treewide: remove redundant IS_ERR() before error code check
[linux/fpc-iii.git] / drivers / firewire / core-card.c
blob54be88167c60bd3be3f159cfba6fa19dc76fb77c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * Copyright (C) 2005-2007 Kristian Hoegsberg <krh@bitplanet.net>
4 */
6 #include <linux/bug.h>
7 #include <linux/completion.h>
8 #include <linux/crc-itu-t.h>
9 #include <linux/device.h>
10 #include <linux/errno.h>
11 #include <linux/firewire.h>
12 #include <linux/firewire-constants.h>
13 #include <linux/jiffies.h>
14 #include <linux/kernel.h>
15 #include <linux/kref.h>
16 #include <linux/list.h>
17 #include <linux/module.h>
18 #include <linux/mutex.h>
19 #include <linux/spinlock.h>
20 #include <linux/workqueue.h>
22 #include <linux/atomic.h>
23 #include <asm/byteorder.h>
25 #include "core.h"
27 #define define_fw_printk_level(func, kern_level) \
28 void func(const struct fw_card *card, const char *fmt, ...) \
29 { \
30 struct va_format vaf; \
31 va_list args; \
33 va_start(args, fmt); \
34 vaf.fmt = fmt; \
35 vaf.va = &args; \
36 printk(kern_level KBUILD_MODNAME " %s: %pV", \
37 dev_name(card->device), &vaf); \
38 va_end(args); \
40 define_fw_printk_level(fw_err, KERN_ERR);
41 define_fw_printk_level(fw_notice, KERN_NOTICE);
43 int fw_compute_block_crc(__be32 *block)
45 int length;
46 u16 crc;
48 length = (be32_to_cpu(block[0]) >> 16) & 0xff;
49 crc = crc_itu_t(0, (u8 *)&block[1], length * 4);
50 *block |= cpu_to_be32(crc);
52 return length;
55 static DEFINE_MUTEX(card_mutex);
56 static LIST_HEAD(card_list);
58 static LIST_HEAD(descriptor_list);
59 static int descriptor_count;
61 static __be32 tmp_config_rom[256];
62 /* ROM header, bus info block, root dir header, capabilities = 7 quadlets */
63 static size_t config_rom_length = 1 + 4 + 1 + 1;
65 #define BIB_CRC(v) ((v) << 0)
66 #define BIB_CRC_LENGTH(v) ((v) << 16)
67 #define BIB_INFO_LENGTH(v) ((v) << 24)
68 #define BIB_BUS_NAME 0x31333934 /* "1394" */
69 #define BIB_LINK_SPEED(v) ((v) << 0)
70 #define BIB_GENERATION(v) ((v) << 4)
71 #define BIB_MAX_ROM(v) ((v) << 8)
72 #define BIB_MAX_RECEIVE(v) ((v) << 12)
73 #define BIB_CYC_CLK_ACC(v) ((v) << 16)
74 #define BIB_PMC ((1) << 27)
75 #define BIB_BMC ((1) << 28)
76 #define BIB_ISC ((1) << 29)
77 #define BIB_CMC ((1) << 30)
78 #define BIB_IRMC ((1) << 31)
79 #define NODE_CAPABILITIES 0x0c0083c0 /* per IEEE 1394 clause 8.3.2.6.5.2 */
82 * IEEE-1394 specifies a default SPLIT_TIMEOUT value of 800 cycles (100 ms),
83 * but we have to make it longer because there are many devices whose firmware
84 * is just too slow for that.
86 #define DEFAULT_SPLIT_TIMEOUT (2 * 8000)
88 #define CANON_OUI 0x000085
90 static void generate_config_rom(struct fw_card *card, __be32 *config_rom)
92 struct fw_descriptor *desc;
93 int i, j, k, length;
96 * Initialize contents of config rom buffer. On the OHCI
97 * controller, block reads to the config rom accesses the host
98 * memory, but quadlet read access the hardware bus info block
99 * registers. That's just crack, but it means we should make
100 * sure the contents of bus info block in host memory matches
101 * the version stored in the OHCI registers.
104 config_rom[0] = cpu_to_be32(
105 BIB_CRC_LENGTH(4) | BIB_INFO_LENGTH(4) | BIB_CRC(0));
106 config_rom[1] = cpu_to_be32(BIB_BUS_NAME);
107 config_rom[2] = cpu_to_be32(
108 BIB_LINK_SPEED(card->link_speed) |
109 BIB_GENERATION(card->config_rom_generation++ % 14 + 2) |
110 BIB_MAX_ROM(2) |
111 BIB_MAX_RECEIVE(card->max_receive) |
112 BIB_BMC | BIB_ISC | BIB_CMC | BIB_IRMC);
113 config_rom[3] = cpu_to_be32(card->guid >> 32);
114 config_rom[4] = cpu_to_be32(card->guid);
116 /* Generate root directory. */
117 config_rom[6] = cpu_to_be32(NODE_CAPABILITIES);
118 i = 7;
119 j = 7 + descriptor_count;
121 /* Generate root directory entries for descriptors. */
122 list_for_each_entry (desc, &descriptor_list, link) {
123 if (desc->immediate > 0)
124 config_rom[i++] = cpu_to_be32(desc->immediate);
125 config_rom[i] = cpu_to_be32(desc->key | (j - i));
126 i++;
127 j += desc->length;
130 /* Update root directory length. */
131 config_rom[5] = cpu_to_be32((i - 5 - 1) << 16);
133 /* End of root directory, now copy in descriptors. */
134 list_for_each_entry (desc, &descriptor_list, link) {
135 for (k = 0; k < desc->length; k++)
136 config_rom[i + k] = cpu_to_be32(desc->data[k]);
137 i += desc->length;
140 /* Calculate CRCs for all blocks in the config rom. This
141 * assumes that CRC length and info length are identical for
142 * the bus info block, which is always the case for this
143 * implementation. */
144 for (i = 0; i < j; i += length + 1)
145 length = fw_compute_block_crc(config_rom + i);
147 WARN_ON(j != config_rom_length);
150 static void update_config_roms(void)
152 struct fw_card *card;
154 list_for_each_entry (card, &card_list, link) {
155 generate_config_rom(card, tmp_config_rom);
156 card->driver->set_config_rom(card, tmp_config_rom,
157 config_rom_length);
161 static size_t required_space(struct fw_descriptor *desc)
163 /* descriptor + entry into root dir + optional immediate entry */
164 return desc->length + 1 + (desc->immediate > 0 ? 1 : 0);
167 int fw_core_add_descriptor(struct fw_descriptor *desc)
169 size_t i;
170 int ret;
173 * Check descriptor is valid; the length of all blocks in the
174 * descriptor has to add up to exactly the length of the
175 * block.
177 i = 0;
178 while (i < desc->length)
179 i += (desc->data[i] >> 16) + 1;
181 if (i != desc->length)
182 return -EINVAL;
184 mutex_lock(&card_mutex);
186 if (config_rom_length + required_space(desc) > 256) {
187 ret = -EBUSY;
188 } else {
189 list_add_tail(&desc->link, &descriptor_list);
190 config_rom_length += required_space(desc);
191 descriptor_count++;
192 if (desc->immediate > 0)
193 descriptor_count++;
194 update_config_roms();
195 ret = 0;
198 mutex_unlock(&card_mutex);
200 return ret;
202 EXPORT_SYMBOL(fw_core_add_descriptor);
204 void fw_core_remove_descriptor(struct fw_descriptor *desc)
206 mutex_lock(&card_mutex);
208 list_del(&desc->link);
209 config_rom_length -= required_space(desc);
210 descriptor_count--;
211 if (desc->immediate > 0)
212 descriptor_count--;
213 update_config_roms();
215 mutex_unlock(&card_mutex);
217 EXPORT_SYMBOL(fw_core_remove_descriptor);
219 static int reset_bus(struct fw_card *card, bool short_reset)
221 int reg = short_reset ? 5 : 1;
222 int bit = short_reset ? PHY_BUS_SHORT_RESET : PHY_BUS_RESET;
224 return card->driver->update_phy_reg(card, reg, 0, bit);
227 void fw_schedule_bus_reset(struct fw_card *card, bool delayed, bool short_reset)
229 /* We don't try hard to sort out requests of long vs. short resets. */
230 card->br_short = short_reset;
232 /* Use an arbitrary short delay to combine multiple reset requests. */
233 fw_card_get(card);
234 if (!queue_delayed_work(fw_workqueue, &card->br_work,
235 delayed ? DIV_ROUND_UP(HZ, 100) : 0))
236 fw_card_put(card);
238 EXPORT_SYMBOL(fw_schedule_bus_reset);
240 static void br_work(struct work_struct *work)
242 struct fw_card *card = container_of(work, struct fw_card, br_work.work);
244 /* Delay for 2s after last reset per IEEE 1394 clause 8.2.1. */
245 if (card->reset_jiffies != 0 &&
246 time_before64(get_jiffies_64(), card->reset_jiffies + 2 * HZ)) {
247 if (!queue_delayed_work(fw_workqueue, &card->br_work, 2 * HZ))
248 fw_card_put(card);
249 return;
252 fw_send_phy_config(card, FW_PHY_CONFIG_NO_NODE_ID, card->generation,
253 FW_PHY_CONFIG_CURRENT_GAP_COUNT);
254 reset_bus(card, card->br_short);
255 fw_card_put(card);
258 static void allocate_broadcast_channel(struct fw_card *card, int generation)
260 int channel, bandwidth = 0;
262 if (!card->broadcast_channel_allocated) {
263 fw_iso_resource_manage(card, generation, 1ULL << 31,
264 &channel, &bandwidth, true);
265 if (channel != 31) {
266 fw_notice(card, "failed to allocate broadcast channel\n");
267 return;
269 card->broadcast_channel_allocated = true;
272 device_for_each_child(card->device, (void *)(long)generation,
273 fw_device_set_broadcast_channel);
276 static const char gap_count_table[] = {
277 63, 5, 7, 8, 10, 13, 16, 18, 21, 24, 26, 29, 32, 35, 37, 40
280 void fw_schedule_bm_work(struct fw_card *card, unsigned long delay)
282 fw_card_get(card);
283 if (!schedule_delayed_work(&card->bm_work, delay))
284 fw_card_put(card);
287 static void bm_work(struct work_struct *work)
289 struct fw_card *card = container_of(work, struct fw_card, bm_work.work);
290 struct fw_device *root_device, *irm_device;
291 struct fw_node *root_node;
292 int root_id, new_root_id, irm_id, bm_id, local_id;
293 int gap_count, generation, grace, rcode;
294 bool do_reset = false;
295 bool root_device_is_running;
296 bool root_device_is_cmc;
297 bool irm_is_1394_1995_only;
298 bool keep_this_irm;
299 __be32 transaction_data[2];
301 spin_lock_irq(&card->lock);
303 if (card->local_node == NULL) {
304 spin_unlock_irq(&card->lock);
305 goto out_put_card;
308 generation = card->generation;
310 root_node = card->root_node;
311 fw_node_get(root_node);
312 root_device = root_node->data;
313 root_device_is_running = root_device &&
314 atomic_read(&root_device->state) == FW_DEVICE_RUNNING;
315 root_device_is_cmc = root_device && root_device->cmc;
317 irm_device = card->irm_node->data;
318 irm_is_1394_1995_only = irm_device && irm_device->config_rom &&
319 (irm_device->config_rom[2] & 0x000000f0) == 0;
321 /* Canon MV5i works unreliably if it is not root node. */
322 keep_this_irm = irm_device && irm_device->config_rom &&
323 irm_device->config_rom[3] >> 8 == CANON_OUI;
325 root_id = root_node->node_id;
326 irm_id = card->irm_node->node_id;
327 local_id = card->local_node->node_id;
329 grace = time_after64(get_jiffies_64(),
330 card->reset_jiffies + DIV_ROUND_UP(HZ, 8));
332 if ((is_next_generation(generation, card->bm_generation) &&
333 !card->bm_abdicate) ||
334 (card->bm_generation != generation && grace)) {
336 * This first step is to figure out who is IRM and
337 * then try to become bus manager. If the IRM is not
338 * well defined (e.g. does not have an active link
339 * layer or does not responds to our lock request, we
340 * will have to do a little vigilante bus management.
341 * In that case, we do a goto into the gap count logic
342 * so that when we do the reset, we still optimize the
343 * gap count. That could well save a reset in the
344 * next generation.
347 if (!card->irm_node->link_on) {
348 new_root_id = local_id;
349 fw_notice(card, "%s, making local node (%02x) root\n",
350 "IRM has link off", new_root_id);
351 goto pick_me;
354 if (irm_is_1394_1995_only && !keep_this_irm) {
355 new_root_id = local_id;
356 fw_notice(card, "%s, making local node (%02x) root\n",
357 "IRM is not 1394a compliant", new_root_id);
358 goto pick_me;
361 transaction_data[0] = cpu_to_be32(0x3f);
362 transaction_data[1] = cpu_to_be32(local_id);
364 spin_unlock_irq(&card->lock);
366 rcode = fw_run_transaction(card, TCODE_LOCK_COMPARE_SWAP,
367 irm_id, generation, SCODE_100,
368 CSR_REGISTER_BASE + CSR_BUS_MANAGER_ID,
369 transaction_data, 8);
371 if (rcode == RCODE_GENERATION)
372 /* Another bus reset, BM work has been rescheduled. */
373 goto out;
375 bm_id = be32_to_cpu(transaction_data[0]);
377 spin_lock_irq(&card->lock);
378 if (rcode == RCODE_COMPLETE && generation == card->generation)
379 card->bm_node_id =
380 bm_id == 0x3f ? local_id : 0xffc0 | bm_id;
381 spin_unlock_irq(&card->lock);
383 if (rcode == RCODE_COMPLETE && bm_id != 0x3f) {
384 /* Somebody else is BM. Only act as IRM. */
385 if (local_id == irm_id)
386 allocate_broadcast_channel(card, generation);
388 goto out;
391 if (rcode == RCODE_SEND_ERROR) {
393 * We have been unable to send the lock request due to
394 * some local problem. Let's try again later and hope
395 * that the problem has gone away by then.
397 fw_schedule_bm_work(card, DIV_ROUND_UP(HZ, 8));
398 goto out;
401 spin_lock_irq(&card->lock);
403 if (rcode != RCODE_COMPLETE && !keep_this_irm) {
405 * The lock request failed, maybe the IRM
406 * isn't really IRM capable after all. Let's
407 * do a bus reset and pick the local node as
408 * root, and thus, IRM.
410 new_root_id = local_id;
411 fw_notice(card, "BM lock failed (%s), making local node (%02x) root\n",
412 fw_rcode_string(rcode), new_root_id);
413 goto pick_me;
415 } else if (card->bm_generation != generation) {
417 * We weren't BM in the last generation, and the last
418 * bus reset is less than 125ms ago. Reschedule this job.
420 spin_unlock_irq(&card->lock);
421 fw_schedule_bm_work(card, DIV_ROUND_UP(HZ, 8));
422 goto out;
426 * We're bus manager for this generation, so next step is to
427 * make sure we have an active cycle master and do gap count
428 * optimization.
430 card->bm_generation = generation;
432 if (root_device == NULL) {
434 * Either link_on is false, or we failed to read the
435 * config rom. In either case, pick another root.
437 new_root_id = local_id;
438 } else if (!root_device_is_running) {
440 * If we haven't probed this device yet, bail out now
441 * and let's try again once that's done.
443 spin_unlock_irq(&card->lock);
444 goto out;
445 } else if (root_device_is_cmc) {
447 * We will send out a force root packet for this
448 * node as part of the gap count optimization.
450 new_root_id = root_id;
451 } else {
453 * Current root has an active link layer and we
454 * successfully read the config rom, but it's not
455 * cycle master capable.
457 new_root_id = local_id;
460 pick_me:
462 * Pick a gap count from 1394a table E-1. The table doesn't cover
463 * the typically much larger 1394b beta repeater delays though.
465 if (!card->beta_repeaters_present &&
466 root_node->max_hops < ARRAY_SIZE(gap_count_table))
467 gap_count = gap_count_table[root_node->max_hops];
468 else
469 gap_count = 63;
472 * Finally, figure out if we should do a reset or not. If we have
473 * done less than 5 resets with the same physical topology and we
474 * have either a new root or a new gap count setting, let's do it.
477 if (card->bm_retries++ < 5 &&
478 (card->gap_count != gap_count || new_root_id != root_id))
479 do_reset = true;
481 spin_unlock_irq(&card->lock);
483 if (do_reset) {
484 fw_notice(card, "phy config: new root=%x, gap_count=%d\n",
485 new_root_id, gap_count);
486 fw_send_phy_config(card, new_root_id, generation, gap_count);
487 reset_bus(card, true);
488 /* Will allocate broadcast channel after the reset. */
489 goto out;
492 if (root_device_is_cmc) {
494 * Make sure that the cycle master sends cycle start packets.
496 transaction_data[0] = cpu_to_be32(CSR_STATE_BIT_CMSTR);
497 rcode = fw_run_transaction(card, TCODE_WRITE_QUADLET_REQUEST,
498 root_id, generation, SCODE_100,
499 CSR_REGISTER_BASE + CSR_STATE_SET,
500 transaction_data, 4);
501 if (rcode == RCODE_GENERATION)
502 goto out;
505 if (local_id == irm_id)
506 allocate_broadcast_channel(card, generation);
508 out:
509 fw_node_put(root_node);
510 out_put_card:
511 fw_card_put(card);
514 void fw_card_initialize(struct fw_card *card,
515 const struct fw_card_driver *driver,
516 struct device *device)
518 static atomic_t index = ATOMIC_INIT(-1);
520 card->index = atomic_inc_return(&index);
521 card->driver = driver;
522 card->device = device;
523 card->current_tlabel = 0;
524 card->tlabel_mask = 0;
525 card->split_timeout_hi = DEFAULT_SPLIT_TIMEOUT / 8000;
526 card->split_timeout_lo = (DEFAULT_SPLIT_TIMEOUT % 8000) << 19;
527 card->split_timeout_cycles = DEFAULT_SPLIT_TIMEOUT;
528 card->split_timeout_jiffies =
529 DIV_ROUND_UP(DEFAULT_SPLIT_TIMEOUT * HZ, 8000);
530 card->color = 0;
531 card->broadcast_channel = BROADCAST_CHANNEL_INITIAL;
533 kref_init(&card->kref);
534 init_completion(&card->done);
535 INIT_LIST_HEAD(&card->transaction_list);
536 INIT_LIST_HEAD(&card->phy_receiver_list);
537 spin_lock_init(&card->lock);
539 card->local_node = NULL;
541 INIT_DELAYED_WORK(&card->br_work, br_work);
542 INIT_DELAYED_WORK(&card->bm_work, bm_work);
544 EXPORT_SYMBOL(fw_card_initialize);
546 int fw_card_add(struct fw_card *card,
547 u32 max_receive, u32 link_speed, u64 guid)
549 int ret;
551 card->max_receive = max_receive;
552 card->link_speed = link_speed;
553 card->guid = guid;
555 mutex_lock(&card_mutex);
557 generate_config_rom(card, tmp_config_rom);
558 ret = card->driver->enable(card, tmp_config_rom, config_rom_length);
559 if (ret == 0)
560 list_add_tail(&card->link, &card_list);
562 mutex_unlock(&card_mutex);
564 return ret;
566 EXPORT_SYMBOL(fw_card_add);
569 * The next few functions implement a dummy driver that is used once a card
570 * driver shuts down an fw_card. This allows the driver to cleanly unload,
571 * as all IO to the card will be handled (and failed) by the dummy driver
572 * instead of calling into the module. Only functions for iso context
573 * shutdown still need to be provided by the card driver.
575 * .read/write_csr() should never be called anymore after the dummy driver
576 * was bound since they are only used within request handler context.
577 * .set_config_rom() is never called since the card is taken out of card_list
578 * before switching to the dummy driver.
581 static int dummy_read_phy_reg(struct fw_card *card, int address)
583 return -ENODEV;
586 static int dummy_update_phy_reg(struct fw_card *card, int address,
587 int clear_bits, int set_bits)
589 return -ENODEV;
592 static void dummy_send_request(struct fw_card *card, struct fw_packet *packet)
594 packet->callback(packet, card, RCODE_CANCELLED);
597 static void dummy_send_response(struct fw_card *card, struct fw_packet *packet)
599 packet->callback(packet, card, RCODE_CANCELLED);
602 static int dummy_cancel_packet(struct fw_card *card, struct fw_packet *packet)
604 return -ENOENT;
607 static int dummy_enable_phys_dma(struct fw_card *card,
608 int node_id, int generation)
610 return -ENODEV;
613 static struct fw_iso_context *dummy_allocate_iso_context(struct fw_card *card,
614 int type, int channel, size_t header_size)
616 return ERR_PTR(-ENODEV);
619 static int dummy_start_iso(struct fw_iso_context *ctx,
620 s32 cycle, u32 sync, u32 tags)
622 return -ENODEV;
625 static int dummy_set_iso_channels(struct fw_iso_context *ctx, u64 *channels)
627 return -ENODEV;
630 static int dummy_queue_iso(struct fw_iso_context *ctx, struct fw_iso_packet *p,
631 struct fw_iso_buffer *buffer, unsigned long payload)
633 return -ENODEV;
636 static void dummy_flush_queue_iso(struct fw_iso_context *ctx)
640 static int dummy_flush_iso_completions(struct fw_iso_context *ctx)
642 return -ENODEV;
645 static const struct fw_card_driver dummy_driver_template = {
646 .read_phy_reg = dummy_read_phy_reg,
647 .update_phy_reg = dummy_update_phy_reg,
648 .send_request = dummy_send_request,
649 .send_response = dummy_send_response,
650 .cancel_packet = dummy_cancel_packet,
651 .enable_phys_dma = dummy_enable_phys_dma,
652 .allocate_iso_context = dummy_allocate_iso_context,
653 .start_iso = dummy_start_iso,
654 .set_iso_channels = dummy_set_iso_channels,
655 .queue_iso = dummy_queue_iso,
656 .flush_queue_iso = dummy_flush_queue_iso,
657 .flush_iso_completions = dummy_flush_iso_completions,
660 void fw_card_release(struct kref *kref)
662 struct fw_card *card = container_of(kref, struct fw_card, kref);
664 complete(&card->done);
666 EXPORT_SYMBOL_GPL(fw_card_release);
668 void fw_core_remove_card(struct fw_card *card)
670 struct fw_card_driver dummy_driver = dummy_driver_template;
672 card->driver->update_phy_reg(card, 4,
673 PHY_LINK_ACTIVE | PHY_CONTENDER, 0);
674 fw_schedule_bus_reset(card, false, true);
676 mutex_lock(&card_mutex);
677 list_del_init(&card->link);
678 mutex_unlock(&card_mutex);
680 /* Switch off most of the card driver interface. */
681 dummy_driver.free_iso_context = card->driver->free_iso_context;
682 dummy_driver.stop_iso = card->driver->stop_iso;
683 card->driver = &dummy_driver;
685 fw_destroy_nodes(card);
687 /* Wait for all users, especially device workqueue jobs, to finish. */
688 fw_card_put(card);
689 wait_for_completion(&card->done);
691 WARN_ON(!list_empty(&card->transaction_list));
693 EXPORT_SYMBOL(fw_core_remove_card);