING | 0xf,
1038 sdcp->base + MXS_DCP_CTRL);
1040 /* Enable all DCP DMA channels. */
1041 writel(MXS_DCP_CHANNELCTRL_ENABLE_CHANNEL_MASK,
1042 sdcp->base + MXS_DCP_CHANNELCTRL);
1045 * We do not enable context switching. Give the context buffer a
1046 * pointer to an illegal address so if context switching is
1047 * inadvertantly enabled, the DCP will return an error instead of
1048 * trashing good memory. The DCP DMA cannot access ROM, so any ROM
1049 * address will do.
1051 writel(0xffff0000, sdcp->base + MXS_DCP_CONTEXT);
1052 for (i = 0; i < DCP_MAX_CHANS; i++)
1053 writel(0xffffffff, sdcp->base + MXS_DCP_CH_N_STAT_CLR(i));
1054 writel(0xffffffff, sdcp->base + MXS_DCP_STAT_CLR);
1056 global_sdcp = sdcp;
1058 platform_set_drvdata(pdev, sdcp);
1060 for (i = 0; i < DCP_MAX_CHANS; i++) {
1061 spin_lock_init(&sdcp->lock[i]);
1062 init_completion(&sdcp->completion[i]);
1063 crypto_init_queue(&sdcp->queue[i], 50);
1066 /* Create the SHA and AES handler threads. */
1067 sdcp->thread[DCP_CHAN_HASH_SHA] = kthread_run(dcp_chan_thread_sha,
1068 NULL, "mxs_dcp_chan/sha");
1069 if (IS_ERR(sdcp->thread[DCP_CHAN_HASH_SHA])) {
1070 dev_err(dev, "Error starting SHA thread!\n");
1071 ret = PTR_ERR(sdcp->thread[DCP_CHAN_HASH_SHA]);
1072 goto err_disable_unprepare_clk;
1075 sdcp->thread[DCP_CHAN_CRYPTO] = kthread_run(dcp_chan_thread_aes,
1076 NULL, "mxs_dcp_chan/aes");
1077 if (IS_ERR(sdcp->thread[DCP_CHAN_CRYPTO])) {
1078 dev_err(dev, "Error starting SHA thread!\n");
1079 ret = PTR_ERR(sdcp->thread[DCP_CHAN_CRYPTO]);
1080 goto err_destroy_sha_thread;
1083 /* Register the various crypto algorithms. */
1084 sdcp->caps = readl(sdcp->base + MXS_DCP_CAPABILITY1);
1086 if (sdcp->caps & MXS_DCP_CAPABILITY1_AES128) {
1087 ret = crypto_register_skciphers(dcp_aes_algs,
1088 ARRAY_SIZE(dcp_aes_algs));
1089 if (ret) {
1090 /* Failed to register algorithm. */
1091 dev_err(dev, "Failed to register AES crypto!\n");
1092 goto err_destroy_aes_thread;
1096 if (sdcp->caps & MXS_DCP_CAPABILITY1_SHA1) {
1097 ret = crypto_register_ahash(&dcp_sha1_alg);
1098 if (ret) {
1099 dev_err(dev, "Failed to register %s hash!\n",
1100 dcp_sha1_alg.halg.base.cra_name);
1101 goto err_unregister_aes;
1105 if (sdcp->caps & MXS_DCP_CAPABILITY1_SHA256) {
1106 ret = crypto_register_ahash(&dcp_sha256_alg);
1107 if (ret) {
1108 dev_err(dev, "Failed to register %s hash!\n",
1109 dcp_sha256_alg.halg.base.cra_name);
1110 goto err_unregister_sha1;
1114 return 0;
1116 err_unregister_sha1:
1117 if (sdcp->caps & MXS_DCP_CAPABILITY1_SHA1)
1118 crypto_unregister_ahash(&dcp_sha1_alg);
1120 err_unregister_aes:
1121 if (sdcp->caps & MXS_DCP_CAPABILITY1_AES128)
1122 crypto_unregister_skciphers(dcp_aes_algs, ARRAY_SIZE(dcp_aes_algs));
1124 err_destroy_aes_thread:
1125 kthread_stop(sdcp->thread[DCP_CHAN_CRYPTO]);
1127 err_destroy_sha_thread:
1128 kthread_stop(sdcp->thread[DCP_CHAN_HASH_SHA]);
1130 err_disable_unprepare_clk:
1131 clk_disable_unprepare(sdcp->dcp_clk);
1133 return ret;
1136 static int mxs_dcp_remove(struct platform_device *pdev)
1138 struct dcp *sdcp = platform_get_drvdata(pdev);
1140 if (sdcp->caps & MXS_DCP_CAPABILITY1_SHA256)
1141 crypto_unregister_ahash(&dcp_sha256_alg);
1143 if (sdcp->caps & MXS_DCP_CAPABILITY1_SHA1)
1144 crypto_unregister_ahash(&dcp_sha1_alg);
1146 if (sdcp->caps & MXS_DCP_CAPABILITY1_AES128)
1147 crypto_unregister_skciphers(dcp_aes_algs, ARRAY_SIZE(dcp_aes_algs));
1149 kthread_stop(sdcp->thread[DCP_CHAN_HASH_SHA]);
1150 kthread_stop(sdcp->thread[DCP_CHAN_CRYPTO]);
1152 clk_disable_unprepare(sdcp->dcp_clk);
1154 platform_set_drvdata(pdev, NULL);
1156 global_sdcp = NULL;
1158 return 0;
1161 static const struct of_device_id mxs_dcp_dt_ids[] = {
1162 { .compatible = "fsl,imx23-dcp", .data = NULL, },
1163 { .compatible = "fsl,imx28-dcp", .data = NULL, },
1164 { /* sentinel */ }
1167 MODULE_DEVICE_TABLE(of, mxs_dcp_dt_ids);
1169 static struct platform_driver mxs_dcp_driver = {
1170 .probe = mxs_dcp_probe,
1171 .remove = mxs_dcp_remove,
1172 .driver = {
1173 .name = "mxs-dcp",
1174 .of_match_table = mxs_dcp_dt_ids,
1178 module_platform_driver(mxs_dcp_driver);
1180 MODULE_AUTHOR("Marek Vasut <marex@denx.de>");
1181 MODULE_DESCRIPTION("Freescale MXS DCP Driver");
1182 MODULE_LICENSE("GPL");
1183 MODULE_ALIAS("platform:mxs-dcp");