treewide: remove redundant IS_ERR() before error code check
[linux/fpc-iii.git] / drivers / firmware / dmi_scan.c
blob2045566d622f970bbeca0d1e9e8069c66a75e73d
1 // SPDX-License-Identifier: GPL-2.0-only
2 #include <linux/types.h>
3 #include <linux/string.h>
4 #include <linux/init.h>
5 #include <linux/module.h>
6 #include <linux/ctype.h>
7 #include <linux/dmi.h>
8 #include <linux/efi.h>
9 #include <linux/memblock.h>
10 #include <linux/random.h>
11 #include <asm/dmi.h>
12 #include <asm/unaligned.h>
14 struct kobject *dmi_kobj;
15 EXPORT_SYMBOL_GPL(dmi_kobj);
18 * DMI stands for "Desktop Management Interface". It is part
19 * of and an antecedent to, SMBIOS, which stands for System
20 * Management BIOS. See further: http://www.dmtf.org/standards
22 static const char dmi_empty_string[] = "";
24 static u32 dmi_ver __initdata;
25 static u32 dmi_len;
26 static u16 dmi_num;
27 static u8 smbios_entry_point[32];
28 static int smbios_entry_point_size;
30 /* DMI system identification string used during boot */
31 static char dmi_ids_string[128] __initdata;
33 static struct dmi_memdev_info {
34 const char *device;
35 const char *bank;
36 u64 size; /* bytes */
37 u16 handle;
38 u8 type; /* DDR2, DDR3, DDR4 etc */
39 } *dmi_memdev;
40 static int dmi_memdev_nr;
42 static const char * __init dmi_string_nosave(const struct dmi_header *dm, u8 s)
44 const u8 *bp = ((u8 *) dm) + dm->length;
45 const u8 *nsp;
47 if (s) {
48 while (--s > 0 && *bp)
49 bp += strlen(bp) + 1;
51 /* Strings containing only spaces are considered empty */
52 nsp = bp;
53 while (*nsp == ' ')
54 nsp++;
55 if (*nsp != '\0')
56 return bp;
59 return dmi_empty_string;
62 static const char * __init dmi_string(const struct dmi_header *dm, u8 s)
64 const char *bp = dmi_string_nosave(dm, s);
65 char *str;
66 size_t len;
68 if (bp == dmi_empty_string)
69 return dmi_empty_string;
71 len = strlen(bp) + 1;
72 str = dmi_alloc(len);
73 if (str != NULL)
74 strcpy(str, bp);
76 return str;
80 * We have to be cautious here. We have seen BIOSes with DMI pointers
81 * pointing to completely the wrong place for example
83 static void dmi_decode_table(u8 *buf,
84 void (*decode)(const struct dmi_header *, void *),
85 void *private_data)
87 u8 *data = buf;
88 int i = 0;
91 * Stop when we have seen all the items the table claimed to have
92 * (SMBIOS < 3.0 only) OR we reach an end-of-table marker (SMBIOS
93 * >= 3.0 only) OR we run off the end of the table (should never
94 * happen but sometimes does on bogus implementations.)
96 while ((!dmi_num || i < dmi_num) &&
97 (data - buf + sizeof(struct dmi_header)) <= dmi_len) {
98 const struct dmi_header *dm = (const struct dmi_header *)data;
101 * We want to know the total length (formatted area and
102 * strings) before decoding to make sure we won't run off the
103 * table in dmi_decode or dmi_string
105 data += dm->length;
106 while ((data - buf < dmi_len - 1) && (data[0] || data[1]))
107 data++;
108 if (data - buf < dmi_len - 1)
109 decode(dm, private_data);
111 data += 2;
112 i++;
115 * 7.45 End-of-Table (Type 127) [SMBIOS reference spec v3.0.0]
116 * For tables behind a 64-bit entry point, we have no item
117 * count and no exact table length, so stop on end-of-table
118 * marker. For tables behind a 32-bit entry point, we have
119 * seen OEM structures behind the end-of-table marker on
120 * some systems, so don't trust it.
122 if (!dmi_num && dm->type == DMI_ENTRY_END_OF_TABLE)
123 break;
126 /* Trim DMI table length if needed */
127 if (dmi_len > data - buf)
128 dmi_len = data - buf;
131 static phys_addr_t dmi_base;
133 static int __init dmi_walk_early(void (*decode)(const struct dmi_header *,
134 void *))
136 u8 *buf;
137 u32 orig_dmi_len = dmi_len;
139 buf = dmi_early_remap(dmi_base, orig_dmi_len);
140 if (buf == NULL)
141 return -ENOMEM;
143 dmi_decode_table(buf, decode, NULL);
145 add_device_randomness(buf, dmi_len);
147 dmi_early_unmap(buf, orig_dmi_len);
148 return 0;
151 static int __init dmi_checksum(const u8 *buf, u8 len)
153 u8 sum = 0;
154 int a;
156 for (a = 0; a < len; a++)
157 sum += buf[a];
159 return sum == 0;
162 static const char *dmi_ident[DMI_STRING_MAX];
163 static LIST_HEAD(dmi_devices);
164 int dmi_available;
167 * Save a DMI string
169 static void __init dmi_save_ident(const struct dmi_header *dm, int slot,
170 int string)
172 const char *d = (const char *) dm;
173 const char *p;
175 if (dmi_ident[slot] || dm->length <= string)
176 return;
178 p = dmi_string(dm, d[string]);
179 if (p == NULL)
180 return;
182 dmi_ident[slot] = p;
185 static void __init dmi_save_uuid(const struct dmi_header *dm, int slot,
186 int index)
188 const u8 *d;
189 char *s;
190 int is_ff = 1, is_00 = 1, i;
192 if (dmi_ident[slot] || dm->length < index + 16)
193 return;
195 d = (u8 *) dm + index;
196 for (i = 0; i < 16 && (is_ff || is_00); i++) {
197 if (d[i] != 0x00)
198 is_00 = 0;
199 if (d[i] != 0xFF)
200 is_ff = 0;
203 if (is_ff || is_00)
204 return;
206 s = dmi_alloc(16*2+4+1);
207 if (!s)
208 return;
211 * As of version 2.6 of the SMBIOS specification, the first 3 fields of
212 * the UUID are supposed to be little-endian encoded. The specification
213 * says that this is the defacto standard.
215 if (dmi_ver >= 0x020600)
216 sprintf(s, "%pUl", d);
217 else
218 sprintf(s, "%pUb", d);
220 dmi_ident[slot] = s;
223 static void __init dmi_save_type(const struct dmi_header *dm, int slot,
224 int index)
226 const u8 *d;
227 char *s;
229 if (dmi_ident[slot] || dm->length <= index)
230 return;
232 s = dmi_alloc(4);
233 if (!s)
234 return;
236 d = (u8 *) dm + index;
237 sprintf(s, "%u", *d & 0x7F);
238 dmi_ident[slot] = s;
241 static void __init dmi_save_one_device(int type, const char *name)
243 struct dmi_device *dev;
245 /* No duplicate device */
246 if (dmi_find_device(type, name, NULL))
247 return;
249 dev = dmi_alloc(sizeof(*dev) + strlen(name) + 1);
250 if (!dev)
251 return;
253 dev->type = type;
254 strcpy((char *)(dev + 1), name);
255 dev->name = (char *)(dev + 1);
256 dev->device_data = NULL;
257 list_add(&dev->list, &dmi_devices);
260 static void __init dmi_save_devices(const struct dmi_header *dm)
262 int i, count = (dm->length - sizeof(struct dmi_header)) / 2;
264 for (i = 0; i < count; i++) {
265 const char *d = (char *)(dm + 1) + (i * 2);
267 /* Skip disabled device */
268 if ((*d & 0x80) == 0)
269 continue;
271 dmi_save_one_device(*d & 0x7f, dmi_string_nosave(dm, *(d + 1)));
275 static void __init dmi_save_oem_strings_devices(const struct dmi_header *dm)
277 int i, count;
278 struct dmi_device *dev;
280 if (dm->length < 0x05)
281 return;
283 count = *(u8 *)(dm + 1);
284 for (i = 1; i <= count; i++) {
285 const char *devname = dmi_string(dm, i);
287 if (devname == dmi_empty_string)
288 continue;
290 dev = dmi_alloc(sizeof(*dev));
291 if (!dev)
292 break;
294 dev->type = DMI_DEV_TYPE_OEM_STRING;
295 dev->name = devname;
296 dev->device_data = NULL;
298 list_add(&dev->list, &dmi_devices);
302 static void __init dmi_save_ipmi_device(const struct dmi_header *dm)
304 struct dmi_device *dev;
305 void *data;
307 data = dmi_alloc(dm->length);
308 if (data == NULL)
309 return;
311 memcpy(data, dm, dm->length);
313 dev = dmi_alloc(sizeof(*dev));
314 if (!dev)
315 return;
317 dev->type = DMI_DEV_TYPE_IPMI;
318 dev->name = "IPMI controller";
319 dev->device_data = data;
321 list_add_tail(&dev->list, &dmi_devices);
324 static void __init dmi_save_dev_pciaddr(int instance, int segment, int bus,
325 int devfn, const char *name, int type)
327 struct dmi_dev_onboard *dev;
329 /* Ignore invalid values */
330 if (type == DMI_DEV_TYPE_DEV_SLOT &&
331 segment == 0xFFFF && bus == 0xFF && devfn == 0xFF)
332 return;
334 dev = dmi_alloc(sizeof(*dev) + strlen(name) + 1);
335 if (!dev)
336 return;
338 dev->instance = instance;
339 dev->segment = segment;
340 dev->bus = bus;
341 dev->devfn = devfn;
343 strcpy((char *)&dev[1], name);
344 dev->dev.type = type;
345 dev->dev.name = (char *)&dev[1];
346 dev->dev.device_data = dev;
348 list_add(&dev->dev.list, &dmi_devices);
351 static void __init dmi_save_extended_devices(const struct dmi_header *dm)
353 const char *name;
354 const u8 *d = (u8 *)dm;
356 if (dm->length < 0x0B)
357 return;
359 /* Skip disabled device */
360 if ((d[0x5] & 0x80) == 0)
361 return;
363 name = dmi_string_nosave(dm, d[0x4]);
364 dmi_save_dev_pciaddr(d[0x6], *(u16 *)(d + 0x7), d[0x9], d[0xA], name,
365 DMI_DEV_TYPE_DEV_ONBOARD);
366 dmi_save_one_device(d[0x5] & 0x7f, name);
369 static void __init dmi_save_system_slot(const struct dmi_header *dm)
371 const u8 *d = (u8 *)dm;
373 /* Need SMBIOS 2.6+ structure */
374 if (dm->length < 0x11)
375 return;
376 dmi_save_dev_pciaddr(*(u16 *)(d + 0x9), *(u16 *)(d + 0xD), d[0xF],
377 d[0x10], dmi_string_nosave(dm, d[0x4]),
378 DMI_DEV_TYPE_DEV_SLOT);
381 static void __init count_mem_devices(const struct dmi_header *dm, void *v)
383 if (dm->type != DMI_ENTRY_MEM_DEVICE)
384 return;
385 dmi_memdev_nr++;
388 static void __init save_mem_devices(const struct dmi_header *dm, void *v)
390 const char *d = (const char *)dm;
391 static int nr;
392 u64 bytes;
393 u16 size;
395 if (dm->type != DMI_ENTRY_MEM_DEVICE || dm->length < 0x13)
396 return;
397 if (nr >= dmi_memdev_nr) {
398 pr_warn(FW_BUG "Too many DIMM entries in SMBIOS table\n");
399 return;
401 dmi_memdev[nr].handle = get_unaligned(&dm->handle);
402 dmi_memdev[nr].device = dmi_string(dm, d[0x10]);
403 dmi_memdev[nr].bank = dmi_string(dm, d[0x11]);
404 dmi_memdev[nr].type = d[0x12];
406 size = get_unaligned((u16 *)&d[0xC]);
407 if (size == 0)
408 bytes = 0;
409 else if (size == 0xffff)
410 bytes = ~0ull;
411 else if (size & 0x8000)
412 bytes = (u64)(size & 0x7fff) << 10;
413 else if (size != 0x7fff || dm->length < 0x20)
414 bytes = (u64)size << 20;
415 else
416 bytes = (u64)get_unaligned((u32 *)&d[0x1C]) << 20;
418 dmi_memdev[nr].size = bytes;
419 nr++;
422 static void __init dmi_memdev_walk(void)
424 if (dmi_walk_early(count_mem_devices) == 0 && dmi_memdev_nr) {
425 dmi_memdev = dmi_alloc(sizeof(*dmi_memdev) * dmi_memdev_nr);
426 if (dmi_memdev)
427 dmi_walk_early(save_mem_devices);
432 * Process a DMI table entry. Right now all we care about are the BIOS
433 * and machine entries. For 2.5 we should pull the smbus controller info
434 * out of here.
436 static void __init dmi_decode(const struct dmi_header *dm, void *dummy)
438 switch (dm->type) {
439 case 0: /* BIOS Information */
440 dmi_save_ident(dm, DMI_BIOS_VENDOR, 4);
441 dmi_save_ident(dm, DMI_BIOS_VERSION, 5);
442 dmi_save_ident(dm, DMI_BIOS_DATE, 8);
443 break;
444 case 1: /* System Information */
445 dmi_save_ident(dm, DMI_SYS_VENDOR, 4);
446 dmi_save_ident(dm, DMI_PRODUCT_NAME, 5);
447 dmi_save_ident(dm, DMI_PRODUCT_VERSION, 6);
448 dmi_save_ident(dm, DMI_PRODUCT_SERIAL, 7);
449 dmi_save_uuid(dm, DMI_PRODUCT_UUID, 8);
450 dmi_save_ident(dm, DMI_PRODUCT_SKU, 25);
451 dmi_save_ident(dm, DMI_PRODUCT_FAMILY, 26);
452 break;
453 case 2: /* Base Board Information */
454 dmi_save_ident(dm, DMI_BOARD_VENDOR, 4);
455 dmi_save_ident(dm, DMI_BOARD_NAME, 5);
456 dmi_save_ident(dm, DMI_BOARD_VERSION, 6);
457 dmi_save_ident(dm, DMI_BOARD_SERIAL, 7);
458 dmi_save_ident(dm, DMI_BOARD_ASSET_TAG, 8);
459 break;
460 case 3: /* Chassis Information */
461 dmi_save_ident(dm, DMI_CHASSIS_VENDOR, 4);
462 dmi_save_type(dm, DMI_CHASSIS_TYPE, 5);
463 dmi_save_ident(dm, DMI_CHASSIS_VERSION, 6);
464 dmi_save_ident(dm, DMI_CHASSIS_SERIAL, 7);
465 dmi_save_ident(dm, DMI_CHASSIS_ASSET_TAG, 8);
466 break;
467 case 9: /* System Slots */
468 dmi_save_system_slot(dm);
469 break;
470 case 10: /* Onboard Devices Information */
471 dmi_save_devices(dm);
472 break;
473 case 11: /* OEM Strings */
474 dmi_save_oem_strings_devices(dm);
475 break;
476 case 38: /* IPMI Device Information */
477 dmi_save_ipmi_device(dm);
478 break;
479 case 41: /* Onboard Devices Extended Information */
480 dmi_save_extended_devices(dm);
484 static int __init print_filtered(char *buf, size_t len, const char *info)
486 int c = 0;
487 const char *p;
489 if (!info)
490 return c;
492 for (p = info; *p; p++)
493 if (isprint(*p))
494 c += scnprintf(buf + c, len - c, "%c", *p);
495 else
496 c += scnprintf(buf + c, len - c, "\\x%02x", *p & 0xff);
497 return c;
500 static void __init dmi_format_ids(char *buf, size_t len)
502 int c = 0;
503 const char *board; /* Board Name is optional */
505 c += print_filtered(buf + c, len - c,
506 dmi_get_system_info(DMI_SYS_VENDOR));
507 c += scnprintf(buf + c, len - c, " ");
508 c += print_filtered(buf + c, len - c,
509 dmi_get_system_info(DMI_PRODUCT_NAME));
511 board = dmi_get_system_info(DMI_BOARD_NAME);
512 if (board) {
513 c += scnprintf(buf + c, len - c, "/");
514 c += print_filtered(buf + c, len - c, board);
516 c += scnprintf(buf + c, len - c, ", BIOS ");
517 c += print_filtered(buf + c, len - c,
518 dmi_get_system_info(DMI_BIOS_VERSION));
519 c += scnprintf(buf + c, len - c, " ");
520 c += print_filtered(buf + c, len - c,
521 dmi_get_system_info(DMI_BIOS_DATE));
525 * Check for DMI/SMBIOS headers in the system firmware image. Any
526 * SMBIOS header must start 16 bytes before the DMI header, so take a
527 * 32 byte buffer and check for DMI at offset 16 and SMBIOS at offset
528 * 0. If the DMI header is present, set dmi_ver accordingly (SMBIOS
529 * takes precedence) and return 0. Otherwise return 1.
531 static int __init dmi_present(const u8 *buf)
533 u32 smbios_ver;
535 if (memcmp(buf, "_SM_", 4) == 0 &&
536 buf[5] < 32 && dmi_checksum(buf, buf[5])) {
537 smbios_ver = get_unaligned_be16(buf + 6);
538 smbios_entry_point_size = buf[5];
539 memcpy(smbios_entry_point, buf, smbios_entry_point_size);
541 /* Some BIOS report weird SMBIOS version, fix that up */
542 switch (smbios_ver) {
543 case 0x021F:
544 case 0x0221:
545 pr_debug("SMBIOS version fixup (2.%d->2.%d)\n",
546 smbios_ver & 0xFF, 3);
547 smbios_ver = 0x0203;
548 break;
549 case 0x0233:
550 pr_debug("SMBIOS version fixup (2.%d->2.%d)\n", 51, 6);
551 smbios_ver = 0x0206;
552 break;
554 } else {
555 smbios_ver = 0;
558 buf += 16;
560 if (memcmp(buf, "_DMI_", 5) == 0 && dmi_checksum(buf, 15)) {
561 if (smbios_ver)
562 dmi_ver = smbios_ver;
563 else
564 dmi_ver = (buf[14] & 0xF0) << 4 | (buf[14] & 0x0F);
565 dmi_ver <<= 8;
566 dmi_num = get_unaligned_le16(buf + 12);
567 dmi_len = get_unaligned_le16(buf + 6);
568 dmi_base = get_unaligned_le32(buf + 8);
570 if (dmi_walk_early(dmi_decode) == 0) {
571 if (smbios_ver) {
572 pr_info("SMBIOS %d.%d present.\n",
573 dmi_ver >> 16, (dmi_ver >> 8) & 0xFF);
574 } else {
575 smbios_entry_point_size = 15;
576 memcpy(smbios_entry_point, buf,
577 smbios_entry_point_size);
578 pr_info("Legacy DMI %d.%d present.\n",
579 dmi_ver >> 16, (dmi_ver >> 8) & 0xFF);
581 dmi_format_ids(dmi_ids_string, sizeof(dmi_ids_string));
582 pr_info("DMI: %s\n", dmi_ids_string);
583 return 0;
587 return 1;
591 * Check for the SMBIOS 3.0 64-bit entry point signature. Unlike the legacy
592 * 32-bit entry point, there is no embedded DMI header (_DMI_) in here.
594 static int __init dmi_smbios3_present(const u8 *buf)
596 if (memcmp(buf, "_SM3_", 5) == 0 &&
597 buf[6] < 32 && dmi_checksum(buf, buf[6])) {
598 dmi_ver = get_unaligned_be32(buf + 6) & 0xFFFFFF;
599 dmi_num = 0; /* No longer specified */
600 dmi_len = get_unaligned_le32(buf + 12);
601 dmi_base = get_unaligned_le64(buf + 16);
602 smbios_entry_point_size = buf[6];
603 memcpy(smbios_entry_point, buf, smbios_entry_point_size);
605 if (dmi_walk_early(dmi_decode) == 0) {
606 pr_info("SMBIOS %d.%d.%d present.\n",
607 dmi_ver >> 16, (dmi_ver >> 8) & 0xFF,
608 dmi_ver & 0xFF);
609 dmi_format_ids(dmi_ids_string, sizeof(dmi_ids_string));
610 pr_info("DMI: %s\n", dmi_ids_string);
611 return 0;
614 return 1;
617 static void __init dmi_scan_machine(void)
619 char __iomem *p, *q;
620 char buf[32];
622 if (efi_enabled(EFI_CONFIG_TABLES)) {
624 * According to the DMTF SMBIOS reference spec v3.0.0, it is
625 * allowed to define both the 64-bit entry point (smbios3) and
626 * the 32-bit entry point (smbios), in which case they should
627 * either both point to the same SMBIOS structure table, or the
628 * table pointed to by the 64-bit entry point should contain a
629 * superset of the table contents pointed to by the 32-bit entry
630 * point (section 5.2)
631 * This implies that the 64-bit entry point should have
632 * precedence if it is defined and supported by the OS. If we
633 * have the 64-bit entry point, but fail to decode it, fall
634 * back to the legacy one (if available)
636 if (efi.smbios3 != EFI_INVALID_TABLE_ADDR) {
637 p = dmi_early_remap(efi.smbios3, 32);
638 if (p == NULL)
639 goto error;
640 memcpy_fromio(buf, p, 32);
641 dmi_early_unmap(p, 32);
643 if (!dmi_smbios3_present(buf)) {
644 dmi_available = 1;
645 return;
648 if (efi.smbios == EFI_INVALID_TABLE_ADDR)
649 goto error;
651 /* This is called as a core_initcall() because it isn't
652 * needed during early boot. This also means we can
653 * iounmap the space when we're done with it.
655 p = dmi_early_remap(efi.smbios, 32);
656 if (p == NULL)
657 goto error;
658 memcpy_fromio(buf, p, 32);
659 dmi_early_unmap(p, 32);
661 if (!dmi_present(buf)) {
662 dmi_available = 1;
663 return;
665 } else if (IS_ENABLED(CONFIG_DMI_SCAN_MACHINE_NON_EFI_FALLBACK)) {
666 p = dmi_early_remap(0xF0000, 0x10000);
667 if (p == NULL)
668 goto error;
671 * Same logic as above, look for a 64-bit entry point
672 * first, and if not found, fall back to 32-bit entry point.
674 memcpy_fromio(buf, p, 16);
675 for (q = p + 16; q < p + 0x10000; q += 16) {
676 memcpy_fromio(buf + 16, q, 16);
677 if (!dmi_smbios3_present(buf)) {
678 dmi_available = 1;
679 dmi_early_unmap(p, 0x10000);
680 return;
682 memcpy(buf, buf + 16, 16);
686 * Iterate over all possible DMI header addresses q.
687 * Maintain the 32 bytes around q in buf. On the
688 * first iteration, substitute zero for the
689 * out-of-range bytes so there is no chance of falsely
690 * detecting an SMBIOS header.
692 memset(buf, 0, 16);
693 for (q = p; q < p + 0x10000; q += 16) {
694 memcpy_fromio(buf + 16, q, 16);
695 if (!dmi_present(buf)) {
696 dmi_available = 1;
697 dmi_early_unmap(p, 0x10000);
698 return;
700 memcpy(buf, buf + 16, 16);
702 dmi_early_unmap(p, 0x10000);
704 error:
705 pr_info("DMI not present or invalid.\n");
708 static ssize_t raw_table_read(struct file *file, struct kobject *kobj,
709 struct bin_attribute *attr, char *buf,
710 loff_t pos, size_t count)
712 memcpy(buf, attr->private + pos, count);
713 return count;
716 static BIN_ATTR(smbios_entry_point, S_IRUSR, raw_table_read, NULL, 0);
717 static BIN_ATTR(DMI, S_IRUSR, raw_table_read, NULL, 0);
719 static int __init dmi_init(void)
721 struct kobject *tables_kobj;
722 u8 *dmi_table;
723 int ret = -ENOMEM;
725 if (!dmi_available)
726 return 0;
729 * Set up dmi directory at /sys/firmware/dmi. This entry should stay
730 * even after farther error, as it can be used by other modules like
731 * dmi-sysfs.
733 dmi_kobj = kobject_create_and_add("dmi", firmware_kobj);
734 if (!dmi_kobj)
735 goto err;
737 tables_kobj = kobject_create_and_add("tables", dmi_kobj);
738 if (!tables_kobj)
739 goto err;
741 dmi_table = dmi_remap(dmi_base, dmi_len);
742 if (!dmi_table)
743 goto err_tables;
745 bin_attr_smbios_entry_point.size = smbios_entry_point_size;
746 bin_attr_smbios_entry_point.private = smbios_entry_point;
747 ret = sysfs_create_bin_file(tables_kobj, &bin_attr_smbios_entry_point);
748 if (ret)
749 goto err_unmap;
751 bin_attr_DMI.size = dmi_len;
752 bin_attr_DMI.private = dmi_table;
753 ret = sysfs_create_bin_file(tables_kobj, &bin_attr_DMI);
754 if (!ret)
755 return 0;
757 sysfs_remove_bin_file(tables_kobj,
758 &bin_attr_smbios_entry_point);
759 err_unmap:
760 dmi_unmap(dmi_table);
761 err_tables:
762 kobject_del(tables_kobj);
763 kobject_put(tables_kobj);
764 err:
765 pr_err("dmi: Firmware registration failed.\n");
767 return ret;
769 subsys_initcall(dmi_init);
772 * dmi_setup - scan and setup DMI system information
774 * Scan the DMI system information. This setups DMI identifiers
775 * (dmi_system_id) for printing it out on task dumps and prepares
776 * DIMM entry information (dmi_memdev_info) from the SMBIOS table
777 * for using this when reporting memory errors.
779 void __init dmi_setup(void)
781 dmi_scan_machine();
782 if (!dmi_available)
783 return;
785 dmi_memdev_walk();
786 dump_stack_set_arch_desc("%s", dmi_ids_string);
790 * dmi_matches - check if dmi_system_id structure matches system DMI data
791 * @dmi: pointer to the dmi_system_id structure to check
793 static bool dmi_matches(const struct dmi_system_id *dmi)
795 int i;
797 for (i = 0; i < ARRAY_SIZE(dmi->matches); i++) {
798 int s = dmi->matches[i].slot;
799 if (s == DMI_NONE)
800 break;
801 if (s == DMI_OEM_STRING) {
802 /* DMI_OEM_STRING must be exact match */
803 const struct dmi_device *valid;
805 valid = dmi_find_device(DMI_DEV_TYPE_OEM_STRING,
806 dmi->matches[i].substr, NULL);
807 if (valid)
808 continue;
809 } else if (dmi_ident[s]) {
810 if (dmi->matches[i].exact_match) {
811 if (!strcmp(dmi_ident[s],
812 dmi->matches[i].substr))
813 continue;
814 } else {
815 if (strstr(dmi_ident[s],
816 dmi->matches[i].substr))
817 continue;
821 /* No match */
822 return false;
824 return true;
828 * dmi_is_end_of_table - check for end-of-table marker
829 * @dmi: pointer to the dmi_system_id structure to check
831 static bool dmi_is_end_of_table(const struct dmi_system_id *dmi)
833 return dmi->matches[0].slot == DMI_NONE;
837 * dmi_check_system - check system DMI data
838 * @list: array of dmi_system_id structures to match against
839 * All non-null elements of the list must match
840 * their slot's (field index's) data (i.e., each
841 * list string must be a substring of the specified
842 * DMI slot's string data) to be considered a
843 * successful match.
845 * Walk the blacklist table running matching functions until someone
846 * returns non zero or we hit the end. Callback function is called for
847 * each successful match. Returns the number of matches.
849 * dmi_setup must be called before this function is called.
851 int dmi_check_system(const struct dmi_system_id *list)
853 int count = 0;
854 const struct dmi_system_id *d;
856 for (d = list; !dmi_is_end_of_table(d); d++)
857 if (dmi_matches(d)) {
858 count++;
859 if (d->callback && d->callback(d))
860 break;
863 return count;
865 EXPORT_SYMBOL(dmi_check_system);
868 * dmi_first_match - find dmi_system_id structure matching system DMI data
869 * @list: array of dmi_system_id structures to match against
870 * All non-null elements of the list must match
871 * their slot's (field index's) data (i.e., each
872 * list string must be a substring of the specified
873 * DMI slot's string data) to be considered a
874 * successful match.
876 * Walk the blacklist table until the first match is found. Return the
877 * pointer to the matching entry or NULL if there's no match.
879 * dmi_setup must be called before this function is called.
881 const struct dmi_system_id *dmi_first_match(const struct dmi_system_id *list)
883 const struct dmi_system_id *d;
885 for (d = list; !dmi_is_end_of_table(d); d++)
886 if (dmi_matches(d))
887 return d;
889 return NULL;
891 EXPORT_SYMBOL(dmi_first_match);
894 * dmi_get_system_info - return DMI data value
895 * @field: data index (see enum dmi_field)
897 * Returns one DMI data value, can be used to perform
898 * complex DMI data checks.
900 const char *dmi_get_system_info(int field)
902 return dmi_ident[field];
904 EXPORT_SYMBOL(dmi_get_system_info);
907 * dmi_name_in_serial - Check if string is in the DMI product serial information
908 * @str: string to check for
910 int dmi_name_in_serial(const char *str)
912 int f = DMI_PRODUCT_SERIAL;
913 if (dmi_ident[f] && strstr(dmi_ident[f], str))
914 return 1;
915 return 0;
919 * dmi_name_in_vendors - Check if string is in the DMI system or board vendor name
920 * @str: Case sensitive Name
922 int dmi_name_in_vendors(const char *str)
924 static int fields[] = { DMI_SYS_VENDOR, DMI_BOARD_VENDOR, DMI_NONE };
925 int i;
926 for (i = 0; fields[i] != DMI_NONE; i++) {
927 int f = fields[i];
928 if (dmi_ident[f] && strstr(dmi_ident[f], str))
929 return 1;
931 return 0;
933 EXPORT_SYMBOL(dmi_name_in_vendors);
936 * dmi_find_device - find onboard device by type/name
937 * @type: device type or %DMI_DEV_TYPE_ANY to match all device types
938 * @name: device name string or %NULL to match all
939 * @from: previous device found in search, or %NULL for new search.
941 * Iterates through the list of known onboard devices. If a device is
942 * found with a matching @type and @name, a pointer to its device
943 * structure is returned. Otherwise, %NULL is returned.
944 * A new search is initiated by passing %NULL as the @from argument.
945 * If @from is not %NULL, searches continue from next device.
947 const struct dmi_device *dmi_find_device(int type, const char *name,
948 const struct dmi_device *from)
950 const struct list_head *head = from ? &from->list : &dmi_devices;
951 struct list_head *d;
953 for (d = head->next; d != &dmi_devices; d = d->next) {
954 const struct dmi_device *dev =
955 list_entry(d, struct dmi_device, list);
957 if (((type == DMI_DEV_TYPE_ANY) || (dev->type == type)) &&
958 ((name == NULL) || (strcmp(dev->name, name) == 0)))
959 return dev;
962 return NULL;
964 EXPORT_SYMBOL(dmi_find_device);
967 * dmi_get_date - parse a DMI date
968 * @field: data index (see enum dmi_field)
969 * @yearp: optional out parameter for the year
970 * @monthp: optional out parameter for the month
971 * @dayp: optional out parameter for the day
973 * The date field is assumed to be in the form resembling
974 * [mm[/dd]]/yy[yy] and the result is stored in the out
975 * parameters any or all of which can be omitted.
977 * If the field doesn't exist, all out parameters are set to zero
978 * and false is returned. Otherwise, true is returned with any
979 * invalid part of date set to zero.
981 * On return, year, month and day are guaranteed to be in the
982 * range of [0,9999], [0,12] and [0,31] respectively.
984 bool dmi_get_date(int field, int *yearp, int *monthp, int *dayp)
986 int year = 0, month = 0, day = 0;
987 bool exists;
988 const char *s, *y;
989 char *e;
991 s = dmi_get_system_info(field);
992 exists = s;
993 if (!exists)
994 goto out;
997 * Determine year first. We assume the date string resembles
998 * mm/dd/yy[yy] but the original code extracted only the year
999 * from the end. Keep the behavior in the spirit of no
1000 * surprises.
1002 y = strrchr(s, '/');
1003 if (!y)
1004 goto out;
1006 y++;
1007 year = simple_strtoul(y, &e, 10);
1008 if (y != e && year < 100) { /* 2-digit year */
1009 year += 1900;
1010 if (year < 1996) /* no dates < spec 1.0 */
1011 year += 100;
1013 if (year > 9999) /* year should fit in %04d */
1014 year = 0;
1016 /* parse the mm and dd */
1017 month = simple_strtoul(s, &e, 10);
1018 if (s == e || *e != '/' || !month || month > 12) {
1019 month = 0;
1020 goto out;
1023 s = e + 1;
1024 day = simple_strtoul(s, &e, 10);
1025 if (s == y || s == e || *e != '/' || day > 31)
1026 day = 0;
1027 out:
1028 if (yearp)
1029 *yearp = year;
1030 if (monthp)
1031 *monthp = month;
1032 if (dayp)
1033 *dayp = day;
1034 return exists;
1036 EXPORT_SYMBOL(dmi_get_date);
1039 * dmi_get_bios_year - get a year out of DMI_BIOS_DATE field
1041 * Returns year on success, -ENXIO if DMI is not selected,
1042 * or a different negative error code if DMI field is not present
1043 * or not parseable.
1045 int dmi_get_bios_year(void)
1047 bool exists;
1048 int year;
1050 exists = dmi_get_date(DMI_BIOS_DATE, &year, NULL, NULL);
1051 if (!exists)
1052 return -ENODATA;
1054 return year ? year : -ERANGE;
1056 EXPORT_SYMBOL(dmi_get_bios_year);
1059 * dmi_walk - Walk the DMI table and get called back for every record
1060 * @decode: Callback function
1061 * @private_data: Private data to be passed to the callback function
1063 * Returns 0 on success, -ENXIO if DMI is not selected or not present,
1064 * or a different negative error code if DMI walking fails.
1066 int dmi_walk(void (*decode)(const struct dmi_header *, void *),
1067 void *private_data)
1069 u8 *buf;
1071 if (!dmi_available)
1072 return -ENXIO;
1074 buf = dmi_remap(dmi_base, dmi_len);
1075 if (buf == NULL)
1076 return -ENOMEM;
1078 dmi_decode_table(buf, decode, private_data);
1080 dmi_unmap(buf);
1081 return 0;
1083 EXPORT_SYMBOL_GPL(dmi_walk);
1086 * dmi_match - compare a string to the dmi field (if exists)
1087 * @f: DMI field identifier
1088 * @str: string to compare the DMI field to
1090 * Returns true if the requested field equals to the str (including NULL).
1092 bool dmi_match(enum dmi_field f, const char *str)
1094 const char *info = dmi_get_system_info(f);
1096 if (info == NULL || str == NULL)
1097 return info == str;
1099 return !strcmp(info, str);
1101 EXPORT_SYMBOL_GPL(dmi_match);
1103 void dmi_memdev_name(u16 handle, const char **bank, const char **device)
1105 int n;
1107 if (dmi_memdev == NULL)
1108 return;
1110 for (n = 0; n < dmi_memdev_nr; n++) {
1111 if (handle == dmi_memdev[n].handle) {
1112 *bank = dmi_memdev[n].bank;
1113 *device = dmi_memdev[n].device;
1114 break;
1118 EXPORT_SYMBOL_GPL(dmi_memdev_name);
1120 u64 dmi_memdev_size(u16 handle)
1122 int n;
1124 if (dmi_memdev) {
1125 for (n = 0; n < dmi_memdev_nr; n++) {
1126 if (handle == dmi_memdev[n].handle)
1127 return dmi_memdev[n].size;
1130 return ~0ull;
1132 EXPORT_SYMBOL_GPL(dmi_memdev_size);
1135 * dmi_memdev_type - get the memory type
1136 * @handle: DMI structure handle
1138 * Return the DMI memory type of the module in the slot associated with the
1139 * given DMI handle, or 0x0 if no such DMI handle exists.
1141 u8 dmi_memdev_type(u16 handle)
1143 int n;
1145 if (dmi_memdev) {
1146 for (n = 0; n < dmi_memdev_nr; n++) {
1147 if (handle == dmi_memdev[n].handle)
1148 return dmi_memdev[n].type;
1151 return 0x0; /* Not a valid value */
1153 EXPORT_SYMBOL_GPL(dmi_memdev_type);
1156 * dmi_memdev_handle - get the DMI handle of a memory slot
1157 * @slot: slot number
1159 * Return the DMI handle associated with a given memory slot, or %0xFFFF
1160 * if there is no such slot.
1162 u16 dmi_memdev_handle(int slot)
1164 if (dmi_memdev && slot >= 0 && slot < dmi_memdev_nr)
1165 return dmi_memdev[slot].handle;
1167 return 0xffff; /* Not a valid value */
1169 EXPORT_SYMBOL_GPL(dmi_memdev_handle);