treewide: remove redundant IS_ERR() before error code check
[linux/fpc-iii.git] / drivers / edac / skx_common.c
blob99bbaf629b8d90ee18a321b68bac0edd55f62049
1 // SPDX-License-Identifier: GPL-2.0
2 /*
4 * Shared code by both skx_edac and i10nm_edac. Originally split out
5 * from the skx_edac driver.
7 * This file is linked into both skx_edac and i10nm_edac drivers. In
8 * order to avoid link errors, this file must be like a pure library
9 * without including symbols and defines which would otherwise conflict,
10 * when linked once into a module and into a built-in object, at the
11 * same time. For example, __this_module symbol references when that
12 * file is being linked into a built-in object.
14 * Copyright (c) 2018, Intel Corporation.
17 #include <linux/acpi.h>
18 #include <linux/dmi.h>
19 #include <linux/adxl.h>
20 #include <acpi/nfit.h>
21 #include <asm/mce.h>
22 #include "edac_module.h"
23 #include "skx_common.h"
25 static const char * const component_names[] = {
26 [INDEX_SOCKET] = "ProcessorSocketId",
27 [INDEX_MEMCTRL] = "MemoryControllerId",
28 [INDEX_CHANNEL] = "ChannelId",
29 [INDEX_DIMM] = "DimmSlotId",
32 static int component_indices[ARRAY_SIZE(component_names)];
33 static int adxl_component_count;
34 static const char * const *adxl_component_names;
35 static u64 *adxl_values;
36 static char *adxl_msg;
38 static char skx_msg[MSG_SIZE];
39 static skx_decode_f skx_decode;
40 static skx_show_retry_log_f skx_show_retry_rd_err_log;
41 static u64 skx_tolm, skx_tohm;
42 static LIST_HEAD(dev_edac_list);
44 int __init skx_adxl_get(void)
46 const char * const *names;
47 int i, j;
49 names = adxl_get_component_names();
50 if (!names) {
51 skx_printk(KERN_NOTICE, "No firmware support for address translation.\n");
52 return -ENODEV;
55 for (i = 0; i < INDEX_MAX; i++) {
56 for (j = 0; names[j]; j++) {
57 if (!strcmp(component_names[i], names[j])) {
58 component_indices[i] = j;
59 break;
63 if (!names[j])
64 goto err;
67 adxl_component_names = names;
68 while (*names++)
69 adxl_component_count++;
71 adxl_values = kcalloc(adxl_component_count, sizeof(*adxl_values),
72 GFP_KERNEL);
73 if (!adxl_values) {
74 adxl_component_count = 0;
75 return -ENOMEM;
78 adxl_msg = kzalloc(MSG_SIZE, GFP_KERNEL);
79 if (!adxl_msg) {
80 adxl_component_count = 0;
81 kfree(adxl_values);
82 return -ENOMEM;
85 return 0;
86 err:
87 skx_printk(KERN_ERR, "'%s' is not matched from DSM parameters: ",
88 component_names[i]);
89 for (j = 0; names[j]; j++)
90 skx_printk(KERN_CONT, "%s ", names[j]);
91 skx_printk(KERN_CONT, "\n");
93 return -ENODEV;
96 void __exit skx_adxl_put(void)
98 kfree(adxl_values);
99 kfree(adxl_msg);
102 static bool skx_adxl_decode(struct decoded_addr *res)
104 struct skx_dev *d;
105 int i, len = 0;
107 if (res->addr >= skx_tohm || (res->addr >= skx_tolm &&
108 res->addr < BIT_ULL(32))) {
109 edac_dbg(0, "Address 0x%llx out of range\n", res->addr);
110 return false;
113 if (adxl_decode(res->addr, adxl_values)) {
114 edac_dbg(0, "Failed to decode 0x%llx\n", res->addr);
115 return false;
118 res->socket = (int)adxl_values[component_indices[INDEX_SOCKET]];
119 res->imc = (int)adxl_values[component_indices[INDEX_MEMCTRL]];
120 res->channel = (int)adxl_values[component_indices[INDEX_CHANNEL]];
121 res->dimm = (int)adxl_values[component_indices[INDEX_DIMM]];
123 if (res->imc > NUM_IMC - 1) {
124 skx_printk(KERN_ERR, "Bad imc %d\n", res->imc);
125 return false;
128 list_for_each_entry(d, &dev_edac_list, list) {
129 if (d->imc[0].src_id == res->socket) {
130 res->dev = d;
131 break;
135 if (!res->dev) {
136 skx_printk(KERN_ERR, "No device for src_id %d imc %d\n",
137 res->socket, res->imc);
138 return false;
141 for (i = 0; i < adxl_component_count; i++) {
142 if (adxl_values[i] == ~0x0ull)
143 continue;
145 len += snprintf(adxl_msg + len, MSG_SIZE - len, " %s:0x%llx",
146 adxl_component_names[i], adxl_values[i]);
147 if (MSG_SIZE - len <= 0)
148 break;
151 return true;
154 void skx_set_decode(skx_decode_f decode, skx_show_retry_log_f show_retry_log)
156 skx_decode = decode;
157 skx_show_retry_rd_err_log = show_retry_log;
160 int skx_get_src_id(struct skx_dev *d, int off, u8 *id)
162 u32 reg;
164 if (pci_read_config_dword(d->util_all, off, &reg)) {
165 skx_printk(KERN_ERR, "Failed to read src id\n");
166 return -ENODEV;
169 *id = GET_BITFIELD(reg, 12, 14);
170 return 0;
173 int skx_get_node_id(struct skx_dev *d, u8 *id)
175 u32 reg;
177 if (pci_read_config_dword(d->util_all, 0xf4, &reg)) {
178 skx_printk(KERN_ERR, "Failed to read node id\n");
179 return -ENODEV;
182 *id = GET_BITFIELD(reg, 0, 2);
183 return 0;
186 static int get_width(u32 mtr)
188 switch (GET_BITFIELD(mtr, 8, 9)) {
189 case 0:
190 return DEV_X4;
191 case 1:
192 return DEV_X8;
193 case 2:
194 return DEV_X16;
196 return DEV_UNKNOWN;
200 * We use the per-socket device @did to count how many sockets are present,
201 * and to detemine which PCI buses are associated with each socket. Allocate
202 * and build the full list of all the skx_dev structures that we need here.
204 int skx_get_all_bus_mappings(unsigned int did, int off, enum type type,
205 struct list_head **list)
207 struct pci_dev *pdev, *prev;
208 struct skx_dev *d;
209 u32 reg;
210 int ndev = 0;
212 prev = NULL;
213 for (;;) {
214 pdev = pci_get_device(PCI_VENDOR_ID_INTEL, did, prev);
215 if (!pdev)
216 break;
217 ndev++;
218 d = kzalloc(sizeof(*d), GFP_KERNEL);
219 if (!d) {
220 pci_dev_put(pdev);
221 return -ENOMEM;
224 if (pci_read_config_dword(pdev, off, &reg)) {
225 kfree(d);
226 pci_dev_put(pdev);
227 skx_printk(KERN_ERR, "Failed to read bus idx\n");
228 return -ENODEV;
231 d->bus[0] = GET_BITFIELD(reg, 0, 7);
232 d->bus[1] = GET_BITFIELD(reg, 8, 15);
233 if (type == SKX) {
234 d->seg = pci_domain_nr(pdev->bus);
235 d->bus[2] = GET_BITFIELD(reg, 16, 23);
236 d->bus[3] = GET_BITFIELD(reg, 24, 31);
237 } else {
238 d->seg = GET_BITFIELD(reg, 16, 23);
241 edac_dbg(2, "busses: 0x%x, 0x%x, 0x%x, 0x%x\n",
242 d->bus[0], d->bus[1], d->bus[2], d->bus[3]);
243 list_add_tail(&d->list, &dev_edac_list);
244 prev = pdev;
247 if (list)
248 *list = &dev_edac_list;
249 return ndev;
252 int skx_get_hi_lo(unsigned int did, int off[], u64 *tolm, u64 *tohm)
254 struct pci_dev *pdev;
255 u32 reg;
257 pdev = pci_get_device(PCI_VENDOR_ID_INTEL, did, NULL);
258 if (!pdev) {
259 edac_dbg(2, "Can't get tolm/tohm\n");
260 return -ENODEV;
263 if (pci_read_config_dword(pdev, off[0], &reg)) {
264 skx_printk(KERN_ERR, "Failed to read tolm\n");
265 goto fail;
267 skx_tolm = reg;
269 if (pci_read_config_dword(pdev, off[1], &reg)) {
270 skx_printk(KERN_ERR, "Failed to read lower tohm\n");
271 goto fail;
273 skx_tohm = reg;
275 if (pci_read_config_dword(pdev, off[2], &reg)) {
276 skx_printk(KERN_ERR, "Failed to read upper tohm\n");
277 goto fail;
279 skx_tohm |= (u64)reg << 32;
281 pci_dev_put(pdev);
282 *tolm = skx_tolm;
283 *tohm = skx_tohm;
284 edac_dbg(2, "tolm = 0x%llx tohm = 0x%llx\n", skx_tolm, skx_tohm);
285 return 0;
286 fail:
287 pci_dev_put(pdev);
288 return -ENODEV;
291 static int skx_get_dimm_attr(u32 reg, int lobit, int hibit, int add,
292 int minval, int maxval, const char *name)
294 u32 val = GET_BITFIELD(reg, lobit, hibit);
296 if (val < minval || val > maxval) {
297 edac_dbg(2, "bad %s = %d (raw=0x%x)\n", name, val, reg);
298 return -EINVAL;
300 return val + add;
303 #define numrank(reg) skx_get_dimm_attr(reg, 12, 13, 0, 0, 2, "ranks")
304 #define numrow(reg) skx_get_dimm_attr(reg, 2, 4, 12, 1, 6, "rows")
305 #define numcol(reg) skx_get_dimm_attr(reg, 0, 1, 10, 0, 2, "cols")
307 int skx_get_dimm_info(u32 mtr, u32 amap, struct dimm_info *dimm,
308 struct skx_imc *imc, int chan, int dimmno)
310 int banks = 16, ranks, rows, cols, npages;
311 u64 size;
313 ranks = numrank(mtr);
314 rows = numrow(mtr);
315 cols = numcol(mtr);
318 * Compute size in 8-byte (2^3) words, then shift to MiB (2^20)
320 size = ((1ull << (rows + cols + ranks)) * banks) >> (20 - 3);
321 npages = MiB_TO_PAGES(size);
323 edac_dbg(0, "mc#%d: channel %d, dimm %d, %lld MiB (%d pages) bank: %d, rank: %d, row: 0x%x, col: 0x%x\n",
324 imc->mc, chan, dimmno, size, npages,
325 banks, 1 << ranks, rows, cols);
327 imc->chan[chan].dimms[dimmno].close_pg = GET_BITFIELD(mtr, 0, 0);
328 imc->chan[chan].dimms[dimmno].bank_xor_enable = GET_BITFIELD(mtr, 9, 9);
329 imc->chan[chan].dimms[dimmno].fine_grain_bank = GET_BITFIELD(amap, 0, 0);
330 imc->chan[chan].dimms[dimmno].rowbits = rows;
331 imc->chan[chan].dimms[dimmno].colbits = cols;
333 dimm->nr_pages = npages;
334 dimm->grain = 32;
335 dimm->dtype = get_width(mtr);
336 dimm->mtype = MEM_DDR4;
337 dimm->edac_mode = EDAC_SECDED; /* likely better than this */
338 snprintf(dimm->label, sizeof(dimm->label), "CPU_SrcID#%u_MC#%u_Chan#%u_DIMM#%u",
339 imc->src_id, imc->lmc, chan, dimmno);
341 return 1;
344 int skx_get_nvdimm_info(struct dimm_info *dimm, struct skx_imc *imc,
345 int chan, int dimmno, const char *mod_str)
347 int smbios_handle;
348 u32 dev_handle;
349 u16 flags;
350 u64 size = 0;
352 dev_handle = ACPI_NFIT_BUILD_DEVICE_HANDLE(dimmno, chan, imc->lmc,
353 imc->src_id, 0);
355 smbios_handle = nfit_get_smbios_id(dev_handle, &flags);
356 if (smbios_handle == -EOPNOTSUPP) {
357 pr_warn_once("%s: Can't find size of NVDIMM. Try enabling CONFIG_ACPI_NFIT\n", mod_str);
358 goto unknown_size;
361 if (smbios_handle < 0) {
362 skx_printk(KERN_ERR, "Can't find handle for NVDIMM ADR=0x%x\n", dev_handle);
363 goto unknown_size;
366 if (flags & ACPI_NFIT_MEM_MAP_FAILED) {
367 skx_printk(KERN_ERR, "NVDIMM ADR=0x%x is not mapped\n", dev_handle);
368 goto unknown_size;
371 size = dmi_memdev_size(smbios_handle);
372 if (size == ~0ull)
373 skx_printk(KERN_ERR, "Can't find size for NVDIMM ADR=0x%x/SMBIOS=0x%x\n",
374 dev_handle, smbios_handle);
376 unknown_size:
377 dimm->nr_pages = size >> PAGE_SHIFT;
378 dimm->grain = 32;
379 dimm->dtype = DEV_UNKNOWN;
380 dimm->mtype = MEM_NVDIMM;
381 dimm->edac_mode = EDAC_SECDED; /* likely better than this */
383 edac_dbg(0, "mc#%d: channel %d, dimm %d, %llu MiB (%u pages)\n",
384 imc->mc, chan, dimmno, size >> 20, dimm->nr_pages);
386 snprintf(dimm->label, sizeof(dimm->label), "CPU_SrcID#%u_MC#%u_Chan#%u_DIMM#%u",
387 imc->src_id, imc->lmc, chan, dimmno);
389 return (size == 0 || size == ~0ull) ? 0 : 1;
392 int skx_register_mci(struct skx_imc *imc, struct pci_dev *pdev,
393 const char *ctl_name, const char *mod_str,
394 get_dimm_config_f get_dimm_config)
396 struct mem_ctl_info *mci;
397 struct edac_mc_layer layers[2];
398 struct skx_pvt *pvt;
399 int rc;
401 /* Allocate a new MC control structure */
402 layers[0].type = EDAC_MC_LAYER_CHANNEL;
403 layers[0].size = NUM_CHANNELS;
404 layers[0].is_virt_csrow = false;
405 layers[1].type = EDAC_MC_LAYER_SLOT;
406 layers[1].size = NUM_DIMMS;
407 layers[1].is_virt_csrow = true;
408 mci = edac_mc_alloc(imc->mc, ARRAY_SIZE(layers), layers,
409 sizeof(struct skx_pvt));
411 if (unlikely(!mci))
412 return -ENOMEM;
414 edac_dbg(0, "MC#%d: mci = %p\n", imc->mc, mci);
416 /* Associate skx_dev and mci for future usage */
417 imc->mci = mci;
418 pvt = mci->pvt_info;
419 pvt->imc = imc;
421 mci->ctl_name = kasprintf(GFP_KERNEL, "%s#%d IMC#%d", ctl_name,
422 imc->node_id, imc->lmc);
423 if (!mci->ctl_name) {
424 rc = -ENOMEM;
425 goto fail0;
428 mci->mtype_cap = MEM_FLAG_DDR4 | MEM_FLAG_NVDIMM;
429 mci->edac_ctl_cap = EDAC_FLAG_NONE;
430 mci->edac_cap = EDAC_FLAG_NONE;
431 mci->mod_name = mod_str;
432 mci->dev_name = pci_name(pdev);
433 mci->ctl_page_to_phys = NULL;
435 rc = get_dimm_config(mci);
436 if (rc < 0)
437 goto fail;
439 /* Record ptr to the generic device */
440 mci->pdev = &pdev->dev;
442 /* Add this new MC control structure to EDAC's list of MCs */
443 if (unlikely(edac_mc_add_mc(mci))) {
444 edac_dbg(0, "MC: failed edac_mc_add_mc()\n");
445 rc = -EINVAL;
446 goto fail;
449 return 0;
451 fail:
452 kfree(mci->ctl_name);
453 fail0:
454 edac_mc_free(mci);
455 imc->mci = NULL;
456 return rc;
459 static void skx_unregister_mci(struct skx_imc *imc)
461 struct mem_ctl_info *mci = imc->mci;
463 if (!mci)
464 return;
466 edac_dbg(0, "MC%d: mci = %p\n", imc->mc, mci);
468 /* Remove MC sysfs nodes */
469 edac_mc_del_mc(mci->pdev);
471 edac_dbg(1, "%s: free mci struct\n", mci->ctl_name);
472 kfree(mci->ctl_name);
473 edac_mc_free(mci);
476 static void skx_mce_output_error(struct mem_ctl_info *mci,
477 const struct mce *m,
478 struct decoded_addr *res)
480 enum hw_event_mc_err_type tp_event;
481 char *optype;
482 bool ripv = GET_BITFIELD(m->mcgstatus, 0, 0);
483 bool overflow = GET_BITFIELD(m->status, 62, 62);
484 bool uncorrected_error = GET_BITFIELD(m->status, 61, 61);
485 bool recoverable;
486 int len;
487 u32 core_err_cnt = GET_BITFIELD(m->status, 38, 52);
488 u32 mscod = GET_BITFIELD(m->status, 16, 31);
489 u32 errcode = GET_BITFIELD(m->status, 0, 15);
490 u32 optypenum = GET_BITFIELD(m->status, 4, 6);
492 recoverable = GET_BITFIELD(m->status, 56, 56);
494 if (uncorrected_error) {
495 core_err_cnt = 1;
496 if (ripv) {
497 tp_event = HW_EVENT_ERR_FATAL;
498 } else {
499 tp_event = HW_EVENT_ERR_UNCORRECTED;
501 } else {
502 tp_event = HW_EVENT_ERR_CORRECTED;
506 * According to Intel Architecture spec vol 3B,
507 * Table 15-10 "IA32_MCi_Status [15:0] Compound Error Code Encoding"
508 * memory errors should fit one of these masks:
509 * 000f 0000 1mmm cccc (binary)
510 * 000f 0010 1mmm cccc (binary) [RAM used as cache]
511 * where:
512 * f = Correction Report Filtering Bit. If 1, subsequent errors
513 * won't be shown
514 * mmm = error type
515 * cccc = channel
516 * If the mask doesn't match, report an error to the parsing logic
518 if (!((errcode & 0xef80) == 0x80 || (errcode & 0xef80) == 0x280)) {
519 optype = "Can't parse: it is not a mem";
520 } else {
521 switch (optypenum) {
522 case 0:
523 optype = "generic undef request error";
524 break;
525 case 1:
526 optype = "memory read error";
527 break;
528 case 2:
529 optype = "memory write error";
530 break;
531 case 3:
532 optype = "addr/cmd error";
533 break;
534 case 4:
535 optype = "memory scrubbing error";
536 break;
537 default:
538 optype = "reserved";
539 break;
542 if (adxl_component_count) {
543 len = snprintf(skx_msg, MSG_SIZE, "%s%s err_code:0x%04x:0x%04x %s",
544 overflow ? " OVERFLOW" : "",
545 (uncorrected_error && recoverable) ? " recoverable" : "",
546 mscod, errcode, adxl_msg);
547 } else {
548 len = snprintf(skx_msg, MSG_SIZE,
549 "%s%s err_code:0x%04x:0x%04x socket:%d imc:%d rank:%d bg:%d ba:%d row:0x%x col:0x%x",
550 overflow ? " OVERFLOW" : "",
551 (uncorrected_error && recoverable) ? " recoverable" : "",
552 mscod, errcode,
553 res->socket, res->imc, res->rank,
554 res->bank_group, res->bank_address, res->row, res->column);
557 if (skx_show_retry_rd_err_log)
558 skx_show_retry_rd_err_log(res, skx_msg + len, MSG_SIZE - len);
560 edac_dbg(0, "%s\n", skx_msg);
562 /* Call the helper to output message */
563 edac_mc_handle_error(tp_event, mci, core_err_cnt,
564 m->addr >> PAGE_SHIFT, m->addr & ~PAGE_MASK, 0,
565 res->channel, res->dimm, -1,
566 optype, skx_msg);
569 int skx_mce_check_error(struct notifier_block *nb, unsigned long val,
570 void *data)
572 struct mce *mce = (struct mce *)data;
573 struct decoded_addr res;
574 struct mem_ctl_info *mci;
575 char *type;
577 if (edac_get_report_status() == EDAC_REPORTING_DISABLED)
578 return NOTIFY_DONE;
580 /* ignore unless this is memory related with an address */
581 if ((mce->status & 0xefff) >> 7 != 1 || !(mce->status & MCI_STATUS_ADDRV))
582 return NOTIFY_DONE;
584 memset(&res, 0, sizeof(res));
585 res.addr = mce->addr;
587 if (adxl_component_count) {
588 if (!skx_adxl_decode(&res))
589 return NOTIFY_DONE;
590 } else if (!skx_decode || !skx_decode(&res)) {
591 return NOTIFY_DONE;
594 mci = res.dev->imc[res.imc].mci;
596 if (!mci)
597 return NOTIFY_DONE;
599 if (mce->mcgstatus & MCG_STATUS_MCIP)
600 type = "Exception";
601 else
602 type = "Event";
604 skx_mc_printk(mci, KERN_DEBUG, "HANDLING MCE MEMORY ERROR\n");
606 skx_mc_printk(mci, KERN_DEBUG, "CPU %d: Machine Check %s: 0x%llx "
607 "Bank %d: 0x%llx\n", mce->extcpu, type,
608 mce->mcgstatus, mce->bank, mce->status);
609 skx_mc_printk(mci, KERN_DEBUG, "TSC 0x%llx ", mce->tsc);
610 skx_mc_printk(mci, KERN_DEBUG, "ADDR 0x%llx ", mce->addr);
611 skx_mc_printk(mci, KERN_DEBUG, "MISC 0x%llx ", mce->misc);
613 skx_mc_printk(mci, KERN_DEBUG, "PROCESSOR %u:0x%x TIME %llu SOCKET "
614 "%u APIC 0x%x\n", mce->cpuvendor, mce->cpuid,
615 mce->time, mce->socketid, mce->apicid);
617 skx_mce_output_error(mci, mce, &res);
619 return NOTIFY_DONE;
622 void skx_remove(void)
624 int i, j;
625 struct skx_dev *d, *tmp;
627 edac_dbg(0, "\n");
629 list_for_each_entry_safe(d, tmp, &dev_edac_list, list) {
630 list_del(&d->list);
631 for (i = 0; i < NUM_IMC; i++) {
632 if (d->imc[i].mci)
633 skx_unregister_mci(&d->imc[i]);
635 if (d->imc[i].mdev)
636 pci_dev_put(d->imc[i].mdev);
638 if (d->imc[i].mbase)
639 iounmap(d->imc[i].mbase);
641 for (j = 0; j < NUM_CHANNELS; j++) {
642 if (d->imc[i].chan[j].cdev)
643 pci_dev_put(d->imc[i].chan[j].cdev);
646 if (d->util_all)
647 pci_dev_put(d->util_all);
648 if (d->sad_all)
649 pci_dev_put(d->sad_all);
650 if (d->uracu)
651 pci_dev_put(d->uracu);
653 kfree(d);