treewide: remove redundant IS_ERR() before error code check
[linux/fpc-iii.git] / drivers / edac / edac_mc.c
blob7243b88f81d889cd64b63d3ffc7991d05ab5e1a2
1 /*
2 * edac_mc kernel module
3 * (C) 2005, 2006 Linux Networx (http://lnxi.com)
4 * This file may be distributed under the terms of the
5 * GNU General Public License.
7 * Written by Thayne Harbaugh
8 * Based on work by Dan Hollis <goemon at anime dot net> and others.
9 * http://www.anime.net/~goemon/linux-ecc/
11 * Modified by Dave Peterson and Doug Thompson
15 #include <linux/module.h>
16 #include <linux/proc_fs.h>
17 #include <linux/kernel.h>
18 #include <linux/types.h>
19 #include <linux/smp.h>
20 #include <linux/init.h>
21 #include <linux/sysctl.h>
22 #include <linux/highmem.h>
23 #include <linux/timer.h>
24 #include <linux/slab.h>
25 #include <linux/jiffies.h>
26 #include <linux/spinlock.h>
27 #include <linux/list.h>
28 #include <linux/ctype.h>
29 #include <linux/edac.h>
30 #include <linux/bitops.h>
31 #include <linux/uaccess.h>
32 #include <asm/page.h>
33 #include "edac_mc.h"
34 #include "edac_module.h"
35 #include <ras/ras_event.h>
37 #ifdef CONFIG_EDAC_ATOMIC_SCRUB
38 #include <asm/edac.h>
39 #else
40 #define edac_atomic_scrub(va, size) do { } while (0)
41 #endif
43 int edac_op_state = EDAC_OPSTATE_INVAL;
44 EXPORT_SYMBOL_GPL(edac_op_state);
46 static int edac_report = EDAC_REPORTING_ENABLED;
48 /* lock to memory controller's control array */
49 static DEFINE_MUTEX(mem_ctls_mutex);
50 static LIST_HEAD(mc_devices);
53 * Used to lock EDAC MC to just one module, avoiding two drivers e. g.
54 * apei/ghes and i7core_edac to be used at the same time.
56 static const char *edac_mc_owner;
58 int edac_get_report_status(void)
60 return edac_report;
62 EXPORT_SYMBOL_GPL(edac_get_report_status);
64 void edac_set_report_status(int new)
66 if (new == EDAC_REPORTING_ENABLED ||
67 new == EDAC_REPORTING_DISABLED ||
68 new == EDAC_REPORTING_FORCE)
69 edac_report = new;
71 EXPORT_SYMBOL_GPL(edac_set_report_status);
73 static int edac_report_set(const char *str, const struct kernel_param *kp)
75 if (!str)
76 return -EINVAL;
78 if (!strncmp(str, "on", 2))
79 edac_report = EDAC_REPORTING_ENABLED;
80 else if (!strncmp(str, "off", 3))
81 edac_report = EDAC_REPORTING_DISABLED;
82 else if (!strncmp(str, "force", 5))
83 edac_report = EDAC_REPORTING_FORCE;
85 return 0;
88 static int edac_report_get(char *buffer, const struct kernel_param *kp)
90 int ret = 0;
92 switch (edac_report) {
93 case EDAC_REPORTING_ENABLED:
94 ret = sprintf(buffer, "on");
95 break;
96 case EDAC_REPORTING_DISABLED:
97 ret = sprintf(buffer, "off");
98 break;
99 case EDAC_REPORTING_FORCE:
100 ret = sprintf(buffer, "force");
101 break;
102 default:
103 ret = -EINVAL;
104 break;
107 return ret;
110 static const struct kernel_param_ops edac_report_ops = {
111 .set = edac_report_set,
112 .get = edac_report_get,
115 module_param_cb(edac_report, &edac_report_ops, &edac_report, 0644);
117 unsigned int edac_dimm_info_location(struct dimm_info *dimm, char *buf,
118 unsigned int len)
120 struct mem_ctl_info *mci = dimm->mci;
121 int i, n, count = 0;
122 char *p = buf;
124 for (i = 0; i < mci->n_layers; i++) {
125 n = snprintf(p, len, "%s %d ",
126 edac_layer_name[mci->layers[i].type],
127 dimm->location[i]);
128 p += n;
129 len -= n;
130 count += n;
131 if (!len)
132 break;
135 return count;
138 #ifdef CONFIG_EDAC_DEBUG
140 static void edac_mc_dump_channel(struct rank_info *chan)
142 edac_dbg(4, " channel->chan_idx = %d\n", chan->chan_idx);
143 edac_dbg(4, " channel = %p\n", chan);
144 edac_dbg(4, " channel->csrow = %p\n", chan->csrow);
145 edac_dbg(4, " channel->dimm = %p\n", chan->dimm);
148 static void edac_mc_dump_dimm(struct dimm_info *dimm)
150 char location[80];
152 if (!dimm->nr_pages)
153 return;
155 edac_dimm_info_location(dimm, location, sizeof(location));
157 edac_dbg(4, "%s%i: %smapped as virtual row %d, chan %d\n",
158 dimm->mci->csbased ? "rank" : "dimm",
159 dimm->idx, location, dimm->csrow, dimm->cschannel);
160 edac_dbg(4, " dimm = %p\n", dimm);
161 edac_dbg(4, " dimm->label = '%s'\n", dimm->label);
162 edac_dbg(4, " dimm->nr_pages = 0x%x\n", dimm->nr_pages);
163 edac_dbg(4, " dimm->grain = %d\n", dimm->grain);
164 edac_dbg(4, " dimm->nr_pages = 0x%x\n", dimm->nr_pages);
167 static void edac_mc_dump_csrow(struct csrow_info *csrow)
169 edac_dbg(4, "csrow->csrow_idx = %d\n", csrow->csrow_idx);
170 edac_dbg(4, " csrow = %p\n", csrow);
171 edac_dbg(4, " csrow->first_page = 0x%lx\n", csrow->first_page);
172 edac_dbg(4, " csrow->last_page = 0x%lx\n", csrow->last_page);
173 edac_dbg(4, " csrow->page_mask = 0x%lx\n", csrow->page_mask);
174 edac_dbg(4, " csrow->nr_channels = %d\n", csrow->nr_channels);
175 edac_dbg(4, " csrow->channels = %p\n", csrow->channels);
176 edac_dbg(4, " csrow->mci = %p\n", csrow->mci);
179 static void edac_mc_dump_mci(struct mem_ctl_info *mci)
181 edac_dbg(3, "\tmci = %p\n", mci);
182 edac_dbg(3, "\tmci->mtype_cap = %lx\n", mci->mtype_cap);
183 edac_dbg(3, "\tmci->edac_ctl_cap = %lx\n", mci->edac_ctl_cap);
184 edac_dbg(3, "\tmci->edac_cap = %lx\n", mci->edac_cap);
185 edac_dbg(4, "\tmci->edac_check = %p\n", mci->edac_check);
186 edac_dbg(3, "\tmci->nr_csrows = %d, csrows = %p\n",
187 mci->nr_csrows, mci->csrows);
188 edac_dbg(3, "\tmci->nr_dimms = %d, dimms = %p\n",
189 mci->tot_dimms, mci->dimms);
190 edac_dbg(3, "\tdev = %p\n", mci->pdev);
191 edac_dbg(3, "\tmod_name:ctl_name = %s:%s\n",
192 mci->mod_name, mci->ctl_name);
193 edac_dbg(3, "\tpvt_info = %p\n\n", mci->pvt_info);
196 #endif /* CONFIG_EDAC_DEBUG */
198 const char * const edac_mem_types[] = {
199 [MEM_EMPTY] = "Empty",
200 [MEM_RESERVED] = "Reserved",
201 [MEM_UNKNOWN] = "Unknown",
202 [MEM_FPM] = "FPM",
203 [MEM_EDO] = "EDO",
204 [MEM_BEDO] = "BEDO",
205 [MEM_SDR] = "Unbuffered-SDR",
206 [MEM_RDR] = "Registered-SDR",
207 [MEM_DDR] = "Unbuffered-DDR",
208 [MEM_RDDR] = "Registered-DDR",
209 [MEM_RMBS] = "RMBS",
210 [MEM_DDR2] = "Unbuffered-DDR2",
211 [MEM_FB_DDR2] = "FullyBuffered-DDR2",
212 [MEM_RDDR2] = "Registered-DDR2",
213 [MEM_XDR] = "XDR",
214 [MEM_DDR3] = "Unbuffered-DDR3",
215 [MEM_RDDR3] = "Registered-DDR3",
216 [MEM_LRDDR3] = "Load-Reduced-DDR3-RAM",
217 [MEM_DDR4] = "Unbuffered-DDR4",
218 [MEM_RDDR4] = "Registered-DDR4",
219 [MEM_LRDDR4] = "Load-Reduced-DDR4-RAM",
220 [MEM_NVDIMM] = "Non-volatile-RAM",
222 EXPORT_SYMBOL_GPL(edac_mem_types);
225 * edac_align_ptr - Prepares the pointer offsets for a single-shot allocation
226 * @p: pointer to a pointer with the memory offset to be used. At
227 * return, this will be incremented to point to the next offset
228 * @size: Size of the data structure to be reserved
229 * @n_elems: Number of elements that should be reserved
231 * If 'size' is a constant, the compiler will optimize this whole function
232 * down to either a no-op or the addition of a constant to the value of '*p'.
234 * The 'p' pointer is absolutely needed to keep the proper advancing
235 * further in memory to the proper offsets when allocating the struct along
236 * with its embedded structs, as edac_device_alloc_ctl_info() does it
237 * above, for example.
239 * At return, the pointer 'p' will be incremented to be used on a next call
240 * to this function.
242 void *edac_align_ptr(void **p, unsigned int size, int n_elems)
244 unsigned int align, r;
245 void *ptr = *p;
247 *p += size * n_elems;
250 * 'p' can possibly be an unaligned item X such that sizeof(X) is
251 * 'size'. Adjust 'p' so that its alignment is at least as
252 * stringent as what the compiler would provide for X and return
253 * the aligned result.
254 * Here we assume that the alignment of a "long long" is the most
255 * stringent alignment that the compiler will ever provide by default.
256 * As far as I know, this is a reasonable assumption.
258 if (size > sizeof(long))
259 align = sizeof(long long);
260 else if (size > sizeof(int))
261 align = sizeof(long);
262 else if (size > sizeof(short))
263 align = sizeof(int);
264 else if (size > sizeof(char))
265 align = sizeof(short);
266 else
267 return (char *)ptr;
269 r = (unsigned long)p % align;
271 if (r == 0)
272 return (char *)ptr;
274 *p += align - r;
276 return (void *)(((unsigned long)ptr) + align - r);
279 static void _edac_mc_free(struct mem_ctl_info *mci)
281 struct csrow_info *csr;
282 int i, chn, row;
284 if (mci->dimms) {
285 for (i = 0; i < mci->tot_dimms; i++)
286 kfree(mci->dimms[i]);
287 kfree(mci->dimms);
290 if (mci->csrows) {
291 for (row = 0; row < mci->nr_csrows; row++) {
292 csr = mci->csrows[row];
293 if (!csr)
294 continue;
296 if (csr->channels) {
297 for (chn = 0; chn < mci->num_cschannel; chn++)
298 kfree(csr->channels[chn]);
299 kfree(csr->channels);
301 kfree(csr);
303 kfree(mci->csrows);
305 kfree(mci);
308 struct mem_ctl_info *edac_mc_alloc(unsigned int mc_num,
309 unsigned int n_layers,
310 struct edac_mc_layer *layers,
311 unsigned int sz_pvt)
313 struct mem_ctl_info *mci;
314 struct edac_mc_layer *layer;
315 struct csrow_info *csr;
316 struct rank_info *chan;
317 struct dimm_info *dimm;
318 u32 *ce_per_layer[EDAC_MAX_LAYERS], *ue_per_layer[EDAC_MAX_LAYERS];
319 unsigned int pos[EDAC_MAX_LAYERS];
320 unsigned int idx, size, tot_dimms = 1, count = 1;
321 unsigned int tot_csrows = 1, tot_channels = 1, tot_errcount = 0;
322 void *pvt, *p, *ptr = NULL;
323 int i, j, row, chn, n, len;
324 bool per_rank = false;
326 if (WARN_ON(n_layers > EDAC_MAX_LAYERS || n_layers == 0))
327 return NULL;
330 * Calculate the total amount of dimms and csrows/cschannels while
331 * in the old API emulation mode
333 for (idx = 0; idx < n_layers; idx++) {
334 tot_dimms *= layers[idx].size;
336 if (layers[idx].is_virt_csrow)
337 tot_csrows *= layers[idx].size;
338 else
339 tot_channels *= layers[idx].size;
341 if (layers[idx].type == EDAC_MC_LAYER_CHIP_SELECT)
342 per_rank = true;
345 /* Figure out the offsets of the various items from the start of an mc
346 * structure. We want the alignment of each item to be at least as
347 * stringent as what the compiler would provide if we could simply
348 * hardcode everything into a single struct.
350 mci = edac_align_ptr(&ptr, sizeof(*mci), 1);
351 layer = edac_align_ptr(&ptr, sizeof(*layer), n_layers);
352 for (i = 0; i < n_layers; i++) {
353 count *= layers[i].size;
354 edac_dbg(4, "errcount layer %d size %d\n", i, count);
355 ce_per_layer[i] = edac_align_ptr(&ptr, sizeof(u32), count);
356 ue_per_layer[i] = edac_align_ptr(&ptr, sizeof(u32), count);
357 tot_errcount += 2 * count;
360 edac_dbg(4, "allocating %d error counters\n", tot_errcount);
361 pvt = edac_align_ptr(&ptr, sz_pvt, 1);
362 size = ((unsigned long)pvt) + sz_pvt;
364 edac_dbg(1, "allocating %u bytes for mci data (%d %s, %d csrows/channels)\n",
365 size,
366 tot_dimms,
367 per_rank ? "ranks" : "dimms",
368 tot_csrows * tot_channels);
370 mci = kzalloc(size, GFP_KERNEL);
371 if (mci == NULL)
372 return NULL;
374 /* Adjust pointers so they point within the memory we just allocated
375 * rather than an imaginary chunk of memory located at address 0.
377 layer = (struct edac_mc_layer *)(((char *)mci) + ((unsigned long)layer));
378 for (i = 0; i < n_layers; i++) {
379 mci->ce_per_layer[i] = (u32 *)((char *)mci + ((unsigned long)ce_per_layer[i]));
380 mci->ue_per_layer[i] = (u32 *)((char *)mci + ((unsigned long)ue_per_layer[i]));
382 pvt = sz_pvt ? (((char *)mci) + ((unsigned long)pvt)) : NULL;
384 /* setup index and various internal pointers */
385 mci->mc_idx = mc_num;
386 mci->tot_dimms = tot_dimms;
387 mci->pvt_info = pvt;
388 mci->n_layers = n_layers;
389 mci->layers = layer;
390 memcpy(mci->layers, layers, sizeof(*layer) * n_layers);
391 mci->nr_csrows = tot_csrows;
392 mci->num_cschannel = tot_channels;
393 mci->csbased = per_rank;
396 * Alocate and fill the csrow/channels structs
398 mci->csrows = kcalloc(tot_csrows, sizeof(*mci->csrows), GFP_KERNEL);
399 if (!mci->csrows)
400 goto error;
401 for (row = 0; row < tot_csrows; row++) {
402 csr = kzalloc(sizeof(**mci->csrows), GFP_KERNEL);
403 if (!csr)
404 goto error;
405 mci->csrows[row] = csr;
406 csr->csrow_idx = row;
407 csr->mci = mci;
408 csr->nr_channels = tot_channels;
409 csr->channels = kcalloc(tot_channels, sizeof(*csr->channels),
410 GFP_KERNEL);
411 if (!csr->channels)
412 goto error;
414 for (chn = 0; chn < tot_channels; chn++) {
415 chan = kzalloc(sizeof(**csr->channels), GFP_KERNEL);
416 if (!chan)
417 goto error;
418 csr->channels[chn] = chan;
419 chan->chan_idx = chn;
420 chan->csrow = csr;
425 * Allocate and fill the dimm structs
427 mci->dimms = kcalloc(tot_dimms, sizeof(*mci->dimms), GFP_KERNEL);
428 if (!mci->dimms)
429 goto error;
431 memset(&pos, 0, sizeof(pos));
432 row = 0;
433 chn = 0;
434 for (idx = 0; idx < tot_dimms; idx++) {
435 chan = mci->csrows[row]->channels[chn];
437 dimm = kzalloc(sizeof(**mci->dimms), GFP_KERNEL);
438 if (!dimm)
439 goto error;
440 mci->dimms[idx] = dimm;
441 dimm->mci = mci;
442 dimm->idx = idx;
445 * Copy DIMM location and initialize it.
447 len = sizeof(dimm->label);
448 p = dimm->label;
449 n = snprintf(p, len, "mc#%u", mc_num);
450 p += n;
451 len -= n;
452 for (j = 0; j < n_layers; j++) {
453 n = snprintf(p, len, "%s#%u",
454 edac_layer_name[layers[j].type],
455 pos[j]);
456 p += n;
457 len -= n;
458 dimm->location[j] = pos[j];
460 if (len <= 0)
461 break;
464 /* Link it to the csrows old API data */
465 chan->dimm = dimm;
466 dimm->csrow = row;
467 dimm->cschannel = chn;
469 /* Increment csrow location */
470 if (layers[0].is_virt_csrow) {
471 chn++;
472 if (chn == tot_channels) {
473 chn = 0;
474 row++;
476 } else {
477 row++;
478 if (row == tot_csrows) {
479 row = 0;
480 chn++;
484 /* Increment dimm location */
485 for (j = n_layers - 1; j >= 0; j--) {
486 pos[j]++;
487 if (pos[j] < layers[j].size)
488 break;
489 pos[j] = 0;
493 mci->op_state = OP_ALLOC;
495 return mci;
497 error:
498 _edac_mc_free(mci);
500 return NULL;
502 EXPORT_SYMBOL_GPL(edac_mc_alloc);
504 void edac_mc_free(struct mem_ctl_info *mci)
506 edac_dbg(1, "\n");
508 /* If we're not yet registered with sysfs free only what was allocated
509 * in edac_mc_alloc().
511 if (!device_is_registered(&mci->dev)) {
512 _edac_mc_free(mci);
513 return;
516 /* the mci instance is freed here, when the sysfs object is dropped */
517 edac_unregister_sysfs(mci);
519 EXPORT_SYMBOL_GPL(edac_mc_free);
521 bool edac_has_mcs(void)
523 bool ret;
525 mutex_lock(&mem_ctls_mutex);
527 ret = list_empty(&mc_devices);
529 mutex_unlock(&mem_ctls_mutex);
531 return !ret;
533 EXPORT_SYMBOL_GPL(edac_has_mcs);
535 /* Caller must hold mem_ctls_mutex */
536 static struct mem_ctl_info *__find_mci_by_dev(struct device *dev)
538 struct mem_ctl_info *mci;
539 struct list_head *item;
541 edac_dbg(3, "\n");
543 list_for_each(item, &mc_devices) {
544 mci = list_entry(item, struct mem_ctl_info, link);
546 if (mci->pdev == dev)
547 return mci;
550 return NULL;
554 * find_mci_by_dev
556 * scan list of controllers looking for the one that manages
557 * the 'dev' device
558 * @dev: pointer to a struct device related with the MCI
560 struct mem_ctl_info *find_mci_by_dev(struct device *dev)
562 struct mem_ctl_info *ret;
564 mutex_lock(&mem_ctls_mutex);
565 ret = __find_mci_by_dev(dev);
566 mutex_unlock(&mem_ctls_mutex);
568 return ret;
570 EXPORT_SYMBOL_GPL(find_mci_by_dev);
573 * edac_mc_workq_function
574 * performs the operation scheduled by a workq request
576 static void edac_mc_workq_function(struct work_struct *work_req)
578 struct delayed_work *d_work = to_delayed_work(work_req);
579 struct mem_ctl_info *mci = to_edac_mem_ctl_work(d_work);
581 mutex_lock(&mem_ctls_mutex);
583 if (mci->op_state != OP_RUNNING_POLL) {
584 mutex_unlock(&mem_ctls_mutex);
585 return;
588 if (edac_op_state == EDAC_OPSTATE_POLL)
589 mci->edac_check(mci);
591 mutex_unlock(&mem_ctls_mutex);
593 /* Queue ourselves again. */
594 edac_queue_work(&mci->work, msecs_to_jiffies(edac_mc_get_poll_msec()));
598 * edac_mc_reset_delay_period(unsigned long value)
600 * user space has updated our poll period value, need to
601 * reset our workq delays
603 void edac_mc_reset_delay_period(unsigned long value)
605 struct mem_ctl_info *mci;
606 struct list_head *item;
608 mutex_lock(&mem_ctls_mutex);
610 list_for_each(item, &mc_devices) {
611 mci = list_entry(item, struct mem_ctl_info, link);
613 if (mci->op_state == OP_RUNNING_POLL)
614 edac_mod_work(&mci->work, value);
616 mutex_unlock(&mem_ctls_mutex);
621 /* Return 0 on success, 1 on failure.
622 * Before calling this function, caller must
623 * assign a unique value to mci->mc_idx.
625 * locking model:
627 * called with the mem_ctls_mutex lock held
629 static int add_mc_to_global_list(struct mem_ctl_info *mci)
631 struct list_head *item, *insert_before;
632 struct mem_ctl_info *p;
634 insert_before = &mc_devices;
636 p = __find_mci_by_dev(mci->pdev);
637 if (unlikely(p != NULL))
638 goto fail0;
640 list_for_each(item, &mc_devices) {
641 p = list_entry(item, struct mem_ctl_info, link);
643 if (p->mc_idx >= mci->mc_idx) {
644 if (unlikely(p->mc_idx == mci->mc_idx))
645 goto fail1;
647 insert_before = item;
648 break;
652 list_add_tail_rcu(&mci->link, insert_before);
653 return 0;
655 fail0:
656 edac_printk(KERN_WARNING, EDAC_MC,
657 "%s (%s) %s %s already assigned %d\n", dev_name(p->pdev),
658 edac_dev_name(mci), p->mod_name, p->ctl_name, p->mc_idx);
659 return 1;
661 fail1:
662 edac_printk(KERN_WARNING, EDAC_MC,
663 "bug in low-level driver: attempt to assign\n"
664 " duplicate mc_idx %d in %s()\n", p->mc_idx, __func__);
665 return 1;
668 static int del_mc_from_global_list(struct mem_ctl_info *mci)
670 list_del_rcu(&mci->link);
672 /* these are for safe removal of devices from global list while
673 * NMI handlers may be traversing list
675 synchronize_rcu();
676 INIT_LIST_HEAD(&mci->link);
678 return list_empty(&mc_devices);
681 struct mem_ctl_info *edac_mc_find(int idx)
683 struct mem_ctl_info *mci;
684 struct list_head *item;
686 mutex_lock(&mem_ctls_mutex);
688 list_for_each(item, &mc_devices) {
689 mci = list_entry(item, struct mem_ctl_info, link);
690 if (mci->mc_idx == idx)
691 goto unlock;
694 mci = NULL;
695 unlock:
696 mutex_unlock(&mem_ctls_mutex);
697 return mci;
699 EXPORT_SYMBOL(edac_mc_find);
701 const char *edac_get_owner(void)
703 return edac_mc_owner;
705 EXPORT_SYMBOL_GPL(edac_get_owner);
707 /* FIXME - should a warning be printed if no error detection? correction? */
708 int edac_mc_add_mc_with_groups(struct mem_ctl_info *mci,
709 const struct attribute_group **groups)
711 int ret = -EINVAL;
712 edac_dbg(0, "\n");
714 #ifdef CONFIG_EDAC_DEBUG
715 if (edac_debug_level >= 3)
716 edac_mc_dump_mci(mci);
718 if (edac_debug_level >= 4) {
719 struct dimm_info *dimm;
720 int i;
722 for (i = 0; i < mci->nr_csrows; i++) {
723 struct csrow_info *csrow = mci->csrows[i];
724 u32 nr_pages = 0;
725 int j;
727 for (j = 0; j < csrow->nr_channels; j++)
728 nr_pages += csrow->channels[j]->dimm->nr_pages;
729 if (!nr_pages)
730 continue;
731 edac_mc_dump_csrow(csrow);
732 for (j = 0; j < csrow->nr_channels; j++)
733 if (csrow->channels[j]->dimm->nr_pages)
734 edac_mc_dump_channel(csrow->channels[j]);
737 mci_for_each_dimm(mci, dimm)
738 edac_mc_dump_dimm(dimm);
740 #endif
741 mutex_lock(&mem_ctls_mutex);
743 if (edac_mc_owner && edac_mc_owner != mci->mod_name) {
744 ret = -EPERM;
745 goto fail0;
748 if (add_mc_to_global_list(mci))
749 goto fail0;
751 /* set load time so that error rate can be tracked */
752 mci->start_time = jiffies;
754 mci->bus = edac_get_sysfs_subsys();
756 if (edac_create_sysfs_mci_device(mci, groups)) {
757 edac_mc_printk(mci, KERN_WARNING,
758 "failed to create sysfs device\n");
759 goto fail1;
762 if (mci->edac_check) {
763 mci->op_state = OP_RUNNING_POLL;
765 INIT_DELAYED_WORK(&mci->work, edac_mc_workq_function);
766 edac_queue_work(&mci->work, msecs_to_jiffies(edac_mc_get_poll_msec()));
768 } else {
769 mci->op_state = OP_RUNNING_INTERRUPT;
772 /* Report action taken */
773 edac_mc_printk(mci, KERN_INFO,
774 "Giving out device to module %s controller %s: DEV %s (%s)\n",
775 mci->mod_name, mci->ctl_name, mci->dev_name,
776 edac_op_state_to_string(mci->op_state));
778 edac_mc_owner = mci->mod_name;
780 mutex_unlock(&mem_ctls_mutex);
781 return 0;
783 fail1:
784 del_mc_from_global_list(mci);
786 fail0:
787 mutex_unlock(&mem_ctls_mutex);
788 return ret;
790 EXPORT_SYMBOL_GPL(edac_mc_add_mc_with_groups);
792 struct mem_ctl_info *edac_mc_del_mc(struct device *dev)
794 struct mem_ctl_info *mci;
796 edac_dbg(0, "\n");
798 mutex_lock(&mem_ctls_mutex);
800 /* find the requested mci struct in the global list */
801 mci = __find_mci_by_dev(dev);
802 if (mci == NULL) {
803 mutex_unlock(&mem_ctls_mutex);
804 return NULL;
807 /* mark MCI offline: */
808 mci->op_state = OP_OFFLINE;
810 if (del_mc_from_global_list(mci))
811 edac_mc_owner = NULL;
813 mutex_unlock(&mem_ctls_mutex);
815 if (mci->edac_check)
816 edac_stop_work(&mci->work);
818 /* remove from sysfs */
819 edac_remove_sysfs_mci_device(mci);
821 edac_printk(KERN_INFO, EDAC_MC,
822 "Removed device %d for %s %s: DEV %s\n", mci->mc_idx,
823 mci->mod_name, mci->ctl_name, edac_dev_name(mci));
825 return mci;
827 EXPORT_SYMBOL_GPL(edac_mc_del_mc);
829 static void edac_mc_scrub_block(unsigned long page, unsigned long offset,
830 u32 size)
832 struct page *pg;
833 void *virt_addr;
834 unsigned long flags = 0;
836 edac_dbg(3, "\n");
838 /* ECC error page was not in our memory. Ignore it. */
839 if (!pfn_valid(page))
840 return;
842 /* Find the actual page structure then map it and fix */
843 pg = pfn_to_page(page);
845 if (PageHighMem(pg))
846 local_irq_save(flags);
848 virt_addr = kmap_atomic(pg);
850 /* Perform architecture specific atomic scrub operation */
851 edac_atomic_scrub(virt_addr + offset, size);
853 /* Unmap and complete */
854 kunmap_atomic(virt_addr);
856 if (PageHighMem(pg))
857 local_irq_restore(flags);
860 /* FIXME - should return -1 */
861 int edac_mc_find_csrow_by_page(struct mem_ctl_info *mci, unsigned long page)
863 struct csrow_info **csrows = mci->csrows;
864 int row, i, j, n;
866 edac_dbg(1, "MC%d: 0x%lx\n", mci->mc_idx, page);
867 row = -1;
869 for (i = 0; i < mci->nr_csrows; i++) {
870 struct csrow_info *csrow = csrows[i];
871 n = 0;
872 for (j = 0; j < csrow->nr_channels; j++) {
873 struct dimm_info *dimm = csrow->channels[j]->dimm;
874 n += dimm->nr_pages;
876 if (n == 0)
877 continue;
879 edac_dbg(3, "MC%d: first(0x%lx) page(0x%lx) last(0x%lx) mask(0x%lx)\n",
880 mci->mc_idx,
881 csrow->first_page, page, csrow->last_page,
882 csrow->page_mask);
884 if ((page >= csrow->first_page) &&
885 (page <= csrow->last_page) &&
886 ((page & csrow->page_mask) ==
887 (csrow->first_page & csrow->page_mask))) {
888 row = i;
889 break;
893 if (row == -1)
894 edac_mc_printk(mci, KERN_ERR,
895 "could not look up page error address %lx\n",
896 (unsigned long)page);
898 return row;
900 EXPORT_SYMBOL_GPL(edac_mc_find_csrow_by_page);
902 const char *edac_layer_name[] = {
903 [EDAC_MC_LAYER_BRANCH] = "branch",
904 [EDAC_MC_LAYER_CHANNEL] = "channel",
905 [EDAC_MC_LAYER_SLOT] = "slot",
906 [EDAC_MC_LAYER_CHIP_SELECT] = "csrow",
907 [EDAC_MC_LAYER_ALL_MEM] = "memory",
909 EXPORT_SYMBOL_GPL(edac_layer_name);
911 static void edac_inc_ce_error(struct mem_ctl_info *mci,
912 bool enable_per_layer_report,
913 const int pos[EDAC_MAX_LAYERS],
914 const u16 count)
916 int i, index = 0;
918 mci->ce_mc += count;
920 if (!enable_per_layer_report) {
921 mci->ce_noinfo_count += count;
922 return;
925 for (i = 0; i < mci->n_layers; i++) {
926 if (pos[i] < 0)
927 break;
928 index += pos[i];
929 mci->ce_per_layer[i][index] += count;
931 if (i < mci->n_layers - 1)
932 index *= mci->layers[i + 1].size;
936 static void edac_inc_ue_error(struct mem_ctl_info *mci,
937 bool enable_per_layer_report,
938 const int pos[EDAC_MAX_LAYERS],
939 const u16 count)
941 int i, index = 0;
943 mci->ue_mc += count;
945 if (!enable_per_layer_report) {
946 mci->ue_noinfo_count += count;
947 return;
950 for (i = 0; i < mci->n_layers; i++) {
951 if (pos[i] < 0)
952 break;
953 index += pos[i];
954 mci->ue_per_layer[i][index] += count;
956 if (i < mci->n_layers - 1)
957 index *= mci->layers[i + 1].size;
961 static void edac_ce_error(struct mem_ctl_info *mci,
962 const u16 error_count,
963 const int pos[EDAC_MAX_LAYERS],
964 const char *msg,
965 const char *location,
966 const char *label,
967 const char *detail,
968 const char *other_detail,
969 const bool enable_per_layer_report,
970 const unsigned long page_frame_number,
971 const unsigned long offset_in_page,
972 long grain)
974 unsigned long remapped_page;
975 char *msg_aux = "";
977 if (*msg)
978 msg_aux = " ";
980 if (edac_mc_get_log_ce()) {
981 if (other_detail && *other_detail)
982 edac_mc_printk(mci, KERN_WARNING,
983 "%d CE %s%son %s (%s %s - %s)\n",
984 error_count, msg, msg_aux, label,
985 location, detail, other_detail);
986 else
987 edac_mc_printk(mci, KERN_WARNING,
988 "%d CE %s%son %s (%s %s)\n",
989 error_count, msg, msg_aux, label,
990 location, detail);
992 edac_inc_ce_error(mci, enable_per_layer_report, pos, error_count);
994 if (mci->scrub_mode == SCRUB_SW_SRC) {
996 * Some memory controllers (called MCs below) can remap
997 * memory so that it is still available at a different
998 * address when PCI devices map into memory.
999 * MC's that can't do this, lose the memory where PCI
1000 * devices are mapped. This mapping is MC-dependent
1001 * and so we call back into the MC driver for it to
1002 * map the MC page to a physical (CPU) page which can
1003 * then be mapped to a virtual page - which can then
1004 * be scrubbed.
1006 remapped_page = mci->ctl_page_to_phys ?
1007 mci->ctl_page_to_phys(mci, page_frame_number) :
1008 page_frame_number;
1010 edac_mc_scrub_block(remapped_page,
1011 offset_in_page, grain);
1015 static void edac_ue_error(struct mem_ctl_info *mci,
1016 const u16 error_count,
1017 const int pos[EDAC_MAX_LAYERS],
1018 const char *msg,
1019 const char *location,
1020 const char *label,
1021 const char *detail,
1022 const char *other_detail,
1023 const bool enable_per_layer_report)
1025 char *msg_aux = "";
1027 if (*msg)
1028 msg_aux = " ";
1030 if (edac_mc_get_log_ue()) {
1031 if (other_detail && *other_detail)
1032 edac_mc_printk(mci, KERN_WARNING,
1033 "%d UE %s%son %s (%s %s - %s)\n",
1034 error_count, msg, msg_aux, label,
1035 location, detail, other_detail);
1036 else
1037 edac_mc_printk(mci, KERN_WARNING,
1038 "%d UE %s%son %s (%s %s)\n",
1039 error_count, msg, msg_aux, label,
1040 location, detail);
1043 if (edac_mc_get_panic_on_ue()) {
1044 if (other_detail && *other_detail)
1045 panic("UE %s%son %s (%s%s - %s)\n",
1046 msg, msg_aux, label, location, detail, other_detail);
1047 else
1048 panic("UE %s%son %s (%s%s)\n",
1049 msg, msg_aux, label, location, detail);
1052 edac_inc_ue_error(mci, enable_per_layer_report, pos, error_count);
1055 void edac_raw_mc_handle_error(const enum hw_event_mc_err_type type,
1056 struct mem_ctl_info *mci,
1057 struct edac_raw_error_desc *e)
1059 char detail[80];
1060 int pos[EDAC_MAX_LAYERS] = { e->top_layer, e->mid_layer, e->low_layer };
1061 u8 grain_bits;
1063 /* Sanity-check driver-supplied grain value. */
1064 if (WARN_ON_ONCE(!e->grain))
1065 e->grain = 1;
1067 grain_bits = fls_long(e->grain - 1);
1069 /* Report the error via the trace interface */
1070 if (IS_ENABLED(CONFIG_RAS))
1071 trace_mc_event(type, e->msg, e->label, e->error_count,
1072 mci->mc_idx, e->top_layer, e->mid_layer,
1073 e->low_layer,
1074 (e->page_frame_number << PAGE_SHIFT) | e->offset_in_page,
1075 grain_bits, e->syndrome, e->other_detail);
1077 /* Memory type dependent details about the error */
1078 if (type == HW_EVENT_ERR_CORRECTED) {
1079 snprintf(detail, sizeof(detail),
1080 "page:0x%lx offset:0x%lx grain:%ld syndrome:0x%lx",
1081 e->page_frame_number, e->offset_in_page,
1082 e->grain, e->syndrome);
1083 edac_ce_error(mci, e->error_count, pos, e->msg, e->location, e->label,
1084 detail, e->other_detail, e->enable_per_layer_report,
1085 e->page_frame_number, e->offset_in_page, e->grain);
1086 } else {
1087 snprintf(detail, sizeof(detail),
1088 "page:0x%lx offset:0x%lx grain:%ld",
1089 e->page_frame_number, e->offset_in_page, e->grain);
1091 edac_ue_error(mci, e->error_count, pos, e->msg, e->location, e->label,
1092 detail, e->other_detail, e->enable_per_layer_report);
1097 EXPORT_SYMBOL_GPL(edac_raw_mc_handle_error);
1099 void edac_mc_handle_error(const enum hw_event_mc_err_type type,
1100 struct mem_ctl_info *mci,
1101 const u16 error_count,
1102 const unsigned long page_frame_number,
1103 const unsigned long offset_in_page,
1104 const unsigned long syndrome,
1105 const int top_layer,
1106 const int mid_layer,
1107 const int low_layer,
1108 const char *msg,
1109 const char *other_detail)
1111 struct dimm_info *dimm;
1112 char *p;
1113 int row = -1, chan = -1;
1114 int pos[EDAC_MAX_LAYERS] = { top_layer, mid_layer, low_layer };
1115 int i, n_labels = 0;
1116 struct edac_raw_error_desc *e = &mci->error_desc;
1118 edac_dbg(3, "MC%d\n", mci->mc_idx);
1120 /* Fills the error report buffer */
1121 memset(e, 0, sizeof (*e));
1122 e->error_count = error_count;
1123 e->top_layer = top_layer;
1124 e->mid_layer = mid_layer;
1125 e->low_layer = low_layer;
1126 e->page_frame_number = page_frame_number;
1127 e->offset_in_page = offset_in_page;
1128 e->syndrome = syndrome;
1129 e->msg = msg;
1130 e->other_detail = other_detail;
1133 * Check if the event report is consistent and if the memory
1134 * location is known. If it is known, enable_per_layer_report will be
1135 * true, the DIMM(s) label info will be filled and the per-layer
1136 * error counters will be incremented.
1138 for (i = 0; i < mci->n_layers; i++) {
1139 if (pos[i] >= (int)mci->layers[i].size) {
1141 edac_mc_printk(mci, KERN_ERR,
1142 "INTERNAL ERROR: %s value is out of range (%d >= %d)\n",
1143 edac_layer_name[mci->layers[i].type],
1144 pos[i], mci->layers[i].size);
1146 * Instead of just returning it, let's use what's
1147 * known about the error. The increment routines and
1148 * the DIMM filter logic will do the right thing by
1149 * pointing the likely damaged DIMMs.
1151 pos[i] = -1;
1153 if (pos[i] >= 0)
1154 e->enable_per_layer_report = true;
1158 * Get the dimm label/grain that applies to the match criteria.
1159 * As the error algorithm may not be able to point to just one memory
1160 * stick, the logic here will get all possible labels that could
1161 * pottentially be affected by the error.
1162 * On FB-DIMM memory controllers, for uncorrected errors, it is common
1163 * to have only the MC channel and the MC dimm (also called "branch")
1164 * but the channel is not known, as the memory is arranged in pairs,
1165 * where each memory belongs to a separate channel within the same
1166 * branch.
1168 p = e->label;
1169 *p = '\0';
1171 mci_for_each_dimm(mci, dimm) {
1172 if (top_layer >= 0 && top_layer != dimm->location[0])
1173 continue;
1174 if (mid_layer >= 0 && mid_layer != dimm->location[1])
1175 continue;
1176 if (low_layer >= 0 && low_layer != dimm->location[2])
1177 continue;
1179 /* get the max grain, over the error match range */
1180 if (dimm->grain > e->grain)
1181 e->grain = dimm->grain;
1184 * If the error is memory-controller wide, there's no need to
1185 * seek for the affected DIMMs because the whole
1186 * channel/memory controller/... may be affected.
1187 * Also, don't show errors for empty DIMM slots.
1189 if (!e->enable_per_layer_report || !dimm->nr_pages)
1190 continue;
1192 if (n_labels >= EDAC_MAX_LABELS) {
1193 e->enable_per_layer_report = false;
1194 break;
1196 n_labels++;
1197 if (p != e->label) {
1198 strcpy(p, OTHER_LABEL);
1199 p += strlen(OTHER_LABEL);
1201 strcpy(p, dimm->label);
1202 p += strlen(p);
1205 * get csrow/channel of the DIMM, in order to allow
1206 * incrementing the compat API counters
1208 edac_dbg(4, "%s csrows map: (%d,%d)\n",
1209 mci->csbased ? "rank" : "dimm",
1210 dimm->csrow, dimm->cschannel);
1211 if (row == -1)
1212 row = dimm->csrow;
1213 else if (row >= 0 && row != dimm->csrow)
1214 row = -2;
1216 if (chan == -1)
1217 chan = dimm->cschannel;
1218 else if (chan >= 0 && chan != dimm->cschannel)
1219 chan = -2;
1222 if (!e->enable_per_layer_report) {
1223 strcpy(e->label, "any memory");
1224 } else {
1225 edac_dbg(4, "csrow/channel to increment: (%d,%d)\n", row, chan);
1226 if (p == e->label)
1227 strcpy(e->label, "unknown memory");
1228 if (type == HW_EVENT_ERR_CORRECTED) {
1229 if (row >= 0) {
1230 mci->csrows[row]->ce_count += error_count;
1231 if (chan >= 0)
1232 mci->csrows[row]->channels[chan]->ce_count += error_count;
1234 } else
1235 if (row >= 0)
1236 mci->csrows[row]->ue_count += error_count;
1239 /* Fill the RAM location data */
1240 p = e->location;
1242 for (i = 0; i < mci->n_layers; i++) {
1243 if (pos[i] < 0)
1244 continue;
1246 p += sprintf(p, "%s:%d ",
1247 edac_layer_name[mci->layers[i].type],
1248 pos[i]);
1250 if (p > e->location)
1251 *(p - 1) = '\0';
1253 edac_raw_mc_handle_error(type, mci, e);
1255 EXPORT_SYMBOL_GPL(edac_mc_handle_error);