treewide: remove redundant IS_ERR() before error code check
[linux/fpc-iii.git] / drivers / dma / ti / edma.c
blob03a7f647f7b2c8fdd1a9c42752ece5e81e057bdf
1 /*
2 * TI EDMA DMA engine driver
4 * Copyright 2012 Texas Instruments
6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public License as
8 * published by the Free Software Foundation version 2.
10 * This program is distributed "as is" WITHOUT ANY WARRANTY of any
11 * kind, whether express or implied; without even the implied warranty
12 * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
16 #include <linux/dmaengine.h>
17 #include <linux/dma-mapping.h>
18 #include <linux/bitmap.h>
19 #include <linux/err.h>
20 #include <linux/init.h>
21 #include <linux/interrupt.h>
22 #include <linux/list.h>
23 #include <linux/module.h>
24 #include <linux/platform_device.h>
25 #include <linux/slab.h>
26 #include <linux/spinlock.h>
27 #include <linux/of.h>
28 #include <linux/of_dma.h>
29 #include <linux/of_irq.h>
30 #include <linux/of_address.h>
31 #include <linux/of_device.h>
32 #include <linux/pm_runtime.h>
34 #include <linux/platform_data/edma.h>
36 #include "../dmaengine.h"
37 #include "../virt-dma.h"
39 /* Offsets matching "struct edmacc_param" */
40 #define PARM_OPT 0x00
41 #define PARM_SRC 0x04
42 #define PARM_A_B_CNT 0x08
43 #define PARM_DST 0x0c
44 #define PARM_SRC_DST_BIDX 0x10
45 #define PARM_LINK_BCNTRLD 0x14
46 #define PARM_SRC_DST_CIDX 0x18
47 #define PARM_CCNT 0x1c
49 #define PARM_SIZE 0x20
51 /* Offsets for EDMA CC global channel registers and their shadows */
52 #define SH_ER 0x00 /* 64 bits */
53 #define SH_ECR 0x08 /* 64 bits */
54 #define SH_ESR 0x10 /* 64 bits */
55 #define SH_CER 0x18 /* 64 bits */
56 #define SH_EER 0x20 /* 64 bits */
57 #define SH_EECR 0x28 /* 64 bits */
58 #define SH_EESR 0x30 /* 64 bits */
59 #define SH_SER 0x38 /* 64 bits */
60 #define SH_SECR 0x40 /* 64 bits */
61 #define SH_IER 0x50 /* 64 bits */
62 #define SH_IECR 0x58 /* 64 bits */
63 #define SH_IESR 0x60 /* 64 bits */
64 #define SH_IPR 0x68 /* 64 bits */
65 #define SH_ICR 0x70 /* 64 bits */
66 #define SH_IEVAL 0x78
67 #define SH_QER 0x80
68 #define SH_QEER 0x84
69 #define SH_QEECR 0x88
70 #define SH_QEESR 0x8c
71 #define SH_QSER 0x90
72 #define SH_QSECR 0x94
73 #define SH_SIZE 0x200
75 /* Offsets for EDMA CC global registers */
76 #define EDMA_REV 0x0000
77 #define EDMA_CCCFG 0x0004
78 #define EDMA_QCHMAP 0x0200 /* 8 registers */
79 #define EDMA_DMAQNUM 0x0240 /* 8 registers (4 on OMAP-L1xx) */
80 #define EDMA_QDMAQNUM 0x0260
81 #define EDMA_QUETCMAP 0x0280
82 #define EDMA_QUEPRI 0x0284
83 #define EDMA_EMR 0x0300 /* 64 bits */
84 #define EDMA_EMCR 0x0308 /* 64 bits */
85 #define EDMA_QEMR 0x0310
86 #define EDMA_QEMCR 0x0314
87 #define EDMA_CCERR 0x0318
88 #define EDMA_CCERRCLR 0x031c
89 #define EDMA_EEVAL 0x0320
90 #define EDMA_DRAE 0x0340 /* 4 x 64 bits*/
91 #define EDMA_QRAE 0x0380 /* 4 registers */
92 #define EDMA_QUEEVTENTRY 0x0400 /* 2 x 16 registers */
93 #define EDMA_QSTAT 0x0600 /* 2 registers */
94 #define EDMA_QWMTHRA 0x0620
95 #define EDMA_QWMTHRB 0x0624
96 #define EDMA_CCSTAT 0x0640
98 #define EDMA_M 0x1000 /* global channel registers */
99 #define EDMA_ECR 0x1008
100 #define EDMA_ECRH 0x100C
101 #define EDMA_SHADOW0 0x2000 /* 4 shadow regions */
102 #define EDMA_PARM 0x4000 /* PaRAM entries */
104 #define PARM_OFFSET(param_no) (EDMA_PARM + ((param_no) << 5))
106 #define EDMA_DCHMAP 0x0100 /* 64 registers */
108 /* CCCFG register */
109 #define GET_NUM_DMACH(x) (x & 0x7) /* bits 0-2 */
110 #define GET_NUM_QDMACH(x) ((x & 0x70) >> 4) /* bits 4-6 */
111 #define GET_NUM_PAENTRY(x) ((x & 0x7000) >> 12) /* bits 12-14 */
112 #define GET_NUM_EVQUE(x) ((x & 0x70000) >> 16) /* bits 16-18 */
113 #define GET_NUM_REGN(x) ((x & 0x300000) >> 20) /* bits 20-21 */
114 #define CHMAP_EXIST BIT(24)
116 /* CCSTAT register */
117 #define EDMA_CCSTAT_ACTV BIT(4)
120 * Max of 20 segments per channel to conserve PaRAM slots
121 * Also note that MAX_NR_SG should be atleast the no.of periods
122 * that are required for ASoC, otherwise DMA prep calls will
123 * fail. Today davinci-pcm is the only user of this driver and
124 * requires atleast 17 slots, so we setup the default to 20.
126 #define MAX_NR_SG 20
127 #define EDMA_MAX_SLOTS MAX_NR_SG
128 #define EDMA_DESCRIPTORS 16
130 #define EDMA_CHANNEL_ANY -1 /* for edma_alloc_channel() */
131 #define EDMA_SLOT_ANY -1 /* for edma_alloc_slot() */
132 #define EDMA_CONT_PARAMS_ANY 1001
133 #define EDMA_CONT_PARAMS_FIXED_EXACT 1002
134 #define EDMA_CONT_PARAMS_FIXED_NOT_EXACT 1003
137 * 64bit array registers are split into two 32bit registers:
138 * reg0: channel/event 0-31
139 * reg1: channel/event 32-63
141 * bit 5 in the channel number tells the array index (0/1)
142 * bit 0-4 (0x1f) is the bit offset within the register
144 #define EDMA_REG_ARRAY_INDEX(channel) ((channel) >> 5)
145 #define EDMA_CHANNEL_BIT(channel) (BIT((channel) & 0x1f))
147 /* PaRAM slots are laid out like this */
148 struct edmacc_param {
149 u32 opt;
150 u32 src;
151 u32 a_b_cnt;
152 u32 dst;
153 u32 src_dst_bidx;
154 u32 link_bcntrld;
155 u32 src_dst_cidx;
156 u32 ccnt;
157 } __packed;
159 /* fields in edmacc_param.opt */
160 #define SAM BIT(0)
161 #define DAM BIT(1)
162 #define SYNCDIM BIT(2)
163 #define STATIC BIT(3)
164 #define EDMA_FWID (0x07 << 8)
165 #define TCCMODE BIT(11)
166 #define EDMA_TCC(t) ((t) << 12)
167 #define TCINTEN BIT(20)
168 #define ITCINTEN BIT(21)
169 #define TCCHEN BIT(22)
170 #define ITCCHEN BIT(23)
172 struct edma_pset {
173 u32 len;
174 dma_addr_t addr;
175 struct edmacc_param param;
178 struct edma_desc {
179 struct virt_dma_desc vdesc;
180 struct list_head node;
181 enum dma_transfer_direction direction;
182 int cyclic;
183 bool polled;
184 int absync;
185 int pset_nr;
186 struct edma_chan *echan;
187 int processed;
190 * The following 4 elements are used for residue accounting.
192 * - processed_stat: the number of SG elements we have traversed
193 * so far to cover accounting. This is updated directly to processed
194 * during edma_callback and is always <= processed, because processed
195 * refers to the number of pending transfer (programmed to EDMA
196 * controller), where as processed_stat tracks number of transfers
197 * accounted for so far.
199 * - residue: The amount of bytes we have left to transfer for this desc
201 * - residue_stat: The residue in bytes of data we have covered
202 * so far for accounting. This is updated directly to residue
203 * during callbacks to keep it current.
205 * - sg_len: Tracks the length of the current intermediate transfer,
206 * this is required to update the residue during intermediate transfer
207 * completion callback.
209 int processed_stat;
210 u32 sg_len;
211 u32 residue;
212 u32 residue_stat;
214 struct edma_pset pset[0];
217 struct edma_cc;
219 struct edma_tc {
220 struct device_node *node;
221 u16 id;
224 struct edma_chan {
225 struct virt_dma_chan vchan;
226 struct list_head node;
227 struct edma_desc *edesc;
228 struct edma_cc *ecc;
229 struct edma_tc *tc;
230 int ch_num;
231 bool alloced;
232 bool hw_triggered;
233 int slot[EDMA_MAX_SLOTS];
234 int missed;
235 struct dma_slave_config cfg;
238 struct edma_cc {
239 struct device *dev;
240 struct edma_soc_info *info;
241 void __iomem *base;
242 int id;
243 bool legacy_mode;
245 /* eDMA3 resource information */
246 unsigned num_channels;
247 unsigned num_qchannels;
248 unsigned num_region;
249 unsigned num_slots;
250 unsigned num_tc;
251 bool chmap_exist;
252 enum dma_event_q default_queue;
254 unsigned int ccint;
255 unsigned int ccerrint;
258 * The slot_inuse bit for each PaRAM slot is clear unless the slot is
259 * in use by Linux or if it is allocated to be used by DSP.
261 unsigned long *slot_inuse;
264 * For tracking reserved channels used by DSP.
265 * If the bit is cleared, the channel is allocated to be used by DSP
266 * and Linux must not touch it.
268 unsigned long *channels_mask;
270 struct dma_device dma_slave;
271 struct dma_device *dma_memcpy;
272 struct edma_chan *slave_chans;
273 struct edma_tc *tc_list;
274 int dummy_slot;
277 /* dummy param set used to (re)initialize parameter RAM slots */
278 static const struct edmacc_param dummy_paramset = {
279 .link_bcntrld = 0xffff,
280 .ccnt = 1,
283 #define EDMA_BINDING_LEGACY 0
284 #define EDMA_BINDING_TPCC 1
285 static const u32 edma_binding_type[] = {
286 [EDMA_BINDING_LEGACY] = EDMA_BINDING_LEGACY,
287 [EDMA_BINDING_TPCC] = EDMA_BINDING_TPCC,
290 static const struct of_device_id edma_of_ids[] = {
292 .compatible = "ti,edma3",
293 .data = &edma_binding_type[EDMA_BINDING_LEGACY],
296 .compatible = "ti,edma3-tpcc",
297 .data = &edma_binding_type[EDMA_BINDING_TPCC],
301 MODULE_DEVICE_TABLE(of, edma_of_ids);
303 static const struct of_device_id edma_tptc_of_ids[] = {
304 { .compatible = "ti,edma3-tptc", },
307 MODULE_DEVICE_TABLE(of, edma_tptc_of_ids);
309 static inline unsigned int edma_read(struct edma_cc *ecc, int offset)
311 return (unsigned int)__raw_readl(ecc->base + offset);
314 static inline void edma_write(struct edma_cc *ecc, int offset, int val)
316 __raw_writel(val, ecc->base + offset);
319 static inline void edma_modify(struct edma_cc *ecc, int offset, unsigned and,
320 unsigned or)
322 unsigned val = edma_read(ecc, offset);
324 val &= and;
325 val |= or;
326 edma_write(ecc, offset, val);
329 static inline void edma_and(struct edma_cc *ecc, int offset, unsigned and)
331 unsigned val = edma_read(ecc, offset);
333 val &= and;
334 edma_write(ecc, offset, val);
337 static inline void edma_or(struct edma_cc *ecc, int offset, unsigned or)
339 unsigned val = edma_read(ecc, offset);
341 val |= or;
342 edma_write(ecc, offset, val);
345 static inline unsigned int edma_read_array(struct edma_cc *ecc, int offset,
346 int i)
348 return edma_read(ecc, offset + (i << 2));
351 static inline void edma_write_array(struct edma_cc *ecc, int offset, int i,
352 unsigned val)
354 edma_write(ecc, offset + (i << 2), val);
357 static inline void edma_modify_array(struct edma_cc *ecc, int offset, int i,
358 unsigned and, unsigned or)
360 edma_modify(ecc, offset + (i << 2), and, or);
363 static inline void edma_or_array(struct edma_cc *ecc, int offset, int i,
364 unsigned or)
366 edma_or(ecc, offset + (i << 2), or);
369 static inline void edma_or_array2(struct edma_cc *ecc, int offset, int i, int j,
370 unsigned or)
372 edma_or(ecc, offset + ((i * 2 + j) << 2), or);
375 static inline void edma_write_array2(struct edma_cc *ecc, int offset, int i,
376 int j, unsigned val)
378 edma_write(ecc, offset + ((i * 2 + j) << 2), val);
381 static inline unsigned int edma_shadow0_read(struct edma_cc *ecc, int offset)
383 return edma_read(ecc, EDMA_SHADOW0 + offset);
386 static inline unsigned int edma_shadow0_read_array(struct edma_cc *ecc,
387 int offset, int i)
389 return edma_read(ecc, EDMA_SHADOW0 + offset + (i << 2));
392 static inline void edma_shadow0_write(struct edma_cc *ecc, int offset,
393 unsigned val)
395 edma_write(ecc, EDMA_SHADOW0 + offset, val);
398 static inline void edma_shadow0_write_array(struct edma_cc *ecc, int offset,
399 int i, unsigned val)
401 edma_write(ecc, EDMA_SHADOW0 + offset + (i << 2), val);
404 static inline unsigned int edma_param_read(struct edma_cc *ecc, int offset,
405 int param_no)
407 return edma_read(ecc, EDMA_PARM + offset + (param_no << 5));
410 static inline void edma_param_write(struct edma_cc *ecc, int offset,
411 int param_no, unsigned val)
413 edma_write(ecc, EDMA_PARM + offset + (param_no << 5), val);
416 static inline void edma_param_modify(struct edma_cc *ecc, int offset,
417 int param_no, unsigned and, unsigned or)
419 edma_modify(ecc, EDMA_PARM + offset + (param_no << 5), and, or);
422 static inline void edma_param_and(struct edma_cc *ecc, int offset, int param_no,
423 unsigned and)
425 edma_and(ecc, EDMA_PARM + offset + (param_no << 5), and);
428 static inline void edma_param_or(struct edma_cc *ecc, int offset, int param_no,
429 unsigned or)
431 edma_or(ecc, EDMA_PARM + offset + (param_no << 5), or);
434 static void edma_assign_priority_to_queue(struct edma_cc *ecc, int queue_no,
435 int priority)
437 int bit = queue_no * 4;
439 edma_modify(ecc, EDMA_QUEPRI, ~(0x7 << bit), ((priority & 0x7) << bit));
442 static void edma_set_chmap(struct edma_chan *echan, int slot)
444 struct edma_cc *ecc = echan->ecc;
445 int channel = EDMA_CHAN_SLOT(echan->ch_num);
447 if (ecc->chmap_exist) {
448 slot = EDMA_CHAN_SLOT(slot);
449 edma_write_array(ecc, EDMA_DCHMAP, channel, (slot << 5));
453 static void edma_setup_interrupt(struct edma_chan *echan, bool enable)
455 struct edma_cc *ecc = echan->ecc;
456 int channel = EDMA_CHAN_SLOT(echan->ch_num);
457 int idx = EDMA_REG_ARRAY_INDEX(channel);
458 int ch_bit = EDMA_CHANNEL_BIT(channel);
460 if (enable) {
461 edma_shadow0_write_array(ecc, SH_ICR, idx, ch_bit);
462 edma_shadow0_write_array(ecc, SH_IESR, idx, ch_bit);
463 } else {
464 edma_shadow0_write_array(ecc, SH_IECR, idx, ch_bit);
469 * paRAM slot management functions
471 static void edma_write_slot(struct edma_cc *ecc, unsigned slot,
472 const struct edmacc_param *param)
474 slot = EDMA_CHAN_SLOT(slot);
475 if (slot >= ecc->num_slots)
476 return;
477 memcpy_toio(ecc->base + PARM_OFFSET(slot), param, PARM_SIZE);
480 static int edma_read_slot(struct edma_cc *ecc, unsigned slot,
481 struct edmacc_param *param)
483 slot = EDMA_CHAN_SLOT(slot);
484 if (slot >= ecc->num_slots)
485 return -EINVAL;
486 memcpy_fromio(param, ecc->base + PARM_OFFSET(slot), PARM_SIZE);
488 return 0;
492 * edma_alloc_slot - allocate DMA parameter RAM
493 * @ecc: pointer to edma_cc struct
494 * @slot: specific slot to allocate; negative for "any unused slot"
496 * This allocates a parameter RAM slot, initializing it to hold a
497 * dummy transfer. Slots allocated using this routine have not been
498 * mapped to a hardware DMA channel, and will normally be used by
499 * linking to them from a slot associated with a DMA channel.
501 * Normal use is to pass EDMA_SLOT_ANY as the @slot, but specific
502 * slots may be allocated on behalf of DSP firmware.
504 * Returns the number of the slot, else negative errno.
506 static int edma_alloc_slot(struct edma_cc *ecc, int slot)
508 if (slot >= 0) {
509 slot = EDMA_CHAN_SLOT(slot);
510 /* Requesting entry paRAM slot for a HW triggered channel. */
511 if (ecc->chmap_exist && slot < ecc->num_channels)
512 slot = EDMA_SLOT_ANY;
515 if (slot < 0) {
516 if (ecc->chmap_exist)
517 slot = 0;
518 else
519 slot = ecc->num_channels;
520 for (;;) {
521 slot = find_next_zero_bit(ecc->slot_inuse,
522 ecc->num_slots,
523 slot);
524 if (slot == ecc->num_slots)
525 return -ENOMEM;
526 if (!test_and_set_bit(slot, ecc->slot_inuse))
527 break;
529 } else if (slot >= ecc->num_slots) {
530 return -EINVAL;
531 } else if (test_and_set_bit(slot, ecc->slot_inuse)) {
532 return -EBUSY;
535 edma_write_slot(ecc, slot, &dummy_paramset);
537 return EDMA_CTLR_CHAN(ecc->id, slot);
540 static void edma_free_slot(struct edma_cc *ecc, unsigned slot)
542 slot = EDMA_CHAN_SLOT(slot);
543 if (slot >= ecc->num_slots)
544 return;
546 edma_write_slot(ecc, slot, &dummy_paramset);
547 clear_bit(slot, ecc->slot_inuse);
551 * edma_link - link one parameter RAM slot to another
552 * @ecc: pointer to edma_cc struct
553 * @from: parameter RAM slot originating the link
554 * @to: parameter RAM slot which is the link target
556 * The originating slot should not be part of any active DMA transfer.
558 static void edma_link(struct edma_cc *ecc, unsigned from, unsigned to)
560 if (unlikely(EDMA_CTLR(from) != EDMA_CTLR(to)))
561 dev_warn(ecc->dev, "Ignoring eDMA instance for linking\n");
563 from = EDMA_CHAN_SLOT(from);
564 to = EDMA_CHAN_SLOT(to);
565 if (from >= ecc->num_slots || to >= ecc->num_slots)
566 return;
568 edma_param_modify(ecc, PARM_LINK_BCNTRLD, from, 0xffff0000,
569 PARM_OFFSET(to));
573 * edma_get_position - returns the current transfer point
574 * @ecc: pointer to edma_cc struct
575 * @slot: parameter RAM slot being examined
576 * @dst: true selects the dest position, false the source
578 * Returns the position of the current active slot
580 static dma_addr_t edma_get_position(struct edma_cc *ecc, unsigned slot,
581 bool dst)
583 u32 offs;
585 slot = EDMA_CHAN_SLOT(slot);
586 offs = PARM_OFFSET(slot);
587 offs += dst ? PARM_DST : PARM_SRC;
589 return edma_read(ecc, offs);
593 * Channels with event associations will be triggered by their hardware
594 * events, and channels without such associations will be triggered by
595 * software. (At this writing there is no interface for using software
596 * triggers except with channels that don't support hardware triggers.)
598 static void edma_start(struct edma_chan *echan)
600 struct edma_cc *ecc = echan->ecc;
601 int channel = EDMA_CHAN_SLOT(echan->ch_num);
602 int idx = EDMA_REG_ARRAY_INDEX(channel);
603 int ch_bit = EDMA_CHANNEL_BIT(channel);
605 if (!echan->hw_triggered) {
606 /* EDMA channels without event association */
607 dev_dbg(ecc->dev, "ESR%d %08x\n", idx,
608 edma_shadow0_read_array(ecc, SH_ESR, idx));
609 edma_shadow0_write_array(ecc, SH_ESR, idx, ch_bit);
610 } else {
611 /* EDMA channel with event association */
612 dev_dbg(ecc->dev, "ER%d %08x\n", idx,
613 edma_shadow0_read_array(ecc, SH_ER, idx));
614 /* Clear any pending event or error */
615 edma_write_array(ecc, EDMA_ECR, idx, ch_bit);
616 edma_write_array(ecc, EDMA_EMCR, idx, ch_bit);
617 /* Clear any SER */
618 edma_shadow0_write_array(ecc, SH_SECR, idx, ch_bit);
619 edma_shadow0_write_array(ecc, SH_EESR, idx, ch_bit);
620 dev_dbg(ecc->dev, "EER%d %08x\n", idx,
621 edma_shadow0_read_array(ecc, SH_EER, idx));
625 static void edma_stop(struct edma_chan *echan)
627 struct edma_cc *ecc = echan->ecc;
628 int channel = EDMA_CHAN_SLOT(echan->ch_num);
629 int idx = EDMA_REG_ARRAY_INDEX(channel);
630 int ch_bit = EDMA_CHANNEL_BIT(channel);
632 edma_shadow0_write_array(ecc, SH_EECR, idx, ch_bit);
633 edma_shadow0_write_array(ecc, SH_ECR, idx, ch_bit);
634 edma_shadow0_write_array(ecc, SH_SECR, idx, ch_bit);
635 edma_write_array(ecc, EDMA_EMCR, idx, ch_bit);
637 /* clear possibly pending completion interrupt */
638 edma_shadow0_write_array(ecc, SH_ICR, idx, ch_bit);
640 dev_dbg(ecc->dev, "EER%d %08x\n", idx,
641 edma_shadow0_read_array(ecc, SH_EER, idx));
643 /* REVISIT: consider guarding against inappropriate event
644 * chaining by overwriting with dummy_paramset.
649 * Temporarily disable EDMA hardware events on the specified channel,
650 * preventing them from triggering new transfers
652 static void edma_pause(struct edma_chan *echan)
654 int channel = EDMA_CHAN_SLOT(echan->ch_num);
656 edma_shadow0_write_array(echan->ecc, SH_EECR,
657 EDMA_REG_ARRAY_INDEX(channel),
658 EDMA_CHANNEL_BIT(channel));
661 /* Re-enable EDMA hardware events on the specified channel. */
662 static void edma_resume(struct edma_chan *echan)
664 int channel = EDMA_CHAN_SLOT(echan->ch_num);
666 edma_shadow0_write_array(echan->ecc, SH_EESR,
667 EDMA_REG_ARRAY_INDEX(channel),
668 EDMA_CHANNEL_BIT(channel));
671 static void edma_trigger_channel(struct edma_chan *echan)
673 struct edma_cc *ecc = echan->ecc;
674 int channel = EDMA_CHAN_SLOT(echan->ch_num);
675 int idx = EDMA_REG_ARRAY_INDEX(channel);
676 int ch_bit = EDMA_CHANNEL_BIT(channel);
678 edma_shadow0_write_array(ecc, SH_ESR, idx, ch_bit);
680 dev_dbg(ecc->dev, "ESR%d %08x\n", idx,
681 edma_shadow0_read_array(ecc, SH_ESR, idx));
684 static void edma_clean_channel(struct edma_chan *echan)
686 struct edma_cc *ecc = echan->ecc;
687 int channel = EDMA_CHAN_SLOT(echan->ch_num);
688 int idx = EDMA_REG_ARRAY_INDEX(channel);
689 int ch_bit = EDMA_CHANNEL_BIT(channel);
691 dev_dbg(ecc->dev, "EMR%d %08x\n", idx,
692 edma_read_array(ecc, EDMA_EMR, idx));
693 edma_shadow0_write_array(ecc, SH_ECR, idx, ch_bit);
694 /* Clear the corresponding EMR bits */
695 edma_write_array(ecc, EDMA_EMCR, idx, ch_bit);
696 /* Clear any SER */
697 edma_shadow0_write_array(ecc, SH_SECR, idx, ch_bit);
698 edma_write(ecc, EDMA_CCERRCLR, BIT(16) | BIT(1) | BIT(0));
701 /* Move channel to a specific event queue */
702 static void edma_assign_channel_eventq(struct edma_chan *echan,
703 enum dma_event_q eventq_no)
705 struct edma_cc *ecc = echan->ecc;
706 int channel = EDMA_CHAN_SLOT(echan->ch_num);
707 int bit = (channel & 0x7) * 4;
709 /* default to low priority queue */
710 if (eventq_no == EVENTQ_DEFAULT)
711 eventq_no = ecc->default_queue;
712 if (eventq_no >= ecc->num_tc)
713 return;
715 eventq_no &= 7;
716 edma_modify_array(ecc, EDMA_DMAQNUM, (channel >> 3), ~(0x7 << bit),
717 eventq_no << bit);
720 static int edma_alloc_channel(struct edma_chan *echan,
721 enum dma_event_q eventq_no)
723 struct edma_cc *ecc = echan->ecc;
724 int channel = EDMA_CHAN_SLOT(echan->ch_num);
726 if (!test_bit(echan->ch_num, ecc->channels_mask)) {
727 dev_err(ecc->dev, "Channel%d is reserved, can not be used!\n",
728 echan->ch_num);
729 return -EINVAL;
732 /* ensure access through shadow region 0 */
733 edma_or_array2(ecc, EDMA_DRAE, 0, EDMA_REG_ARRAY_INDEX(channel),
734 EDMA_CHANNEL_BIT(channel));
736 /* ensure no events are pending */
737 edma_stop(echan);
739 edma_setup_interrupt(echan, true);
741 edma_assign_channel_eventq(echan, eventq_no);
743 return 0;
746 static void edma_free_channel(struct edma_chan *echan)
748 /* ensure no events are pending */
749 edma_stop(echan);
750 /* REVISIT should probably take out of shadow region 0 */
751 edma_setup_interrupt(echan, false);
754 static inline struct edma_cc *to_edma_cc(struct dma_device *d)
756 return container_of(d, struct edma_cc, dma_slave);
759 static inline struct edma_chan *to_edma_chan(struct dma_chan *c)
761 return container_of(c, struct edma_chan, vchan.chan);
764 static inline struct edma_desc *to_edma_desc(struct dma_async_tx_descriptor *tx)
766 return container_of(tx, struct edma_desc, vdesc.tx);
769 static void edma_desc_free(struct virt_dma_desc *vdesc)
771 kfree(container_of(vdesc, struct edma_desc, vdesc));
774 /* Dispatch a queued descriptor to the controller (caller holds lock) */
775 static void edma_execute(struct edma_chan *echan)
777 struct edma_cc *ecc = echan->ecc;
778 struct virt_dma_desc *vdesc;
779 struct edma_desc *edesc;
780 struct device *dev = echan->vchan.chan.device->dev;
781 int i, j, left, nslots;
783 if (!echan->edesc) {
784 /* Setup is needed for the first transfer */
785 vdesc = vchan_next_desc(&echan->vchan);
786 if (!vdesc)
787 return;
788 list_del(&vdesc->node);
789 echan->edesc = to_edma_desc(&vdesc->tx);
792 edesc = echan->edesc;
794 /* Find out how many left */
795 left = edesc->pset_nr - edesc->processed;
796 nslots = min(MAX_NR_SG, left);
797 edesc->sg_len = 0;
799 /* Write descriptor PaRAM set(s) */
800 for (i = 0; i < nslots; i++) {
801 j = i + edesc->processed;
802 edma_write_slot(ecc, echan->slot[i], &edesc->pset[j].param);
803 edesc->sg_len += edesc->pset[j].len;
804 dev_vdbg(dev,
805 "\n pset[%d]:\n"
806 " chnum\t%d\n"
807 " slot\t%d\n"
808 " opt\t%08x\n"
809 " src\t%08x\n"
810 " dst\t%08x\n"
811 " abcnt\t%08x\n"
812 " ccnt\t%08x\n"
813 " bidx\t%08x\n"
814 " cidx\t%08x\n"
815 " lkrld\t%08x\n",
816 j, echan->ch_num, echan->slot[i],
817 edesc->pset[j].param.opt,
818 edesc->pset[j].param.src,
819 edesc->pset[j].param.dst,
820 edesc->pset[j].param.a_b_cnt,
821 edesc->pset[j].param.ccnt,
822 edesc->pset[j].param.src_dst_bidx,
823 edesc->pset[j].param.src_dst_cidx,
824 edesc->pset[j].param.link_bcntrld);
825 /* Link to the previous slot if not the last set */
826 if (i != (nslots - 1))
827 edma_link(ecc, echan->slot[i], echan->slot[i + 1]);
830 edesc->processed += nslots;
833 * If this is either the last set in a set of SG-list transactions
834 * then setup a link to the dummy slot, this results in all future
835 * events being absorbed and that's OK because we're done
837 if (edesc->processed == edesc->pset_nr) {
838 if (edesc->cyclic)
839 edma_link(ecc, echan->slot[nslots - 1], echan->slot[1]);
840 else
841 edma_link(ecc, echan->slot[nslots - 1],
842 echan->ecc->dummy_slot);
845 if (echan->missed) {
847 * This happens due to setup times between intermediate
848 * transfers in long SG lists which have to be broken up into
849 * transfers of MAX_NR_SG
851 dev_dbg(dev, "missed event on channel %d\n", echan->ch_num);
852 edma_clean_channel(echan);
853 edma_stop(echan);
854 edma_start(echan);
855 edma_trigger_channel(echan);
856 echan->missed = 0;
857 } else if (edesc->processed <= MAX_NR_SG) {
858 dev_dbg(dev, "first transfer starting on channel %d\n",
859 echan->ch_num);
860 edma_start(echan);
861 } else {
862 dev_dbg(dev, "chan: %d: completed %d elements, resuming\n",
863 echan->ch_num, edesc->processed);
864 edma_resume(echan);
868 static int edma_terminate_all(struct dma_chan *chan)
870 struct edma_chan *echan = to_edma_chan(chan);
871 unsigned long flags;
872 LIST_HEAD(head);
874 spin_lock_irqsave(&echan->vchan.lock, flags);
877 * Stop DMA activity: we assume the callback will not be called
878 * after edma_dma() returns (even if it does, it will see
879 * echan->edesc is NULL and exit.)
881 if (echan->edesc) {
882 edma_stop(echan);
883 /* Move the cyclic channel back to default queue */
884 if (!echan->tc && echan->edesc->cyclic)
885 edma_assign_channel_eventq(echan, EVENTQ_DEFAULT);
887 vchan_terminate_vdesc(&echan->edesc->vdesc);
888 echan->edesc = NULL;
891 vchan_get_all_descriptors(&echan->vchan, &head);
892 spin_unlock_irqrestore(&echan->vchan.lock, flags);
893 vchan_dma_desc_free_list(&echan->vchan, &head);
895 return 0;
898 static void edma_synchronize(struct dma_chan *chan)
900 struct edma_chan *echan = to_edma_chan(chan);
902 vchan_synchronize(&echan->vchan);
905 static int edma_slave_config(struct dma_chan *chan,
906 struct dma_slave_config *cfg)
908 struct edma_chan *echan = to_edma_chan(chan);
910 if (cfg->src_addr_width == DMA_SLAVE_BUSWIDTH_8_BYTES ||
911 cfg->dst_addr_width == DMA_SLAVE_BUSWIDTH_8_BYTES)
912 return -EINVAL;
914 if (cfg->src_maxburst > chan->device->max_burst ||
915 cfg->dst_maxburst > chan->device->max_burst)
916 return -EINVAL;
918 memcpy(&echan->cfg, cfg, sizeof(echan->cfg));
920 return 0;
923 static int edma_dma_pause(struct dma_chan *chan)
925 struct edma_chan *echan = to_edma_chan(chan);
927 if (!echan->edesc)
928 return -EINVAL;
930 edma_pause(echan);
931 return 0;
934 static int edma_dma_resume(struct dma_chan *chan)
936 struct edma_chan *echan = to_edma_chan(chan);
938 edma_resume(echan);
939 return 0;
943 * A PaRAM set configuration abstraction used by other modes
944 * @chan: Channel who's PaRAM set we're configuring
945 * @pset: PaRAM set to initialize and setup.
946 * @src_addr: Source address of the DMA
947 * @dst_addr: Destination address of the DMA
948 * @burst: In units of dev_width, how much to send
949 * @dev_width: How much is the dev_width
950 * @dma_length: Total length of the DMA transfer
951 * @direction: Direction of the transfer
953 static int edma_config_pset(struct dma_chan *chan, struct edma_pset *epset,
954 dma_addr_t src_addr, dma_addr_t dst_addr, u32 burst,
955 unsigned int acnt, unsigned int dma_length,
956 enum dma_transfer_direction direction)
958 struct edma_chan *echan = to_edma_chan(chan);
959 struct device *dev = chan->device->dev;
960 struct edmacc_param *param = &epset->param;
961 int bcnt, ccnt, cidx;
962 int src_bidx, dst_bidx, src_cidx, dst_cidx;
963 int absync;
965 /* src/dst_maxburst == 0 is the same case as src/dst_maxburst == 1 */
966 if (!burst)
967 burst = 1;
969 * If the maxburst is equal to the fifo width, use
970 * A-synced transfers. This allows for large contiguous
971 * buffer transfers using only one PaRAM set.
973 if (burst == 1) {
975 * For the A-sync case, bcnt and ccnt are the remainder
976 * and quotient respectively of the division of:
977 * (dma_length / acnt) by (SZ_64K -1). This is so
978 * that in case bcnt over flows, we have ccnt to use.
979 * Note: In A-sync tranfer only, bcntrld is used, but it
980 * only applies for sg_dma_len(sg) >= SZ_64K.
981 * In this case, the best way adopted is- bccnt for the
982 * first frame will be the remainder below. Then for
983 * every successive frame, bcnt will be SZ_64K-1. This
984 * is assured as bcntrld = 0xffff in end of function.
986 absync = false;
987 ccnt = dma_length / acnt / (SZ_64K - 1);
988 bcnt = dma_length / acnt - ccnt * (SZ_64K - 1);
990 * If bcnt is non-zero, we have a remainder and hence an
991 * extra frame to transfer, so increment ccnt.
993 if (bcnt)
994 ccnt++;
995 else
996 bcnt = SZ_64K - 1;
997 cidx = acnt;
998 } else {
1000 * If maxburst is greater than the fifo address_width,
1001 * use AB-synced transfers where A count is the fifo
1002 * address_width and B count is the maxburst. In this
1003 * case, we are limited to transfers of C count frames
1004 * of (address_width * maxburst) where C count is limited
1005 * to SZ_64K-1. This places an upper bound on the length
1006 * of an SG segment that can be handled.
1008 absync = true;
1009 bcnt = burst;
1010 ccnt = dma_length / (acnt * bcnt);
1011 if (ccnt > (SZ_64K - 1)) {
1012 dev_err(dev, "Exceeded max SG segment size\n");
1013 return -EINVAL;
1015 cidx = acnt * bcnt;
1018 epset->len = dma_length;
1020 if (direction == DMA_MEM_TO_DEV) {
1021 src_bidx = acnt;
1022 src_cidx = cidx;
1023 dst_bidx = 0;
1024 dst_cidx = 0;
1025 epset->addr = src_addr;
1026 } else if (direction == DMA_DEV_TO_MEM) {
1027 src_bidx = 0;
1028 src_cidx = 0;
1029 dst_bidx = acnt;
1030 dst_cidx = cidx;
1031 epset->addr = dst_addr;
1032 } else if (direction == DMA_MEM_TO_MEM) {
1033 src_bidx = acnt;
1034 src_cidx = cidx;
1035 dst_bidx = acnt;
1036 dst_cidx = cidx;
1037 epset->addr = src_addr;
1038 } else {
1039 dev_err(dev, "%s: direction not implemented yet\n", __func__);
1040 return -EINVAL;
1043 param->opt = EDMA_TCC(EDMA_CHAN_SLOT(echan->ch_num));
1044 /* Configure A or AB synchronized transfers */
1045 if (absync)
1046 param->opt |= SYNCDIM;
1048 param->src = src_addr;
1049 param->dst = dst_addr;
1051 param->src_dst_bidx = (dst_bidx << 16) | src_bidx;
1052 param->src_dst_cidx = (dst_cidx << 16) | src_cidx;
1054 param->a_b_cnt = bcnt << 16 | acnt;
1055 param->ccnt = ccnt;
1057 * Only time when (bcntrld) auto reload is required is for
1058 * A-sync case, and in this case, a requirement of reload value
1059 * of SZ_64K-1 only is assured. 'link' is initially set to NULL
1060 * and then later will be populated by edma_execute.
1062 param->link_bcntrld = 0xffffffff;
1063 return absync;
1066 static struct dma_async_tx_descriptor *edma_prep_slave_sg(
1067 struct dma_chan *chan, struct scatterlist *sgl,
1068 unsigned int sg_len, enum dma_transfer_direction direction,
1069 unsigned long tx_flags, void *context)
1071 struct edma_chan *echan = to_edma_chan(chan);
1072 struct device *dev = chan->device->dev;
1073 struct edma_desc *edesc;
1074 dma_addr_t src_addr = 0, dst_addr = 0;
1075 enum dma_slave_buswidth dev_width;
1076 u32 burst;
1077 struct scatterlist *sg;
1078 int i, nslots, ret;
1080 if (unlikely(!echan || !sgl || !sg_len))
1081 return NULL;
1083 if (direction == DMA_DEV_TO_MEM) {
1084 src_addr = echan->cfg.src_addr;
1085 dev_width = echan->cfg.src_addr_width;
1086 burst = echan->cfg.src_maxburst;
1087 } else if (direction == DMA_MEM_TO_DEV) {
1088 dst_addr = echan->cfg.dst_addr;
1089 dev_width = echan->cfg.dst_addr_width;
1090 burst = echan->cfg.dst_maxburst;
1091 } else {
1092 dev_err(dev, "%s: bad direction: %d\n", __func__, direction);
1093 return NULL;
1096 if (dev_width == DMA_SLAVE_BUSWIDTH_UNDEFINED) {
1097 dev_err(dev, "%s: Undefined slave buswidth\n", __func__);
1098 return NULL;
1101 edesc = kzalloc(struct_size(edesc, pset, sg_len), GFP_ATOMIC);
1102 if (!edesc)
1103 return NULL;
1105 edesc->pset_nr = sg_len;
1106 edesc->residue = 0;
1107 edesc->direction = direction;
1108 edesc->echan = echan;
1110 /* Allocate a PaRAM slot, if needed */
1111 nslots = min_t(unsigned, MAX_NR_SG, sg_len);
1113 for (i = 0; i < nslots; i++) {
1114 if (echan->slot[i] < 0) {
1115 echan->slot[i] =
1116 edma_alloc_slot(echan->ecc, EDMA_SLOT_ANY);
1117 if (echan->slot[i] < 0) {
1118 kfree(edesc);
1119 dev_err(dev, "%s: Failed to allocate slot\n",
1120 __func__);
1121 return NULL;
1126 /* Configure PaRAM sets for each SG */
1127 for_each_sg(sgl, sg, sg_len, i) {
1128 /* Get address for each SG */
1129 if (direction == DMA_DEV_TO_MEM)
1130 dst_addr = sg_dma_address(sg);
1131 else
1132 src_addr = sg_dma_address(sg);
1134 ret = edma_config_pset(chan, &edesc->pset[i], src_addr,
1135 dst_addr, burst, dev_width,
1136 sg_dma_len(sg), direction);
1137 if (ret < 0) {
1138 kfree(edesc);
1139 return NULL;
1142 edesc->absync = ret;
1143 edesc->residue += sg_dma_len(sg);
1145 if (i == sg_len - 1)
1146 /* Enable completion interrupt */
1147 edesc->pset[i].param.opt |= TCINTEN;
1148 else if (!((i+1) % MAX_NR_SG))
1150 * Enable early completion interrupt for the
1151 * intermediateset. In this case the driver will be
1152 * notified when the paRAM set is submitted to TC. This
1153 * will allow more time to set up the next set of slots.
1155 edesc->pset[i].param.opt |= (TCINTEN | TCCMODE);
1157 edesc->residue_stat = edesc->residue;
1159 return vchan_tx_prep(&echan->vchan, &edesc->vdesc, tx_flags);
1162 static struct dma_async_tx_descriptor *edma_prep_dma_memcpy(
1163 struct dma_chan *chan, dma_addr_t dest, dma_addr_t src,
1164 size_t len, unsigned long tx_flags)
1166 int ret, nslots;
1167 struct edma_desc *edesc;
1168 struct device *dev = chan->device->dev;
1169 struct edma_chan *echan = to_edma_chan(chan);
1170 unsigned int width, pset_len, array_size;
1172 if (unlikely(!echan || !len))
1173 return NULL;
1175 /* Align the array size (acnt block) with the transfer properties */
1176 switch (__ffs((src | dest | len))) {
1177 case 0:
1178 array_size = SZ_32K - 1;
1179 break;
1180 case 1:
1181 array_size = SZ_32K - 2;
1182 break;
1183 default:
1184 array_size = SZ_32K - 4;
1185 break;
1188 if (len < SZ_64K) {
1190 * Transfer size less than 64K can be handled with one paRAM
1191 * slot and with one burst.
1192 * ACNT = length
1194 width = len;
1195 pset_len = len;
1196 nslots = 1;
1197 } else {
1199 * Transfer size bigger than 64K will be handled with maximum of
1200 * two paRAM slots.
1201 * slot1: (full_length / 32767) times 32767 bytes bursts.
1202 * ACNT = 32767, length1: (full_length / 32767) * 32767
1203 * slot2: the remaining amount of data after slot1.
1204 * ACNT = full_length - length1, length2 = ACNT
1206 * When the full_length is multibple of 32767 one slot can be
1207 * used to complete the transfer.
1209 width = array_size;
1210 pset_len = rounddown(len, width);
1211 /* One slot is enough for lengths multiple of (SZ_32K -1) */
1212 if (unlikely(pset_len == len))
1213 nslots = 1;
1214 else
1215 nslots = 2;
1218 edesc = kzalloc(struct_size(edesc, pset, nslots), GFP_ATOMIC);
1219 if (!edesc)
1220 return NULL;
1222 edesc->pset_nr = nslots;
1223 edesc->residue = edesc->residue_stat = len;
1224 edesc->direction = DMA_MEM_TO_MEM;
1225 edesc->echan = echan;
1227 ret = edma_config_pset(chan, &edesc->pset[0], src, dest, 1,
1228 width, pset_len, DMA_MEM_TO_MEM);
1229 if (ret < 0) {
1230 kfree(edesc);
1231 return NULL;
1234 edesc->absync = ret;
1236 edesc->pset[0].param.opt |= ITCCHEN;
1237 if (nslots == 1) {
1238 /* Enable transfer complete interrupt if requested */
1239 if (tx_flags & DMA_PREP_INTERRUPT)
1240 edesc->pset[0].param.opt |= TCINTEN;
1241 } else {
1242 /* Enable transfer complete chaining for the first slot */
1243 edesc->pset[0].param.opt |= TCCHEN;
1245 if (echan->slot[1] < 0) {
1246 echan->slot[1] = edma_alloc_slot(echan->ecc,
1247 EDMA_SLOT_ANY);
1248 if (echan->slot[1] < 0) {
1249 kfree(edesc);
1250 dev_err(dev, "%s: Failed to allocate slot\n",
1251 __func__);
1252 return NULL;
1255 dest += pset_len;
1256 src += pset_len;
1257 pset_len = width = len % array_size;
1259 ret = edma_config_pset(chan, &edesc->pset[1], src, dest, 1,
1260 width, pset_len, DMA_MEM_TO_MEM);
1261 if (ret < 0) {
1262 kfree(edesc);
1263 return NULL;
1266 edesc->pset[1].param.opt |= ITCCHEN;
1267 /* Enable transfer complete interrupt if requested */
1268 if (tx_flags & DMA_PREP_INTERRUPT)
1269 edesc->pset[1].param.opt |= TCINTEN;
1272 if (!(tx_flags & DMA_PREP_INTERRUPT))
1273 edesc->polled = true;
1275 return vchan_tx_prep(&echan->vchan, &edesc->vdesc, tx_flags);
1278 static struct dma_async_tx_descriptor *edma_prep_dma_cyclic(
1279 struct dma_chan *chan, dma_addr_t buf_addr, size_t buf_len,
1280 size_t period_len, enum dma_transfer_direction direction,
1281 unsigned long tx_flags)
1283 struct edma_chan *echan = to_edma_chan(chan);
1284 struct device *dev = chan->device->dev;
1285 struct edma_desc *edesc;
1286 dma_addr_t src_addr, dst_addr;
1287 enum dma_slave_buswidth dev_width;
1288 bool use_intermediate = false;
1289 u32 burst;
1290 int i, ret, nslots;
1292 if (unlikely(!echan || !buf_len || !period_len))
1293 return NULL;
1295 if (direction == DMA_DEV_TO_MEM) {
1296 src_addr = echan->cfg.src_addr;
1297 dst_addr = buf_addr;
1298 dev_width = echan->cfg.src_addr_width;
1299 burst = echan->cfg.src_maxburst;
1300 } else if (direction == DMA_MEM_TO_DEV) {
1301 src_addr = buf_addr;
1302 dst_addr = echan->cfg.dst_addr;
1303 dev_width = echan->cfg.dst_addr_width;
1304 burst = echan->cfg.dst_maxburst;
1305 } else {
1306 dev_err(dev, "%s: bad direction: %d\n", __func__, direction);
1307 return NULL;
1310 if (dev_width == DMA_SLAVE_BUSWIDTH_UNDEFINED) {
1311 dev_err(dev, "%s: Undefined slave buswidth\n", __func__);
1312 return NULL;
1315 if (unlikely(buf_len % period_len)) {
1316 dev_err(dev, "Period should be multiple of Buffer length\n");
1317 return NULL;
1320 nslots = (buf_len / period_len) + 1;
1323 * Cyclic DMA users such as audio cannot tolerate delays introduced
1324 * by cases where the number of periods is more than the maximum
1325 * number of SGs the EDMA driver can handle at a time. For DMA types
1326 * such as Slave SGs, such delays are tolerable and synchronized,
1327 * but the synchronization is difficult to achieve with Cyclic and
1328 * cannot be guaranteed, so we error out early.
1330 if (nslots > MAX_NR_SG) {
1332 * If the burst and period sizes are the same, we can put
1333 * the full buffer into a single period and activate
1334 * intermediate interrupts. This will produce interrupts
1335 * after each burst, which is also after each desired period.
1337 if (burst == period_len) {
1338 period_len = buf_len;
1339 nslots = 2;
1340 use_intermediate = true;
1341 } else {
1342 return NULL;
1346 edesc = kzalloc(struct_size(edesc, pset, nslots), GFP_ATOMIC);
1347 if (!edesc)
1348 return NULL;
1350 edesc->cyclic = 1;
1351 edesc->pset_nr = nslots;
1352 edesc->residue = edesc->residue_stat = buf_len;
1353 edesc->direction = direction;
1354 edesc->echan = echan;
1356 dev_dbg(dev, "%s: channel=%d nslots=%d period_len=%zu buf_len=%zu\n",
1357 __func__, echan->ch_num, nslots, period_len, buf_len);
1359 for (i = 0; i < nslots; i++) {
1360 /* Allocate a PaRAM slot, if needed */
1361 if (echan->slot[i] < 0) {
1362 echan->slot[i] =
1363 edma_alloc_slot(echan->ecc, EDMA_SLOT_ANY);
1364 if (echan->slot[i] < 0) {
1365 kfree(edesc);
1366 dev_err(dev, "%s: Failed to allocate slot\n",
1367 __func__);
1368 return NULL;
1372 if (i == nslots - 1) {
1373 memcpy(&edesc->pset[i], &edesc->pset[0],
1374 sizeof(edesc->pset[0]));
1375 break;
1378 ret = edma_config_pset(chan, &edesc->pset[i], src_addr,
1379 dst_addr, burst, dev_width, period_len,
1380 direction);
1381 if (ret < 0) {
1382 kfree(edesc);
1383 return NULL;
1386 if (direction == DMA_DEV_TO_MEM)
1387 dst_addr += period_len;
1388 else
1389 src_addr += period_len;
1391 dev_vdbg(dev, "%s: Configure period %d of buf:\n", __func__, i);
1392 dev_vdbg(dev,
1393 "\n pset[%d]:\n"
1394 " chnum\t%d\n"
1395 " slot\t%d\n"
1396 " opt\t%08x\n"
1397 " src\t%08x\n"
1398 " dst\t%08x\n"
1399 " abcnt\t%08x\n"
1400 " ccnt\t%08x\n"
1401 " bidx\t%08x\n"
1402 " cidx\t%08x\n"
1403 " lkrld\t%08x\n",
1404 i, echan->ch_num, echan->slot[i],
1405 edesc->pset[i].param.opt,
1406 edesc->pset[i].param.src,
1407 edesc->pset[i].param.dst,
1408 edesc->pset[i].param.a_b_cnt,
1409 edesc->pset[i].param.ccnt,
1410 edesc->pset[i].param.src_dst_bidx,
1411 edesc->pset[i].param.src_dst_cidx,
1412 edesc->pset[i].param.link_bcntrld);
1414 edesc->absync = ret;
1417 * Enable period interrupt only if it is requested
1419 if (tx_flags & DMA_PREP_INTERRUPT) {
1420 edesc->pset[i].param.opt |= TCINTEN;
1422 /* Also enable intermediate interrupts if necessary */
1423 if (use_intermediate)
1424 edesc->pset[i].param.opt |= ITCINTEN;
1428 /* Place the cyclic channel to highest priority queue */
1429 if (!echan->tc)
1430 edma_assign_channel_eventq(echan, EVENTQ_0);
1432 return vchan_tx_prep(&echan->vchan, &edesc->vdesc, tx_flags);
1435 static void edma_completion_handler(struct edma_chan *echan)
1437 struct device *dev = echan->vchan.chan.device->dev;
1438 struct edma_desc *edesc;
1440 spin_lock(&echan->vchan.lock);
1441 edesc = echan->edesc;
1442 if (edesc) {
1443 if (edesc->cyclic) {
1444 vchan_cyclic_callback(&edesc->vdesc);
1445 spin_unlock(&echan->vchan.lock);
1446 return;
1447 } else if (edesc->processed == edesc->pset_nr) {
1448 edesc->residue = 0;
1449 edma_stop(echan);
1450 vchan_cookie_complete(&edesc->vdesc);
1451 echan->edesc = NULL;
1453 dev_dbg(dev, "Transfer completed on channel %d\n",
1454 echan->ch_num);
1455 } else {
1456 dev_dbg(dev, "Sub transfer completed on channel %d\n",
1457 echan->ch_num);
1459 edma_pause(echan);
1461 /* Update statistics for tx_status */
1462 edesc->residue -= edesc->sg_len;
1463 edesc->residue_stat = edesc->residue;
1464 edesc->processed_stat = edesc->processed;
1466 edma_execute(echan);
1469 spin_unlock(&echan->vchan.lock);
1472 /* eDMA interrupt handler */
1473 static irqreturn_t dma_irq_handler(int irq, void *data)
1475 struct edma_cc *ecc = data;
1476 int ctlr;
1477 u32 sh_ier;
1478 u32 sh_ipr;
1479 u32 bank;
1481 ctlr = ecc->id;
1482 if (ctlr < 0)
1483 return IRQ_NONE;
1485 dev_vdbg(ecc->dev, "dma_irq_handler\n");
1487 sh_ipr = edma_shadow0_read_array(ecc, SH_IPR, 0);
1488 if (!sh_ipr) {
1489 sh_ipr = edma_shadow0_read_array(ecc, SH_IPR, 1);
1490 if (!sh_ipr)
1491 return IRQ_NONE;
1492 sh_ier = edma_shadow0_read_array(ecc, SH_IER, 1);
1493 bank = 1;
1494 } else {
1495 sh_ier = edma_shadow0_read_array(ecc, SH_IER, 0);
1496 bank = 0;
1499 do {
1500 u32 slot;
1501 u32 channel;
1503 slot = __ffs(sh_ipr);
1504 sh_ipr &= ~(BIT(slot));
1506 if (sh_ier & BIT(slot)) {
1507 channel = (bank << 5) | slot;
1508 /* Clear the corresponding IPR bits */
1509 edma_shadow0_write_array(ecc, SH_ICR, bank, BIT(slot));
1510 edma_completion_handler(&ecc->slave_chans[channel]);
1512 } while (sh_ipr);
1514 edma_shadow0_write(ecc, SH_IEVAL, 1);
1515 return IRQ_HANDLED;
1518 static void edma_error_handler(struct edma_chan *echan)
1520 struct edma_cc *ecc = echan->ecc;
1521 struct device *dev = echan->vchan.chan.device->dev;
1522 struct edmacc_param p;
1523 int err;
1525 if (!echan->edesc)
1526 return;
1528 spin_lock(&echan->vchan.lock);
1530 err = edma_read_slot(ecc, echan->slot[0], &p);
1533 * Issue later based on missed flag which will be sure
1534 * to happen as:
1535 * (1) we finished transmitting an intermediate slot and
1536 * edma_execute is coming up.
1537 * (2) or we finished current transfer and issue will
1538 * call edma_execute.
1540 * Important note: issuing can be dangerous here and
1541 * lead to some nasty recursion when we are in a NULL
1542 * slot. So we avoid doing so and set the missed flag.
1544 if (err || (p.a_b_cnt == 0 && p.ccnt == 0)) {
1545 dev_dbg(dev, "Error on null slot, setting miss\n");
1546 echan->missed = 1;
1547 } else {
1549 * The slot is already programmed but the event got
1550 * missed, so its safe to issue it here.
1552 dev_dbg(dev, "Missed event, TRIGGERING\n");
1553 edma_clean_channel(echan);
1554 edma_stop(echan);
1555 edma_start(echan);
1556 edma_trigger_channel(echan);
1558 spin_unlock(&echan->vchan.lock);
1561 static inline bool edma_error_pending(struct edma_cc *ecc)
1563 if (edma_read_array(ecc, EDMA_EMR, 0) ||
1564 edma_read_array(ecc, EDMA_EMR, 1) ||
1565 edma_read(ecc, EDMA_QEMR) || edma_read(ecc, EDMA_CCERR))
1566 return true;
1568 return false;
1571 /* eDMA error interrupt handler */
1572 static irqreturn_t dma_ccerr_handler(int irq, void *data)
1574 struct edma_cc *ecc = data;
1575 int i, j;
1576 int ctlr;
1577 unsigned int cnt = 0;
1578 unsigned int val;
1580 ctlr = ecc->id;
1581 if (ctlr < 0)
1582 return IRQ_NONE;
1584 dev_vdbg(ecc->dev, "dma_ccerr_handler\n");
1586 if (!edma_error_pending(ecc)) {
1588 * The registers indicate no pending error event but the irq
1589 * handler has been called.
1590 * Ask eDMA to re-evaluate the error registers.
1592 dev_err(ecc->dev, "%s: Error interrupt without error event!\n",
1593 __func__);
1594 edma_write(ecc, EDMA_EEVAL, 1);
1595 return IRQ_NONE;
1598 while (1) {
1599 /* Event missed register(s) */
1600 for (j = 0; j < 2; j++) {
1601 unsigned long emr;
1603 val = edma_read_array(ecc, EDMA_EMR, j);
1604 if (!val)
1605 continue;
1607 dev_dbg(ecc->dev, "EMR%d 0x%08x\n", j, val);
1608 emr = val;
1609 for (i = find_next_bit(&emr, 32, 0); i < 32;
1610 i = find_next_bit(&emr, 32, i + 1)) {
1611 int k = (j << 5) + i;
1613 /* Clear the corresponding EMR bits */
1614 edma_write_array(ecc, EDMA_EMCR, j, BIT(i));
1615 /* Clear any SER */
1616 edma_shadow0_write_array(ecc, SH_SECR, j,
1617 BIT(i));
1618 edma_error_handler(&ecc->slave_chans[k]);
1622 val = edma_read(ecc, EDMA_QEMR);
1623 if (val) {
1624 dev_dbg(ecc->dev, "QEMR 0x%02x\n", val);
1625 /* Not reported, just clear the interrupt reason. */
1626 edma_write(ecc, EDMA_QEMCR, val);
1627 edma_shadow0_write(ecc, SH_QSECR, val);
1630 val = edma_read(ecc, EDMA_CCERR);
1631 if (val) {
1632 dev_warn(ecc->dev, "CCERR 0x%08x\n", val);
1633 /* Not reported, just clear the interrupt reason. */
1634 edma_write(ecc, EDMA_CCERRCLR, val);
1637 if (!edma_error_pending(ecc))
1638 break;
1639 cnt++;
1640 if (cnt > 10)
1641 break;
1643 edma_write(ecc, EDMA_EEVAL, 1);
1644 return IRQ_HANDLED;
1647 /* Alloc channel resources */
1648 static int edma_alloc_chan_resources(struct dma_chan *chan)
1650 struct edma_chan *echan = to_edma_chan(chan);
1651 struct edma_cc *ecc = echan->ecc;
1652 struct device *dev = ecc->dev;
1653 enum dma_event_q eventq_no = EVENTQ_DEFAULT;
1654 int ret;
1656 if (echan->tc) {
1657 eventq_no = echan->tc->id;
1658 } else if (ecc->tc_list) {
1659 /* memcpy channel */
1660 echan->tc = &ecc->tc_list[ecc->info->default_queue];
1661 eventq_no = echan->tc->id;
1664 ret = edma_alloc_channel(echan, eventq_no);
1665 if (ret)
1666 return ret;
1668 echan->slot[0] = edma_alloc_slot(ecc, echan->ch_num);
1669 if (echan->slot[0] < 0) {
1670 dev_err(dev, "Entry slot allocation failed for channel %u\n",
1671 EDMA_CHAN_SLOT(echan->ch_num));
1672 ret = echan->slot[0];
1673 goto err_slot;
1676 /* Set up channel -> slot mapping for the entry slot */
1677 edma_set_chmap(echan, echan->slot[0]);
1678 echan->alloced = true;
1680 dev_dbg(dev, "Got eDMA channel %d for virt channel %d (%s trigger)\n",
1681 EDMA_CHAN_SLOT(echan->ch_num), chan->chan_id,
1682 echan->hw_triggered ? "HW" : "SW");
1684 return 0;
1686 err_slot:
1687 edma_free_channel(echan);
1688 return ret;
1691 /* Free channel resources */
1692 static void edma_free_chan_resources(struct dma_chan *chan)
1694 struct edma_chan *echan = to_edma_chan(chan);
1695 struct device *dev = echan->ecc->dev;
1696 int i;
1698 /* Terminate transfers */
1699 edma_stop(echan);
1701 vchan_free_chan_resources(&echan->vchan);
1703 /* Free EDMA PaRAM slots */
1704 for (i = 0; i < EDMA_MAX_SLOTS; i++) {
1705 if (echan->slot[i] >= 0) {
1706 edma_free_slot(echan->ecc, echan->slot[i]);
1707 echan->slot[i] = -1;
1711 /* Set entry slot to the dummy slot */
1712 edma_set_chmap(echan, echan->ecc->dummy_slot);
1714 /* Free EDMA channel */
1715 if (echan->alloced) {
1716 edma_free_channel(echan);
1717 echan->alloced = false;
1720 echan->tc = NULL;
1721 echan->hw_triggered = false;
1723 dev_dbg(dev, "Free eDMA channel %d for virt channel %d\n",
1724 EDMA_CHAN_SLOT(echan->ch_num), chan->chan_id);
1727 /* Send pending descriptor to hardware */
1728 static void edma_issue_pending(struct dma_chan *chan)
1730 struct edma_chan *echan = to_edma_chan(chan);
1731 unsigned long flags;
1733 spin_lock_irqsave(&echan->vchan.lock, flags);
1734 if (vchan_issue_pending(&echan->vchan) && !echan->edesc)
1735 edma_execute(echan);
1736 spin_unlock_irqrestore(&echan->vchan.lock, flags);
1740 * This limit exists to avoid a possible infinite loop when waiting for proof
1741 * that a particular transfer is completed. This limit can be hit if there
1742 * are large bursts to/from slow devices or the CPU is never able to catch
1743 * the DMA hardware idle. On an AM335x transfering 48 bytes from the UART
1744 * RX-FIFO, as many as 55 loops have been seen.
1746 #define EDMA_MAX_TR_WAIT_LOOPS 1000
1748 static u32 edma_residue(struct edma_desc *edesc)
1750 bool dst = edesc->direction == DMA_DEV_TO_MEM;
1751 int loop_count = EDMA_MAX_TR_WAIT_LOOPS;
1752 struct edma_chan *echan = edesc->echan;
1753 struct edma_pset *pset = edesc->pset;
1754 dma_addr_t done, pos, pos_old;
1755 int channel = EDMA_CHAN_SLOT(echan->ch_num);
1756 int idx = EDMA_REG_ARRAY_INDEX(channel);
1757 int ch_bit = EDMA_CHANNEL_BIT(channel);
1758 int event_reg;
1759 int i;
1762 * We always read the dst/src position from the first RamPar
1763 * pset. That's the one which is active now.
1765 pos = edma_get_position(echan->ecc, echan->slot[0], dst);
1768 * "pos" may represent a transfer request that is still being
1769 * processed by the EDMACC or EDMATC. We will busy wait until
1770 * any one of the situations occurs:
1771 * 1. while and event is pending for the channel
1772 * 2. a position updated
1773 * 3. we hit the loop limit
1775 if (is_slave_direction(edesc->direction))
1776 event_reg = SH_ER;
1777 else
1778 event_reg = SH_ESR;
1780 pos_old = pos;
1781 while (edma_shadow0_read_array(echan->ecc, event_reg, idx) & ch_bit) {
1782 pos = edma_get_position(echan->ecc, echan->slot[0], dst);
1783 if (pos != pos_old)
1784 break;
1786 if (!--loop_count) {
1787 dev_dbg_ratelimited(echan->vchan.chan.device->dev,
1788 "%s: timeout waiting for PaRAM update\n",
1789 __func__);
1790 break;
1793 cpu_relax();
1797 * Cyclic is simple. Just subtract pset[0].addr from pos.
1799 * We never update edesc->residue in the cyclic case, so we
1800 * can tell the remaining room to the end of the circular
1801 * buffer.
1803 if (edesc->cyclic) {
1804 done = pos - pset->addr;
1805 edesc->residue_stat = edesc->residue - done;
1806 return edesc->residue_stat;
1810 * If the position is 0, then EDMA loaded the closing dummy slot, the
1811 * transfer is completed
1813 if (!pos)
1814 return 0;
1816 * For SG operation we catch up with the last processed
1817 * status.
1819 pset += edesc->processed_stat;
1821 for (i = edesc->processed_stat; i < edesc->processed; i++, pset++) {
1823 * If we are inside this pset address range, we know
1824 * this is the active one. Get the current delta and
1825 * stop walking the psets.
1827 if (pos >= pset->addr && pos < pset->addr + pset->len)
1828 return edesc->residue_stat - (pos - pset->addr);
1830 /* Otherwise mark it done and update residue_stat. */
1831 edesc->processed_stat++;
1832 edesc->residue_stat -= pset->len;
1834 return edesc->residue_stat;
1837 /* Check request completion status */
1838 static enum dma_status edma_tx_status(struct dma_chan *chan,
1839 dma_cookie_t cookie,
1840 struct dma_tx_state *txstate)
1842 struct edma_chan *echan = to_edma_chan(chan);
1843 struct dma_tx_state txstate_tmp;
1844 enum dma_status ret;
1845 unsigned long flags;
1847 ret = dma_cookie_status(chan, cookie, txstate);
1849 if (ret == DMA_COMPLETE)
1850 return ret;
1852 /* Provide a dummy dma_tx_state for completion checking */
1853 if (!txstate)
1854 txstate = &txstate_tmp;
1856 spin_lock_irqsave(&echan->vchan.lock, flags);
1857 if (echan->edesc && echan->edesc->vdesc.tx.cookie == cookie) {
1858 txstate->residue = edma_residue(echan->edesc);
1859 } else {
1860 struct virt_dma_desc *vdesc = vchan_find_desc(&echan->vchan,
1861 cookie);
1863 if (vdesc)
1864 txstate->residue = to_edma_desc(&vdesc->tx)->residue;
1865 else
1866 txstate->residue = 0;
1870 * Mark the cookie completed if the residue is 0 for non cyclic
1871 * transfers
1873 if (ret != DMA_COMPLETE && !txstate->residue &&
1874 echan->edesc && echan->edesc->polled &&
1875 echan->edesc->vdesc.tx.cookie == cookie) {
1876 edma_stop(echan);
1877 vchan_cookie_complete(&echan->edesc->vdesc);
1878 echan->edesc = NULL;
1879 edma_execute(echan);
1880 ret = DMA_COMPLETE;
1883 spin_unlock_irqrestore(&echan->vchan.lock, flags);
1885 return ret;
1888 static bool edma_is_memcpy_channel(int ch_num, s32 *memcpy_channels)
1890 if (!memcpy_channels)
1891 return false;
1892 while (*memcpy_channels != -1) {
1893 if (*memcpy_channels == ch_num)
1894 return true;
1895 memcpy_channels++;
1897 return false;
1900 #define EDMA_DMA_BUSWIDTHS (BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) | \
1901 BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) | \
1902 BIT(DMA_SLAVE_BUSWIDTH_3_BYTES) | \
1903 BIT(DMA_SLAVE_BUSWIDTH_4_BYTES))
1905 static void edma_dma_init(struct edma_cc *ecc, bool legacy_mode)
1907 struct dma_device *s_ddev = &ecc->dma_slave;
1908 struct dma_device *m_ddev = NULL;
1909 s32 *memcpy_channels = ecc->info->memcpy_channels;
1910 int i, j;
1912 dma_cap_zero(s_ddev->cap_mask);
1913 dma_cap_set(DMA_SLAVE, s_ddev->cap_mask);
1914 dma_cap_set(DMA_CYCLIC, s_ddev->cap_mask);
1915 if (ecc->legacy_mode && !memcpy_channels) {
1916 dev_warn(ecc->dev,
1917 "Legacy memcpy is enabled, things might not work\n");
1919 dma_cap_set(DMA_MEMCPY, s_ddev->cap_mask);
1920 s_ddev->device_prep_dma_memcpy = edma_prep_dma_memcpy;
1921 s_ddev->directions = BIT(DMA_MEM_TO_MEM);
1924 s_ddev->device_prep_slave_sg = edma_prep_slave_sg;
1925 s_ddev->device_prep_dma_cyclic = edma_prep_dma_cyclic;
1926 s_ddev->device_alloc_chan_resources = edma_alloc_chan_resources;
1927 s_ddev->device_free_chan_resources = edma_free_chan_resources;
1928 s_ddev->device_issue_pending = edma_issue_pending;
1929 s_ddev->device_tx_status = edma_tx_status;
1930 s_ddev->device_config = edma_slave_config;
1931 s_ddev->device_pause = edma_dma_pause;
1932 s_ddev->device_resume = edma_dma_resume;
1933 s_ddev->device_terminate_all = edma_terminate_all;
1934 s_ddev->device_synchronize = edma_synchronize;
1936 s_ddev->src_addr_widths = EDMA_DMA_BUSWIDTHS;
1937 s_ddev->dst_addr_widths = EDMA_DMA_BUSWIDTHS;
1938 s_ddev->directions |= (BIT(DMA_DEV_TO_MEM) | BIT(DMA_MEM_TO_DEV));
1939 s_ddev->residue_granularity = DMA_RESIDUE_GRANULARITY_BURST;
1940 s_ddev->max_burst = SZ_32K - 1; /* CIDX: 16bit signed */
1942 s_ddev->dev = ecc->dev;
1943 INIT_LIST_HEAD(&s_ddev->channels);
1945 if (memcpy_channels) {
1946 m_ddev = devm_kzalloc(ecc->dev, sizeof(*m_ddev), GFP_KERNEL);
1947 if (!m_ddev) {
1948 dev_warn(ecc->dev, "memcpy is disabled due to OoM\n");
1949 memcpy_channels = NULL;
1950 goto ch_setup;
1952 ecc->dma_memcpy = m_ddev;
1954 dma_cap_zero(m_ddev->cap_mask);
1955 dma_cap_set(DMA_MEMCPY, m_ddev->cap_mask);
1957 m_ddev->device_prep_dma_memcpy = edma_prep_dma_memcpy;
1958 m_ddev->device_alloc_chan_resources = edma_alloc_chan_resources;
1959 m_ddev->device_free_chan_resources = edma_free_chan_resources;
1960 m_ddev->device_issue_pending = edma_issue_pending;
1961 m_ddev->device_tx_status = edma_tx_status;
1962 m_ddev->device_config = edma_slave_config;
1963 m_ddev->device_pause = edma_dma_pause;
1964 m_ddev->device_resume = edma_dma_resume;
1965 m_ddev->device_terminate_all = edma_terminate_all;
1966 m_ddev->device_synchronize = edma_synchronize;
1968 m_ddev->src_addr_widths = EDMA_DMA_BUSWIDTHS;
1969 m_ddev->dst_addr_widths = EDMA_DMA_BUSWIDTHS;
1970 m_ddev->directions = BIT(DMA_MEM_TO_MEM);
1971 m_ddev->residue_granularity = DMA_RESIDUE_GRANULARITY_BURST;
1973 m_ddev->dev = ecc->dev;
1974 INIT_LIST_HEAD(&m_ddev->channels);
1975 } else if (!ecc->legacy_mode) {
1976 dev_info(ecc->dev, "memcpy is disabled\n");
1979 ch_setup:
1980 for (i = 0; i < ecc->num_channels; i++) {
1981 struct edma_chan *echan = &ecc->slave_chans[i];
1982 echan->ch_num = EDMA_CTLR_CHAN(ecc->id, i);
1983 echan->ecc = ecc;
1984 echan->vchan.desc_free = edma_desc_free;
1986 if (m_ddev && edma_is_memcpy_channel(i, memcpy_channels))
1987 vchan_init(&echan->vchan, m_ddev);
1988 else
1989 vchan_init(&echan->vchan, s_ddev);
1991 INIT_LIST_HEAD(&echan->node);
1992 for (j = 0; j < EDMA_MAX_SLOTS; j++)
1993 echan->slot[j] = -1;
1997 static int edma_setup_from_hw(struct device *dev, struct edma_soc_info *pdata,
1998 struct edma_cc *ecc)
2000 int i;
2001 u32 value, cccfg;
2002 s8 (*queue_priority_map)[2];
2004 /* Decode the eDMA3 configuration from CCCFG register */
2005 cccfg = edma_read(ecc, EDMA_CCCFG);
2007 value = GET_NUM_REGN(cccfg);
2008 ecc->num_region = BIT(value);
2010 value = GET_NUM_DMACH(cccfg);
2011 ecc->num_channels = BIT(value + 1);
2013 value = GET_NUM_QDMACH(cccfg);
2014 ecc->num_qchannels = value * 2;
2016 value = GET_NUM_PAENTRY(cccfg);
2017 ecc->num_slots = BIT(value + 4);
2019 value = GET_NUM_EVQUE(cccfg);
2020 ecc->num_tc = value + 1;
2022 ecc->chmap_exist = (cccfg & CHMAP_EXIST) ? true : false;
2024 dev_dbg(dev, "eDMA3 CC HW configuration (cccfg: 0x%08x):\n", cccfg);
2025 dev_dbg(dev, "num_region: %u\n", ecc->num_region);
2026 dev_dbg(dev, "num_channels: %u\n", ecc->num_channels);
2027 dev_dbg(dev, "num_qchannels: %u\n", ecc->num_qchannels);
2028 dev_dbg(dev, "num_slots: %u\n", ecc->num_slots);
2029 dev_dbg(dev, "num_tc: %u\n", ecc->num_tc);
2030 dev_dbg(dev, "chmap_exist: %s\n", ecc->chmap_exist ? "yes" : "no");
2032 /* Nothing need to be done if queue priority is provided */
2033 if (pdata->queue_priority_mapping)
2034 return 0;
2037 * Configure TC/queue priority as follows:
2038 * Q0 - priority 0
2039 * Q1 - priority 1
2040 * Q2 - priority 2
2041 * ...
2042 * The meaning of priority numbers: 0 highest priority, 7 lowest
2043 * priority. So Q0 is the highest priority queue and the last queue has
2044 * the lowest priority.
2046 queue_priority_map = devm_kcalloc(dev, ecc->num_tc + 1, sizeof(s8),
2047 GFP_KERNEL);
2048 if (!queue_priority_map)
2049 return -ENOMEM;
2051 for (i = 0; i < ecc->num_tc; i++) {
2052 queue_priority_map[i][0] = i;
2053 queue_priority_map[i][1] = i;
2055 queue_priority_map[i][0] = -1;
2056 queue_priority_map[i][1] = -1;
2058 pdata->queue_priority_mapping = queue_priority_map;
2059 /* Default queue has the lowest priority */
2060 pdata->default_queue = i - 1;
2062 return 0;
2065 #if IS_ENABLED(CONFIG_OF)
2066 static int edma_xbar_event_map(struct device *dev, struct edma_soc_info *pdata,
2067 size_t sz)
2069 const char pname[] = "ti,edma-xbar-event-map";
2070 struct resource res;
2071 void __iomem *xbar;
2072 s16 (*xbar_chans)[2];
2073 size_t nelm = sz / sizeof(s16);
2074 u32 shift, offset, mux;
2075 int ret, i;
2077 xbar_chans = devm_kcalloc(dev, nelm + 2, sizeof(s16), GFP_KERNEL);
2078 if (!xbar_chans)
2079 return -ENOMEM;
2081 ret = of_address_to_resource(dev->of_node, 1, &res);
2082 if (ret)
2083 return -ENOMEM;
2085 xbar = devm_ioremap(dev, res.start, resource_size(&res));
2086 if (!xbar)
2087 return -ENOMEM;
2089 ret = of_property_read_u16_array(dev->of_node, pname, (u16 *)xbar_chans,
2090 nelm);
2091 if (ret)
2092 return -EIO;
2094 /* Invalidate last entry for the other user of this mess */
2095 nelm >>= 1;
2096 xbar_chans[nelm][0] = -1;
2097 xbar_chans[nelm][1] = -1;
2099 for (i = 0; i < nelm; i++) {
2100 shift = (xbar_chans[i][1] & 0x03) << 3;
2101 offset = xbar_chans[i][1] & 0xfffffffc;
2102 mux = readl(xbar + offset);
2103 mux &= ~(0xff << shift);
2104 mux |= xbar_chans[i][0] << shift;
2105 writel(mux, (xbar + offset));
2108 pdata->xbar_chans = (const s16 (*)[2]) xbar_chans;
2109 return 0;
2112 static struct edma_soc_info *edma_setup_info_from_dt(struct device *dev,
2113 bool legacy_mode)
2115 struct edma_soc_info *info;
2116 struct property *prop;
2117 int sz, ret;
2119 info = devm_kzalloc(dev, sizeof(struct edma_soc_info), GFP_KERNEL);
2120 if (!info)
2121 return ERR_PTR(-ENOMEM);
2123 if (legacy_mode) {
2124 prop = of_find_property(dev->of_node, "ti,edma-xbar-event-map",
2125 &sz);
2126 if (prop) {
2127 ret = edma_xbar_event_map(dev, info, sz);
2128 if (ret)
2129 return ERR_PTR(ret);
2131 return info;
2134 /* Get the list of channels allocated to be used for memcpy */
2135 prop = of_find_property(dev->of_node, "ti,edma-memcpy-channels", &sz);
2136 if (prop) {
2137 const char pname[] = "ti,edma-memcpy-channels";
2138 size_t nelm = sz / sizeof(s32);
2139 s32 *memcpy_ch;
2141 memcpy_ch = devm_kcalloc(dev, nelm + 1, sizeof(s32),
2142 GFP_KERNEL);
2143 if (!memcpy_ch)
2144 return ERR_PTR(-ENOMEM);
2146 ret = of_property_read_u32_array(dev->of_node, pname,
2147 (u32 *)memcpy_ch, nelm);
2148 if (ret)
2149 return ERR_PTR(ret);
2151 memcpy_ch[nelm] = -1;
2152 info->memcpy_channels = memcpy_ch;
2155 prop = of_find_property(dev->of_node, "ti,edma-reserved-slot-ranges",
2156 &sz);
2157 if (prop) {
2158 const char pname[] = "ti,edma-reserved-slot-ranges";
2159 u32 (*tmp)[2];
2160 s16 (*rsv_slots)[2];
2161 size_t nelm = sz / sizeof(*tmp);
2162 struct edma_rsv_info *rsv_info;
2163 int i;
2165 if (!nelm)
2166 return info;
2168 tmp = kcalloc(nelm, sizeof(*tmp), GFP_KERNEL);
2169 if (!tmp)
2170 return ERR_PTR(-ENOMEM);
2172 rsv_info = devm_kzalloc(dev, sizeof(*rsv_info), GFP_KERNEL);
2173 if (!rsv_info) {
2174 kfree(tmp);
2175 return ERR_PTR(-ENOMEM);
2178 rsv_slots = devm_kcalloc(dev, nelm + 1, sizeof(*rsv_slots),
2179 GFP_KERNEL);
2180 if (!rsv_slots) {
2181 kfree(tmp);
2182 return ERR_PTR(-ENOMEM);
2185 ret = of_property_read_u32_array(dev->of_node, pname,
2186 (u32 *)tmp, nelm * 2);
2187 if (ret) {
2188 kfree(tmp);
2189 return ERR_PTR(ret);
2192 for (i = 0; i < nelm; i++) {
2193 rsv_slots[i][0] = tmp[i][0];
2194 rsv_slots[i][1] = tmp[i][1];
2196 rsv_slots[nelm][0] = -1;
2197 rsv_slots[nelm][1] = -1;
2199 info->rsv = rsv_info;
2200 info->rsv->rsv_slots = (const s16 (*)[2])rsv_slots;
2202 kfree(tmp);
2205 return info;
2208 static struct dma_chan *of_edma_xlate(struct of_phandle_args *dma_spec,
2209 struct of_dma *ofdma)
2211 struct edma_cc *ecc = ofdma->of_dma_data;
2212 struct dma_chan *chan = NULL;
2213 struct edma_chan *echan;
2214 int i;
2216 if (!ecc || dma_spec->args_count < 1)
2217 return NULL;
2219 for (i = 0; i < ecc->num_channels; i++) {
2220 echan = &ecc->slave_chans[i];
2221 if (echan->ch_num == dma_spec->args[0]) {
2222 chan = &echan->vchan.chan;
2223 break;
2227 if (!chan)
2228 return NULL;
2230 if (echan->ecc->legacy_mode && dma_spec->args_count == 1)
2231 goto out;
2233 if (!echan->ecc->legacy_mode && dma_spec->args_count == 2 &&
2234 dma_spec->args[1] < echan->ecc->num_tc) {
2235 echan->tc = &echan->ecc->tc_list[dma_spec->args[1]];
2236 goto out;
2239 return NULL;
2240 out:
2241 /* The channel is going to be used as HW synchronized */
2242 echan->hw_triggered = true;
2243 return dma_get_slave_channel(chan);
2245 #else
2246 static struct edma_soc_info *edma_setup_info_from_dt(struct device *dev,
2247 bool legacy_mode)
2249 return ERR_PTR(-EINVAL);
2252 static struct dma_chan *of_edma_xlate(struct of_phandle_args *dma_spec,
2253 struct of_dma *ofdma)
2255 return NULL;
2257 #endif
2259 static bool edma_filter_fn(struct dma_chan *chan, void *param);
2261 static int edma_probe(struct platform_device *pdev)
2263 struct edma_soc_info *info = pdev->dev.platform_data;
2264 s8 (*queue_priority_mapping)[2];
2265 const s16 (*reserved)[2];
2266 int i, irq;
2267 char *irq_name;
2268 struct resource *mem;
2269 struct device_node *node = pdev->dev.of_node;
2270 struct device *dev = &pdev->dev;
2271 struct edma_cc *ecc;
2272 bool legacy_mode = true;
2273 int ret;
2275 if (node) {
2276 const struct of_device_id *match;
2278 match = of_match_node(edma_of_ids, node);
2279 if (match && (*(u32 *)match->data) == EDMA_BINDING_TPCC)
2280 legacy_mode = false;
2282 info = edma_setup_info_from_dt(dev, legacy_mode);
2283 if (IS_ERR(info)) {
2284 dev_err(dev, "failed to get DT data\n");
2285 return PTR_ERR(info);
2289 if (!info)
2290 return -ENODEV;
2292 ret = dma_set_mask_and_coherent(dev, DMA_BIT_MASK(32));
2293 if (ret)
2294 return ret;
2296 ecc = devm_kzalloc(dev, sizeof(*ecc), GFP_KERNEL);
2297 if (!ecc)
2298 return -ENOMEM;
2300 ecc->dev = dev;
2301 ecc->id = pdev->id;
2302 ecc->legacy_mode = legacy_mode;
2303 /* When booting with DT the pdev->id is -1 */
2304 if (ecc->id < 0)
2305 ecc->id = 0;
2307 mem = platform_get_resource_byname(pdev, IORESOURCE_MEM, "edma3_cc");
2308 if (!mem) {
2309 dev_dbg(dev, "mem resource not found, using index 0\n");
2310 mem = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2311 if (!mem) {
2312 dev_err(dev, "no mem resource?\n");
2313 return -ENODEV;
2316 ecc->base = devm_ioremap_resource(dev, mem);
2317 if (IS_ERR(ecc->base))
2318 return PTR_ERR(ecc->base);
2320 platform_set_drvdata(pdev, ecc);
2322 pm_runtime_enable(dev);
2323 ret = pm_runtime_get_sync(dev);
2324 if (ret < 0) {
2325 dev_err(dev, "pm_runtime_get_sync() failed\n");
2326 pm_runtime_disable(dev);
2327 return ret;
2330 /* Get eDMA3 configuration from IP */
2331 ret = edma_setup_from_hw(dev, info, ecc);
2332 if (ret)
2333 goto err_disable_pm;
2335 /* Allocate memory based on the information we got from the IP */
2336 ecc->slave_chans = devm_kcalloc(dev, ecc->num_channels,
2337 sizeof(*ecc->slave_chans), GFP_KERNEL);
2339 ecc->slot_inuse = devm_kcalloc(dev, BITS_TO_LONGS(ecc->num_slots),
2340 sizeof(unsigned long), GFP_KERNEL);
2342 ecc->channels_mask = devm_kcalloc(dev,
2343 BITS_TO_LONGS(ecc->num_channels),
2344 sizeof(unsigned long), GFP_KERNEL);
2345 if (!ecc->slave_chans || !ecc->slot_inuse || !ecc->channels_mask) {
2346 ret = -ENOMEM;
2347 goto err_disable_pm;
2350 /* Mark all channels available initially */
2351 bitmap_fill(ecc->channels_mask, ecc->num_channels);
2353 ecc->default_queue = info->default_queue;
2355 if (info->rsv) {
2356 /* Set the reserved slots in inuse list */
2357 reserved = info->rsv->rsv_slots;
2358 if (reserved) {
2359 for (i = 0; reserved[i][0] != -1; i++)
2360 bitmap_set(ecc->slot_inuse, reserved[i][0],
2361 reserved[i][1]);
2364 /* Clear channels not usable for Linux */
2365 reserved = info->rsv->rsv_chans;
2366 if (reserved) {
2367 for (i = 0; reserved[i][0] != -1; i++)
2368 bitmap_clear(ecc->channels_mask, reserved[i][0],
2369 reserved[i][1]);
2373 for (i = 0; i < ecc->num_slots; i++) {
2374 /* Reset only unused - not reserved - paRAM slots */
2375 if (!test_bit(i, ecc->slot_inuse))
2376 edma_write_slot(ecc, i, &dummy_paramset);
2379 irq = platform_get_irq_byname(pdev, "edma3_ccint");
2380 if (irq < 0 && node)
2381 irq = irq_of_parse_and_map(node, 0);
2383 if (irq >= 0) {
2384 irq_name = devm_kasprintf(dev, GFP_KERNEL, "%s_ccint",
2385 dev_name(dev));
2386 ret = devm_request_irq(dev, irq, dma_irq_handler, 0, irq_name,
2387 ecc);
2388 if (ret) {
2389 dev_err(dev, "CCINT (%d) failed --> %d\n", irq, ret);
2390 goto err_disable_pm;
2392 ecc->ccint = irq;
2395 irq = platform_get_irq_byname(pdev, "edma3_ccerrint");
2396 if (irq < 0 && node)
2397 irq = irq_of_parse_and_map(node, 2);
2399 if (irq >= 0) {
2400 irq_name = devm_kasprintf(dev, GFP_KERNEL, "%s_ccerrint",
2401 dev_name(dev));
2402 ret = devm_request_irq(dev, irq, dma_ccerr_handler, 0, irq_name,
2403 ecc);
2404 if (ret) {
2405 dev_err(dev, "CCERRINT (%d) failed --> %d\n", irq, ret);
2406 goto err_disable_pm;
2408 ecc->ccerrint = irq;
2411 ecc->dummy_slot = edma_alloc_slot(ecc, EDMA_SLOT_ANY);
2412 if (ecc->dummy_slot < 0) {
2413 dev_err(dev, "Can't allocate PaRAM dummy slot\n");
2414 ret = ecc->dummy_slot;
2415 goto err_disable_pm;
2418 queue_priority_mapping = info->queue_priority_mapping;
2420 if (!ecc->legacy_mode) {
2421 int lowest_priority = 0;
2422 unsigned int array_max;
2423 struct of_phandle_args tc_args;
2425 ecc->tc_list = devm_kcalloc(dev, ecc->num_tc,
2426 sizeof(*ecc->tc_list), GFP_KERNEL);
2427 if (!ecc->tc_list) {
2428 ret = -ENOMEM;
2429 goto err_reg1;
2432 for (i = 0;; i++) {
2433 ret = of_parse_phandle_with_fixed_args(node, "ti,tptcs",
2434 1, i, &tc_args);
2435 if (ret || i == ecc->num_tc)
2436 break;
2438 ecc->tc_list[i].node = tc_args.np;
2439 ecc->tc_list[i].id = i;
2440 queue_priority_mapping[i][1] = tc_args.args[0];
2441 if (queue_priority_mapping[i][1] > lowest_priority) {
2442 lowest_priority = queue_priority_mapping[i][1];
2443 info->default_queue = i;
2447 /* See if we have optional dma-channel-mask array */
2448 array_max = DIV_ROUND_UP(ecc->num_channels, BITS_PER_TYPE(u32));
2449 ret = of_property_read_variable_u32_array(node,
2450 "dma-channel-mask",
2451 (u32 *)ecc->channels_mask,
2452 1, array_max);
2453 if (ret > 0 && ret != array_max)
2454 dev_warn(dev, "dma-channel-mask is not complete.\n");
2455 else if (ret == -EOVERFLOW || ret == -ENODATA)
2456 dev_warn(dev,
2457 "dma-channel-mask is out of range or empty\n");
2460 /* Event queue priority mapping */
2461 for (i = 0; queue_priority_mapping[i][0] != -1; i++)
2462 edma_assign_priority_to_queue(ecc, queue_priority_mapping[i][0],
2463 queue_priority_mapping[i][1]);
2465 edma_write_array2(ecc, EDMA_DRAE, 0, 0, 0x0);
2466 edma_write_array2(ecc, EDMA_DRAE, 0, 1, 0x0);
2467 edma_write_array(ecc, EDMA_QRAE, 0, 0x0);
2469 ecc->info = info;
2471 /* Init the dma device and channels */
2472 edma_dma_init(ecc, legacy_mode);
2474 for (i = 0; i < ecc->num_channels; i++) {
2475 /* Do not touch reserved channels */
2476 if (!test_bit(i, ecc->channels_mask))
2477 continue;
2479 /* Assign all channels to the default queue */
2480 edma_assign_channel_eventq(&ecc->slave_chans[i],
2481 info->default_queue);
2482 /* Set entry slot to the dummy slot */
2483 edma_set_chmap(&ecc->slave_chans[i], ecc->dummy_slot);
2486 ecc->dma_slave.filter.map = info->slave_map;
2487 ecc->dma_slave.filter.mapcnt = info->slavecnt;
2488 ecc->dma_slave.filter.fn = edma_filter_fn;
2490 ret = dma_async_device_register(&ecc->dma_slave);
2491 if (ret) {
2492 dev_err(dev, "slave ddev registration failed (%d)\n", ret);
2493 goto err_reg1;
2496 if (ecc->dma_memcpy) {
2497 ret = dma_async_device_register(ecc->dma_memcpy);
2498 if (ret) {
2499 dev_err(dev, "memcpy ddev registration failed (%d)\n",
2500 ret);
2501 dma_async_device_unregister(&ecc->dma_slave);
2502 goto err_reg1;
2506 if (node)
2507 of_dma_controller_register(node, of_edma_xlate, ecc);
2509 dev_info(dev, "TI EDMA DMA engine driver\n");
2511 return 0;
2513 err_reg1:
2514 edma_free_slot(ecc, ecc->dummy_slot);
2515 err_disable_pm:
2516 pm_runtime_put_sync(dev);
2517 pm_runtime_disable(dev);
2518 return ret;
2521 static void edma_cleanupp_vchan(struct dma_device *dmadev)
2523 struct edma_chan *echan, *_echan;
2525 list_for_each_entry_safe(echan, _echan,
2526 &dmadev->channels, vchan.chan.device_node) {
2527 list_del(&echan->vchan.chan.device_node);
2528 tasklet_kill(&echan->vchan.task);
2532 static int edma_remove(struct platform_device *pdev)
2534 struct device *dev = &pdev->dev;
2535 struct edma_cc *ecc = dev_get_drvdata(dev);
2537 devm_free_irq(dev, ecc->ccint, ecc);
2538 devm_free_irq(dev, ecc->ccerrint, ecc);
2540 edma_cleanupp_vchan(&ecc->dma_slave);
2542 if (dev->of_node)
2543 of_dma_controller_free(dev->of_node);
2544 dma_async_device_unregister(&ecc->dma_slave);
2545 if (ecc->dma_memcpy)
2546 dma_async_device_unregister(ecc->dma_memcpy);
2547 edma_free_slot(ecc, ecc->dummy_slot);
2548 pm_runtime_put_sync(dev);
2549 pm_runtime_disable(dev);
2551 return 0;
2554 #ifdef CONFIG_PM_SLEEP
2555 static int edma_pm_suspend(struct device *dev)
2557 struct edma_cc *ecc = dev_get_drvdata(dev);
2558 struct edma_chan *echan = ecc->slave_chans;
2559 int i;
2561 for (i = 0; i < ecc->num_channels; i++) {
2562 if (echan[i].alloced)
2563 edma_setup_interrupt(&echan[i], false);
2566 return 0;
2569 static int edma_pm_resume(struct device *dev)
2571 struct edma_cc *ecc = dev_get_drvdata(dev);
2572 struct edma_chan *echan = ecc->slave_chans;
2573 int i;
2574 s8 (*queue_priority_mapping)[2];
2576 /* re initialize dummy slot to dummy param set */
2577 edma_write_slot(ecc, ecc->dummy_slot, &dummy_paramset);
2579 queue_priority_mapping = ecc->info->queue_priority_mapping;
2581 /* Event queue priority mapping */
2582 for (i = 0; queue_priority_mapping[i][0] != -1; i++)
2583 edma_assign_priority_to_queue(ecc, queue_priority_mapping[i][0],
2584 queue_priority_mapping[i][1]);
2586 for (i = 0; i < ecc->num_channels; i++) {
2587 if (echan[i].alloced) {
2588 /* ensure access through shadow region 0 */
2589 edma_or_array2(ecc, EDMA_DRAE, 0,
2590 EDMA_REG_ARRAY_INDEX(i),
2591 EDMA_CHANNEL_BIT(i));
2593 edma_setup_interrupt(&echan[i], true);
2595 /* Set up channel -> slot mapping for the entry slot */
2596 edma_set_chmap(&echan[i], echan[i].slot[0]);
2600 return 0;
2602 #endif
2604 static const struct dev_pm_ops edma_pm_ops = {
2605 SET_LATE_SYSTEM_SLEEP_PM_OPS(edma_pm_suspend, edma_pm_resume)
2608 static struct platform_driver edma_driver = {
2609 .probe = edma_probe,
2610 .remove = edma_remove,
2611 .driver = {
2612 .name = "edma",
2613 .pm = &edma_pm_ops,
2614 .of_match_table = edma_of_ids,
2618 static int edma_tptc_probe(struct platform_device *pdev)
2620 pm_runtime_enable(&pdev->dev);
2621 return pm_runtime_get_sync(&pdev->dev);
2624 static struct platform_driver edma_tptc_driver = {
2625 .probe = edma_tptc_probe,
2626 .driver = {
2627 .name = "edma3-tptc",
2628 .of_match_table = edma_tptc_of_ids,
2632 static bool edma_filter_fn(struct dma_chan *chan, void *param)
2634 bool match = false;
2636 if (chan->device->dev->driver == &edma_driver.driver) {
2637 struct edma_chan *echan = to_edma_chan(chan);
2638 unsigned ch_req = *(unsigned *)param;
2639 if (ch_req == echan->ch_num) {
2640 /* The channel is going to be used as HW synchronized */
2641 echan->hw_triggered = true;
2642 match = true;
2645 return match;
2648 static int edma_init(void)
2650 int ret;
2652 ret = platform_driver_register(&edma_tptc_driver);
2653 if (ret)
2654 return ret;
2656 return platform_driver_register(&edma_driver);
2658 subsys_initcall(edma_init);
2660 static void __exit edma_exit(void)
2662 platform_driver_unregister(&edma_driver);
2663 platform_driver_unregister(&edma_tptc_driver);
2665 module_exit(edma_exit);
2667 MODULE_AUTHOR("Matt Porter <matt.porter@linaro.org>");
2668 MODULE_DESCRIPTION("TI EDMA DMA engine driver");
2669 MODULE_LICENSE("GPL v2");