1 // SPDX-License-Identifier: GPL-2.0-only
2 /* Intel Sandy Bridge -EN/-EP/-EX Memory Controller kernel module
4 * This driver supports the memory controllers found on the Intel
5 * processor family Sandy Bridge.
7 * Copyright (c) 2011 by:
8 * Mauro Carvalho Chehab
11 #include <linux/module.h>
12 #include <linux/init.h>
13 #include <linux/pci.h>
14 #include <linux/pci_ids.h>
15 #include <linux/slab.h>
16 #include <linux/delay.h>
17 #include <linux/edac.h>
18 #include <linux/mmzone.h>
19 #include <linux/smp.h>
20 #include <linux/bitmap.h>
21 #include <linux/math64.h>
22 #include <linux/mod_devicetable.h>
23 #include <asm/cpu_device_id.h>
24 #include <asm/intel-family.h>
25 #include <asm/processor.h>
28 #include "edac_module.h"
31 static LIST_HEAD(sbridge_edac_list
);
34 * Alter this version for the module when modifications are made
36 #define SBRIDGE_REVISION " Ver: 1.1.2 "
37 #define EDAC_MOD_STR "sb_edac"
42 #define sbridge_printk(level, fmt, arg...) \
43 edac_printk(level, "sbridge", fmt, ##arg)
45 #define sbridge_mc_printk(mci, level, fmt, arg...) \
46 edac_mc_chipset_printk(mci, level, "sbridge", fmt, ##arg)
49 * Get a bit field at register value <v>, from bit <lo> to bit <hi>
51 #define GET_BITFIELD(v, lo, hi) \
52 (((v) & GENMASK_ULL(hi, lo)) >> (lo))
54 /* Devices 12 Function 6, Offsets 0x80 to 0xcc */
55 static const u32 sbridge_dram_rule
[] = {
56 0x80, 0x88, 0x90, 0x98, 0xa0,
57 0xa8, 0xb0, 0xb8, 0xc0, 0xc8,
60 static const u32 ibridge_dram_rule
[] = {
61 0x60, 0x68, 0x70, 0x78, 0x80,
62 0x88, 0x90, 0x98, 0xa0, 0xa8,
63 0xb0, 0xb8, 0xc0, 0xc8, 0xd0,
64 0xd8, 0xe0, 0xe8, 0xf0, 0xf8,
67 static const u32 knl_dram_rule
[] = {
68 0x60, 0x68, 0x70, 0x78, 0x80, /* 0-4 */
69 0x88, 0x90, 0x98, 0xa0, 0xa8, /* 5-9 */
70 0xb0, 0xb8, 0xc0, 0xc8, 0xd0, /* 10-14 */
71 0xd8, 0xe0, 0xe8, 0xf0, 0xf8, /* 15-19 */
72 0x100, 0x108, 0x110, 0x118, /* 20-23 */
75 #define DRAM_RULE_ENABLE(reg) GET_BITFIELD(reg, 0, 0)
76 #define A7MODE(reg) GET_BITFIELD(reg, 26, 26)
78 static char *show_dram_attr(u32 attr
)
92 static const u32 sbridge_interleave_list
[] = {
93 0x84, 0x8c, 0x94, 0x9c, 0xa4,
94 0xac, 0xb4, 0xbc, 0xc4, 0xcc,
97 static const u32 ibridge_interleave_list
[] = {
98 0x64, 0x6c, 0x74, 0x7c, 0x84,
99 0x8c, 0x94, 0x9c, 0xa4, 0xac,
100 0xb4, 0xbc, 0xc4, 0xcc, 0xd4,
101 0xdc, 0xe4, 0xec, 0xf4, 0xfc,
104 static const u32 knl_interleave_list
[] = {
105 0x64, 0x6c, 0x74, 0x7c, 0x84, /* 0-4 */
106 0x8c, 0x94, 0x9c, 0xa4, 0xac, /* 5-9 */
107 0xb4, 0xbc, 0xc4, 0xcc, 0xd4, /* 10-14 */
108 0xdc, 0xe4, 0xec, 0xf4, 0xfc, /* 15-19 */
109 0x104, 0x10c, 0x114, 0x11c, /* 20-23 */
111 #define MAX_INTERLEAVE \
112 (max_t(unsigned int, ARRAY_SIZE(sbridge_interleave_list), \
113 max_t(unsigned int, ARRAY_SIZE(ibridge_interleave_list), \
114 ARRAY_SIZE(knl_interleave_list))))
116 struct interleave_pkg
{
121 static const struct interleave_pkg sbridge_interleave_pkg
[] = {
132 static const struct interleave_pkg ibridge_interleave_pkg
[] = {
143 static inline int sad_pkg(const struct interleave_pkg
*table
, u32 reg
,
146 return GET_BITFIELD(reg
, table
[interleave
].start
,
147 table
[interleave
].end
);
150 /* Devices 12 Function 7 */
154 #define HASWELL_TOLM 0xd0
155 #define HASWELL_TOHM_0 0xd4
156 #define HASWELL_TOHM_1 0xd8
157 #define KNL_TOLM 0xd0
158 #define KNL_TOHM_0 0xd4
159 #define KNL_TOHM_1 0xd8
161 #define GET_TOLM(reg) ((GET_BITFIELD(reg, 0, 3) << 28) | 0x3ffffff)
162 #define GET_TOHM(reg) ((GET_BITFIELD(reg, 0, 20) << 25) | 0x3ffffff)
164 /* Device 13 Function 6 */
166 #define SAD_TARGET 0xf0
168 #define SOURCE_ID(reg) GET_BITFIELD(reg, 9, 11)
170 #define SOURCE_ID_KNL(reg) GET_BITFIELD(reg, 12, 14)
172 #define SAD_CONTROL 0xf4
174 /* Device 14 function 0 */
176 static const u32 tad_dram_rule
[] = {
177 0x40, 0x44, 0x48, 0x4c,
178 0x50, 0x54, 0x58, 0x5c,
179 0x60, 0x64, 0x68, 0x6c,
181 #define MAX_TAD ARRAY_SIZE(tad_dram_rule)
183 #define TAD_LIMIT(reg) ((GET_BITFIELD(reg, 12, 31) << 26) | 0x3ffffff)
184 #define TAD_SOCK(reg) GET_BITFIELD(reg, 10, 11)
185 #define TAD_CH(reg) GET_BITFIELD(reg, 8, 9)
186 #define TAD_TGT3(reg) GET_BITFIELD(reg, 6, 7)
187 #define TAD_TGT2(reg) GET_BITFIELD(reg, 4, 5)
188 #define TAD_TGT1(reg) GET_BITFIELD(reg, 2, 3)
189 #define TAD_TGT0(reg) GET_BITFIELD(reg, 0, 1)
191 /* Device 15, function 0 */
194 #define KNL_MCMTR 0x624
196 #define IS_ECC_ENABLED(mcmtr) GET_BITFIELD(mcmtr, 2, 2)
197 #define IS_LOCKSTEP_ENABLED(mcmtr) GET_BITFIELD(mcmtr, 1, 1)
198 #define IS_CLOSE_PG(mcmtr) GET_BITFIELD(mcmtr, 0, 0)
200 /* Device 15, function 1 */
202 #define RASENABLES 0xac
203 #define IS_MIRROR_ENABLED(reg) GET_BITFIELD(reg, 0, 0)
205 /* Device 15, functions 2-5 */
207 static const int mtr_regs
[] = {
211 static const int knl_mtr_reg
= 0xb60;
213 #define RANK_DISABLE(mtr) GET_BITFIELD(mtr, 16, 19)
214 #define IS_DIMM_PRESENT(mtr) GET_BITFIELD(mtr, 14, 14)
215 #define RANK_CNT_BITS(mtr) GET_BITFIELD(mtr, 12, 13)
216 #define RANK_WIDTH_BITS(mtr) GET_BITFIELD(mtr, 2, 4)
217 #define COL_WIDTH_BITS(mtr) GET_BITFIELD(mtr, 0, 1)
219 static const u32 tad_ch_nilv_offset
[] = {
220 0x90, 0x94, 0x98, 0x9c,
221 0xa0, 0xa4, 0xa8, 0xac,
222 0xb0, 0xb4, 0xb8, 0xbc,
224 #define CHN_IDX_OFFSET(reg) GET_BITFIELD(reg, 28, 29)
225 #define TAD_OFFSET(reg) (GET_BITFIELD(reg, 6, 25) << 26)
227 static const u32 rir_way_limit
[] = {
228 0x108, 0x10c, 0x110, 0x114, 0x118,
230 #define MAX_RIR_RANGES ARRAY_SIZE(rir_way_limit)
232 #define IS_RIR_VALID(reg) GET_BITFIELD(reg, 31, 31)
233 #define RIR_WAY(reg) GET_BITFIELD(reg, 28, 29)
235 #define MAX_RIR_WAY 8
237 static const u32 rir_offset
[MAX_RIR_RANGES
][MAX_RIR_WAY
] = {
238 { 0x120, 0x124, 0x128, 0x12c, 0x130, 0x134, 0x138, 0x13c },
239 { 0x140, 0x144, 0x148, 0x14c, 0x150, 0x154, 0x158, 0x15c },
240 { 0x160, 0x164, 0x168, 0x16c, 0x170, 0x174, 0x178, 0x17c },
241 { 0x180, 0x184, 0x188, 0x18c, 0x190, 0x194, 0x198, 0x19c },
242 { 0x1a0, 0x1a4, 0x1a8, 0x1ac, 0x1b0, 0x1b4, 0x1b8, 0x1bc },
245 #define RIR_RNK_TGT(type, reg) (((type) == BROADWELL) ? \
246 GET_BITFIELD(reg, 20, 23) : GET_BITFIELD(reg, 16, 19))
248 #define RIR_OFFSET(type, reg) (((type) == HASWELL || (type) == BROADWELL) ? \
249 GET_BITFIELD(reg, 2, 15) : GET_BITFIELD(reg, 2, 14))
251 /* Device 16, functions 2-7 */
254 * FIXME: Implement the error count reads directly
257 #define RANK_ODD_OV(reg) GET_BITFIELD(reg, 31, 31)
258 #define RANK_ODD_ERR_CNT(reg) GET_BITFIELD(reg, 16, 30)
259 #define RANK_EVEN_OV(reg) GET_BITFIELD(reg, 15, 15)
260 #define RANK_EVEN_ERR_CNT(reg) GET_BITFIELD(reg, 0, 14)
262 #if 0 /* Currently unused*/
263 static const u32 correrrcnt
[] = {
264 0x104, 0x108, 0x10c, 0x110,
267 static const u32 correrrthrsld
[] = {
268 0x11c, 0x120, 0x124, 0x128,
272 #define RANK_ODD_ERR_THRSLD(reg) GET_BITFIELD(reg, 16, 30)
273 #define RANK_EVEN_ERR_THRSLD(reg) GET_BITFIELD(reg, 0, 14)
276 /* Device 17, function 0 */
278 #define SB_RANK_CFG_A 0x0328
280 #define IB_RANK_CFG_A 0x0320
286 #define NUM_CHANNELS 6 /* Max channels per MC */
287 #define MAX_DIMMS 3 /* Max DIMMS per channel */
288 #define KNL_MAX_CHAS 38 /* KNL max num. of Cache Home Agents */
289 #define KNL_MAX_CHANNELS 6 /* KNL max num. of PCI channels */
290 #define KNL_MAX_EDCS 8 /* Embedded DRAM controllers */
291 #define CHANNEL_UNSPECIFIED 0xf /* Intel IA32 SDM 15-14 */
307 enum mirroring_mode
{
309 ADDR_RANGE_MIRRORING
,
314 struct sbridge_info
{
318 u64 (*get_tolm
)(struct sbridge_pvt
*pvt
);
319 u64 (*get_tohm
)(struct sbridge_pvt
*pvt
);
320 u64 (*rir_limit
)(u32 reg
);
321 u64 (*sad_limit
)(u32 reg
);
322 u32 (*interleave_mode
)(u32 reg
);
323 u32 (*dram_attr
)(u32 reg
);
324 const u32
*dram_rule
;
325 const u32
*interleave_list
;
326 const struct interleave_pkg
*interleave_pkg
;
328 u8 (*get_node_id
)(struct sbridge_pvt
*pvt
);
329 u8 (*get_ha
)(u8 bank
);
330 enum mem_type (*get_memory_type
)(struct sbridge_pvt
*pvt
);
331 enum dev_type (*get_width
)(struct sbridge_pvt
*pvt
, u32 mtr
);
332 struct pci_dev
*pci_vtd
;
335 struct sbridge_channel
{
340 struct pci_id_descr
{
346 struct pci_id_table
{
347 const struct pci_id_descr
*descr
;
355 struct list_head list
;
358 u8 node_id
, source_id
;
359 struct pci_dev
**pdev
;
363 struct mem_ctl_info
*mci
;
367 struct pci_dev
*pci_cha
[KNL_MAX_CHAS
];
368 struct pci_dev
*pci_channel
[KNL_MAX_CHANNELS
];
369 struct pci_dev
*pci_mc0
;
370 struct pci_dev
*pci_mc1
;
371 struct pci_dev
*pci_mc0_misc
;
372 struct pci_dev
*pci_mc1_misc
;
373 struct pci_dev
*pci_mc_info
; /* tolm, tohm */
377 /* Devices per socket */
378 struct pci_dev
*pci_ddrio
;
379 struct pci_dev
*pci_sad0
, *pci_sad1
;
380 struct pci_dev
*pci_br0
, *pci_br1
;
381 /* Devices per memory controller */
382 struct pci_dev
*pci_ha
, *pci_ta
, *pci_ras
;
383 struct pci_dev
*pci_tad
[NUM_CHANNELS
];
385 struct sbridge_dev
*sbridge_dev
;
387 struct sbridge_info info
;
388 struct sbridge_channel channel
[NUM_CHANNELS
];
390 /* Memory type detection */
391 bool is_cur_addr_mirrored
, is_lockstep
, is_close_pg
;
393 enum mirroring_mode mirror_mode
;
395 /* Memory description */
400 #define PCI_DESCR(device_id, opt, domain) \
401 .dev_id = (device_id), \
405 static const struct pci_id_descr pci_dev_descr_sbridge
[] = {
406 /* Processor Home Agent */
407 { PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_HA0
, 0, IMC0
) },
409 /* Memory controller */
410 { PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TA
, 0, IMC0
) },
411 { PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_RAS
, 0, IMC0
) },
412 { PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD0
, 0, IMC0
) },
413 { PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD1
, 0, IMC0
) },
414 { PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD2
, 0, IMC0
) },
415 { PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD3
, 0, IMC0
) },
416 { PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_DDRIO
, 1, SOCK
) },
418 /* System Address Decoder */
419 { PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_SAD0
, 0, SOCK
) },
420 { PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_SAD1
, 0, SOCK
) },
422 /* Broadcast Registers */
423 { PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_BR
, 0, SOCK
) },
426 #define PCI_ID_TABLE_ENTRY(A, N, M, T) { \
428 .n_devs_per_imc = N, \
429 .n_devs_per_sock = ARRAY_SIZE(A), \
430 .n_imcs_per_sock = M, \
434 static const struct pci_id_table pci_dev_descr_sbridge_table
[] = {
435 PCI_ID_TABLE_ENTRY(pci_dev_descr_sbridge
, ARRAY_SIZE(pci_dev_descr_sbridge
), 1, SANDY_BRIDGE
),
436 {0,} /* 0 terminated list. */
439 /* This changes depending if 1HA or 2HA:
441 * 0x0eb8 (17.0) is DDRIO0
443 * 0x0ebc (17.4) is DDRIO0
445 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_1HA_DDRIO0 0x0eb8
446 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_2HA_DDRIO0 0x0ebc
449 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0 0x0ea0
450 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TA 0x0ea8
451 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_RAS 0x0e71
452 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD0 0x0eaa
453 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD1 0x0eab
454 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD2 0x0eac
455 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD3 0x0ead
456 #define PCI_DEVICE_ID_INTEL_IBRIDGE_SAD 0x0ec8
457 #define PCI_DEVICE_ID_INTEL_IBRIDGE_BR0 0x0ec9
458 #define PCI_DEVICE_ID_INTEL_IBRIDGE_BR1 0x0eca
459 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1 0x0e60
460 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TA 0x0e68
461 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_RAS 0x0e79
462 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD0 0x0e6a
463 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD1 0x0e6b
464 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD2 0x0e6c
465 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD3 0x0e6d
467 static const struct pci_id_descr pci_dev_descr_ibridge
[] = {
468 /* Processor Home Agent */
469 { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0
, 0, IMC0
) },
470 { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1
, 1, IMC1
) },
472 /* Memory controller */
473 { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TA
, 0, IMC0
) },
474 { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_RAS
, 0, IMC0
) },
475 { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD0
, 0, IMC0
) },
476 { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD1
, 0, IMC0
) },
477 { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD2
, 0, IMC0
) },
478 { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD3
, 0, IMC0
) },
480 /* Optional, mode 2HA */
481 { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TA
, 1, IMC1
) },
482 { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_RAS
, 1, IMC1
) },
483 { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD0
, 1, IMC1
) },
484 { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD1
, 1, IMC1
) },
485 { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD2
, 1, IMC1
) },
486 { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD3
, 1, IMC1
) },
488 { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_1HA_DDRIO0
, 1, SOCK
) },
489 { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_2HA_DDRIO0
, 1, SOCK
) },
491 /* System Address Decoder */
492 { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_SAD
, 0, SOCK
) },
494 /* Broadcast Registers */
495 { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_BR0
, 1, SOCK
) },
496 { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_BR1
, 0, SOCK
) },
500 static const struct pci_id_table pci_dev_descr_ibridge_table
[] = {
501 PCI_ID_TABLE_ENTRY(pci_dev_descr_ibridge
, 12, 2, IVY_BRIDGE
),
502 {0,} /* 0 terminated list. */
505 /* Haswell support */
508 * - 3 DDR3 channels, 2 DPC per channel
511 * - 4 DDR4 channels, 3 DPC per channel
514 * - 4 DDR4 channels, 3 DPC per channel
517 * - each IMC interfaces with a SMI 2 channel
518 * - each SMI channel interfaces with a scalable memory buffer
519 * - each scalable memory buffer supports 4 DDR3/DDR4 channels, 3 DPC
521 #define HASWELL_DDRCRCLKCONTROLS 0xa10 /* Ditto on Broadwell */
522 #define HASWELL_HASYSDEFEATURE2 0x84
523 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_VTD_MISC 0x2f28
524 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0 0x2fa0
525 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1 0x2f60
526 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TA 0x2fa8
527 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TM 0x2f71
528 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TA 0x2f68
529 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TM 0x2f79
530 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_CBO_SAD0 0x2ffc
531 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_CBO_SAD1 0x2ffd
532 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD0 0x2faa
533 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD1 0x2fab
534 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD2 0x2fac
535 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD3 0x2fad
536 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD0 0x2f6a
537 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD1 0x2f6b
538 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD2 0x2f6c
539 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD3 0x2f6d
540 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO0 0x2fbd
541 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO1 0x2fbf
542 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO2 0x2fb9
543 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO3 0x2fbb
544 static const struct pci_id_descr pci_dev_descr_haswell
[] = {
545 /* first item must be the HA */
546 { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0
, 0, IMC0
) },
547 { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1
, 1, IMC1
) },
549 { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TA
, 0, IMC0
) },
550 { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TM
, 0, IMC0
) },
551 { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD0
, 0, IMC0
) },
552 { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD1
, 0, IMC0
) },
553 { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD2
, 1, IMC0
) },
554 { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD3
, 1, IMC0
) },
556 { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TA
, 1, IMC1
) },
557 { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TM
, 1, IMC1
) },
558 { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD0
, 1, IMC1
) },
559 { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD1
, 1, IMC1
) },
560 { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD2
, 1, IMC1
) },
561 { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD3
, 1, IMC1
) },
563 { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_CBO_SAD0
, 0, SOCK
) },
564 { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_CBO_SAD1
, 0, SOCK
) },
565 { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO0
, 1, SOCK
) },
566 { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO1
, 1, SOCK
) },
567 { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO2
, 1, SOCK
) },
568 { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO3
, 1, SOCK
) },
571 static const struct pci_id_table pci_dev_descr_haswell_table
[] = {
572 PCI_ID_TABLE_ENTRY(pci_dev_descr_haswell
, 13, 2, HASWELL
),
573 {0,} /* 0 terminated list. */
576 /* Knight's Landing Support */
578 * KNL's memory channels are swizzled between memory controllers.
579 * MC0 is mapped to CH3,4,5 and MC1 is mapped to CH0,1,2
581 #define knl_channel_remap(mc, chan) ((mc) ? (chan) : (chan) + 3)
583 /* Memory controller, TAD tables, error injection - 2-8-0, 2-9-0 (2 of these) */
584 #define PCI_DEVICE_ID_INTEL_KNL_IMC_MC 0x7840
585 /* DRAM channel stuff; bank addrs, dimmmtr, etc.. 2-8-2 - 2-9-4 (6 of these) */
586 #define PCI_DEVICE_ID_INTEL_KNL_IMC_CHAN 0x7843
587 /* kdrwdbu TAD limits/offsets, MCMTR - 2-10-1, 2-11-1 (2 of these) */
588 #define PCI_DEVICE_ID_INTEL_KNL_IMC_TA 0x7844
589 /* CHA broadcast registers, dram rules - 1-29-0 (1 of these) */
590 #define PCI_DEVICE_ID_INTEL_KNL_IMC_SAD0 0x782a
591 /* SAD target - 1-29-1 (1 of these) */
592 #define PCI_DEVICE_ID_INTEL_KNL_IMC_SAD1 0x782b
593 /* Caching / Home Agent */
594 #define PCI_DEVICE_ID_INTEL_KNL_IMC_CHA 0x782c
595 /* Device with TOLM and TOHM, 0-5-0 (1 of these) */
596 #define PCI_DEVICE_ID_INTEL_KNL_IMC_TOLHM 0x7810
599 * KNL differs from SB, IB, and Haswell in that it has multiple
600 * instances of the same device with the same device ID, so we handle that
601 * by creating as many copies in the table as we expect to find.
602 * (Like device ID must be grouped together.)
605 static const struct pci_id_descr pci_dev_descr_knl
[] = {
606 [0 ... 1] = { PCI_DESCR(PCI_DEVICE_ID_INTEL_KNL_IMC_MC
, 0, IMC0
)},
607 [2 ... 7] = { PCI_DESCR(PCI_DEVICE_ID_INTEL_KNL_IMC_CHAN
, 0, IMC0
) },
608 [8] = { PCI_DESCR(PCI_DEVICE_ID_INTEL_KNL_IMC_TA
, 0, IMC0
) },
609 [9] = { PCI_DESCR(PCI_DEVICE_ID_INTEL_KNL_IMC_TOLHM
, 0, IMC0
) },
610 [10] = { PCI_DESCR(PCI_DEVICE_ID_INTEL_KNL_IMC_SAD0
, 0, SOCK
) },
611 [11] = { PCI_DESCR(PCI_DEVICE_ID_INTEL_KNL_IMC_SAD1
, 0, SOCK
) },
612 [12 ... 49] = { PCI_DESCR(PCI_DEVICE_ID_INTEL_KNL_IMC_CHA
, 0, SOCK
) },
615 static const struct pci_id_table pci_dev_descr_knl_table
[] = {
616 PCI_ID_TABLE_ENTRY(pci_dev_descr_knl
, ARRAY_SIZE(pci_dev_descr_knl
), 1, KNIGHTS_LANDING
),
625 * - 2 DDR3 channels, 2 DPC per channel
628 * - 4 DDR4 channels, 3 DPC per channel
631 * - 4 DDR4 channels, 3 DPC per channel
634 * - each IMC interfaces with a SMI 2 channel
635 * - each SMI channel interfaces with a scalable memory buffer
636 * - each scalable memory buffer supports 4 DDR3/DDR4 channels, 3 DPC
638 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_VTD_MISC 0x6f28
639 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0 0x6fa0
640 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1 0x6f60
641 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TA 0x6fa8
642 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TM 0x6f71
643 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TA 0x6f68
644 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TM 0x6f79
645 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_CBO_SAD0 0x6ffc
646 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_CBO_SAD1 0x6ffd
647 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD0 0x6faa
648 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD1 0x6fab
649 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD2 0x6fac
650 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD3 0x6fad
651 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD0 0x6f6a
652 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD1 0x6f6b
653 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD2 0x6f6c
654 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD3 0x6f6d
655 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_DDRIO0 0x6faf
657 static const struct pci_id_descr pci_dev_descr_broadwell
[] = {
658 /* first item must be the HA */
659 { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0
, 0, IMC0
) },
660 { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1
, 1, IMC1
) },
662 { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TA
, 0, IMC0
) },
663 { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TM
, 0, IMC0
) },
664 { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD0
, 0, IMC0
) },
665 { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD1
, 0, IMC0
) },
666 { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD2
, 1, IMC0
) },
667 { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD3
, 1, IMC0
) },
669 { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TA
, 1, IMC1
) },
670 { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TM
, 1, IMC1
) },
671 { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD0
, 1, IMC1
) },
672 { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD1
, 1, IMC1
) },
673 { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD2
, 1, IMC1
) },
674 { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD3
, 1, IMC1
) },
676 { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_CBO_SAD0
, 0, SOCK
) },
677 { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_CBO_SAD1
, 0, SOCK
) },
678 { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_DDRIO0
, 1, SOCK
) },
681 static const struct pci_id_table pci_dev_descr_broadwell_table
[] = {
682 PCI_ID_TABLE_ENTRY(pci_dev_descr_broadwell
, 10, 2, BROADWELL
),
683 {0,} /* 0 terminated list. */
687 /****************************************************************************
688 Ancillary status routines
689 ****************************************************************************/
691 static inline int numrank(enum type type
, u32 mtr
)
693 int ranks
= (1 << RANK_CNT_BITS(mtr
));
696 if (type
== HASWELL
|| type
== BROADWELL
|| type
== KNIGHTS_LANDING
)
700 edac_dbg(0, "Invalid number of ranks: %d (max = %i) raw value = %x (%04x)\n",
701 ranks
, max
, (unsigned int)RANK_CNT_BITS(mtr
), mtr
);
708 static inline int numrow(u32 mtr
)
710 int rows
= (RANK_WIDTH_BITS(mtr
) + 12);
712 if (rows
< 13 || rows
> 18) {
713 edac_dbg(0, "Invalid number of rows: %d (should be between 14 and 17) raw value = %x (%04x)\n",
714 rows
, (unsigned int)RANK_WIDTH_BITS(mtr
), mtr
);
721 static inline int numcol(u32 mtr
)
723 int cols
= (COL_WIDTH_BITS(mtr
) + 10);
726 edac_dbg(0, "Invalid number of cols: %d (max = 4) raw value = %x (%04x)\n",
727 cols
, (unsigned int)COL_WIDTH_BITS(mtr
), mtr
);
734 static struct sbridge_dev
*get_sbridge_dev(int seg
, u8 bus
, enum domain dom
,
736 struct sbridge_dev
*prev
)
738 struct sbridge_dev
*sbridge_dev
;
741 * If we have devices scattered across several busses that pertain
742 * to the same memory controller, we'll lump them all together.
745 return list_first_entry_or_null(&sbridge_edac_list
,
746 struct sbridge_dev
, list
);
749 sbridge_dev
= list_entry(prev
? prev
->list
.next
750 : sbridge_edac_list
.next
, struct sbridge_dev
, list
);
752 list_for_each_entry_from(sbridge_dev
, &sbridge_edac_list
, list
) {
753 if ((sbridge_dev
->seg
== seg
) && (sbridge_dev
->bus
== bus
) &&
754 (dom
== SOCK
|| dom
== sbridge_dev
->dom
))
761 static struct sbridge_dev
*alloc_sbridge_dev(int seg
, u8 bus
, enum domain dom
,
762 const struct pci_id_table
*table
)
764 struct sbridge_dev
*sbridge_dev
;
766 sbridge_dev
= kzalloc(sizeof(*sbridge_dev
), GFP_KERNEL
);
770 sbridge_dev
->pdev
= kcalloc(table
->n_devs_per_imc
,
771 sizeof(*sbridge_dev
->pdev
),
773 if (!sbridge_dev
->pdev
) {
778 sbridge_dev
->seg
= seg
;
779 sbridge_dev
->bus
= bus
;
780 sbridge_dev
->dom
= dom
;
781 sbridge_dev
->n_devs
= table
->n_devs_per_imc
;
782 list_add_tail(&sbridge_dev
->list
, &sbridge_edac_list
);
787 static void free_sbridge_dev(struct sbridge_dev
*sbridge_dev
)
789 list_del(&sbridge_dev
->list
);
790 kfree(sbridge_dev
->pdev
);
794 static u64
sbridge_get_tolm(struct sbridge_pvt
*pvt
)
798 /* Address range is 32:28 */
799 pci_read_config_dword(pvt
->pci_sad1
, TOLM
, ®
);
800 return GET_TOLM(reg
);
803 static u64
sbridge_get_tohm(struct sbridge_pvt
*pvt
)
807 pci_read_config_dword(pvt
->pci_sad1
, TOHM
, ®
);
808 return GET_TOHM(reg
);
811 static u64
ibridge_get_tolm(struct sbridge_pvt
*pvt
)
815 pci_read_config_dword(pvt
->pci_br1
, TOLM
, ®
);
817 return GET_TOLM(reg
);
820 static u64
ibridge_get_tohm(struct sbridge_pvt
*pvt
)
824 pci_read_config_dword(pvt
->pci_br1
, TOHM
, ®
);
826 return GET_TOHM(reg
);
829 static u64
rir_limit(u32 reg
)
831 return ((u64
)GET_BITFIELD(reg
, 1, 10) << 29) | 0x1fffffff;
834 static u64
sad_limit(u32 reg
)
836 return (GET_BITFIELD(reg
, 6, 25) << 26) | 0x3ffffff;
839 static u32
interleave_mode(u32 reg
)
841 return GET_BITFIELD(reg
, 1, 1);
844 static u32
dram_attr(u32 reg
)
846 return GET_BITFIELD(reg
, 2, 3);
849 static u64
knl_sad_limit(u32 reg
)
851 return (GET_BITFIELD(reg
, 7, 26) << 26) | 0x3ffffff;
854 static u32
knl_interleave_mode(u32 reg
)
856 return GET_BITFIELD(reg
, 1, 2);
859 static const char * const knl_intlv_mode
[] = {
860 "[8:6]", "[10:8]", "[14:12]", "[32:30]"
863 static const char *get_intlv_mode_str(u32 reg
, enum type t
)
865 if (t
== KNIGHTS_LANDING
)
866 return knl_intlv_mode
[knl_interleave_mode(reg
)];
868 return interleave_mode(reg
) ? "[8:6]" : "[8:6]XOR[18:16]";
871 static u32
dram_attr_knl(u32 reg
)
873 return GET_BITFIELD(reg
, 3, 4);
877 static enum mem_type
get_memory_type(struct sbridge_pvt
*pvt
)
882 if (pvt
->pci_ddrio
) {
883 pci_read_config_dword(pvt
->pci_ddrio
, pvt
->info
.rankcfgr
,
885 if (GET_BITFIELD(reg
, 11, 11))
886 /* FIXME: Can also be LRDIMM */
896 static enum mem_type
haswell_get_memory_type(struct sbridge_pvt
*pvt
)
899 bool registered
= false;
900 enum mem_type mtype
= MEM_UNKNOWN
;
905 pci_read_config_dword(pvt
->pci_ddrio
,
906 HASWELL_DDRCRCLKCONTROLS
, ®
);
908 if (GET_BITFIELD(reg
, 16, 16))
911 pci_read_config_dword(pvt
->pci_ta
, MCMTR
, ®
);
912 if (GET_BITFIELD(reg
, 14, 14)) {
928 static enum dev_type
knl_get_width(struct sbridge_pvt
*pvt
, u32 mtr
)
930 /* for KNL value is fixed */
934 static enum dev_type
sbridge_get_width(struct sbridge_pvt
*pvt
, u32 mtr
)
936 /* there's no way to figure out */
940 static enum dev_type
__ibridge_get_width(u32 mtr
)
962 static enum dev_type
ibridge_get_width(struct sbridge_pvt
*pvt
, u32 mtr
)
965 * ddr3_width on the documentation but also valid for DDR4 on
968 return __ibridge_get_width(GET_BITFIELD(mtr
, 7, 8));
971 static enum dev_type
broadwell_get_width(struct sbridge_pvt
*pvt
, u32 mtr
)
973 /* ddr3_width on the documentation but also valid for DDR4 */
974 return __ibridge_get_width(GET_BITFIELD(mtr
, 8, 9));
977 static enum mem_type
knl_get_memory_type(struct sbridge_pvt
*pvt
)
979 /* DDR4 RDIMMS and LRDIMMS are supported */
983 static u8
get_node_id(struct sbridge_pvt
*pvt
)
986 pci_read_config_dword(pvt
->pci_br0
, SAD_CONTROL
, ®
);
987 return GET_BITFIELD(reg
, 0, 2);
990 static u8
haswell_get_node_id(struct sbridge_pvt
*pvt
)
994 pci_read_config_dword(pvt
->pci_sad1
, SAD_CONTROL
, ®
);
995 return GET_BITFIELD(reg
, 0, 3);
998 static u8
knl_get_node_id(struct sbridge_pvt
*pvt
)
1002 pci_read_config_dword(pvt
->pci_sad1
, SAD_CONTROL
, ®
);
1003 return GET_BITFIELD(reg
, 0, 2);
1007 * Use the reporting bank number to determine which memory
1008 * controller (also known as "ha" for "home agent"). Sandy
1009 * Bridge only has one memory controller per socket, so the
1010 * answer is always zero.
1012 static u8
sbridge_get_ha(u8 bank
)
1018 * On Ivy Bridge, Haswell and Broadwell the error may be in a
1019 * home agent bank (7, 8), or one of the per-channel memory
1020 * controller banks (9 .. 16).
1022 static u8
ibridge_get_ha(u8 bank
)
1028 return (bank
- 9) / 4;
1034 /* Not used, but included for safety/symmetry */
1035 static u8
knl_get_ha(u8 bank
)
1040 static u64
haswell_get_tolm(struct sbridge_pvt
*pvt
)
1044 pci_read_config_dword(pvt
->info
.pci_vtd
, HASWELL_TOLM
, ®
);
1045 return (GET_BITFIELD(reg
, 26, 31) << 26) | 0x3ffffff;
1048 static u64
haswell_get_tohm(struct sbridge_pvt
*pvt
)
1053 pci_read_config_dword(pvt
->info
.pci_vtd
, HASWELL_TOHM_0
, ®
);
1054 rc
= GET_BITFIELD(reg
, 26, 31);
1055 pci_read_config_dword(pvt
->info
.pci_vtd
, HASWELL_TOHM_1
, ®
);
1056 rc
= ((reg
<< 6) | rc
) << 26;
1058 return rc
| 0x1ffffff;
1061 static u64
knl_get_tolm(struct sbridge_pvt
*pvt
)
1065 pci_read_config_dword(pvt
->knl
.pci_mc_info
, KNL_TOLM
, ®
);
1066 return (GET_BITFIELD(reg
, 26, 31) << 26) | 0x3ffffff;
1069 static u64
knl_get_tohm(struct sbridge_pvt
*pvt
)
1074 pci_read_config_dword(pvt
->knl
.pci_mc_info
, KNL_TOHM_0
, ®_lo
);
1075 pci_read_config_dword(pvt
->knl
.pci_mc_info
, KNL_TOHM_1
, ®_hi
);
1076 rc
= ((u64
)reg_hi
<< 32) | reg_lo
;
1077 return rc
| 0x3ffffff;
1081 static u64
haswell_rir_limit(u32 reg
)
1083 return (((u64
)GET_BITFIELD(reg
, 1, 11) + 1) << 29) - 1;
1086 static inline u8
sad_pkg_socket(u8 pkg
)
1088 /* on Ivy Bridge, nodeID is SASS, where A is HA and S is node id */
1089 return ((pkg
>> 3) << 2) | (pkg
& 0x3);
1092 static inline u8
sad_pkg_ha(u8 pkg
)
1094 return (pkg
>> 2) & 0x1;
1097 static int haswell_chan_hash(int idx
, u64 addr
)
1102 * XOR even bits from 12:26 to bit0 of idx,
1103 * odd bits from 13:27 to bit1
1105 for (i
= 12; i
< 28; i
+= 2)
1106 idx
^= (addr
>> i
) & 3;
1111 /* Low bits of TAD limit, and some metadata. */
1112 static const u32 knl_tad_dram_limit_lo
[] = {
1113 0x400, 0x500, 0x600, 0x700,
1114 0x800, 0x900, 0xa00, 0xb00,
1117 /* Low bits of TAD offset. */
1118 static const u32 knl_tad_dram_offset_lo
[] = {
1119 0x404, 0x504, 0x604, 0x704,
1120 0x804, 0x904, 0xa04, 0xb04,
1123 /* High 16 bits of TAD limit and offset. */
1124 static const u32 knl_tad_dram_hi
[] = {
1125 0x408, 0x508, 0x608, 0x708,
1126 0x808, 0x908, 0xa08, 0xb08,
1129 /* Number of ways a tad entry is interleaved. */
1130 static const u32 knl_tad_ways
[] = {
1135 * Retrieve the n'th Target Address Decode table entry
1136 * from the memory controller's TAD table.
1138 * @pvt: driver private data
1139 * @entry: which entry you want to retrieve
1140 * @mc: which memory controller (0 or 1)
1141 * @offset: output tad range offset
1142 * @limit: output address of first byte above tad range
1143 * @ways: output number of interleave ways
1145 * The offset value has curious semantics. It's a sort of running total
1146 * of the sizes of all the memory regions that aren't mapped in this
1149 static int knl_get_tad(const struct sbridge_pvt
*pvt
,
1156 u32 reg_limit_lo
, reg_offset_lo
, reg_hi
;
1157 struct pci_dev
*pci_mc
;
1162 pci_mc
= pvt
->knl
.pci_mc0
;
1165 pci_mc
= pvt
->knl
.pci_mc1
;
1172 pci_read_config_dword(pci_mc
,
1173 knl_tad_dram_limit_lo
[entry
], ®_limit_lo
);
1174 pci_read_config_dword(pci_mc
,
1175 knl_tad_dram_offset_lo
[entry
], ®_offset_lo
);
1176 pci_read_config_dword(pci_mc
,
1177 knl_tad_dram_hi
[entry
], ®_hi
);
1179 /* Is this TAD entry enabled? */
1180 if (!GET_BITFIELD(reg_limit_lo
, 0, 0))
1183 way_id
= GET_BITFIELD(reg_limit_lo
, 3, 5);
1185 if (way_id
< ARRAY_SIZE(knl_tad_ways
)) {
1186 *ways
= knl_tad_ways
[way_id
];
1189 sbridge_printk(KERN_ERR
,
1190 "Unexpected value %d in mc_tad_limit_lo wayness field\n",
1196 * The least significant 6 bits of base and limit are truncated.
1197 * For limit, we fill the missing bits with 1s.
1199 *offset
= ((u64
) GET_BITFIELD(reg_offset_lo
, 6, 31) << 6) |
1200 ((u64
) GET_BITFIELD(reg_hi
, 0, 15) << 32);
1201 *limit
= ((u64
) GET_BITFIELD(reg_limit_lo
, 6, 31) << 6) | 63 |
1202 ((u64
) GET_BITFIELD(reg_hi
, 16, 31) << 32);
1207 /* Determine which memory controller is responsible for a given channel. */
1208 static int knl_channel_mc(int channel
)
1210 WARN_ON(channel
< 0 || channel
>= 6);
1212 return channel
< 3 ? 1 : 0;
1216 * Get the Nth entry from EDC_ROUTE_TABLE register.
1217 * (This is the per-tile mapping of logical interleave targets to
1218 * physical EDC modules.)
1230 static u32
knl_get_edc_route(int entry
, u32 reg
)
1232 WARN_ON(entry
>= KNL_MAX_EDCS
);
1233 return GET_BITFIELD(reg
, entry
*3, (entry
*3)+2);
1237 * Get the Nth entry from MC_ROUTE_TABLE register.
1238 * (This is the per-tile mapping of logical interleave targets to
1239 * physical DRAM channels modules.)
1241 * entry 0: mc 0:2 channel 18:19
1242 * 1: mc 3:5 channel 20:21
1243 * 2: mc 6:8 channel 22:23
1244 * 3: mc 9:11 channel 24:25
1245 * 4: mc 12:14 channel 26:27
1246 * 5: mc 15:17 channel 28:29
1249 * Though we have 3 bits to identify the MC, we should only see
1250 * the values 0 or 1.
1253 static u32
knl_get_mc_route(int entry
, u32 reg
)
1257 WARN_ON(entry
>= KNL_MAX_CHANNELS
);
1259 mc
= GET_BITFIELD(reg
, entry
*3, (entry
*3)+2);
1260 chan
= GET_BITFIELD(reg
, (entry
*2) + 18, (entry
*2) + 18 + 1);
1262 return knl_channel_remap(mc
, chan
);
1266 * Render the EDC_ROUTE register in human-readable form.
1267 * Output string s should be at least KNL_MAX_EDCS*2 bytes.
1269 static void knl_show_edc_route(u32 reg
, char *s
)
1273 for (i
= 0; i
< KNL_MAX_EDCS
; i
++) {
1274 s
[i
*2] = knl_get_edc_route(i
, reg
) + '0';
1278 s
[KNL_MAX_EDCS
*2 - 1] = '\0';
1282 * Render the MC_ROUTE register in human-readable form.
1283 * Output string s should be at least KNL_MAX_CHANNELS*2 bytes.
1285 static void knl_show_mc_route(u32 reg
, char *s
)
1289 for (i
= 0; i
< KNL_MAX_CHANNELS
; i
++) {
1290 s
[i
*2] = knl_get_mc_route(i
, reg
) + '0';
1294 s
[KNL_MAX_CHANNELS
*2 - 1] = '\0';
1297 #define KNL_EDC_ROUTE 0xb8
1298 #define KNL_MC_ROUTE 0xb4
1300 /* Is this dram rule backed by regular DRAM in flat mode? */
1301 #define KNL_EDRAM(reg) GET_BITFIELD(reg, 29, 29)
1303 /* Is this dram rule cached? */
1304 #define KNL_CACHEABLE(reg) GET_BITFIELD(reg, 28, 28)
1306 /* Is this rule backed by edc ? */
1307 #define KNL_EDRAM_ONLY(reg) GET_BITFIELD(reg, 29, 29)
1309 /* Is this rule backed by DRAM, cacheable in EDRAM? */
1310 #define KNL_CACHEABLE(reg) GET_BITFIELD(reg, 28, 28)
1312 /* Is this rule mod3? */
1313 #define KNL_MOD3(reg) GET_BITFIELD(reg, 27, 27)
1316 * Figure out how big our RAM modules are.
1318 * The DIMMMTR register in KNL doesn't tell us the size of the DIMMs, so we
1319 * have to figure this out from the SAD rules, interleave lists, route tables,
1322 * SAD rules can have holes in them (e.g. the 3G-4G hole), so we have to
1323 * inspect the TAD rules to figure out how large the SAD regions really are.
1325 * When we know the real size of a SAD region and how many ways it's
1326 * interleaved, we know the individual contribution of each channel to
1329 * Finally, we have to check whether each channel participates in each SAD
1332 * Fortunately, KNL only supports one DIMM per channel, so once we know how
1333 * much memory the channel uses, we know the DIMM is at least that large.
1334 * (The BIOS might possibly choose not to map all available memory, in which
1335 * case we will underreport the size of the DIMM.)
1337 * In theory, we could try to determine the EDC sizes as well, but that would
1338 * only work in flat mode, not in cache mode.
1340 * @mc_sizes: Output sizes of channels (must have space for KNL_MAX_CHANNELS
1343 static int knl_get_dimm_capacity(struct sbridge_pvt
*pvt
, u64
*mc_sizes
)
1345 u64 sad_base
, sad_limit
= 0;
1346 u64 tad_base
, tad_size
, tad_limit
, tad_deadspace
, tad_livespace
;
1349 int intrlv_ways
, tad_ways
;
1352 u64 sad_actual_size
[2]; /* sad size accounting for holes, per mc */
1353 u32 dram_rule
, interleave_reg
;
1354 u32 mc_route_reg
[KNL_MAX_CHAS
];
1355 u32 edc_route_reg
[KNL_MAX_CHAS
];
1357 char edc_route_string
[KNL_MAX_EDCS
*2];
1358 char mc_route_string
[KNL_MAX_CHANNELS
*2];
1362 int participants
[KNL_MAX_CHANNELS
];
1364 for (i
= 0; i
< KNL_MAX_CHANNELS
; i
++)
1367 /* Read the EDC route table in each CHA. */
1369 for (i
= 0; i
< KNL_MAX_CHAS
; i
++) {
1370 pci_read_config_dword(pvt
->knl
.pci_cha
[i
],
1371 KNL_EDC_ROUTE
, &edc_route_reg
[i
]);
1373 if (i
> 0 && edc_route_reg
[i
] != edc_route_reg
[i
-1]) {
1374 knl_show_edc_route(edc_route_reg
[i
-1],
1376 if (cur_reg_start
== i
-1)
1377 edac_dbg(0, "edc route table for CHA %d: %s\n",
1378 cur_reg_start
, edc_route_string
);
1380 edac_dbg(0, "edc route table for CHA %d-%d: %s\n",
1381 cur_reg_start
, i
-1, edc_route_string
);
1385 knl_show_edc_route(edc_route_reg
[i
-1], edc_route_string
);
1386 if (cur_reg_start
== i
-1)
1387 edac_dbg(0, "edc route table for CHA %d: %s\n",
1388 cur_reg_start
, edc_route_string
);
1390 edac_dbg(0, "edc route table for CHA %d-%d: %s\n",
1391 cur_reg_start
, i
-1, edc_route_string
);
1393 /* Read the MC route table in each CHA. */
1395 for (i
= 0; i
< KNL_MAX_CHAS
; i
++) {
1396 pci_read_config_dword(pvt
->knl
.pci_cha
[i
],
1397 KNL_MC_ROUTE
, &mc_route_reg
[i
]);
1399 if (i
> 0 && mc_route_reg
[i
] != mc_route_reg
[i
-1]) {
1400 knl_show_mc_route(mc_route_reg
[i
-1], mc_route_string
);
1401 if (cur_reg_start
== i
-1)
1402 edac_dbg(0, "mc route table for CHA %d: %s\n",
1403 cur_reg_start
, mc_route_string
);
1405 edac_dbg(0, "mc route table for CHA %d-%d: %s\n",
1406 cur_reg_start
, i
-1, mc_route_string
);
1410 knl_show_mc_route(mc_route_reg
[i
-1], mc_route_string
);
1411 if (cur_reg_start
== i
-1)
1412 edac_dbg(0, "mc route table for CHA %d: %s\n",
1413 cur_reg_start
, mc_route_string
);
1415 edac_dbg(0, "mc route table for CHA %d-%d: %s\n",
1416 cur_reg_start
, i
-1, mc_route_string
);
1418 /* Process DRAM rules */
1419 for (sad_rule
= 0; sad_rule
< pvt
->info
.max_sad
; sad_rule
++) {
1420 /* previous limit becomes the new base */
1421 sad_base
= sad_limit
;
1423 pci_read_config_dword(pvt
->pci_sad0
,
1424 pvt
->info
.dram_rule
[sad_rule
], &dram_rule
);
1426 if (!DRAM_RULE_ENABLE(dram_rule
))
1429 edram_only
= KNL_EDRAM_ONLY(dram_rule
);
1431 sad_limit
= pvt
->info
.sad_limit(dram_rule
)+1;
1433 pci_read_config_dword(pvt
->pci_sad0
,
1434 pvt
->info
.interleave_list
[sad_rule
], &interleave_reg
);
1437 * Find out how many ways this dram rule is interleaved.
1438 * We stop when we see the first channel again.
1440 first_pkg
= sad_pkg(pvt
->info
.interleave_pkg
,
1442 for (intrlv_ways
= 1; intrlv_ways
< 8; intrlv_ways
++) {
1443 pkg
= sad_pkg(pvt
->info
.interleave_pkg
,
1444 interleave_reg
, intrlv_ways
);
1446 if ((pkg
& 0x8) == 0) {
1448 * 0 bit means memory is non-local,
1449 * which KNL doesn't support
1451 edac_dbg(0, "Unexpected interleave target %d\n",
1456 if (pkg
== first_pkg
)
1459 if (KNL_MOD3(dram_rule
))
1462 edac_dbg(3, "dram rule %d (base 0x%llx, limit 0x%llx), %d way interleave%s\n",
1467 edram_only
? ", EDRAM" : "");
1470 * Find out how big the SAD region really is by iterating
1471 * over TAD tables (SAD regions may contain holes).
1472 * Each memory controller might have a different TAD table, so
1473 * we have to look at both.
1475 * Livespace is the memory that's mapped in this TAD table,
1476 * deadspace is the holes (this could be the MMIO hole, or it
1477 * could be memory that's mapped by the other TAD table but
1480 for (mc
= 0; mc
< 2; mc
++) {
1481 sad_actual_size
[mc
] = 0;
1484 tad_rule
< ARRAY_SIZE(
1485 knl_tad_dram_limit_lo
);
1487 if (knl_get_tad(pvt
,
1495 tad_size
= (tad_limit
+1) -
1496 (tad_livespace
+ tad_deadspace
);
1497 tad_livespace
+= tad_size
;
1498 tad_base
= (tad_limit
+1) - tad_size
;
1500 if (tad_base
< sad_base
) {
1501 if (tad_limit
> sad_base
)
1502 edac_dbg(0, "TAD region overlaps lower SAD boundary -- TAD tables may be configured incorrectly.\n");
1503 } else if (tad_base
< sad_limit
) {
1504 if (tad_limit
+1 > sad_limit
) {
1505 edac_dbg(0, "TAD region overlaps upper SAD boundary -- TAD tables may be configured incorrectly.\n");
1507 /* TAD region is completely inside SAD region */
1508 edac_dbg(3, "TAD region %d 0x%llx - 0x%llx (%lld bytes) table%d\n",
1510 tad_limit
, tad_size
,
1512 sad_actual_size
[mc
] += tad_size
;
1518 for (mc
= 0; mc
< 2; mc
++) {
1519 edac_dbg(3, " total TAD DRAM footprint in table%d : 0x%llx (%lld bytes)\n",
1520 mc
, sad_actual_size
[mc
], sad_actual_size
[mc
]);
1523 /* Ignore EDRAM rule */
1527 /* Figure out which channels participate in interleave. */
1528 for (channel
= 0; channel
< KNL_MAX_CHANNELS
; channel
++)
1529 participants
[channel
] = 0;
1531 /* For each channel, does at least one CHA have
1532 * this channel mapped to the given target?
1534 for (channel
= 0; channel
< KNL_MAX_CHANNELS
; channel
++) {
1538 for (target
= 0; target
< KNL_MAX_CHANNELS
; target
++) {
1539 for (cha
= 0; cha
< KNL_MAX_CHAS
; cha
++) {
1540 if (knl_get_mc_route(target
,
1541 mc_route_reg
[cha
]) == channel
1542 && !participants
[channel
]) {
1543 participants
[channel
] = 1;
1550 for (channel
= 0; channel
< KNL_MAX_CHANNELS
; channel
++) {
1551 mc
= knl_channel_mc(channel
);
1552 if (participants
[channel
]) {
1553 edac_dbg(4, "mc channel %d contributes %lld bytes via sad entry %d\n",
1555 sad_actual_size
[mc
]/intrlv_ways
,
1557 mc_sizes
[channel
] +=
1558 sad_actual_size
[mc
]/intrlv_ways
;
1566 static void get_source_id(struct mem_ctl_info
*mci
)
1568 struct sbridge_pvt
*pvt
= mci
->pvt_info
;
1571 if (pvt
->info
.type
== HASWELL
|| pvt
->info
.type
== BROADWELL
||
1572 pvt
->info
.type
== KNIGHTS_LANDING
)
1573 pci_read_config_dword(pvt
->pci_sad1
, SAD_TARGET
, ®
);
1575 pci_read_config_dword(pvt
->pci_br0
, SAD_TARGET
, ®
);
1577 if (pvt
->info
.type
== KNIGHTS_LANDING
)
1578 pvt
->sbridge_dev
->source_id
= SOURCE_ID_KNL(reg
);
1580 pvt
->sbridge_dev
->source_id
= SOURCE_ID(reg
);
1583 static int __populate_dimms(struct mem_ctl_info
*mci
,
1584 u64 knl_mc_sizes
[KNL_MAX_CHANNELS
],
1585 enum edac_type mode
)
1587 struct sbridge_pvt
*pvt
= mci
->pvt_info
;
1588 int channels
= pvt
->info
.type
== KNIGHTS_LANDING
? KNL_MAX_CHANNELS
1590 unsigned int i
, j
, banks
, ranks
, rows
, cols
, npages
;
1591 struct dimm_info
*dimm
;
1592 enum mem_type mtype
;
1595 mtype
= pvt
->info
.get_memory_type(pvt
);
1596 if (mtype
== MEM_RDDR3
|| mtype
== MEM_RDDR4
)
1597 edac_dbg(0, "Memory is registered\n");
1598 else if (mtype
== MEM_UNKNOWN
)
1599 edac_dbg(0, "Cannot determine memory type\n");
1601 edac_dbg(0, "Memory is unregistered\n");
1603 if (mtype
== MEM_DDR4
|| mtype
== MEM_RDDR4
)
1608 for (i
= 0; i
< channels
; i
++) {
1611 int max_dimms_per_channel
;
1613 if (pvt
->info
.type
== KNIGHTS_LANDING
) {
1614 max_dimms_per_channel
= 1;
1615 if (!pvt
->knl
.pci_channel
[i
])
1618 max_dimms_per_channel
= ARRAY_SIZE(mtr_regs
);
1619 if (!pvt
->pci_tad
[i
])
1623 for (j
= 0; j
< max_dimms_per_channel
; j
++) {
1624 dimm
= edac_get_dimm(mci
, i
, j
, 0);
1625 if (pvt
->info
.type
== KNIGHTS_LANDING
) {
1626 pci_read_config_dword(pvt
->knl
.pci_channel
[i
],
1629 pci_read_config_dword(pvt
->pci_tad
[i
],
1632 edac_dbg(4, "Channel #%d MTR%d = %x\n", i
, j
, mtr
);
1633 if (IS_DIMM_PRESENT(mtr
)) {
1634 if (!IS_ECC_ENABLED(pvt
->info
.mcmtr
)) {
1635 sbridge_printk(KERN_ERR
, "CPU SrcID #%d, Ha #%d, Channel #%d has DIMMs, but ECC is disabled\n",
1636 pvt
->sbridge_dev
->source_id
,
1637 pvt
->sbridge_dev
->dom
, i
);
1640 pvt
->channel
[i
].dimms
++;
1642 ranks
= numrank(pvt
->info
.type
, mtr
);
1644 if (pvt
->info
.type
== KNIGHTS_LANDING
) {
1645 /* For DDR4, this is fixed. */
1647 rows
= knl_mc_sizes
[i
] /
1648 ((u64
) cols
* ranks
* banks
* 8);
1654 size
= ((u64
)rows
* cols
* banks
* ranks
) >> (20 - 3);
1655 npages
= MiB_TO_PAGES(size
);
1657 edac_dbg(0, "mc#%d: ha %d channel %d, dimm %d, %lld MiB (%d pages) bank: %d, rank: %d, row: %#x, col: %#x\n",
1658 pvt
->sbridge_dev
->mc
, pvt
->sbridge_dev
->dom
, i
, j
,
1660 banks
, ranks
, rows
, cols
);
1662 dimm
->nr_pages
= npages
;
1664 dimm
->dtype
= pvt
->info
.get_width(pvt
, mtr
);
1665 dimm
->mtype
= mtype
;
1666 dimm
->edac_mode
= mode
;
1667 snprintf(dimm
->label
, sizeof(dimm
->label
),
1668 "CPU_SrcID#%u_Ha#%u_Chan#%u_DIMM#%u",
1669 pvt
->sbridge_dev
->source_id
, pvt
->sbridge_dev
->dom
, i
, j
);
1677 static int get_dimm_config(struct mem_ctl_info
*mci
)
1679 struct sbridge_pvt
*pvt
= mci
->pvt_info
;
1680 u64 knl_mc_sizes
[KNL_MAX_CHANNELS
];
1681 enum edac_type mode
;
1684 pvt
->sbridge_dev
->node_id
= pvt
->info
.get_node_id(pvt
);
1685 edac_dbg(0, "mc#%d: Node ID: %d, source ID: %d\n",
1686 pvt
->sbridge_dev
->mc
,
1687 pvt
->sbridge_dev
->node_id
,
1688 pvt
->sbridge_dev
->source_id
);
1690 /* KNL doesn't support mirroring or lockstep,
1691 * and is always closed page
1693 if (pvt
->info
.type
== KNIGHTS_LANDING
) {
1694 mode
= EDAC_S4ECD4ED
;
1695 pvt
->mirror_mode
= NON_MIRRORING
;
1696 pvt
->is_cur_addr_mirrored
= false;
1698 if (knl_get_dimm_capacity(pvt
, knl_mc_sizes
) != 0)
1700 if (pci_read_config_dword(pvt
->pci_ta
, KNL_MCMTR
, &pvt
->info
.mcmtr
)) {
1701 edac_dbg(0, "Failed to read KNL_MCMTR register\n");
1705 if (pvt
->info
.type
== HASWELL
|| pvt
->info
.type
== BROADWELL
) {
1706 if (pci_read_config_dword(pvt
->pci_ha
, HASWELL_HASYSDEFEATURE2
, ®
)) {
1707 edac_dbg(0, "Failed to read HASWELL_HASYSDEFEATURE2 register\n");
1710 pvt
->is_chan_hash
= GET_BITFIELD(reg
, 21, 21);
1711 if (GET_BITFIELD(reg
, 28, 28)) {
1712 pvt
->mirror_mode
= ADDR_RANGE_MIRRORING
;
1713 edac_dbg(0, "Address range partial memory mirroring is enabled\n");
1717 if (pci_read_config_dword(pvt
->pci_ras
, RASENABLES
, ®
)) {
1718 edac_dbg(0, "Failed to read RASENABLES register\n");
1721 if (IS_MIRROR_ENABLED(reg
)) {
1722 pvt
->mirror_mode
= FULL_MIRRORING
;
1723 edac_dbg(0, "Full memory mirroring is enabled\n");
1725 pvt
->mirror_mode
= NON_MIRRORING
;
1726 edac_dbg(0, "Memory mirroring is disabled\n");
1730 if (pci_read_config_dword(pvt
->pci_ta
, MCMTR
, &pvt
->info
.mcmtr
)) {
1731 edac_dbg(0, "Failed to read MCMTR register\n");
1734 if (IS_LOCKSTEP_ENABLED(pvt
->info
.mcmtr
)) {
1735 edac_dbg(0, "Lockstep is enabled\n");
1736 mode
= EDAC_S8ECD8ED
;
1737 pvt
->is_lockstep
= true;
1739 edac_dbg(0, "Lockstep is disabled\n");
1740 mode
= EDAC_S4ECD4ED
;
1741 pvt
->is_lockstep
= false;
1743 if (IS_CLOSE_PG(pvt
->info
.mcmtr
)) {
1744 edac_dbg(0, "address map is on closed page mode\n");
1745 pvt
->is_close_pg
= true;
1747 edac_dbg(0, "address map is on open page mode\n");
1748 pvt
->is_close_pg
= false;
1752 return __populate_dimms(mci
, knl_mc_sizes
, mode
);
1755 static void get_memory_layout(const struct mem_ctl_info
*mci
)
1757 struct sbridge_pvt
*pvt
= mci
->pvt_info
;
1758 int i
, j
, k
, n_sads
, n_tads
, sad_interl
;
1766 * Step 1) Get TOLM/TOHM ranges
1769 pvt
->tolm
= pvt
->info
.get_tolm(pvt
);
1770 tmp_mb
= (1 + pvt
->tolm
) >> 20;
1772 gb
= div_u64_rem(tmp_mb
, 1024, &mb
);
1773 edac_dbg(0, "TOLM: %u.%03u GB (0x%016Lx)\n",
1774 gb
, (mb
*1000)/1024, (u64
)pvt
->tolm
);
1776 /* Address range is already 45:25 */
1777 pvt
->tohm
= pvt
->info
.get_tohm(pvt
);
1778 tmp_mb
= (1 + pvt
->tohm
) >> 20;
1780 gb
= div_u64_rem(tmp_mb
, 1024, &mb
);
1781 edac_dbg(0, "TOHM: %u.%03u GB (0x%016Lx)\n",
1782 gb
, (mb
*1000)/1024, (u64
)pvt
->tohm
);
1785 * Step 2) Get SAD range and SAD Interleave list
1786 * TAD registers contain the interleave wayness. However, it
1787 * seems simpler to just discover it indirectly, with the
1791 for (n_sads
= 0; n_sads
< pvt
->info
.max_sad
; n_sads
++) {
1792 /* SAD_LIMIT Address range is 45:26 */
1793 pci_read_config_dword(pvt
->pci_sad0
, pvt
->info
.dram_rule
[n_sads
],
1795 limit
= pvt
->info
.sad_limit(reg
);
1797 if (!DRAM_RULE_ENABLE(reg
))
1803 tmp_mb
= (limit
+ 1) >> 20;
1804 gb
= div_u64_rem(tmp_mb
, 1024, &mb
);
1805 edac_dbg(0, "SAD#%d %s up to %u.%03u GB (0x%016Lx) Interleave: %s reg=0x%08x\n",
1807 show_dram_attr(pvt
->info
.dram_attr(reg
)),
1809 ((u64
)tmp_mb
) << 20L,
1810 get_intlv_mode_str(reg
, pvt
->info
.type
),
1814 pci_read_config_dword(pvt
->pci_sad0
, pvt
->info
.interleave_list
[n_sads
],
1816 sad_interl
= sad_pkg(pvt
->info
.interleave_pkg
, reg
, 0);
1817 for (j
= 0; j
< 8; j
++) {
1818 u32 pkg
= sad_pkg(pvt
->info
.interleave_pkg
, reg
, j
);
1819 if (j
> 0 && sad_interl
== pkg
)
1822 edac_dbg(0, "SAD#%d, interleave #%d: %d\n",
1827 if (pvt
->info
.type
== KNIGHTS_LANDING
)
1831 * Step 3) Get TAD range
1834 for (n_tads
= 0; n_tads
< MAX_TAD
; n_tads
++) {
1835 pci_read_config_dword(pvt
->pci_ha
, tad_dram_rule
[n_tads
], ®
);
1836 limit
= TAD_LIMIT(reg
);
1839 tmp_mb
= (limit
+ 1) >> 20;
1841 gb
= div_u64_rem(tmp_mb
, 1024, &mb
);
1842 edac_dbg(0, "TAD#%d: up to %u.%03u GB (0x%016Lx), socket interleave %d, memory interleave %d, TGT: %d, %d, %d, %d, reg=0x%08x\n",
1843 n_tads
, gb
, (mb
*1000)/1024,
1844 ((u64
)tmp_mb
) << 20L,
1845 (u32
)(1 << TAD_SOCK(reg
)),
1846 (u32
)TAD_CH(reg
) + 1,
1856 * Step 4) Get TAD offsets, per each channel
1858 for (i
= 0; i
< NUM_CHANNELS
; i
++) {
1859 if (!pvt
->channel
[i
].dimms
)
1861 for (j
= 0; j
< n_tads
; j
++) {
1862 pci_read_config_dword(pvt
->pci_tad
[i
],
1863 tad_ch_nilv_offset
[j
],
1865 tmp_mb
= TAD_OFFSET(reg
) >> 20;
1866 gb
= div_u64_rem(tmp_mb
, 1024, &mb
);
1867 edac_dbg(0, "TAD CH#%d, offset #%d: %u.%03u GB (0x%016Lx), reg=0x%08x\n",
1870 ((u64
)tmp_mb
) << 20L,
1876 * Step 6) Get RIR Wayness/Limit, per each channel
1878 for (i
= 0; i
< NUM_CHANNELS
; i
++) {
1879 if (!pvt
->channel
[i
].dimms
)
1881 for (j
= 0; j
< MAX_RIR_RANGES
; j
++) {
1882 pci_read_config_dword(pvt
->pci_tad
[i
],
1886 if (!IS_RIR_VALID(reg
))
1889 tmp_mb
= pvt
->info
.rir_limit(reg
) >> 20;
1890 rir_way
= 1 << RIR_WAY(reg
);
1891 gb
= div_u64_rem(tmp_mb
, 1024, &mb
);
1892 edac_dbg(0, "CH#%d RIR#%d, limit: %u.%03u GB (0x%016Lx), way: %d, reg=0x%08x\n",
1895 ((u64
)tmp_mb
) << 20L,
1899 for (k
= 0; k
< rir_way
; k
++) {
1900 pci_read_config_dword(pvt
->pci_tad
[i
],
1903 tmp_mb
= RIR_OFFSET(pvt
->info
.type
, reg
) << 6;
1905 gb
= div_u64_rem(tmp_mb
, 1024, &mb
);
1906 edac_dbg(0, "CH#%d RIR#%d INTL#%d, offset %u.%03u GB (0x%016Lx), tgt: %d, reg=0x%08x\n",
1909 ((u64
)tmp_mb
) << 20L,
1910 (u32
)RIR_RNK_TGT(pvt
->info
.type
, reg
),
1917 static struct mem_ctl_info
*get_mci_for_node_id(u8 node_id
, u8 ha
)
1919 struct sbridge_dev
*sbridge_dev
;
1921 list_for_each_entry(sbridge_dev
, &sbridge_edac_list
, list
) {
1922 if (sbridge_dev
->node_id
== node_id
&& sbridge_dev
->dom
== ha
)
1923 return sbridge_dev
->mci
;
1928 static int get_memory_error_data(struct mem_ctl_info
*mci
,
1933 char **area_type
, char *msg
)
1935 struct mem_ctl_info
*new_mci
;
1936 struct sbridge_pvt
*pvt
= mci
->pvt_info
;
1937 struct pci_dev
*pci_ha
;
1938 int n_rir
, n_sads
, n_tads
, sad_way
, sck_xch
;
1939 int sad_interl
, idx
, base_ch
;
1940 int interleave_mode
, shiftup
= 0;
1941 unsigned int sad_interleave
[MAX_INTERLEAVE
];
1943 u8 ch_way
, sck_way
, pkg
, sad_ha
= 0;
1947 u64 ch_addr
, offset
, limit
= 0, prv
= 0;
1951 * Step 0) Check if the address is at special memory ranges
1952 * The check bellow is probably enough to fill all cases where
1953 * the error is not inside a memory, except for the legacy
1954 * range (e. g. VGA addresses). It is unlikely, however, that the
1955 * memory controller would generate an error on that range.
1957 if ((addr
> (u64
) pvt
->tolm
) && (addr
< (1LL << 32))) {
1958 sprintf(msg
, "Error at TOLM area, on addr 0x%08Lx", addr
);
1961 if (addr
>= (u64
)pvt
->tohm
) {
1962 sprintf(msg
, "Error at MMIOH area, on addr 0x%016Lx", addr
);
1967 * Step 1) Get socket
1969 for (n_sads
= 0; n_sads
< pvt
->info
.max_sad
; n_sads
++) {
1970 pci_read_config_dword(pvt
->pci_sad0
, pvt
->info
.dram_rule
[n_sads
],
1973 if (!DRAM_RULE_ENABLE(reg
))
1976 limit
= pvt
->info
.sad_limit(reg
);
1978 sprintf(msg
, "Can't discover the memory socket");
1985 if (n_sads
== pvt
->info
.max_sad
) {
1986 sprintf(msg
, "Can't discover the memory socket");
1990 *area_type
= show_dram_attr(pvt
->info
.dram_attr(dram_rule
));
1991 interleave_mode
= pvt
->info
.interleave_mode(dram_rule
);
1993 pci_read_config_dword(pvt
->pci_sad0
, pvt
->info
.interleave_list
[n_sads
],
1996 if (pvt
->info
.type
== SANDY_BRIDGE
) {
1997 sad_interl
= sad_pkg(pvt
->info
.interleave_pkg
, reg
, 0);
1998 for (sad_way
= 0; sad_way
< 8; sad_way
++) {
1999 u32 pkg
= sad_pkg(pvt
->info
.interleave_pkg
, reg
, sad_way
);
2000 if (sad_way
> 0 && sad_interl
== pkg
)
2002 sad_interleave
[sad_way
] = pkg
;
2003 edac_dbg(0, "SAD interleave #%d: %d\n",
2004 sad_way
, sad_interleave
[sad_way
]);
2006 edac_dbg(0, "mc#%d: Error detected on SAD#%d: address 0x%016Lx < 0x%016Lx, Interleave [%d:6]%s\n",
2007 pvt
->sbridge_dev
->mc
,
2012 !interleave_mode
? "" : "XOR[18:16]");
2013 if (interleave_mode
)
2014 idx
= ((addr
>> 6) ^ (addr
>> 16)) & 7;
2016 idx
= (addr
>> 6) & 7;
2030 sprintf(msg
, "Can't discover socket interleave");
2033 *socket
= sad_interleave
[idx
];
2034 edac_dbg(0, "SAD interleave index: %d (wayness %d) = CPU socket %d\n",
2035 idx
, sad_way
, *socket
);
2036 } else if (pvt
->info
.type
== HASWELL
|| pvt
->info
.type
== BROADWELL
) {
2037 int bits
, a7mode
= A7MODE(dram_rule
);
2040 /* A7 mode swaps P9 with P6 */
2041 bits
= GET_BITFIELD(addr
, 7, 8) << 1;
2042 bits
|= GET_BITFIELD(addr
, 9, 9);
2044 bits
= GET_BITFIELD(addr
, 6, 8);
2046 if (interleave_mode
== 0) {
2047 /* interleave mode will XOR {8,7,6} with {18,17,16} */
2048 idx
= GET_BITFIELD(addr
, 16, 18);
2053 pkg
= sad_pkg(pvt
->info
.interleave_pkg
, reg
, idx
);
2054 *socket
= sad_pkg_socket(pkg
);
2055 sad_ha
= sad_pkg_ha(pkg
);
2058 /* MCChanShiftUpEnable */
2059 pci_read_config_dword(pvt
->pci_ha
, HASWELL_HASYSDEFEATURE2
, ®
);
2060 shiftup
= GET_BITFIELD(reg
, 22, 22);
2063 edac_dbg(0, "SAD interleave package: %d = CPU socket %d, HA %i, shiftup: %i\n",
2064 idx
, *socket
, sad_ha
, shiftup
);
2066 /* Ivy Bridge's SAD mode doesn't support XOR interleave mode */
2067 idx
= (addr
>> 6) & 7;
2068 pkg
= sad_pkg(pvt
->info
.interleave_pkg
, reg
, idx
);
2069 *socket
= sad_pkg_socket(pkg
);
2070 sad_ha
= sad_pkg_ha(pkg
);
2071 edac_dbg(0, "SAD interleave package: %d = CPU socket %d, HA %d\n",
2072 idx
, *socket
, sad_ha
);
2078 * Move to the proper node structure, in order to access the
2079 * right PCI registers
2081 new_mci
= get_mci_for_node_id(*socket
, sad_ha
);
2083 sprintf(msg
, "Struct for socket #%u wasn't initialized",
2088 pvt
= mci
->pvt_info
;
2091 * Step 2) Get memory channel
2094 pci_ha
= pvt
->pci_ha
;
2095 for (n_tads
= 0; n_tads
< MAX_TAD
; n_tads
++) {
2096 pci_read_config_dword(pci_ha
, tad_dram_rule
[n_tads
], ®
);
2097 limit
= TAD_LIMIT(reg
);
2099 sprintf(msg
, "Can't discover the memory channel");
2106 if (n_tads
== MAX_TAD
) {
2107 sprintf(msg
, "Can't discover the memory channel");
2111 ch_way
= TAD_CH(reg
) + 1;
2112 sck_way
= TAD_SOCK(reg
);
2117 idx
= (addr
>> (6 + sck_way
+ shiftup
)) & 0x3;
2118 if (pvt
->is_chan_hash
)
2119 idx
= haswell_chan_hash(idx
, addr
);
2124 * FIXME: Shouldn't we use CHN_IDX_OFFSET() here, when ch_way == 3 ???
2128 base_ch
= TAD_TGT0(reg
);
2131 base_ch
= TAD_TGT1(reg
);
2134 base_ch
= TAD_TGT2(reg
);
2137 base_ch
= TAD_TGT3(reg
);
2140 sprintf(msg
, "Can't discover the TAD target");
2143 *channel_mask
= 1 << base_ch
;
2145 pci_read_config_dword(pvt
->pci_tad
[base_ch
], tad_ch_nilv_offset
[n_tads
], &tad_offset
);
2147 if (pvt
->mirror_mode
== FULL_MIRRORING
||
2148 (pvt
->mirror_mode
== ADDR_RANGE_MIRRORING
&& n_tads
== 0)) {
2149 *channel_mask
|= 1 << ((base_ch
+ 2) % 4);
2153 sck_xch
= (1 << sck_way
) * (ch_way
>> 1);
2156 sprintf(msg
, "Invalid mirror set. Can't decode addr");
2160 pvt
->is_cur_addr_mirrored
= true;
2162 sck_xch
= (1 << sck_way
) * ch_way
;
2163 pvt
->is_cur_addr_mirrored
= false;
2166 if (pvt
->is_lockstep
)
2167 *channel_mask
|= 1 << ((base_ch
+ 1) % 4);
2169 offset
= TAD_OFFSET(tad_offset
);
2171 edac_dbg(0, "TAD#%d: address 0x%016Lx < 0x%016Lx, socket interleave %d, channel interleave %d (offset 0x%08Lx), index %d, base ch: %d, ch mask: 0x%02lx\n",
2182 /* Calculate channel address */
2183 /* Remove the TAD offset */
2185 if (offset
> addr
) {
2186 sprintf(msg
, "Can't calculate ch addr: TAD offset 0x%08Lx is too high for addr 0x%08Lx!",
2191 ch_addr
= addr
- offset
;
2192 ch_addr
>>= (6 + shiftup
);
2194 ch_addr
<<= (6 + shiftup
);
2195 ch_addr
|= addr
& ((1 << (6 + shiftup
)) - 1);
2198 * Step 3) Decode rank
2200 for (n_rir
= 0; n_rir
< MAX_RIR_RANGES
; n_rir
++) {
2201 pci_read_config_dword(pvt
->pci_tad
[base_ch
], rir_way_limit
[n_rir
], ®
);
2203 if (!IS_RIR_VALID(reg
))
2206 limit
= pvt
->info
.rir_limit(reg
);
2207 gb
= div_u64_rem(limit
>> 20, 1024, &mb
);
2208 edac_dbg(0, "RIR#%d, limit: %u.%03u GB (0x%016Lx), way: %d\n",
2213 if (ch_addr
<= limit
)
2216 if (n_rir
== MAX_RIR_RANGES
) {
2217 sprintf(msg
, "Can't discover the memory rank for ch addr 0x%08Lx",
2221 rir_way
= RIR_WAY(reg
);
2223 if (pvt
->is_close_pg
)
2224 idx
= (ch_addr
>> 6);
2226 idx
= (ch_addr
>> 13); /* FIXME: Datasheet says to shift by 15 */
2227 idx
%= 1 << rir_way
;
2229 pci_read_config_dword(pvt
->pci_tad
[base_ch
], rir_offset
[n_rir
][idx
], ®
);
2230 *rank
= RIR_RNK_TGT(pvt
->info
.type
, reg
);
2232 edac_dbg(0, "RIR#%d: channel address 0x%08Lx < 0x%08Lx, RIR interleave %d, index %d\n",
2242 static int get_memory_error_data_from_mce(struct mem_ctl_info
*mci
,
2243 const struct mce
*m
, u8
*socket
,
2244 u8
*ha
, long *channel_mask
,
2247 u32 reg
, channel
= GET_BITFIELD(m
->status
, 0, 3);
2248 struct mem_ctl_info
*new_mci
;
2249 struct sbridge_pvt
*pvt
;
2250 struct pci_dev
*pci_ha
;
2253 if (channel
>= NUM_CHANNELS
) {
2254 sprintf(msg
, "Invalid channel 0x%x", channel
);
2258 pvt
= mci
->pvt_info
;
2259 if (!pvt
->info
.get_ha
) {
2260 sprintf(msg
, "No get_ha()");
2263 *ha
= pvt
->info
.get_ha(m
->bank
);
2264 if (*ha
!= 0 && *ha
!= 1) {
2265 sprintf(msg
, "Impossible bank %d", m
->bank
);
2269 *socket
= m
->socketid
;
2270 new_mci
= get_mci_for_node_id(*socket
, *ha
);
2272 strcpy(msg
, "mci socket got corrupted!");
2276 pvt
= new_mci
->pvt_info
;
2277 pci_ha
= pvt
->pci_ha
;
2278 pci_read_config_dword(pci_ha
, tad_dram_rule
[0], ®
);
2279 tad0
= m
->addr
<= TAD_LIMIT(reg
);
2281 *channel_mask
= 1 << channel
;
2282 if (pvt
->mirror_mode
== FULL_MIRRORING
||
2283 (pvt
->mirror_mode
== ADDR_RANGE_MIRRORING
&& tad0
)) {
2284 *channel_mask
|= 1 << ((channel
+ 2) % 4);
2285 pvt
->is_cur_addr_mirrored
= true;
2287 pvt
->is_cur_addr_mirrored
= false;
2290 if (pvt
->is_lockstep
)
2291 *channel_mask
|= 1 << ((channel
+ 1) % 4);
2296 /****************************************************************************
2297 Device initialization routines: put/get, init/exit
2298 ****************************************************************************/
2301 * sbridge_put_all_devices 'put' all the devices that we have
2302 * reserved via 'get'
2304 static void sbridge_put_devices(struct sbridge_dev
*sbridge_dev
)
2309 for (i
= 0; i
< sbridge_dev
->n_devs
; i
++) {
2310 struct pci_dev
*pdev
= sbridge_dev
->pdev
[i
];
2313 edac_dbg(0, "Removing dev %02x:%02x.%d\n",
2315 PCI_SLOT(pdev
->devfn
), PCI_FUNC(pdev
->devfn
));
2320 static void sbridge_put_all_devices(void)
2322 struct sbridge_dev
*sbridge_dev
, *tmp
;
2324 list_for_each_entry_safe(sbridge_dev
, tmp
, &sbridge_edac_list
, list
) {
2325 sbridge_put_devices(sbridge_dev
);
2326 free_sbridge_dev(sbridge_dev
);
2330 static int sbridge_get_onedevice(struct pci_dev
**prev
,
2332 const struct pci_id_table
*table
,
2333 const unsigned devno
,
2334 const int multi_bus
)
2336 struct sbridge_dev
*sbridge_dev
= NULL
;
2337 const struct pci_id_descr
*dev_descr
= &table
->descr
[devno
];
2338 struct pci_dev
*pdev
= NULL
;
2343 sbridge_printk(KERN_DEBUG
,
2344 "Seeking for: PCI ID %04x:%04x\n",
2345 PCI_VENDOR_ID_INTEL
, dev_descr
->dev_id
);
2347 pdev
= pci_get_device(PCI_VENDOR_ID_INTEL
,
2348 dev_descr
->dev_id
, *prev
);
2356 if (dev_descr
->optional
)
2359 /* if the HA wasn't found */
2363 sbridge_printk(KERN_INFO
,
2364 "Device not found: %04x:%04x\n",
2365 PCI_VENDOR_ID_INTEL
, dev_descr
->dev_id
);
2367 /* End of list, leave */
2370 seg
= pci_domain_nr(pdev
->bus
);
2371 bus
= pdev
->bus
->number
;
2374 sbridge_dev
= get_sbridge_dev(seg
, bus
, dev_descr
->dom
,
2375 multi_bus
, sbridge_dev
);
2377 /* If the HA1 wasn't found, don't create EDAC second memory controller */
2378 if (dev_descr
->dom
== IMC1
&& devno
!= 1) {
2379 edac_dbg(0, "Skip IMC1: %04x:%04x (since HA1 was absent)\n",
2380 PCI_VENDOR_ID_INTEL
, dev_descr
->dev_id
);
2385 if (dev_descr
->dom
== SOCK
)
2388 sbridge_dev
= alloc_sbridge_dev(seg
, bus
, dev_descr
->dom
, table
);
2396 if (sbridge_dev
->pdev
[sbridge_dev
->i_devs
]) {
2397 sbridge_printk(KERN_ERR
,
2398 "Duplicated device for %04x:%04x\n",
2399 PCI_VENDOR_ID_INTEL
, dev_descr
->dev_id
);
2404 sbridge_dev
->pdev
[sbridge_dev
->i_devs
++] = pdev
;
2406 /* pdev belongs to more than one IMC, do extra gets */
2410 if (dev_descr
->dom
== SOCK
&& i
< table
->n_imcs_per_sock
)
2414 /* Be sure that the device is enabled */
2415 if (unlikely(pci_enable_device(pdev
) < 0)) {
2416 sbridge_printk(KERN_ERR
,
2417 "Couldn't enable %04x:%04x\n",
2418 PCI_VENDOR_ID_INTEL
, dev_descr
->dev_id
);
2422 edac_dbg(0, "Detected %04x:%04x\n",
2423 PCI_VENDOR_ID_INTEL
, dev_descr
->dev_id
);
2426 * As stated on drivers/pci/search.c, the reference count for
2427 * @from is always decremented if it is not %NULL. So, as we need
2428 * to get all devices up to null, we need to do a get for the device
2438 * sbridge_get_all_devices - Find and perform 'get' operation on the MCH's
2439 * devices we want to reference for this driver.
2440 * @num_mc: pointer to the memory controllers count, to be incremented in case
2442 * @table: model specific table
2444 * returns 0 in case of success or error code
2446 static int sbridge_get_all_devices(u8
*num_mc
,
2447 const struct pci_id_table
*table
)
2450 struct pci_dev
*pdev
= NULL
;
2454 if (table
->type
== KNIGHTS_LANDING
)
2455 allow_dups
= multi_bus
= 1;
2456 while (table
&& table
->descr
) {
2457 for (i
= 0; i
< table
->n_devs_per_sock
; i
++) {
2458 if (!allow_dups
|| i
== 0 ||
2459 table
->descr
[i
].dev_id
!=
2460 table
->descr
[i
-1].dev_id
) {
2464 rc
= sbridge_get_onedevice(&pdev
, num_mc
,
2465 table
, i
, multi_bus
);
2468 i
= table
->n_devs_per_sock
;
2471 sbridge_put_all_devices();
2474 } while (pdev
&& !allow_dups
);
2483 * Device IDs for {SBRIDGE,IBRIDGE,HASWELL,BROADWELL}_IMC_HA0_TAD0 are in
2484 * the format: XXXa. So we can convert from a device to the corresponding
2487 #define TAD_DEV_TO_CHAN(dev) (((dev) & 0xf) - 0xa)
2489 static int sbridge_mci_bind_devs(struct mem_ctl_info
*mci
,
2490 struct sbridge_dev
*sbridge_dev
)
2492 struct sbridge_pvt
*pvt
= mci
->pvt_info
;
2493 struct pci_dev
*pdev
;
2494 u8 saw_chan_mask
= 0;
2497 for (i
= 0; i
< sbridge_dev
->n_devs
; i
++) {
2498 pdev
= sbridge_dev
->pdev
[i
];
2502 switch (pdev
->device
) {
2503 case PCI_DEVICE_ID_INTEL_SBRIDGE_SAD0
:
2504 pvt
->pci_sad0
= pdev
;
2506 case PCI_DEVICE_ID_INTEL_SBRIDGE_SAD1
:
2507 pvt
->pci_sad1
= pdev
;
2509 case PCI_DEVICE_ID_INTEL_SBRIDGE_BR
:
2510 pvt
->pci_br0
= pdev
;
2512 case PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_HA0
:
2515 case PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TA
:
2518 case PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_RAS
:
2519 pvt
->pci_ras
= pdev
;
2521 case PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD0
:
2522 case PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD1
:
2523 case PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD2
:
2524 case PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD3
:
2526 int id
= TAD_DEV_TO_CHAN(pdev
->device
);
2527 pvt
->pci_tad
[id
] = pdev
;
2528 saw_chan_mask
|= 1 << id
;
2531 case PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_DDRIO
:
2532 pvt
->pci_ddrio
= pdev
;
2538 edac_dbg(0, "Associated PCI %02x:%02x, bus %d with dev = %p\n",
2539 pdev
->vendor
, pdev
->device
,
2544 /* Check if everything were registered */
2545 if (!pvt
->pci_sad0
|| !pvt
->pci_sad1
|| !pvt
->pci_ha
||
2546 !pvt
->pci_ras
|| !pvt
->pci_ta
)
2549 if (saw_chan_mask
!= 0x0f)
2554 sbridge_printk(KERN_ERR
, "Some needed devices are missing\n");
2558 sbridge_printk(KERN_ERR
, "Unexpected device %02x:%02x\n",
2559 PCI_VENDOR_ID_INTEL
, pdev
->device
);
2563 static int ibridge_mci_bind_devs(struct mem_ctl_info
*mci
,
2564 struct sbridge_dev
*sbridge_dev
)
2566 struct sbridge_pvt
*pvt
= mci
->pvt_info
;
2567 struct pci_dev
*pdev
;
2568 u8 saw_chan_mask
= 0;
2571 for (i
= 0; i
< sbridge_dev
->n_devs
; i
++) {
2572 pdev
= sbridge_dev
->pdev
[i
];
2576 switch (pdev
->device
) {
2577 case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0
:
2578 case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1
:
2581 case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TA
:
2582 case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TA
:
2585 case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_RAS
:
2586 case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_RAS
:
2587 pvt
->pci_ras
= pdev
;
2589 case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD0
:
2590 case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD1
:
2591 case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD2
:
2592 case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD3
:
2593 case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD0
:
2594 case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD1
:
2595 case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD2
:
2596 case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD3
:
2598 int id
= TAD_DEV_TO_CHAN(pdev
->device
);
2599 pvt
->pci_tad
[id
] = pdev
;
2600 saw_chan_mask
|= 1 << id
;
2603 case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_2HA_DDRIO0
:
2604 pvt
->pci_ddrio
= pdev
;
2606 case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_1HA_DDRIO0
:
2607 pvt
->pci_ddrio
= pdev
;
2609 case PCI_DEVICE_ID_INTEL_IBRIDGE_SAD
:
2610 pvt
->pci_sad0
= pdev
;
2612 case PCI_DEVICE_ID_INTEL_IBRIDGE_BR0
:
2613 pvt
->pci_br0
= pdev
;
2615 case PCI_DEVICE_ID_INTEL_IBRIDGE_BR1
:
2616 pvt
->pci_br1
= pdev
;
2622 edac_dbg(0, "Associated PCI %02x.%02d.%d with dev = %p\n",
2624 PCI_SLOT(pdev
->devfn
), PCI_FUNC(pdev
->devfn
),
2628 /* Check if everything were registered */
2629 if (!pvt
->pci_sad0
|| !pvt
->pci_ha
|| !pvt
->pci_br0
||
2630 !pvt
->pci_br1
|| !pvt
->pci_ras
|| !pvt
->pci_ta
)
2633 if (saw_chan_mask
!= 0x0f && /* -EN/-EX */
2634 saw_chan_mask
!= 0x03) /* -EP */
2639 sbridge_printk(KERN_ERR
, "Some needed devices are missing\n");
2643 sbridge_printk(KERN_ERR
,
2644 "Unexpected device %02x:%02x\n", PCI_VENDOR_ID_INTEL
,
2649 static int haswell_mci_bind_devs(struct mem_ctl_info
*mci
,
2650 struct sbridge_dev
*sbridge_dev
)
2652 struct sbridge_pvt
*pvt
= mci
->pvt_info
;
2653 struct pci_dev
*pdev
;
2654 u8 saw_chan_mask
= 0;
2657 /* there's only one device per system; not tied to any bus */
2658 if (pvt
->info
.pci_vtd
== NULL
)
2659 /* result will be checked later */
2660 pvt
->info
.pci_vtd
= pci_get_device(PCI_VENDOR_ID_INTEL
,
2661 PCI_DEVICE_ID_INTEL_HASWELL_IMC_VTD_MISC
,
2664 for (i
= 0; i
< sbridge_dev
->n_devs
; i
++) {
2665 pdev
= sbridge_dev
->pdev
[i
];
2669 switch (pdev
->device
) {
2670 case PCI_DEVICE_ID_INTEL_HASWELL_IMC_CBO_SAD0
:
2671 pvt
->pci_sad0
= pdev
;
2673 case PCI_DEVICE_ID_INTEL_HASWELL_IMC_CBO_SAD1
:
2674 pvt
->pci_sad1
= pdev
;
2676 case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0
:
2677 case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1
:
2680 case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TA
:
2681 case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TA
:
2684 case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TM
:
2685 case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TM
:
2686 pvt
->pci_ras
= pdev
;
2688 case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD0
:
2689 case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD1
:
2690 case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD2
:
2691 case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD3
:
2692 case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD0
:
2693 case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD1
:
2694 case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD2
:
2695 case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD3
:
2697 int id
= TAD_DEV_TO_CHAN(pdev
->device
);
2698 pvt
->pci_tad
[id
] = pdev
;
2699 saw_chan_mask
|= 1 << id
;
2702 case PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO0
:
2703 case PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO1
:
2704 case PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO2
:
2705 case PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO3
:
2706 if (!pvt
->pci_ddrio
)
2707 pvt
->pci_ddrio
= pdev
;
2713 edac_dbg(0, "Associated PCI %02x.%02d.%d with dev = %p\n",
2715 PCI_SLOT(pdev
->devfn
), PCI_FUNC(pdev
->devfn
),
2719 /* Check if everything were registered */
2720 if (!pvt
->pci_sad0
|| !pvt
->pci_ha
|| !pvt
->pci_sad1
||
2721 !pvt
->pci_ras
|| !pvt
->pci_ta
|| !pvt
->info
.pci_vtd
)
2724 if (saw_chan_mask
!= 0x0f && /* -EN/-EX */
2725 saw_chan_mask
!= 0x03) /* -EP */
2730 sbridge_printk(KERN_ERR
, "Some needed devices are missing\n");
2734 static int broadwell_mci_bind_devs(struct mem_ctl_info
*mci
,
2735 struct sbridge_dev
*sbridge_dev
)
2737 struct sbridge_pvt
*pvt
= mci
->pvt_info
;
2738 struct pci_dev
*pdev
;
2739 u8 saw_chan_mask
= 0;
2742 /* there's only one device per system; not tied to any bus */
2743 if (pvt
->info
.pci_vtd
== NULL
)
2744 /* result will be checked later */
2745 pvt
->info
.pci_vtd
= pci_get_device(PCI_VENDOR_ID_INTEL
,
2746 PCI_DEVICE_ID_INTEL_BROADWELL_IMC_VTD_MISC
,
2749 for (i
= 0; i
< sbridge_dev
->n_devs
; i
++) {
2750 pdev
= sbridge_dev
->pdev
[i
];
2754 switch (pdev
->device
) {
2755 case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_CBO_SAD0
:
2756 pvt
->pci_sad0
= pdev
;
2758 case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_CBO_SAD1
:
2759 pvt
->pci_sad1
= pdev
;
2761 case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0
:
2762 case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1
:
2765 case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TA
:
2766 case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TA
:
2769 case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TM
:
2770 case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TM
:
2771 pvt
->pci_ras
= pdev
;
2773 case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD0
:
2774 case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD1
:
2775 case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD2
:
2776 case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD3
:
2777 case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD0
:
2778 case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD1
:
2779 case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD2
:
2780 case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD3
:
2782 int id
= TAD_DEV_TO_CHAN(pdev
->device
);
2783 pvt
->pci_tad
[id
] = pdev
;
2784 saw_chan_mask
|= 1 << id
;
2787 case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_DDRIO0
:
2788 pvt
->pci_ddrio
= pdev
;
2794 edac_dbg(0, "Associated PCI %02x.%02d.%d with dev = %p\n",
2796 PCI_SLOT(pdev
->devfn
), PCI_FUNC(pdev
->devfn
),
2800 /* Check if everything were registered */
2801 if (!pvt
->pci_sad0
|| !pvt
->pci_ha
|| !pvt
->pci_sad1
||
2802 !pvt
->pci_ras
|| !pvt
->pci_ta
|| !pvt
->info
.pci_vtd
)
2805 if (saw_chan_mask
!= 0x0f && /* -EN/-EX */
2806 saw_chan_mask
!= 0x03) /* -EP */
2811 sbridge_printk(KERN_ERR
, "Some needed devices are missing\n");
2815 static int knl_mci_bind_devs(struct mem_ctl_info
*mci
,
2816 struct sbridge_dev
*sbridge_dev
)
2818 struct sbridge_pvt
*pvt
= mci
->pvt_info
;
2819 struct pci_dev
*pdev
;
2825 for (i
= 0; i
< sbridge_dev
->n_devs
; i
++) {
2826 pdev
= sbridge_dev
->pdev
[i
];
2830 /* Extract PCI device and function. */
2831 dev
= (pdev
->devfn
>> 3) & 0x1f;
2832 func
= pdev
->devfn
& 0x7;
2834 switch (pdev
->device
) {
2835 case PCI_DEVICE_ID_INTEL_KNL_IMC_MC
:
2837 pvt
->knl
.pci_mc0
= pdev
;
2839 pvt
->knl
.pci_mc1
= pdev
;
2841 sbridge_printk(KERN_ERR
,
2842 "Memory controller in unexpected place! (dev %d, fn %d)\n",
2848 case PCI_DEVICE_ID_INTEL_KNL_IMC_SAD0
:
2849 pvt
->pci_sad0
= pdev
;
2852 case PCI_DEVICE_ID_INTEL_KNL_IMC_SAD1
:
2853 pvt
->pci_sad1
= pdev
;
2856 case PCI_DEVICE_ID_INTEL_KNL_IMC_CHA
:
2857 /* There are one of these per tile, and range from
2860 devidx
= ((dev
-14)*8)+func
;
2862 if (devidx
< 0 || devidx
>= KNL_MAX_CHAS
) {
2863 sbridge_printk(KERN_ERR
,
2864 "Caching and Home Agent in unexpected place! (dev %d, fn %d)\n",
2869 WARN_ON(pvt
->knl
.pci_cha
[devidx
] != NULL
);
2871 pvt
->knl
.pci_cha
[devidx
] = pdev
;
2874 case PCI_DEVICE_ID_INTEL_KNL_IMC_CHAN
:
2878 * MC0 channels 0-2 are device 9 function 2-4,
2879 * MC1 channels 3-5 are device 8 function 2-4.
2885 devidx
= 3 + (func
-2);
2887 if (devidx
< 0 || devidx
>= KNL_MAX_CHANNELS
) {
2888 sbridge_printk(KERN_ERR
,
2889 "DRAM Channel Registers in unexpected place! (dev %d, fn %d)\n",
2894 WARN_ON(pvt
->knl
.pci_channel
[devidx
] != NULL
);
2895 pvt
->knl
.pci_channel
[devidx
] = pdev
;
2898 case PCI_DEVICE_ID_INTEL_KNL_IMC_TOLHM
:
2899 pvt
->knl
.pci_mc_info
= pdev
;
2902 case PCI_DEVICE_ID_INTEL_KNL_IMC_TA
:
2907 sbridge_printk(KERN_ERR
, "Unexpected device %d\n",
2913 if (!pvt
->knl
.pci_mc0
|| !pvt
->knl
.pci_mc1
||
2914 !pvt
->pci_sad0
|| !pvt
->pci_sad1
||
2919 for (i
= 0; i
< KNL_MAX_CHANNELS
; i
++) {
2920 if (!pvt
->knl
.pci_channel
[i
]) {
2921 sbridge_printk(KERN_ERR
, "Missing channel %d\n", i
);
2926 for (i
= 0; i
< KNL_MAX_CHAS
; i
++) {
2927 if (!pvt
->knl
.pci_cha
[i
]) {
2928 sbridge_printk(KERN_ERR
, "Missing CHA %d\n", i
);
2936 sbridge_printk(KERN_ERR
, "Some needed devices are missing\n");
2940 /****************************************************************************
2941 Error check routines
2942 ****************************************************************************/
2945 * While Sandy Bridge has error count registers, SMI BIOS read values from
2946 * and resets the counters. So, they are not reliable for the OS to read
2947 * from them. So, we have no option but to just trust on whatever MCE is
2948 * telling us about the errors.
2950 static void sbridge_mce_output_error(struct mem_ctl_info
*mci
,
2951 const struct mce
*m
)
2953 struct mem_ctl_info
*new_mci
;
2954 struct sbridge_pvt
*pvt
= mci
->pvt_info
;
2955 enum hw_event_mc_err_type tp_event
;
2956 char *optype
, msg
[256];
2957 bool ripv
= GET_BITFIELD(m
->mcgstatus
, 0, 0);
2958 bool overflow
= GET_BITFIELD(m
->status
, 62, 62);
2959 bool uncorrected_error
= GET_BITFIELD(m
->status
, 61, 61);
2961 u32 core_err_cnt
= GET_BITFIELD(m
->status
, 38, 52);
2962 u32 mscod
= GET_BITFIELD(m
->status
, 16, 31);
2963 u32 errcode
= GET_BITFIELD(m
->status
, 0, 15);
2964 u32 channel
= GET_BITFIELD(m
->status
, 0, 3);
2965 u32 optypenum
= GET_BITFIELD(m
->status
, 4, 6);
2967 * Bits 5-0 of MCi_MISC give the least significant bit that is valid.
2968 * A value 6 is for cache line aligned address, a value 12 is for page
2969 * aligned address reported by patrol scrubber.
2971 u32 lsb
= GET_BITFIELD(m
->misc
, 0, 5);
2972 long channel_mask
, first_channel
;
2973 u8 rank
= 0xff, socket
, ha
;
2975 char *area_type
= "DRAM";
2977 if (pvt
->info
.type
!= SANDY_BRIDGE
)
2980 recoverable
= GET_BITFIELD(m
->status
, 56, 56);
2982 if (uncorrected_error
) {
2985 tp_event
= HW_EVENT_ERR_FATAL
;
2987 tp_event
= HW_EVENT_ERR_UNCORRECTED
;
2990 tp_event
= HW_EVENT_ERR_CORRECTED
;
2994 * According with Table 15-9 of the Intel Architecture spec vol 3A,
2995 * memory errors should fit in this mask:
2996 * 000f 0000 1mmm cccc (binary)
2998 * f = Correction Report Filtering Bit. If 1, subsequent errors
3002 * If the mask doesn't match, report an error to the parsing logic
3004 switch (optypenum
) {
3006 optype
= "generic undef request error";
3009 optype
= "memory read error";
3012 optype
= "memory write error";
3015 optype
= "addr/cmd error";
3018 optype
= "memory scrubbing error";
3021 optype
= "reserved";
3025 if (pvt
->info
.type
== KNIGHTS_LANDING
) {
3026 if (channel
== 14) {
3027 edac_dbg(0, "%s%s err_code:%04x:%04x EDRAM bank %d\n",
3028 overflow
? " OVERFLOW" : "",
3029 (uncorrected_error
&& recoverable
)
3030 ? " recoverable" : "",
3037 * Reported channel is in range 0-2, so we can't map it
3038 * back to mc. To figure out mc we check machine check
3039 * bank register that reported this error.
3040 * bank15 means mc0 and bank16 means mc1.
3042 channel
= knl_channel_remap(m
->bank
== 16, channel
);
3043 channel_mask
= 1 << channel
;
3045 snprintf(msg
, sizeof(msg
),
3046 "%s%s err_code:%04x:%04x channel:%d (DIMM_%c)",
3047 overflow
? " OVERFLOW" : "",
3048 (uncorrected_error
&& recoverable
)
3049 ? " recoverable" : " ",
3050 mscod
, errcode
, channel
, A
+ channel
);
3051 edac_mc_handle_error(tp_event
, mci
, core_err_cnt
,
3052 m
->addr
>> PAGE_SHIFT
, m
->addr
& ~PAGE_MASK
, 0,
3057 } else if (lsb
< 12) {
3058 rc
= get_memory_error_data(mci
, m
->addr
, &socket
, &ha
,
3059 &channel_mask
, &rank
,
3062 rc
= get_memory_error_data_from_mce(mci
, m
, &socket
, &ha
,
3063 &channel_mask
, msg
);
3068 new_mci
= get_mci_for_node_id(socket
, ha
);
3070 strcpy(msg
, "Error: socket got corrupted!");
3074 pvt
= mci
->pvt_info
;
3076 first_channel
= find_first_bit(&channel_mask
, NUM_CHANNELS
);
3088 * FIXME: On some memory configurations (mirror, lockstep), the
3089 * Memory Controller can't point the error to a single DIMM. The
3090 * EDAC core should be handling the channel mask, in order to point
3091 * to the group of dimm's where the error may be happening.
3093 if (!pvt
->is_lockstep
&& !pvt
->is_cur_addr_mirrored
&& !pvt
->is_close_pg
)
3094 channel
= first_channel
;
3096 snprintf(msg
, sizeof(msg
),
3097 "%s%s area:%s err_code:%04x:%04x socket:%d ha:%d channel_mask:%ld rank:%d",
3098 overflow
? " OVERFLOW" : "",
3099 (uncorrected_error
&& recoverable
) ? " recoverable" : "",
3106 edac_dbg(0, "%s\n", msg
);
3108 /* FIXME: need support for channel mask */
3110 if (channel
== CHANNEL_UNSPECIFIED
)
3113 /* Call the helper to output message */
3114 edac_mc_handle_error(tp_event
, mci
, core_err_cnt
,
3115 m
->addr
>> PAGE_SHIFT
, m
->addr
& ~PAGE_MASK
, 0,
3120 edac_mc_handle_error(tp_event
, mci
, core_err_cnt
, 0, 0, 0,
3127 * Check that logging is enabled and that this is the right type
3128 * of error for us to handle.
3130 static int sbridge_mce_check_error(struct notifier_block
*nb
, unsigned long val
,
3133 struct mce
*mce
= (struct mce
*)data
;
3134 struct mem_ctl_info
*mci
;
3137 if (edac_get_report_status() == EDAC_REPORTING_DISABLED
)
3141 * Just let mcelog handle it if the error is
3142 * outside the memory controller. A memory error
3143 * is indicated by bit 7 = 1 and bits = 8-11,13-15 = 0.
3144 * bit 12 has an special meaning.
3146 if ((mce
->status
& 0xefff) >> 7 != 1)
3149 /* Check ADDRV bit in STATUS */
3150 if (!GET_BITFIELD(mce
->status
, 58, 58))
3153 /* Check MISCV bit in STATUS */
3154 if (!GET_BITFIELD(mce
->status
, 59, 59))
3157 /* Check address type in MISC (physical address only) */
3158 if (GET_BITFIELD(mce
->misc
, 6, 8) != 2)
3161 mci
= get_mci_for_node_id(mce
->socketid
, IMC0
);
3165 if (mce
->mcgstatus
& MCG_STATUS_MCIP
)
3170 sbridge_mc_printk(mci
, KERN_DEBUG
, "HANDLING MCE MEMORY ERROR\n");
3172 sbridge_mc_printk(mci
, KERN_DEBUG
, "CPU %d: Machine Check %s: %Lx "
3173 "Bank %d: %016Lx\n", mce
->extcpu
, type
,
3174 mce
->mcgstatus
, mce
->bank
, mce
->status
);
3175 sbridge_mc_printk(mci
, KERN_DEBUG
, "TSC %llx ", mce
->tsc
);
3176 sbridge_mc_printk(mci
, KERN_DEBUG
, "ADDR %llx ", mce
->addr
);
3177 sbridge_mc_printk(mci
, KERN_DEBUG
, "MISC %llx ", mce
->misc
);
3179 sbridge_mc_printk(mci
, KERN_DEBUG
, "PROCESSOR %u:%x TIME %llu SOCKET "
3180 "%u APIC %x\n", mce
->cpuvendor
, mce
->cpuid
,
3181 mce
->time
, mce
->socketid
, mce
->apicid
);
3183 sbridge_mce_output_error(mci
, mce
);
3185 /* Advice mcelog that the error were handled */
3189 static struct notifier_block sbridge_mce_dec
= {
3190 .notifier_call
= sbridge_mce_check_error
,
3191 .priority
= MCE_PRIO_EDAC
,
3194 /****************************************************************************
3195 EDAC register/unregister logic
3196 ****************************************************************************/
3198 static void sbridge_unregister_mci(struct sbridge_dev
*sbridge_dev
)
3200 struct mem_ctl_info
*mci
= sbridge_dev
->mci
;
3202 if (unlikely(!mci
|| !mci
->pvt_info
)) {
3203 edac_dbg(0, "MC: dev = %p\n", &sbridge_dev
->pdev
[0]->dev
);
3205 sbridge_printk(KERN_ERR
, "Couldn't find mci handler\n");
3209 edac_dbg(0, "MC: mci = %p, dev = %p\n",
3210 mci
, &sbridge_dev
->pdev
[0]->dev
);
3212 /* Remove MC sysfs nodes */
3213 edac_mc_del_mc(mci
->pdev
);
3215 edac_dbg(1, "%s: free mci struct\n", mci
->ctl_name
);
3216 kfree(mci
->ctl_name
);
3218 sbridge_dev
->mci
= NULL
;
3221 static int sbridge_register_mci(struct sbridge_dev
*sbridge_dev
, enum type type
)
3223 struct mem_ctl_info
*mci
;
3224 struct edac_mc_layer layers
[2];
3225 struct sbridge_pvt
*pvt
;
3226 struct pci_dev
*pdev
= sbridge_dev
->pdev
[0];
3229 /* allocate a new MC control structure */
3230 layers
[0].type
= EDAC_MC_LAYER_CHANNEL
;
3231 layers
[0].size
= type
== KNIGHTS_LANDING
?
3232 KNL_MAX_CHANNELS
: NUM_CHANNELS
;
3233 layers
[0].is_virt_csrow
= false;
3234 layers
[1].type
= EDAC_MC_LAYER_SLOT
;
3235 layers
[1].size
= type
== KNIGHTS_LANDING
? 1 : MAX_DIMMS
;
3236 layers
[1].is_virt_csrow
= true;
3237 mci
= edac_mc_alloc(sbridge_dev
->mc
, ARRAY_SIZE(layers
), layers
,
3243 edac_dbg(0, "MC: mci = %p, dev = %p\n",
3246 pvt
= mci
->pvt_info
;
3247 memset(pvt
, 0, sizeof(*pvt
));
3249 /* Associate sbridge_dev and mci for future usage */
3250 pvt
->sbridge_dev
= sbridge_dev
;
3251 sbridge_dev
->mci
= mci
;
3253 mci
->mtype_cap
= type
== KNIGHTS_LANDING
?
3254 MEM_FLAG_DDR4
: MEM_FLAG_DDR3
;
3255 mci
->edac_ctl_cap
= EDAC_FLAG_NONE
;
3256 mci
->edac_cap
= EDAC_FLAG_NONE
;
3257 mci
->mod_name
= EDAC_MOD_STR
;
3258 mci
->dev_name
= pci_name(pdev
);
3259 mci
->ctl_page_to_phys
= NULL
;
3261 pvt
->info
.type
= type
;
3264 pvt
->info
.rankcfgr
= IB_RANK_CFG_A
;
3265 pvt
->info
.get_tolm
= ibridge_get_tolm
;
3266 pvt
->info
.get_tohm
= ibridge_get_tohm
;
3267 pvt
->info
.dram_rule
= ibridge_dram_rule
;
3268 pvt
->info
.get_memory_type
= get_memory_type
;
3269 pvt
->info
.get_node_id
= get_node_id
;
3270 pvt
->info
.get_ha
= ibridge_get_ha
;
3271 pvt
->info
.rir_limit
= rir_limit
;
3272 pvt
->info
.sad_limit
= sad_limit
;
3273 pvt
->info
.interleave_mode
= interleave_mode
;
3274 pvt
->info
.dram_attr
= dram_attr
;
3275 pvt
->info
.max_sad
= ARRAY_SIZE(ibridge_dram_rule
);
3276 pvt
->info
.interleave_list
= ibridge_interleave_list
;
3277 pvt
->info
.interleave_pkg
= ibridge_interleave_pkg
;
3278 pvt
->info
.get_width
= ibridge_get_width
;
3280 /* Store pci devices at mci for faster access */
3281 rc
= ibridge_mci_bind_devs(mci
, sbridge_dev
);
3282 if (unlikely(rc
< 0))
3285 mci
->ctl_name
= kasprintf(GFP_KERNEL
, "Ivy Bridge SrcID#%d_Ha#%d",
3286 pvt
->sbridge_dev
->source_id
, pvt
->sbridge_dev
->dom
);
3289 pvt
->info
.rankcfgr
= SB_RANK_CFG_A
;
3290 pvt
->info
.get_tolm
= sbridge_get_tolm
;
3291 pvt
->info
.get_tohm
= sbridge_get_tohm
;
3292 pvt
->info
.dram_rule
= sbridge_dram_rule
;
3293 pvt
->info
.get_memory_type
= get_memory_type
;
3294 pvt
->info
.get_node_id
= get_node_id
;
3295 pvt
->info
.get_ha
= sbridge_get_ha
;
3296 pvt
->info
.rir_limit
= rir_limit
;
3297 pvt
->info
.sad_limit
= sad_limit
;
3298 pvt
->info
.interleave_mode
= interleave_mode
;
3299 pvt
->info
.dram_attr
= dram_attr
;
3300 pvt
->info
.max_sad
= ARRAY_SIZE(sbridge_dram_rule
);
3301 pvt
->info
.interleave_list
= sbridge_interleave_list
;
3302 pvt
->info
.interleave_pkg
= sbridge_interleave_pkg
;
3303 pvt
->info
.get_width
= sbridge_get_width
;
3305 /* Store pci devices at mci for faster access */
3306 rc
= sbridge_mci_bind_devs(mci
, sbridge_dev
);
3307 if (unlikely(rc
< 0))
3310 mci
->ctl_name
= kasprintf(GFP_KERNEL
, "Sandy Bridge SrcID#%d_Ha#%d",
3311 pvt
->sbridge_dev
->source_id
, pvt
->sbridge_dev
->dom
);
3314 /* rankcfgr isn't used */
3315 pvt
->info
.get_tolm
= haswell_get_tolm
;
3316 pvt
->info
.get_tohm
= haswell_get_tohm
;
3317 pvt
->info
.dram_rule
= ibridge_dram_rule
;
3318 pvt
->info
.get_memory_type
= haswell_get_memory_type
;
3319 pvt
->info
.get_node_id
= haswell_get_node_id
;
3320 pvt
->info
.get_ha
= ibridge_get_ha
;
3321 pvt
->info
.rir_limit
= haswell_rir_limit
;
3322 pvt
->info
.sad_limit
= sad_limit
;
3323 pvt
->info
.interleave_mode
= interleave_mode
;
3324 pvt
->info
.dram_attr
= dram_attr
;
3325 pvt
->info
.max_sad
= ARRAY_SIZE(ibridge_dram_rule
);
3326 pvt
->info
.interleave_list
= ibridge_interleave_list
;
3327 pvt
->info
.interleave_pkg
= ibridge_interleave_pkg
;
3328 pvt
->info
.get_width
= ibridge_get_width
;
3330 /* Store pci devices at mci for faster access */
3331 rc
= haswell_mci_bind_devs(mci
, sbridge_dev
);
3332 if (unlikely(rc
< 0))
3335 mci
->ctl_name
= kasprintf(GFP_KERNEL
, "Haswell SrcID#%d_Ha#%d",
3336 pvt
->sbridge_dev
->source_id
, pvt
->sbridge_dev
->dom
);
3339 /* rankcfgr isn't used */
3340 pvt
->info
.get_tolm
= haswell_get_tolm
;
3341 pvt
->info
.get_tohm
= haswell_get_tohm
;
3342 pvt
->info
.dram_rule
= ibridge_dram_rule
;
3343 pvt
->info
.get_memory_type
= haswell_get_memory_type
;
3344 pvt
->info
.get_node_id
= haswell_get_node_id
;
3345 pvt
->info
.get_ha
= ibridge_get_ha
;
3346 pvt
->info
.rir_limit
= haswell_rir_limit
;
3347 pvt
->info
.sad_limit
= sad_limit
;
3348 pvt
->info
.interleave_mode
= interleave_mode
;
3349 pvt
->info
.dram_attr
= dram_attr
;
3350 pvt
->info
.max_sad
= ARRAY_SIZE(ibridge_dram_rule
);
3351 pvt
->info
.interleave_list
= ibridge_interleave_list
;
3352 pvt
->info
.interleave_pkg
= ibridge_interleave_pkg
;
3353 pvt
->info
.get_width
= broadwell_get_width
;
3355 /* Store pci devices at mci for faster access */
3356 rc
= broadwell_mci_bind_devs(mci
, sbridge_dev
);
3357 if (unlikely(rc
< 0))
3360 mci
->ctl_name
= kasprintf(GFP_KERNEL
, "Broadwell SrcID#%d_Ha#%d",
3361 pvt
->sbridge_dev
->source_id
, pvt
->sbridge_dev
->dom
);
3363 case KNIGHTS_LANDING
:
3364 /* pvt->info.rankcfgr == ??? */
3365 pvt
->info
.get_tolm
= knl_get_tolm
;
3366 pvt
->info
.get_tohm
= knl_get_tohm
;
3367 pvt
->info
.dram_rule
= knl_dram_rule
;
3368 pvt
->info
.get_memory_type
= knl_get_memory_type
;
3369 pvt
->info
.get_node_id
= knl_get_node_id
;
3370 pvt
->info
.get_ha
= knl_get_ha
;
3371 pvt
->info
.rir_limit
= NULL
;
3372 pvt
->info
.sad_limit
= knl_sad_limit
;
3373 pvt
->info
.interleave_mode
= knl_interleave_mode
;
3374 pvt
->info
.dram_attr
= dram_attr_knl
;
3375 pvt
->info
.max_sad
= ARRAY_SIZE(knl_dram_rule
);
3376 pvt
->info
.interleave_list
= knl_interleave_list
;
3377 pvt
->info
.interleave_pkg
= ibridge_interleave_pkg
;
3378 pvt
->info
.get_width
= knl_get_width
;
3380 rc
= knl_mci_bind_devs(mci
, sbridge_dev
);
3381 if (unlikely(rc
< 0))
3384 mci
->ctl_name
= kasprintf(GFP_KERNEL
, "Knights Landing SrcID#%d_Ha#%d",
3385 pvt
->sbridge_dev
->source_id
, pvt
->sbridge_dev
->dom
);
3389 if (!mci
->ctl_name
) {
3394 /* Get dimm basic config and the memory layout */
3395 rc
= get_dimm_config(mci
);
3397 edac_dbg(0, "MC: failed to get_dimm_config()\n");
3400 get_memory_layout(mci
);
3402 /* record ptr to the generic device */
3403 mci
->pdev
= &pdev
->dev
;
3405 /* add this new MC control structure to EDAC's list of MCs */
3406 if (unlikely(edac_mc_add_mc(mci
))) {
3407 edac_dbg(0, "MC: failed edac_mc_add_mc()\n");
3415 kfree(mci
->ctl_name
);
3418 sbridge_dev
->mci
= NULL
;
3422 static const struct x86_cpu_id sbridge_cpuids
[] = {
3423 INTEL_CPU_FAM6(SANDYBRIDGE_X
, pci_dev_descr_sbridge_table
),
3424 INTEL_CPU_FAM6(IVYBRIDGE_X
, pci_dev_descr_ibridge_table
),
3425 INTEL_CPU_FAM6(HASWELL_X
, pci_dev_descr_haswell_table
),
3426 INTEL_CPU_FAM6(BROADWELL_X
, pci_dev_descr_broadwell_table
),
3427 INTEL_CPU_FAM6(BROADWELL_D
, pci_dev_descr_broadwell_table
),
3428 INTEL_CPU_FAM6(XEON_PHI_KNL
, pci_dev_descr_knl_table
),
3429 INTEL_CPU_FAM6(XEON_PHI_KNM
, pci_dev_descr_knl_table
),
3432 MODULE_DEVICE_TABLE(x86cpu
, sbridge_cpuids
);
3435 * sbridge_probe Get all devices and register memory controllers
3438 * 0 for FOUND a device
3439 * < 0 for error code
3442 static int sbridge_probe(const struct x86_cpu_id
*id
)
3446 struct sbridge_dev
*sbridge_dev
;
3447 struct pci_id_table
*ptable
= (struct pci_id_table
*)id
->driver_data
;
3449 /* get the pci devices we want to reserve for our use */
3450 rc
= sbridge_get_all_devices(&num_mc
, ptable
);
3452 if (unlikely(rc
< 0)) {
3453 edac_dbg(0, "couldn't get all devices\n");
3459 list_for_each_entry(sbridge_dev
, &sbridge_edac_list
, list
) {
3460 edac_dbg(0, "Registering MC#%d (%d of %d)\n",
3461 mc
, mc
+ 1, num_mc
);
3463 sbridge_dev
->mc
= mc
++;
3464 rc
= sbridge_register_mci(sbridge_dev
, ptable
->type
);
3465 if (unlikely(rc
< 0))
3469 sbridge_printk(KERN_INFO
, "%s\n", SBRIDGE_REVISION
);
3474 list_for_each_entry(sbridge_dev
, &sbridge_edac_list
, list
)
3475 sbridge_unregister_mci(sbridge_dev
);
3477 sbridge_put_all_devices();
3483 * sbridge_remove cleanup
3486 static void sbridge_remove(void)
3488 struct sbridge_dev
*sbridge_dev
;
3492 list_for_each_entry(sbridge_dev
, &sbridge_edac_list
, list
)
3493 sbridge_unregister_mci(sbridge_dev
);
3495 /* Release PCI resources */
3496 sbridge_put_all_devices();
3500 * sbridge_init Module entry function
3501 * Try to initialize this module for its devices
3503 static int __init
sbridge_init(void)
3505 const struct x86_cpu_id
*id
;
3511 owner
= edac_get_owner();
3512 if (owner
&& strncmp(owner
, EDAC_MOD_STR
, sizeof(EDAC_MOD_STR
)))
3515 id
= x86_match_cpu(sbridge_cpuids
);
3519 /* Ensure that the OPSTATE is set correctly for POLL or NMI */
3522 rc
= sbridge_probe(id
);
3525 mce_register_decode_chain(&sbridge_mce_dec
);
3526 if (edac_get_report_status() == EDAC_REPORTING_DISABLED
)
3527 sbridge_printk(KERN_WARNING
, "Loading driver, error reporting disabled.\n");
3531 sbridge_printk(KERN_ERR
, "Failed to register device with error %d.\n",
3538 * sbridge_exit() Module exit function
3539 * Unregister the driver
3541 static void __exit
sbridge_exit(void)
3545 mce_unregister_decode_chain(&sbridge_mce_dec
);
3548 module_init(sbridge_init
);
3549 module_exit(sbridge_exit
);
3551 module_param(edac_op_state
, int, 0444);
3552 MODULE_PARM_DESC(edac_op_state
, "EDAC Error Reporting state: 0=Poll,1=NMI");
3554 MODULE_LICENSE("GPL");
3555 MODULE_AUTHOR("Mauro Carvalho Chehab");
3556 MODULE_AUTHOR("Red Hat Inc. (http://www.redhat.com)");
3557 MODULE_DESCRIPTION("MC Driver for Intel Sandy Bridge and Ivy Bridge memory controllers - "