2 * edac_mc kernel module
3 * (C) 2005, 2006 Linux Networx (http://lnxi.com)
4 * This file may be distributed under the terms of the
5 * GNU General Public License.
7 * Written by Thayne Harbaugh
8 * Based on work by Dan Hollis <goemon at anime dot net> and others.
9 * http://www.anime.net/~goemon/linux-ecc/
11 * Modified by Dave Peterson and Doug Thompson
15 #include <linux/module.h>
16 #include <linux/proc_fs.h>
17 #include <linux/kernel.h>
18 #include <linux/types.h>
19 #include <linux/smp.h>
20 #include <linux/init.h>
21 #include <linux/sysctl.h>
22 #include <linux/highmem.h>
23 #include <linux/timer.h>
24 #include <linux/slab.h>
25 #include <linux/jiffies.h>
26 #include <linux/spinlock.h>
27 #include <linux/list.h>
28 #include <linux/ctype.h>
29 #include <linux/edac.h>
30 #include <linux/bitops.h>
31 #include <linux/uaccess.h>
34 #include "edac_module.h"
35 #include <ras/ras_event.h>
37 #ifdef CONFIG_EDAC_ATOMIC_SCRUB
40 #define edac_atomic_scrub(va, size) do { } while (0)
43 int edac_op_state
= EDAC_OPSTATE_INVAL
;
44 EXPORT_SYMBOL_GPL(edac_op_state
);
46 static int edac_report
= EDAC_REPORTING_ENABLED
;
48 /* lock to memory controller's control array */
49 static DEFINE_MUTEX(mem_ctls_mutex
);
50 static LIST_HEAD(mc_devices
);
53 * Used to lock EDAC MC to just one module, avoiding two drivers e. g.
54 * apei/ghes and i7core_edac to be used at the same time.
56 static const char *edac_mc_owner
;
58 int edac_get_report_status(void)
62 EXPORT_SYMBOL_GPL(edac_get_report_status
);
64 void edac_set_report_status(int new)
66 if (new == EDAC_REPORTING_ENABLED
||
67 new == EDAC_REPORTING_DISABLED
||
68 new == EDAC_REPORTING_FORCE
)
71 EXPORT_SYMBOL_GPL(edac_set_report_status
);
73 static int edac_report_set(const char *str
, const struct kernel_param
*kp
)
78 if (!strncmp(str
, "on", 2))
79 edac_report
= EDAC_REPORTING_ENABLED
;
80 else if (!strncmp(str
, "off", 3))
81 edac_report
= EDAC_REPORTING_DISABLED
;
82 else if (!strncmp(str
, "force", 5))
83 edac_report
= EDAC_REPORTING_FORCE
;
88 static int edac_report_get(char *buffer
, const struct kernel_param
*kp
)
92 switch (edac_report
) {
93 case EDAC_REPORTING_ENABLED
:
94 ret
= sprintf(buffer
, "on");
96 case EDAC_REPORTING_DISABLED
:
97 ret
= sprintf(buffer
, "off");
99 case EDAC_REPORTING_FORCE
:
100 ret
= sprintf(buffer
, "force");
110 static const struct kernel_param_ops edac_report_ops
= {
111 .set
= edac_report_set
,
112 .get
= edac_report_get
,
115 module_param_cb(edac_report
, &edac_report_ops
, &edac_report
, 0644);
117 unsigned int edac_dimm_info_location(struct dimm_info
*dimm
, char *buf
,
120 struct mem_ctl_info
*mci
= dimm
->mci
;
124 for (i
= 0; i
< mci
->n_layers
; i
++) {
125 n
= snprintf(p
, len
, "%s %d ",
126 edac_layer_name
[mci
->layers
[i
].type
],
138 #ifdef CONFIG_EDAC_DEBUG
140 static void edac_mc_dump_channel(struct rank_info
*chan
)
142 edac_dbg(4, " channel->chan_idx = %d\n", chan
->chan_idx
);
143 edac_dbg(4, " channel = %p\n", chan
);
144 edac_dbg(4, " channel->csrow = %p\n", chan
->csrow
);
145 edac_dbg(4, " channel->dimm = %p\n", chan
->dimm
);
148 static void edac_mc_dump_dimm(struct dimm_info
*dimm
)
155 edac_dimm_info_location(dimm
, location
, sizeof(location
));
157 edac_dbg(4, "%s%i: %smapped as virtual row %d, chan %d\n",
158 dimm
->mci
->csbased
? "rank" : "dimm",
159 dimm
->idx
, location
, dimm
->csrow
, dimm
->cschannel
);
160 edac_dbg(4, " dimm = %p\n", dimm
);
161 edac_dbg(4, " dimm->label = '%s'\n", dimm
->label
);
162 edac_dbg(4, " dimm->nr_pages = 0x%x\n", dimm
->nr_pages
);
163 edac_dbg(4, " dimm->grain = %d\n", dimm
->grain
);
164 edac_dbg(4, " dimm->nr_pages = 0x%x\n", dimm
->nr_pages
);
167 static void edac_mc_dump_csrow(struct csrow_info
*csrow
)
169 edac_dbg(4, "csrow->csrow_idx = %d\n", csrow
->csrow_idx
);
170 edac_dbg(4, " csrow = %p\n", csrow
);
171 edac_dbg(4, " csrow->first_page = 0x%lx\n", csrow
->first_page
);
172 edac_dbg(4, " csrow->last_page = 0x%lx\n", csrow
->last_page
);
173 edac_dbg(4, " csrow->page_mask = 0x%lx\n", csrow
->page_mask
);
174 edac_dbg(4, " csrow->nr_channels = %d\n", csrow
->nr_channels
);
175 edac_dbg(4, " csrow->channels = %p\n", csrow
->channels
);
176 edac_dbg(4, " csrow->mci = %p\n", csrow
->mci
);
179 static void edac_mc_dump_mci(struct mem_ctl_info
*mci
)
181 edac_dbg(3, "\tmci = %p\n", mci
);
182 edac_dbg(3, "\tmci->mtype_cap = %lx\n", mci
->mtype_cap
);
183 edac_dbg(3, "\tmci->edac_ctl_cap = %lx\n", mci
->edac_ctl_cap
);
184 edac_dbg(3, "\tmci->edac_cap = %lx\n", mci
->edac_cap
);
185 edac_dbg(4, "\tmci->edac_check = %p\n", mci
->edac_check
);
186 edac_dbg(3, "\tmci->nr_csrows = %d, csrows = %p\n",
187 mci
->nr_csrows
, mci
->csrows
);
188 edac_dbg(3, "\tmci->nr_dimms = %d, dimms = %p\n",
189 mci
->tot_dimms
, mci
->dimms
);
190 edac_dbg(3, "\tdev = %p\n", mci
->pdev
);
191 edac_dbg(3, "\tmod_name:ctl_name = %s:%s\n",
192 mci
->mod_name
, mci
->ctl_name
);
193 edac_dbg(3, "\tpvt_info = %p\n\n", mci
->pvt_info
);
196 #endif /* CONFIG_EDAC_DEBUG */
198 const char * const edac_mem_types
[] = {
199 [MEM_EMPTY
] = "Empty",
200 [MEM_RESERVED
] = "Reserved",
201 [MEM_UNKNOWN
] = "Unknown",
205 [MEM_SDR
] = "Unbuffered-SDR",
206 [MEM_RDR
] = "Registered-SDR",
207 [MEM_DDR
] = "Unbuffered-DDR",
208 [MEM_RDDR
] = "Registered-DDR",
210 [MEM_DDR2
] = "Unbuffered-DDR2",
211 [MEM_FB_DDR2
] = "FullyBuffered-DDR2",
212 [MEM_RDDR2
] = "Registered-DDR2",
214 [MEM_DDR3
] = "Unbuffered-DDR3",
215 [MEM_RDDR3
] = "Registered-DDR3",
216 [MEM_LRDDR3
] = "Load-Reduced-DDR3-RAM",
217 [MEM_DDR4
] = "Unbuffered-DDR4",
218 [MEM_RDDR4
] = "Registered-DDR4",
219 [MEM_LRDDR4
] = "Load-Reduced-DDR4-RAM",
220 [MEM_NVDIMM
] = "Non-volatile-RAM",
222 EXPORT_SYMBOL_GPL(edac_mem_types
);
225 * edac_align_ptr - Prepares the pointer offsets for a single-shot allocation
226 * @p: pointer to a pointer with the memory offset to be used. At
227 * return, this will be incremented to point to the next offset
228 * @size: Size of the data structure to be reserved
229 * @n_elems: Number of elements that should be reserved
231 * If 'size' is a constant, the compiler will optimize this whole function
232 * down to either a no-op or the addition of a constant to the value of '*p'.
234 * The 'p' pointer is absolutely needed to keep the proper advancing
235 * further in memory to the proper offsets when allocating the struct along
236 * with its embedded structs, as edac_device_alloc_ctl_info() does it
237 * above, for example.
239 * At return, the pointer 'p' will be incremented to be used on a next call
242 void *edac_align_ptr(void **p
, unsigned int size
, int n_elems
)
244 unsigned int align
, r
;
247 *p
+= size
* n_elems
;
250 * 'p' can possibly be an unaligned item X such that sizeof(X) is
251 * 'size'. Adjust 'p' so that its alignment is at least as
252 * stringent as what the compiler would provide for X and return
253 * the aligned result.
254 * Here we assume that the alignment of a "long long" is the most
255 * stringent alignment that the compiler will ever provide by default.
256 * As far as I know, this is a reasonable assumption.
258 if (size
> sizeof(long))
259 align
= sizeof(long long);
260 else if (size
> sizeof(int))
261 align
= sizeof(long);
262 else if (size
> sizeof(short))
264 else if (size
> sizeof(char))
265 align
= sizeof(short);
269 r
= (unsigned long)p
% align
;
276 return (void *)(((unsigned long)ptr
) + align
- r
);
279 static void _edac_mc_free(struct mem_ctl_info
*mci
)
281 struct csrow_info
*csr
;
285 for (i
= 0; i
< mci
->tot_dimms
; i
++)
286 kfree(mci
->dimms
[i
]);
291 for (row
= 0; row
< mci
->nr_csrows
; row
++) {
292 csr
= mci
->csrows
[row
];
297 for (chn
= 0; chn
< mci
->num_cschannel
; chn
++)
298 kfree(csr
->channels
[chn
]);
299 kfree(csr
->channels
);
308 struct mem_ctl_info
*edac_mc_alloc(unsigned int mc_num
,
309 unsigned int n_layers
,
310 struct edac_mc_layer
*layers
,
313 struct mem_ctl_info
*mci
;
314 struct edac_mc_layer
*layer
;
315 struct csrow_info
*csr
;
316 struct rank_info
*chan
;
317 struct dimm_info
*dimm
;
318 u32
*ce_per_layer
[EDAC_MAX_LAYERS
], *ue_per_layer
[EDAC_MAX_LAYERS
];
319 unsigned int pos
[EDAC_MAX_LAYERS
];
320 unsigned int idx
, size
, tot_dimms
= 1, count
= 1;
321 unsigned int tot_csrows
= 1, tot_channels
= 1, tot_errcount
= 0;
322 void *pvt
, *p
, *ptr
= NULL
;
323 int i
, j
, row
, chn
, n
, len
;
324 bool per_rank
= false;
326 if (WARN_ON(n_layers
> EDAC_MAX_LAYERS
|| n_layers
== 0))
330 * Calculate the total amount of dimms and csrows/cschannels while
331 * in the old API emulation mode
333 for (idx
= 0; idx
< n_layers
; idx
++) {
334 tot_dimms
*= layers
[idx
].size
;
336 if (layers
[idx
].is_virt_csrow
)
337 tot_csrows
*= layers
[idx
].size
;
339 tot_channels
*= layers
[idx
].size
;
341 if (layers
[idx
].type
== EDAC_MC_LAYER_CHIP_SELECT
)
345 /* Figure out the offsets of the various items from the start of an mc
346 * structure. We want the alignment of each item to be at least as
347 * stringent as what the compiler would provide if we could simply
348 * hardcode everything into a single struct.
350 mci
= edac_align_ptr(&ptr
, sizeof(*mci
), 1);
351 layer
= edac_align_ptr(&ptr
, sizeof(*layer
), n_layers
);
352 for (i
= 0; i
< n_layers
; i
++) {
353 count
*= layers
[i
].size
;
354 edac_dbg(4, "errcount layer %d size %d\n", i
, count
);
355 ce_per_layer
[i
] = edac_align_ptr(&ptr
, sizeof(u32
), count
);
356 ue_per_layer
[i
] = edac_align_ptr(&ptr
, sizeof(u32
), count
);
357 tot_errcount
+= 2 * count
;
360 edac_dbg(4, "allocating %d error counters\n", tot_errcount
);
361 pvt
= edac_align_ptr(&ptr
, sz_pvt
, 1);
362 size
= ((unsigned long)pvt
) + sz_pvt
;
364 edac_dbg(1, "allocating %u bytes for mci data (%d %s, %d csrows/channels)\n",
367 per_rank
? "ranks" : "dimms",
368 tot_csrows
* tot_channels
);
370 mci
= kzalloc(size
, GFP_KERNEL
);
374 /* Adjust pointers so they point within the memory we just allocated
375 * rather than an imaginary chunk of memory located at address 0.
377 layer
= (struct edac_mc_layer
*)(((char *)mci
) + ((unsigned long)layer
));
378 for (i
= 0; i
< n_layers
; i
++) {
379 mci
->ce_per_layer
[i
] = (u32
*)((char *)mci
+ ((unsigned long)ce_per_layer
[i
]));
380 mci
->ue_per_layer
[i
] = (u32
*)((char *)mci
+ ((unsigned long)ue_per_layer
[i
]));
382 pvt
= sz_pvt
? (((char *)mci
) + ((unsigned long)pvt
)) : NULL
;
384 /* setup index and various internal pointers */
385 mci
->mc_idx
= mc_num
;
386 mci
->tot_dimms
= tot_dimms
;
388 mci
->n_layers
= n_layers
;
390 memcpy(mci
->layers
, layers
, sizeof(*layer
) * n_layers
);
391 mci
->nr_csrows
= tot_csrows
;
392 mci
->num_cschannel
= tot_channels
;
393 mci
->csbased
= per_rank
;
396 * Alocate and fill the csrow/channels structs
398 mci
->csrows
= kcalloc(tot_csrows
, sizeof(*mci
->csrows
), GFP_KERNEL
);
401 for (row
= 0; row
< tot_csrows
; row
++) {
402 csr
= kzalloc(sizeof(**mci
->csrows
), GFP_KERNEL
);
405 mci
->csrows
[row
] = csr
;
406 csr
->csrow_idx
= row
;
408 csr
->nr_channels
= tot_channels
;
409 csr
->channels
= kcalloc(tot_channels
, sizeof(*csr
->channels
),
414 for (chn
= 0; chn
< tot_channels
; chn
++) {
415 chan
= kzalloc(sizeof(**csr
->channels
), GFP_KERNEL
);
418 csr
->channels
[chn
] = chan
;
419 chan
->chan_idx
= chn
;
425 * Allocate and fill the dimm structs
427 mci
->dimms
= kcalloc(tot_dimms
, sizeof(*mci
->dimms
), GFP_KERNEL
);
431 memset(&pos
, 0, sizeof(pos
));
434 for (idx
= 0; idx
< tot_dimms
; idx
++) {
435 chan
= mci
->csrows
[row
]->channels
[chn
];
437 dimm
= kzalloc(sizeof(**mci
->dimms
), GFP_KERNEL
);
440 mci
->dimms
[idx
] = dimm
;
445 * Copy DIMM location and initialize it.
447 len
= sizeof(dimm
->label
);
449 n
= snprintf(p
, len
, "mc#%u", mc_num
);
452 for (j
= 0; j
< n_layers
; j
++) {
453 n
= snprintf(p
, len
, "%s#%u",
454 edac_layer_name
[layers
[j
].type
],
458 dimm
->location
[j
] = pos
[j
];
464 /* Link it to the csrows old API data */
467 dimm
->cschannel
= chn
;
469 /* Increment csrow location */
470 if (layers
[0].is_virt_csrow
) {
472 if (chn
== tot_channels
) {
478 if (row
== tot_csrows
) {
484 /* Increment dimm location */
485 for (j
= n_layers
- 1; j
>= 0; j
--) {
487 if (pos
[j
] < layers
[j
].size
)
493 mci
->op_state
= OP_ALLOC
;
502 EXPORT_SYMBOL_GPL(edac_mc_alloc
);
504 void edac_mc_free(struct mem_ctl_info
*mci
)
508 /* If we're not yet registered with sysfs free only what was allocated
509 * in edac_mc_alloc().
511 if (!device_is_registered(&mci
->dev
)) {
516 /* the mci instance is freed here, when the sysfs object is dropped */
517 edac_unregister_sysfs(mci
);
519 EXPORT_SYMBOL_GPL(edac_mc_free
);
521 bool edac_has_mcs(void)
525 mutex_lock(&mem_ctls_mutex
);
527 ret
= list_empty(&mc_devices
);
529 mutex_unlock(&mem_ctls_mutex
);
533 EXPORT_SYMBOL_GPL(edac_has_mcs
);
535 /* Caller must hold mem_ctls_mutex */
536 static struct mem_ctl_info
*__find_mci_by_dev(struct device
*dev
)
538 struct mem_ctl_info
*mci
;
539 struct list_head
*item
;
543 list_for_each(item
, &mc_devices
) {
544 mci
= list_entry(item
, struct mem_ctl_info
, link
);
546 if (mci
->pdev
== dev
)
556 * scan list of controllers looking for the one that manages
558 * @dev: pointer to a struct device related with the MCI
560 struct mem_ctl_info
*find_mci_by_dev(struct device
*dev
)
562 struct mem_ctl_info
*ret
;
564 mutex_lock(&mem_ctls_mutex
);
565 ret
= __find_mci_by_dev(dev
);
566 mutex_unlock(&mem_ctls_mutex
);
570 EXPORT_SYMBOL_GPL(find_mci_by_dev
);
573 * edac_mc_workq_function
574 * performs the operation scheduled by a workq request
576 static void edac_mc_workq_function(struct work_struct
*work_req
)
578 struct delayed_work
*d_work
= to_delayed_work(work_req
);
579 struct mem_ctl_info
*mci
= to_edac_mem_ctl_work(d_work
);
581 mutex_lock(&mem_ctls_mutex
);
583 if (mci
->op_state
!= OP_RUNNING_POLL
) {
584 mutex_unlock(&mem_ctls_mutex
);
588 if (edac_op_state
== EDAC_OPSTATE_POLL
)
589 mci
->edac_check(mci
);
591 mutex_unlock(&mem_ctls_mutex
);
593 /* Queue ourselves again. */
594 edac_queue_work(&mci
->work
, msecs_to_jiffies(edac_mc_get_poll_msec()));
598 * edac_mc_reset_delay_period(unsigned long value)
600 * user space has updated our poll period value, need to
601 * reset our workq delays
603 void edac_mc_reset_delay_period(unsigned long value
)
605 struct mem_ctl_info
*mci
;
606 struct list_head
*item
;
608 mutex_lock(&mem_ctls_mutex
);
610 list_for_each(item
, &mc_devices
) {
611 mci
= list_entry(item
, struct mem_ctl_info
, link
);
613 if (mci
->op_state
== OP_RUNNING_POLL
)
614 edac_mod_work(&mci
->work
, value
);
616 mutex_unlock(&mem_ctls_mutex
);
621 /* Return 0 on success, 1 on failure.
622 * Before calling this function, caller must
623 * assign a unique value to mci->mc_idx.
627 * called with the mem_ctls_mutex lock held
629 static int add_mc_to_global_list(struct mem_ctl_info
*mci
)
631 struct list_head
*item
, *insert_before
;
632 struct mem_ctl_info
*p
;
634 insert_before
= &mc_devices
;
636 p
= __find_mci_by_dev(mci
->pdev
);
637 if (unlikely(p
!= NULL
))
640 list_for_each(item
, &mc_devices
) {
641 p
= list_entry(item
, struct mem_ctl_info
, link
);
643 if (p
->mc_idx
>= mci
->mc_idx
) {
644 if (unlikely(p
->mc_idx
== mci
->mc_idx
))
647 insert_before
= item
;
652 list_add_tail_rcu(&mci
->link
, insert_before
);
656 edac_printk(KERN_WARNING
, EDAC_MC
,
657 "%s (%s) %s %s already assigned %d\n", dev_name(p
->pdev
),
658 edac_dev_name(mci
), p
->mod_name
, p
->ctl_name
, p
->mc_idx
);
662 edac_printk(KERN_WARNING
, EDAC_MC
,
663 "bug in low-level driver: attempt to assign\n"
664 " duplicate mc_idx %d in %s()\n", p
->mc_idx
, __func__
);
668 static int del_mc_from_global_list(struct mem_ctl_info
*mci
)
670 list_del_rcu(&mci
->link
);
672 /* these are for safe removal of devices from global list while
673 * NMI handlers may be traversing list
676 INIT_LIST_HEAD(&mci
->link
);
678 return list_empty(&mc_devices
);
681 struct mem_ctl_info
*edac_mc_find(int idx
)
683 struct mem_ctl_info
*mci
;
684 struct list_head
*item
;
686 mutex_lock(&mem_ctls_mutex
);
688 list_for_each(item
, &mc_devices
) {
689 mci
= list_entry(item
, struct mem_ctl_info
, link
);
690 if (mci
->mc_idx
== idx
)
696 mutex_unlock(&mem_ctls_mutex
);
699 EXPORT_SYMBOL(edac_mc_find
);
701 const char *edac_get_owner(void)
703 return edac_mc_owner
;
705 EXPORT_SYMBOL_GPL(edac_get_owner
);
707 /* FIXME - should a warning be printed if no error detection? correction? */
708 int edac_mc_add_mc_with_groups(struct mem_ctl_info
*mci
,
709 const struct attribute_group
**groups
)
714 #ifdef CONFIG_EDAC_DEBUG
715 if (edac_debug_level
>= 3)
716 edac_mc_dump_mci(mci
);
718 if (edac_debug_level
>= 4) {
719 struct dimm_info
*dimm
;
722 for (i
= 0; i
< mci
->nr_csrows
; i
++) {
723 struct csrow_info
*csrow
= mci
->csrows
[i
];
727 for (j
= 0; j
< csrow
->nr_channels
; j
++)
728 nr_pages
+= csrow
->channels
[j
]->dimm
->nr_pages
;
731 edac_mc_dump_csrow(csrow
);
732 for (j
= 0; j
< csrow
->nr_channels
; j
++)
733 if (csrow
->channels
[j
]->dimm
->nr_pages
)
734 edac_mc_dump_channel(csrow
->channels
[j
]);
737 mci_for_each_dimm(mci
, dimm
)
738 edac_mc_dump_dimm(dimm
);
741 mutex_lock(&mem_ctls_mutex
);
743 if (edac_mc_owner
&& edac_mc_owner
!= mci
->mod_name
) {
748 if (add_mc_to_global_list(mci
))
751 /* set load time so that error rate can be tracked */
752 mci
->start_time
= jiffies
;
754 mci
->bus
= edac_get_sysfs_subsys();
756 if (edac_create_sysfs_mci_device(mci
, groups
)) {
757 edac_mc_printk(mci
, KERN_WARNING
,
758 "failed to create sysfs device\n");
762 if (mci
->edac_check
) {
763 mci
->op_state
= OP_RUNNING_POLL
;
765 INIT_DELAYED_WORK(&mci
->work
, edac_mc_workq_function
);
766 edac_queue_work(&mci
->work
, msecs_to_jiffies(edac_mc_get_poll_msec()));
769 mci
->op_state
= OP_RUNNING_INTERRUPT
;
772 /* Report action taken */
773 edac_mc_printk(mci
, KERN_INFO
,
774 "Giving out device to module %s controller %s: DEV %s (%s)\n",
775 mci
->mod_name
, mci
->ctl_name
, mci
->dev_name
,
776 edac_op_state_to_string(mci
->op_state
));
778 edac_mc_owner
= mci
->mod_name
;
780 mutex_unlock(&mem_ctls_mutex
);
784 del_mc_from_global_list(mci
);
787 mutex_unlock(&mem_ctls_mutex
);
790 EXPORT_SYMBOL_GPL(edac_mc_add_mc_with_groups
);
792 struct mem_ctl_info
*edac_mc_del_mc(struct device
*dev
)
794 struct mem_ctl_info
*mci
;
798 mutex_lock(&mem_ctls_mutex
);
800 /* find the requested mci struct in the global list */
801 mci
= __find_mci_by_dev(dev
);
803 mutex_unlock(&mem_ctls_mutex
);
807 /* mark MCI offline: */
808 mci
->op_state
= OP_OFFLINE
;
810 if (del_mc_from_global_list(mci
))
811 edac_mc_owner
= NULL
;
813 mutex_unlock(&mem_ctls_mutex
);
816 edac_stop_work(&mci
->work
);
818 /* remove from sysfs */
819 edac_remove_sysfs_mci_device(mci
);
821 edac_printk(KERN_INFO
, EDAC_MC
,
822 "Removed device %d for %s %s: DEV %s\n", mci
->mc_idx
,
823 mci
->mod_name
, mci
->ctl_name
, edac_dev_name(mci
));
827 EXPORT_SYMBOL_GPL(edac_mc_del_mc
);
829 static void edac_mc_scrub_block(unsigned long page
, unsigned long offset
,
834 unsigned long flags
= 0;
838 /* ECC error page was not in our memory. Ignore it. */
839 if (!pfn_valid(page
))
842 /* Find the actual page structure then map it and fix */
843 pg
= pfn_to_page(page
);
846 local_irq_save(flags
);
848 virt_addr
= kmap_atomic(pg
);
850 /* Perform architecture specific atomic scrub operation */
851 edac_atomic_scrub(virt_addr
+ offset
, size
);
853 /* Unmap and complete */
854 kunmap_atomic(virt_addr
);
857 local_irq_restore(flags
);
860 /* FIXME - should return -1 */
861 int edac_mc_find_csrow_by_page(struct mem_ctl_info
*mci
, unsigned long page
)
863 struct csrow_info
**csrows
= mci
->csrows
;
866 edac_dbg(1, "MC%d: 0x%lx\n", mci
->mc_idx
, page
);
869 for (i
= 0; i
< mci
->nr_csrows
; i
++) {
870 struct csrow_info
*csrow
= csrows
[i
];
872 for (j
= 0; j
< csrow
->nr_channels
; j
++) {
873 struct dimm_info
*dimm
= csrow
->channels
[j
]->dimm
;
879 edac_dbg(3, "MC%d: first(0x%lx) page(0x%lx) last(0x%lx) mask(0x%lx)\n",
881 csrow
->first_page
, page
, csrow
->last_page
,
884 if ((page
>= csrow
->first_page
) &&
885 (page
<= csrow
->last_page
) &&
886 ((page
& csrow
->page_mask
) ==
887 (csrow
->first_page
& csrow
->page_mask
))) {
894 edac_mc_printk(mci
, KERN_ERR
,
895 "could not look up page error address %lx\n",
896 (unsigned long)page
);
900 EXPORT_SYMBOL_GPL(edac_mc_find_csrow_by_page
);
902 const char *edac_layer_name
[] = {
903 [EDAC_MC_LAYER_BRANCH
] = "branch",
904 [EDAC_MC_LAYER_CHANNEL
] = "channel",
905 [EDAC_MC_LAYER_SLOT
] = "slot",
906 [EDAC_MC_LAYER_CHIP_SELECT
] = "csrow",
907 [EDAC_MC_LAYER_ALL_MEM
] = "memory",
909 EXPORT_SYMBOL_GPL(edac_layer_name
);
911 static void edac_inc_ce_error(struct mem_ctl_info
*mci
,
912 bool enable_per_layer_report
,
913 const int pos
[EDAC_MAX_LAYERS
],
920 if (!enable_per_layer_report
) {
921 mci
->ce_noinfo_count
+= count
;
925 for (i
= 0; i
< mci
->n_layers
; i
++) {
929 mci
->ce_per_layer
[i
][index
] += count
;
931 if (i
< mci
->n_layers
- 1)
932 index
*= mci
->layers
[i
+ 1].size
;
936 static void edac_inc_ue_error(struct mem_ctl_info
*mci
,
937 bool enable_per_layer_report
,
938 const int pos
[EDAC_MAX_LAYERS
],
945 if (!enable_per_layer_report
) {
946 mci
->ue_noinfo_count
+= count
;
950 for (i
= 0; i
< mci
->n_layers
; i
++) {
954 mci
->ue_per_layer
[i
][index
] += count
;
956 if (i
< mci
->n_layers
- 1)
957 index
*= mci
->layers
[i
+ 1].size
;
961 static void edac_ce_error(struct mem_ctl_info
*mci
,
962 const u16 error_count
,
963 const int pos
[EDAC_MAX_LAYERS
],
965 const char *location
,
968 const char *other_detail
,
969 const bool enable_per_layer_report
,
970 const unsigned long page_frame_number
,
971 const unsigned long offset_in_page
,
974 unsigned long remapped_page
;
980 if (edac_mc_get_log_ce()) {
981 if (other_detail
&& *other_detail
)
982 edac_mc_printk(mci
, KERN_WARNING
,
983 "%d CE %s%son %s (%s %s - %s)\n",
984 error_count
, msg
, msg_aux
, label
,
985 location
, detail
, other_detail
);
987 edac_mc_printk(mci
, KERN_WARNING
,
988 "%d CE %s%son %s (%s %s)\n",
989 error_count
, msg
, msg_aux
, label
,
992 edac_inc_ce_error(mci
, enable_per_layer_report
, pos
, error_count
);
994 if (mci
->scrub_mode
== SCRUB_SW_SRC
) {
996 * Some memory controllers (called MCs below) can remap
997 * memory so that it is still available at a different
998 * address when PCI devices map into memory.
999 * MC's that can't do this, lose the memory where PCI
1000 * devices are mapped. This mapping is MC-dependent
1001 * and so we call back into the MC driver for it to
1002 * map the MC page to a physical (CPU) page which can
1003 * then be mapped to a virtual page - which can then
1006 remapped_page
= mci
->ctl_page_to_phys
?
1007 mci
->ctl_page_to_phys(mci
, page_frame_number
) :
1010 edac_mc_scrub_block(remapped_page
,
1011 offset_in_page
, grain
);
1015 static void edac_ue_error(struct mem_ctl_info
*mci
,
1016 const u16 error_count
,
1017 const int pos
[EDAC_MAX_LAYERS
],
1019 const char *location
,
1022 const char *other_detail
,
1023 const bool enable_per_layer_report
)
1030 if (edac_mc_get_log_ue()) {
1031 if (other_detail
&& *other_detail
)
1032 edac_mc_printk(mci
, KERN_WARNING
,
1033 "%d UE %s%son %s (%s %s - %s)\n",
1034 error_count
, msg
, msg_aux
, label
,
1035 location
, detail
, other_detail
);
1037 edac_mc_printk(mci
, KERN_WARNING
,
1038 "%d UE %s%son %s (%s %s)\n",
1039 error_count
, msg
, msg_aux
, label
,
1043 if (edac_mc_get_panic_on_ue()) {
1044 if (other_detail
&& *other_detail
)
1045 panic("UE %s%son %s (%s%s - %s)\n",
1046 msg
, msg_aux
, label
, location
, detail
, other_detail
);
1048 panic("UE %s%son %s (%s%s)\n",
1049 msg
, msg_aux
, label
, location
, detail
);
1052 edac_inc_ue_error(mci
, enable_per_layer_report
, pos
, error_count
);
1055 void edac_raw_mc_handle_error(const enum hw_event_mc_err_type type
,
1056 struct mem_ctl_info
*mci
,
1057 struct edac_raw_error_desc
*e
)
1060 int pos
[EDAC_MAX_LAYERS
] = { e
->top_layer
, e
->mid_layer
, e
->low_layer
};
1063 /* Sanity-check driver-supplied grain value. */
1064 if (WARN_ON_ONCE(!e
->grain
))
1067 grain_bits
= fls_long(e
->grain
- 1);
1069 /* Report the error via the trace interface */
1070 if (IS_ENABLED(CONFIG_RAS
))
1071 trace_mc_event(type
, e
->msg
, e
->label
, e
->error_count
,
1072 mci
->mc_idx
, e
->top_layer
, e
->mid_layer
,
1074 (e
->page_frame_number
<< PAGE_SHIFT
) | e
->offset_in_page
,
1075 grain_bits
, e
->syndrome
, e
->other_detail
);
1077 /* Memory type dependent details about the error */
1078 if (type
== HW_EVENT_ERR_CORRECTED
) {
1079 snprintf(detail
, sizeof(detail
),
1080 "page:0x%lx offset:0x%lx grain:%ld syndrome:0x%lx",
1081 e
->page_frame_number
, e
->offset_in_page
,
1082 e
->grain
, e
->syndrome
);
1083 edac_ce_error(mci
, e
->error_count
, pos
, e
->msg
, e
->location
, e
->label
,
1084 detail
, e
->other_detail
, e
->enable_per_layer_report
,
1085 e
->page_frame_number
, e
->offset_in_page
, e
->grain
);
1087 snprintf(detail
, sizeof(detail
),
1088 "page:0x%lx offset:0x%lx grain:%ld",
1089 e
->page_frame_number
, e
->offset_in_page
, e
->grain
);
1091 edac_ue_error(mci
, e
->error_count
, pos
, e
->msg
, e
->location
, e
->label
,
1092 detail
, e
->other_detail
, e
->enable_per_layer_report
);
1097 EXPORT_SYMBOL_GPL(edac_raw_mc_handle_error
);
1099 void edac_mc_handle_error(const enum hw_event_mc_err_type type
,
1100 struct mem_ctl_info
*mci
,
1101 const u16 error_count
,
1102 const unsigned long page_frame_number
,
1103 const unsigned long offset_in_page
,
1104 const unsigned long syndrome
,
1105 const int top_layer
,
1106 const int mid_layer
,
1107 const int low_layer
,
1109 const char *other_detail
)
1111 struct dimm_info
*dimm
;
1113 int row
= -1, chan
= -1;
1114 int pos
[EDAC_MAX_LAYERS
] = { top_layer
, mid_layer
, low_layer
};
1115 int i
, n_labels
= 0;
1116 struct edac_raw_error_desc
*e
= &mci
->error_desc
;
1118 edac_dbg(3, "MC%d\n", mci
->mc_idx
);
1120 /* Fills the error report buffer */
1121 memset(e
, 0, sizeof (*e
));
1122 e
->error_count
= error_count
;
1123 e
->top_layer
= top_layer
;
1124 e
->mid_layer
= mid_layer
;
1125 e
->low_layer
= low_layer
;
1126 e
->page_frame_number
= page_frame_number
;
1127 e
->offset_in_page
= offset_in_page
;
1128 e
->syndrome
= syndrome
;
1130 e
->other_detail
= other_detail
;
1133 * Check if the event report is consistent and if the memory
1134 * location is known. If it is known, enable_per_layer_report will be
1135 * true, the DIMM(s) label info will be filled and the per-layer
1136 * error counters will be incremented.
1138 for (i
= 0; i
< mci
->n_layers
; i
++) {
1139 if (pos
[i
] >= (int)mci
->layers
[i
].size
) {
1141 edac_mc_printk(mci
, KERN_ERR
,
1142 "INTERNAL ERROR: %s value is out of range (%d >= %d)\n",
1143 edac_layer_name
[mci
->layers
[i
].type
],
1144 pos
[i
], mci
->layers
[i
].size
);
1146 * Instead of just returning it, let's use what's
1147 * known about the error. The increment routines and
1148 * the DIMM filter logic will do the right thing by
1149 * pointing the likely damaged DIMMs.
1154 e
->enable_per_layer_report
= true;
1158 * Get the dimm label/grain that applies to the match criteria.
1159 * As the error algorithm may not be able to point to just one memory
1160 * stick, the logic here will get all possible labels that could
1161 * pottentially be affected by the error.
1162 * On FB-DIMM memory controllers, for uncorrected errors, it is common
1163 * to have only the MC channel and the MC dimm (also called "branch")
1164 * but the channel is not known, as the memory is arranged in pairs,
1165 * where each memory belongs to a separate channel within the same
1171 mci_for_each_dimm(mci
, dimm
) {
1172 if (top_layer
>= 0 && top_layer
!= dimm
->location
[0])
1174 if (mid_layer
>= 0 && mid_layer
!= dimm
->location
[1])
1176 if (low_layer
>= 0 && low_layer
!= dimm
->location
[2])
1179 /* get the max grain, over the error match range */
1180 if (dimm
->grain
> e
->grain
)
1181 e
->grain
= dimm
->grain
;
1184 * If the error is memory-controller wide, there's no need to
1185 * seek for the affected DIMMs because the whole
1186 * channel/memory controller/... may be affected.
1187 * Also, don't show errors for empty DIMM slots.
1189 if (!e
->enable_per_layer_report
|| !dimm
->nr_pages
)
1192 if (n_labels
>= EDAC_MAX_LABELS
) {
1193 e
->enable_per_layer_report
= false;
1197 if (p
!= e
->label
) {
1198 strcpy(p
, OTHER_LABEL
);
1199 p
+= strlen(OTHER_LABEL
);
1201 strcpy(p
, dimm
->label
);
1205 * get csrow/channel of the DIMM, in order to allow
1206 * incrementing the compat API counters
1208 edac_dbg(4, "%s csrows map: (%d,%d)\n",
1209 mci
->csbased
? "rank" : "dimm",
1210 dimm
->csrow
, dimm
->cschannel
);
1213 else if (row
>= 0 && row
!= dimm
->csrow
)
1217 chan
= dimm
->cschannel
;
1218 else if (chan
>= 0 && chan
!= dimm
->cschannel
)
1222 if (!e
->enable_per_layer_report
) {
1223 strcpy(e
->label
, "any memory");
1225 edac_dbg(4, "csrow/channel to increment: (%d,%d)\n", row
, chan
);
1227 strcpy(e
->label
, "unknown memory");
1228 if (type
== HW_EVENT_ERR_CORRECTED
) {
1230 mci
->csrows
[row
]->ce_count
+= error_count
;
1232 mci
->csrows
[row
]->channels
[chan
]->ce_count
+= error_count
;
1236 mci
->csrows
[row
]->ue_count
+= error_count
;
1239 /* Fill the RAM location data */
1242 for (i
= 0; i
< mci
->n_layers
; i
++) {
1246 p
+= sprintf(p
, "%s:%d ",
1247 edac_layer_name
[mci
->layers
[i
].type
],
1250 if (p
> e
->location
)
1253 edac_raw_mc_handle_error(type
, mci
, e
);
1255 EXPORT_SYMBOL_GPL(edac_mc_handle_error
);