2 * Copyright 2014 Advanced Micro Devices, Inc.
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
11 * The above copyright notice and this permission notice shall be included in
12 * all copies or substantial portions of the Software.
14 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
17 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20 * OTHER DEALINGS IN THE SOFTWARE.
23 #include <linux/bsearch.h>
24 #include <linux/pci.h>
25 #include <linux/slab.h>
27 #include "kfd_device_queue_manager.h"
28 #include "kfd_pm4_headers_vi.h"
29 #include "cwsr_trap_handler.h"
30 #include "kfd_iommu.h"
31 #include "amdgpu_amdkfd.h"
33 #define MQD_SIZE_ALIGNED 768
36 * kfd_locked is used to lock the kfd driver during suspend or reset
37 * once locked, kfd driver will stop any further GPU execution.
38 * create process (open) will return -EAGAIN.
40 static atomic_t kfd_locked
= ATOMIC_INIT(0);
42 #ifdef CONFIG_DRM_AMDGPU_CIK
43 extern const struct kfd2kgd_calls gfx_v7_kfd2kgd
;
45 extern const struct kfd2kgd_calls gfx_v8_kfd2kgd
;
46 extern const struct kfd2kgd_calls gfx_v9_kfd2kgd
;
47 extern const struct kfd2kgd_calls arcturus_kfd2kgd
;
48 extern const struct kfd2kgd_calls gfx_v10_kfd2kgd
;
50 static const struct kfd2kgd_calls
*kfd2kgd_funcs
[] = {
51 #ifdef KFD_SUPPORT_IOMMU_V2
52 #ifdef CONFIG_DRM_AMDGPU_CIK
53 [CHIP_KAVERI
] = &gfx_v7_kfd2kgd
,
55 [CHIP_CARRIZO
] = &gfx_v8_kfd2kgd
,
56 [CHIP_RAVEN
] = &gfx_v9_kfd2kgd
,
58 #ifdef CONFIG_DRM_AMDGPU_CIK
59 [CHIP_HAWAII
] = &gfx_v7_kfd2kgd
,
61 [CHIP_TONGA
] = &gfx_v8_kfd2kgd
,
62 [CHIP_FIJI
] = &gfx_v8_kfd2kgd
,
63 [CHIP_POLARIS10
] = &gfx_v8_kfd2kgd
,
64 [CHIP_POLARIS11
] = &gfx_v8_kfd2kgd
,
65 [CHIP_POLARIS12
] = &gfx_v8_kfd2kgd
,
66 [CHIP_VEGAM
] = &gfx_v8_kfd2kgd
,
67 [CHIP_VEGA10
] = &gfx_v9_kfd2kgd
,
68 [CHIP_VEGA12
] = &gfx_v9_kfd2kgd
,
69 [CHIP_VEGA20
] = &gfx_v9_kfd2kgd
,
70 [CHIP_RENOIR
] = &gfx_v9_kfd2kgd
,
71 [CHIP_ARCTURUS
] = &arcturus_kfd2kgd
,
72 [CHIP_NAVI10
] = &gfx_v10_kfd2kgd
,
73 [CHIP_NAVI12
] = &gfx_v10_kfd2kgd
,
74 [CHIP_NAVI14
] = &gfx_v10_kfd2kgd
,
77 #ifdef KFD_SUPPORT_IOMMU_V2
78 static const struct kfd_device_info kaveri_device_info
= {
79 .asic_family
= CHIP_KAVERI
,
80 .asic_name
= "kaveri",
82 /* max num of queues for KV.TODO should be a dynamic value */
85 .ih_ring_entry_size
= 4 * sizeof(uint32_t),
86 .event_interrupt_class
= &event_interrupt_class_cik
,
87 .num_of_watch_points
= 4,
88 .mqd_size_aligned
= MQD_SIZE_ALIGNED
,
89 .supports_cwsr
= false,
90 .needs_iommu_device
= true,
91 .needs_pci_atomics
= false,
92 .num_sdma_engines
= 2,
93 .num_xgmi_sdma_engines
= 0,
94 .num_sdma_queues_per_engine
= 2,
97 static const struct kfd_device_info carrizo_device_info
= {
98 .asic_family
= CHIP_CARRIZO
,
99 .asic_name
= "carrizo",
100 .max_pasid_bits
= 16,
101 /* max num of queues for CZ.TODO should be a dynamic value */
104 .ih_ring_entry_size
= 4 * sizeof(uint32_t),
105 .event_interrupt_class
= &event_interrupt_class_cik
,
106 .num_of_watch_points
= 4,
107 .mqd_size_aligned
= MQD_SIZE_ALIGNED
,
108 .supports_cwsr
= true,
109 .needs_iommu_device
= true,
110 .needs_pci_atomics
= false,
111 .num_sdma_engines
= 2,
112 .num_xgmi_sdma_engines
= 0,
113 .num_sdma_queues_per_engine
= 2,
116 static const struct kfd_device_info raven_device_info
= {
117 .asic_family
= CHIP_RAVEN
,
118 .asic_name
= "raven",
119 .max_pasid_bits
= 16,
122 .ih_ring_entry_size
= 8 * sizeof(uint32_t),
123 .event_interrupt_class
= &event_interrupt_class_v9
,
124 .num_of_watch_points
= 4,
125 .mqd_size_aligned
= MQD_SIZE_ALIGNED
,
126 .supports_cwsr
= true,
127 .needs_iommu_device
= true,
128 .needs_pci_atomics
= true,
129 .num_sdma_engines
= 1,
130 .num_xgmi_sdma_engines
= 0,
131 .num_sdma_queues_per_engine
= 2,
135 static const struct kfd_device_info hawaii_device_info
= {
136 .asic_family
= CHIP_HAWAII
,
137 .asic_name
= "hawaii",
138 .max_pasid_bits
= 16,
139 /* max num of queues for KV.TODO should be a dynamic value */
142 .ih_ring_entry_size
= 4 * sizeof(uint32_t),
143 .event_interrupt_class
= &event_interrupt_class_cik
,
144 .num_of_watch_points
= 4,
145 .mqd_size_aligned
= MQD_SIZE_ALIGNED
,
146 .supports_cwsr
= false,
147 .needs_iommu_device
= false,
148 .needs_pci_atomics
= false,
149 .num_sdma_engines
= 2,
150 .num_xgmi_sdma_engines
= 0,
151 .num_sdma_queues_per_engine
= 2,
154 static const struct kfd_device_info tonga_device_info
= {
155 .asic_family
= CHIP_TONGA
,
156 .asic_name
= "tonga",
157 .max_pasid_bits
= 16,
160 .ih_ring_entry_size
= 4 * sizeof(uint32_t),
161 .event_interrupt_class
= &event_interrupt_class_cik
,
162 .num_of_watch_points
= 4,
163 .mqd_size_aligned
= MQD_SIZE_ALIGNED
,
164 .supports_cwsr
= false,
165 .needs_iommu_device
= false,
166 .needs_pci_atomics
= true,
167 .num_sdma_engines
= 2,
168 .num_xgmi_sdma_engines
= 0,
169 .num_sdma_queues_per_engine
= 2,
172 static const struct kfd_device_info fiji_device_info
= {
173 .asic_family
= CHIP_FIJI
,
175 .max_pasid_bits
= 16,
178 .ih_ring_entry_size
= 4 * sizeof(uint32_t),
179 .event_interrupt_class
= &event_interrupt_class_cik
,
180 .num_of_watch_points
= 4,
181 .mqd_size_aligned
= MQD_SIZE_ALIGNED
,
182 .supports_cwsr
= true,
183 .needs_iommu_device
= false,
184 .needs_pci_atomics
= true,
185 .num_sdma_engines
= 2,
186 .num_xgmi_sdma_engines
= 0,
187 .num_sdma_queues_per_engine
= 2,
190 static const struct kfd_device_info fiji_vf_device_info
= {
191 .asic_family
= CHIP_FIJI
,
193 .max_pasid_bits
= 16,
196 .ih_ring_entry_size
= 4 * sizeof(uint32_t),
197 .event_interrupt_class
= &event_interrupt_class_cik
,
198 .num_of_watch_points
= 4,
199 .mqd_size_aligned
= MQD_SIZE_ALIGNED
,
200 .supports_cwsr
= true,
201 .needs_iommu_device
= false,
202 .needs_pci_atomics
= false,
203 .num_sdma_engines
= 2,
204 .num_xgmi_sdma_engines
= 0,
205 .num_sdma_queues_per_engine
= 2,
209 static const struct kfd_device_info polaris10_device_info
= {
210 .asic_family
= CHIP_POLARIS10
,
211 .asic_name
= "polaris10",
212 .max_pasid_bits
= 16,
215 .ih_ring_entry_size
= 4 * sizeof(uint32_t),
216 .event_interrupt_class
= &event_interrupt_class_cik
,
217 .num_of_watch_points
= 4,
218 .mqd_size_aligned
= MQD_SIZE_ALIGNED
,
219 .supports_cwsr
= true,
220 .needs_iommu_device
= false,
221 .needs_pci_atomics
= true,
222 .num_sdma_engines
= 2,
223 .num_xgmi_sdma_engines
= 0,
224 .num_sdma_queues_per_engine
= 2,
227 static const struct kfd_device_info polaris10_vf_device_info
= {
228 .asic_family
= CHIP_POLARIS10
,
229 .asic_name
= "polaris10",
230 .max_pasid_bits
= 16,
233 .ih_ring_entry_size
= 4 * sizeof(uint32_t),
234 .event_interrupt_class
= &event_interrupt_class_cik
,
235 .num_of_watch_points
= 4,
236 .mqd_size_aligned
= MQD_SIZE_ALIGNED
,
237 .supports_cwsr
= true,
238 .needs_iommu_device
= false,
239 .needs_pci_atomics
= false,
240 .num_sdma_engines
= 2,
241 .num_xgmi_sdma_engines
= 0,
242 .num_sdma_queues_per_engine
= 2,
245 static const struct kfd_device_info polaris11_device_info
= {
246 .asic_family
= CHIP_POLARIS11
,
247 .asic_name
= "polaris11",
248 .max_pasid_bits
= 16,
251 .ih_ring_entry_size
= 4 * sizeof(uint32_t),
252 .event_interrupt_class
= &event_interrupt_class_cik
,
253 .num_of_watch_points
= 4,
254 .mqd_size_aligned
= MQD_SIZE_ALIGNED
,
255 .supports_cwsr
= true,
256 .needs_iommu_device
= false,
257 .needs_pci_atomics
= true,
258 .num_sdma_engines
= 2,
259 .num_xgmi_sdma_engines
= 0,
260 .num_sdma_queues_per_engine
= 2,
263 static const struct kfd_device_info polaris12_device_info
= {
264 .asic_family
= CHIP_POLARIS12
,
265 .asic_name
= "polaris12",
266 .max_pasid_bits
= 16,
269 .ih_ring_entry_size
= 4 * sizeof(uint32_t),
270 .event_interrupt_class
= &event_interrupt_class_cik
,
271 .num_of_watch_points
= 4,
272 .mqd_size_aligned
= MQD_SIZE_ALIGNED
,
273 .supports_cwsr
= true,
274 .needs_iommu_device
= false,
275 .needs_pci_atomics
= true,
276 .num_sdma_engines
= 2,
277 .num_xgmi_sdma_engines
= 0,
278 .num_sdma_queues_per_engine
= 2,
281 static const struct kfd_device_info vegam_device_info
= {
282 .asic_family
= CHIP_VEGAM
,
283 .asic_name
= "vegam",
284 .max_pasid_bits
= 16,
287 .ih_ring_entry_size
= 4 * sizeof(uint32_t),
288 .event_interrupt_class
= &event_interrupt_class_cik
,
289 .num_of_watch_points
= 4,
290 .mqd_size_aligned
= MQD_SIZE_ALIGNED
,
291 .supports_cwsr
= true,
292 .needs_iommu_device
= false,
293 .needs_pci_atomics
= true,
294 .num_sdma_engines
= 2,
295 .num_xgmi_sdma_engines
= 0,
296 .num_sdma_queues_per_engine
= 2,
299 static const struct kfd_device_info vega10_device_info
= {
300 .asic_family
= CHIP_VEGA10
,
301 .asic_name
= "vega10",
302 .max_pasid_bits
= 16,
305 .ih_ring_entry_size
= 8 * sizeof(uint32_t),
306 .event_interrupt_class
= &event_interrupt_class_v9
,
307 .num_of_watch_points
= 4,
308 .mqd_size_aligned
= MQD_SIZE_ALIGNED
,
309 .supports_cwsr
= true,
310 .needs_iommu_device
= false,
311 .needs_pci_atomics
= false,
312 .num_sdma_engines
= 2,
313 .num_xgmi_sdma_engines
= 0,
314 .num_sdma_queues_per_engine
= 2,
317 static const struct kfd_device_info vega10_vf_device_info
= {
318 .asic_family
= CHIP_VEGA10
,
319 .asic_name
= "vega10",
320 .max_pasid_bits
= 16,
323 .ih_ring_entry_size
= 8 * sizeof(uint32_t),
324 .event_interrupt_class
= &event_interrupt_class_v9
,
325 .num_of_watch_points
= 4,
326 .mqd_size_aligned
= MQD_SIZE_ALIGNED
,
327 .supports_cwsr
= true,
328 .needs_iommu_device
= false,
329 .needs_pci_atomics
= false,
330 .num_sdma_engines
= 2,
331 .num_xgmi_sdma_engines
= 0,
332 .num_sdma_queues_per_engine
= 2,
335 static const struct kfd_device_info vega12_device_info
= {
336 .asic_family
= CHIP_VEGA12
,
337 .asic_name
= "vega12",
338 .max_pasid_bits
= 16,
341 .ih_ring_entry_size
= 8 * sizeof(uint32_t),
342 .event_interrupt_class
= &event_interrupt_class_v9
,
343 .num_of_watch_points
= 4,
344 .mqd_size_aligned
= MQD_SIZE_ALIGNED
,
345 .supports_cwsr
= true,
346 .needs_iommu_device
= false,
347 .needs_pci_atomics
= false,
348 .num_sdma_engines
= 2,
349 .num_xgmi_sdma_engines
= 0,
350 .num_sdma_queues_per_engine
= 2,
353 static const struct kfd_device_info vega20_device_info
= {
354 .asic_family
= CHIP_VEGA20
,
355 .asic_name
= "vega20",
356 .max_pasid_bits
= 16,
359 .ih_ring_entry_size
= 8 * sizeof(uint32_t),
360 .event_interrupt_class
= &event_interrupt_class_v9
,
361 .num_of_watch_points
= 4,
362 .mqd_size_aligned
= MQD_SIZE_ALIGNED
,
363 .supports_cwsr
= true,
364 .needs_iommu_device
= false,
365 .needs_pci_atomics
= false,
366 .num_sdma_engines
= 2,
367 .num_xgmi_sdma_engines
= 0,
368 .num_sdma_queues_per_engine
= 8,
371 static const struct kfd_device_info arcturus_device_info
= {
372 .asic_family
= CHIP_ARCTURUS
,
373 .asic_name
= "arcturus",
374 .max_pasid_bits
= 16,
377 .ih_ring_entry_size
= 8 * sizeof(uint32_t),
378 .event_interrupt_class
= &event_interrupt_class_v9
,
379 .num_of_watch_points
= 4,
380 .mqd_size_aligned
= MQD_SIZE_ALIGNED
,
381 .supports_cwsr
= true,
382 .needs_iommu_device
= false,
383 .needs_pci_atomics
= false,
384 .num_sdma_engines
= 2,
385 .num_xgmi_sdma_engines
= 6,
386 .num_sdma_queues_per_engine
= 8,
389 static const struct kfd_device_info renoir_device_info
= {
390 .asic_family
= CHIP_RENOIR
,
391 .asic_name
= "renoir",
392 .max_pasid_bits
= 16,
395 .ih_ring_entry_size
= 8 * sizeof(uint32_t),
396 .event_interrupt_class
= &event_interrupt_class_v9
,
397 .num_of_watch_points
= 4,
398 .mqd_size_aligned
= MQD_SIZE_ALIGNED
,
399 .supports_cwsr
= true,
400 .needs_iommu_device
= false,
401 .needs_pci_atomics
= false,
402 .num_sdma_engines
= 1,
403 .num_xgmi_sdma_engines
= 0,
404 .num_sdma_queues_per_engine
= 2,
407 static const struct kfd_device_info navi10_device_info
= {
408 .asic_family
= CHIP_NAVI10
,
409 .asic_name
= "navi10",
410 .max_pasid_bits
= 16,
413 .ih_ring_entry_size
= 8 * sizeof(uint32_t),
414 .event_interrupt_class
= &event_interrupt_class_v9
,
415 .num_of_watch_points
= 4,
416 .mqd_size_aligned
= MQD_SIZE_ALIGNED
,
417 .needs_iommu_device
= false,
418 .supports_cwsr
= true,
419 .needs_pci_atomics
= false,
420 .num_sdma_engines
= 2,
421 .num_xgmi_sdma_engines
= 0,
422 .num_sdma_queues_per_engine
= 8,
425 static const struct kfd_device_info navi12_device_info
= {
426 .asic_family
= CHIP_NAVI12
,
427 .asic_name
= "navi12",
428 .max_pasid_bits
= 16,
431 .ih_ring_entry_size
= 8 * sizeof(uint32_t),
432 .event_interrupt_class
= &event_interrupt_class_v9
,
433 .num_of_watch_points
= 4,
434 .mqd_size_aligned
= MQD_SIZE_ALIGNED
,
435 .needs_iommu_device
= false,
436 .supports_cwsr
= true,
437 .needs_pci_atomics
= false,
438 .num_sdma_engines
= 2,
439 .num_xgmi_sdma_engines
= 0,
440 .num_sdma_queues_per_engine
= 8,
443 static const struct kfd_device_info navi14_device_info
= {
444 .asic_family
= CHIP_NAVI14
,
445 .asic_name
= "navi14",
446 .max_pasid_bits
= 16,
449 .ih_ring_entry_size
= 8 * sizeof(uint32_t),
450 .event_interrupt_class
= &event_interrupt_class_v9
,
451 .num_of_watch_points
= 4,
452 .mqd_size_aligned
= MQD_SIZE_ALIGNED
,
453 .needs_iommu_device
= false,
454 .supports_cwsr
= true,
455 .needs_pci_atomics
= false,
456 .num_sdma_engines
= 2,
457 .num_xgmi_sdma_engines
= 0,
458 .num_sdma_queues_per_engine
= 8,
461 /* For each entry, [0] is regular and [1] is virtualisation device. */
462 static const struct kfd_device_info
*kfd_supported_devices
[][2] = {
463 #ifdef KFD_SUPPORT_IOMMU_V2
464 [CHIP_KAVERI
] = {&kaveri_device_info
, NULL
},
465 [CHIP_CARRIZO
] = {&carrizo_device_info
, NULL
},
466 [CHIP_RAVEN
] = {&raven_device_info
, NULL
},
468 [CHIP_HAWAII
] = {&hawaii_device_info
, NULL
},
469 [CHIP_TONGA
] = {&tonga_device_info
, NULL
},
470 [CHIP_FIJI
] = {&fiji_device_info
, &fiji_vf_device_info
},
471 [CHIP_POLARIS10
] = {&polaris10_device_info
, &polaris10_vf_device_info
},
472 [CHIP_POLARIS11
] = {&polaris11_device_info
, NULL
},
473 [CHIP_POLARIS12
] = {&polaris12_device_info
, NULL
},
474 [CHIP_VEGAM
] = {&vegam_device_info
, NULL
},
475 [CHIP_VEGA10
] = {&vega10_device_info
, &vega10_vf_device_info
},
476 [CHIP_VEGA12
] = {&vega12_device_info
, NULL
},
477 [CHIP_VEGA20
] = {&vega20_device_info
, NULL
},
478 [CHIP_RENOIR
] = {&renoir_device_info
, NULL
},
479 [CHIP_ARCTURUS
] = {&arcturus_device_info
, &arcturus_device_info
},
480 [CHIP_NAVI10
] = {&navi10_device_info
, NULL
},
481 [CHIP_NAVI12
] = {&navi12_device_info
, &navi12_device_info
},
482 [CHIP_NAVI14
] = {&navi14_device_info
, NULL
},
485 static int kfd_gtt_sa_init(struct kfd_dev
*kfd
, unsigned int buf_size
,
486 unsigned int chunk_size
);
487 static void kfd_gtt_sa_fini(struct kfd_dev
*kfd
);
489 static int kfd_resume(struct kfd_dev
*kfd
);
491 struct kfd_dev
*kgd2kfd_probe(struct kgd_dev
*kgd
,
492 struct pci_dev
*pdev
, unsigned int asic_type
, bool vf
)
495 const struct kfd_device_info
*device_info
;
496 const struct kfd2kgd_calls
*f2g
;
498 if (asic_type
>= sizeof(kfd_supported_devices
) / (sizeof(void *) * 2)
499 || asic_type
>= sizeof(kfd2kgd_funcs
) / sizeof(void *)) {
500 dev_err(kfd_device
, "asic_type %d out of range\n", asic_type
);
501 return NULL
; /* asic_type out of range */
504 device_info
= kfd_supported_devices
[asic_type
][vf
];
505 f2g
= kfd2kgd_funcs
[asic_type
];
507 if (!device_info
|| !f2g
) {
508 dev_err(kfd_device
, "%s %s not supported in kfd\n",
509 amdgpu_asic_name
[asic_type
], vf
? "VF" : "");
513 kfd
= kzalloc(sizeof(*kfd
), GFP_KERNEL
);
517 /* Allow BIF to recode atomics to PCIe 3.0 AtomicOps.
518 * 32 and 64-bit requests are possible and must be
521 kfd
->pci_atomic_requested
= amdgpu_amdkfd_have_atomics_support(kgd
);
522 if (device_info
->needs_pci_atomics
&&
523 !kfd
->pci_atomic_requested
) {
525 "skipped device %x:%x, PCI rejects atomics\n",
526 pdev
->vendor
, pdev
->device
);
532 kfd
->device_info
= device_info
;
534 kfd
->init_complete
= false;
536 atomic_set(&kfd
->compute_profile
, 0);
538 mutex_init(&kfd
->doorbell_mutex
);
539 memset(&kfd
->doorbell_available_index
, 0,
540 sizeof(kfd
->doorbell_available_index
));
542 atomic_set(&kfd
->sram_ecc_flag
, 0);
547 static void kfd_cwsr_init(struct kfd_dev
*kfd
)
549 if (cwsr_enable
&& kfd
->device_info
->supports_cwsr
) {
550 if (kfd
->device_info
->asic_family
< CHIP_VEGA10
) {
551 BUILD_BUG_ON(sizeof(cwsr_trap_gfx8_hex
) > PAGE_SIZE
);
552 kfd
->cwsr_isa
= cwsr_trap_gfx8_hex
;
553 kfd
->cwsr_isa_size
= sizeof(cwsr_trap_gfx8_hex
);
554 } else if (kfd
->device_info
->asic_family
== CHIP_ARCTURUS
) {
555 BUILD_BUG_ON(sizeof(cwsr_trap_arcturus_hex
) > PAGE_SIZE
);
556 kfd
->cwsr_isa
= cwsr_trap_arcturus_hex
;
557 kfd
->cwsr_isa_size
= sizeof(cwsr_trap_arcturus_hex
);
558 } else if (kfd
->device_info
->asic_family
< CHIP_NAVI10
) {
559 BUILD_BUG_ON(sizeof(cwsr_trap_gfx9_hex
) > PAGE_SIZE
);
560 kfd
->cwsr_isa
= cwsr_trap_gfx9_hex
;
561 kfd
->cwsr_isa_size
= sizeof(cwsr_trap_gfx9_hex
);
563 BUILD_BUG_ON(sizeof(cwsr_trap_gfx10_hex
) > PAGE_SIZE
);
564 kfd
->cwsr_isa
= cwsr_trap_gfx10_hex
;
565 kfd
->cwsr_isa_size
= sizeof(cwsr_trap_gfx10_hex
);
568 kfd
->cwsr_enabled
= true;
572 bool kgd2kfd_device_init(struct kfd_dev
*kfd
,
573 struct drm_device
*ddev
,
574 const struct kgd2kfd_shared_resources
*gpu_resources
)
579 kfd
->mec_fw_version
= amdgpu_amdkfd_get_fw_version(kfd
->kgd
,
581 kfd
->sdma_fw_version
= amdgpu_amdkfd_get_fw_version(kfd
->kgd
,
583 kfd
->shared_resources
= *gpu_resources
;
585 kfd
->vm_info
.first_vmid_kfd
= ffs(gpu_resources
->compute_vmid_bitmap
)-1;
586 kfd
->vm_info
.last_vmid_kfd
= fls(gpu_resources
->compute_vmid_bitmap
)-1;
587 kfd
->vm_info
.vmid_num_kfd
= kfd
->vm_info
.last_vmid_kfd
588 - kfd
->vm_info
.first_vmid_kfd
+ 1;
590 /* Verify module parameters regarding mapped process number*/
591 if ((hws_max_conc_proc
< 0)
592 || (hws_max_conc_proc
> kfd
->vm_info
.vmid_num_kfd
)) {
594 "hws_max_conc_proc %d must be between 0 and %d, use %d instead\n",
595 hws_max_conc_proc
, kfd
->vm_info
.vmid_num_kfd
,
596 kfd
->vm_info
.vmid_num_kfd
);
597 kfd
->max_proc_per_quantum
= kfd
->vm_info
.vmid_num_kfd
;
599 kfd
->max_proc_per_quantum
= hws_max_conc_proc
;
601 /* Allocate global GWS that is shared by all KFD processes */
602 if (hws_gws_support
&& amdgpu_amdkfd_alloc_gws(kfd
->kgd
,
603 amdgpu_amdkfd_get_num_gws(kfd
->kgd
), &kfd
->gws
)) {
604 dev_err(kfd_device
, "Could not allocate %d gws\n",
605 amdgpu_amdkfd_get_num_gws(kfd
->kgd
));
608 /* calculate max size of mqds needed for queues */
609 size
= max_num_of_queues_per_device
*
610 kfd
->device_info
->mqd_size_aligned
;
613 * calculate max size of runlist packet.
614 * There can be only 2 packets at once
616 size
+= (KFD_MAX_NUM_OF_PROCESSES
* sizeof(struct pm4_mes_map_process
) +
617 max_num_of_queues_per_device
* sizeof(struct pm4_mes_map_queues
)
618 + sizeof(struct pm4_mes_runlist
)) * 2;
620 /* Add size of HIQ & DIQ */
621 size
+= KFD_KERNEL_QUEUE_SIZE
* 2;
623 /* add another 512KB for all other allocations on gart (HPD, fences) */
626 if (amdgpu_amdkfd_alloc_gtt_mem(
627 kfd
->kgd
, size
, &kfd
->gtt_mem
,
628 &kfd
->gtt_start_gpu_addr
, &kfd
->gtt_start_cpu_ptr
,
630 dev_err(kfd_device
, "Could not allocate %d bytes\n", size
);
631 goto alloc_gtt_mem_failure
;
634 dev_info(kfd_device
, "Allocated %d bytes on gart\n", size
);
636 /* Initialize GTT sa with 512 byte chunk size */
637 if (kfd_gtt_sa_init(kfd
, size
, 512) != 0) {
638 dev_err(kfd_device
, "Error initializing gtt sub-allocator\n");
639 goto kfd_gtt_sa_init_error
;
642 if (kfd_doorbell_init(kfd
)) {
644 "Error initializing doorbell aperture\n");
645 goto kfd_doorbell_error
;
648 if (kfd
->kfd2kgd
->get_hive_id
)
649 kfd
->hive_id
= kfd
->kfd2kgd
->get_hive_id(kfd
->kgd
);
651 if (kfd_interrupt_init(kfd
)) {
652 dev_err(kfd_device
, "Error initializing interrupts\n");
653 goto kfd_interrupt_error
;
656 kfd
->dqm
= device_queue_manager_init(kfd
);
658 dev_err(kfd_device
, "Error initializing queue manager\n");
659 goto device_queue_manager_error
;
662 if (kfd_iommu_device_init(kfd
)) {
663 dev_err(kfd_device
, "Error initializing iommuv2\n");
664 goto device_iommu_error
;
670 goto kfd_resume_error
;
674 if (kfd_topology_add_device(kfd
)) {
675 dev_err(kfd_device
, "Error adding device to topology\n");
676 goto kfd_topology_add_device_error
;
679 kfd
->init_complete
= true;
680 dev_info(kfd_device
, "added device %x:%x\n", kfd
->pdev
->vendor
,
683 pr_debug("Starting kfd with the following scheduling policy %d\n",
684 kfd
->dqm
->sched_policy
);
688 kfd_topology_add_device_error
:
691 device_queue_manager_uninit(kfd
->dqm
);
692 device_queue_manager_error
:
693 kfd_interrupt_exit(kfd
);
695 kfd_doorbell_fini(kfd
);
697 kfd_gtt_sa_fini(kfd
);
698 kfd_gtt_sa_init_error
:
699 amdgpu_amdkfd_free_gtt_mem(kfd
->kgd
, kfd
->gtt_mem
);
700 alloc_gtt_mem_failure
:
702 amdgpu_amdkfd_free_gws(kfd
->kgd
, kfd
->gws
);
704 "device %x:%x NOT added due to errors\n",
705 kfd
->pdev
->vendor
, kfd
->pdev
->device
);
707 return kfd
->init_complete
;
710 void kgd2kfd_device_exit(struct kfd_dev
*kfd
)
712 if (kfd
->init_complete
) {
713 kgd2kfd_suspend(kfd
);
714 device_queue_manager_uninit(kfd
->dqm
);
715 kfd_interrupt_exit(kfd
);
716 kfd_topology_remove_device(kfd
);
717 kfd_doorbell_fini(kfd
);
718 kfd_gtt_sa_fini(kfd
);
719 amdgpu_amdkfd_free_gtt_mem(kfd
->kgd
, kfd
->gtt_mem
);
721 amdgpu_amdkfd_free_gws(kfd
->kgd
, kfd
->gws
);
727 int kgd2kfd_pre_reset(struct kfd_dev
*kfd
)
729 if (!kfd
->init_complete
)
732 kfd
->dqm
->ops
.pre_reset(kfd
->dqm
);
734 kgd2kfd_suspend(kfd
);
736 kfd_signal_reset_event(kfd
);
741 * Fix me. KFD won't be able to resume existing process for now.
742 * We will keep all existing process in a evicted state and
743 * wait the process to be terminated.
746 int kgd2kfd_post_reset(struct kfd_dev
*kfd
)
750 if (!kfd
->init_complete
)
753 ret
= kfd_resume(kfd
);
756 atomic_dec(&kfd_locked
);
758 atomic_set(&kfd
->sram_ecc_flag
, 0);
763 bool kfd_is_locked(void)
765 return (atomic_read(&kfd_locked
) > 0);
768 void kgd2kfd_suspend(struct kfd_dev
*kfd
)
770 if (!kfd
->init_complete
)
773 /* For first KFD device suspend all the KFD processes */
774 if (atomic_inc_return(&kfd_locked
) == 1)
775 kfd_suspend_all_processes();
777 kfd
->dqm
->ops
.stop(kfd
->dqm
);
779 kfd_iommu_suspend(kfd
);
782 int kgd2kfd_resume(struct kfd_dev
*kfd
)
786 if (!kfd
->init_complete
)
789 ret
= kfd_resume(kfd
);
793 count
= atomic_dec_return(&kfd_locked
);
794 WARN_ONCE(count
< 0, "KFD suspend / resume ref. error");
796 ret
= kfd_resume_all_processes();
801 static int kfd_resume(struct kfd_dev
*kfd
)
805 err
= kfd_iommu_resume(kfd
);
808 "Failed to resume IOMMU for device %x:%x\n",
809 kfd
->pdev
->vendor
, kfd
->pdev
->device
);
813 err
= kfd
->dqm
->ops
.start(kfd
->dqm
);
816 "Error starting queue manager for device %x:%x\n",
817 kfd
->pdev
->vendor
, kfd
->pdev
->device
);
818 goto dqm_start_error
;
824 kfd_iommu_suspend(kfd
);
828 static inline void kfd_queue_work(struct workqueue_struct
*wq
,
829 struct work_struct
*work
)
833 cpu
= new_cpu
= smp_processor_id();
835 new_cpu
= cpumask_next(new_cpu
, cpu_online_mask
) % nr_cpu_ids
;
836 if (cpu_to_node(new_cpu
) == numa_node_id())
838 } while (cpu
!= new_cpu
);
840 queue_work_on(new_cpu
, wq
, work
);
843 /* This is called directly from KGD at ISR. */
844 void kgd2kfd_interrupt(struct kfd_dev
*kfd
, const void *ih_ring_entry
)
846 uint32_t patched_ihre
[KFD_MAX_RING_ENTRY_SIZE
];
847 bool is_patched
= false;
850 if (!kfd
->init_complete
)
853 if (kfd
->device_info
->ih_ring_entry_size
> sizeof(patched_ihre
)) {
854 dev_err_once(kfd_device
, "Ring entry too small\n");
858 spin_lock_irqsave(&kfd
->interrupt_lock
, flags
);
860 if (kfd
->interrupts_active
861 && interrupt_is_wanted(kfd
, ih_ring_entry
,
862 patched_ihre
, &is_patched
)
863 && enqueue_ih_ring_entry(kfd
,
864 is_patched
? patched_ihre
: ih_ring_entry
))
865 kfd_queue_work(kfd
->ih_wq
, &kfd
->interrupt_work
);
867 spin_unlock_irqrestore(&kfd
->interrupt_lock
, flags
);
870 int kgd2kfd_quiesce_mm(struct mm_struct
*mm
)
872 struct kfd_process
*p
;
875 /* Because we are called from arbitrary context (workqueue) as opposed
876 * to process context, kfd_process could attempt to exit while we are
877 * running so the lookup function increments the process ref count.
879 p
= kfd_lookup_process_by_mm(mm
);
883 r
= kfd_process_evict_queues(p
);
885 kfd_unref_process(p
);
889 int kgd2kfd_resume_mm(struct mm_struct
*mm
)
891 struct kfd_process
*p
;
894 /* Because we are called from arbitrary context (workqueue) as opposed
895 * to process context, kfd_process could attempt to exit while we are
896 * running so the lookup function increments the process ref count.
898 p
= kfd_lookup_process_by_mm(mm
);
902 r
= kfd_process_restore_queues(p
);
904 kfd_unref_process(p
);
908 /** kgd2kfd_schedule_evict_and_restore_process - Schedules work queue that will
909 * prepare for safe eviction of KFD BOs that belong to the specified
912 * @mm: mm_struct that identifies the specified KFD process
913 * @fence: eviction fence attached to KFD process BOs
916 int kgd2kfd_schedule_evict_and_restore_process(struct mm_struct
*mm
,
917 struct dma_fence
*fence
)
919 struct kfd_process
*p
;
920 unsigned long active_time
;
921 unsigned long delay_jiffies
= msecs_to_jiffies(PROCESS_ACTIVE_TIME_MS
);
926 if (dma_fence_is_signaled(fence
))
929 p
= kfd_lookup_process_by_mm(mm
);
933 if (fence
->seqno
== p
->last_eviction_seqno
)
936 p
->last_eviction_seqno
= fence
->seqno
;
938 /* Avoid KFD process starvation. Wait for at least
939 * PROCESS_ACTIVE_TIME_MS before evicting the process again
941 active_time
= get_jiffies_64() - p
->last_restore_timestamp
;
942 if (delay_jiffies
> active_time
)
943 delay_jiffies
-= active_time
;
947 /* During process initialization eviction_work.dwork is initialized
948 * to kfd_evict_bo_worker
950 schedule_delayed_work(&p
->eviction_work
, delay_jiffies
);
952 kfd_unref_process(p
);
956 static int kfd_gtt_sa_init(struct kfd_dev
*kfd
, unsigned int buf_size
,
957 unsigned int chunk_size
)
959 unsigned int num_of_longs
;
961 if (WARN_ON(buf_size
< chunk_size
))
963 if (WARN_ON(buf_size
== 0))
965 if (WARN_ON(chunk_size
== 0))
968 kfd
->gtt_sa_chunk_size
= chunk_size
;
969 kfd
->gtt_sa_num_of_chunks
= buf_size
/ chunk_size
;
971 num_of_longs
= (kfd
->gtt_sa_num_of_chunks
+ BITS_PER_LONG
- 1) /
974 kfd
->gtt_sa_bitmap
= kcalloc(num_of_longs
, sizeof(long), GFP_KERNEL
);
976 if (!kfd
->gtt_sa_bitmap
)
979 pr_debug("gtt_sa_num_of_chunks = %d, gtt_sa_bitmap = %p\n",
980 kfd
->gtt_sa_num_of_chunks
, kfd
->gtt_sa_bitmap
);
982 mutex_init(&kfd
->gtt_sa_lock
);
988 static void kfd_gtt_sa_fini(struct kfd_dev
*kfd
)
990 mutex_destroy(&kfd
->gtt_sa_lock
);
991 kfree(kfd
->gtt_sa_bitmap
);
994 static inline uint64_t kfd_gtt_sa_calc_gpu_addr(uint64_t start_addr
,
995 unsigned int bit_num
,
996 unsigned int chunk_size
)
998 return start_addr
+ bit_num
* chunk_size
;
1001 static inline uint32_t *kfd_gtt_sa_calc_cpu_addr(void *start_addr
,
1002 unsigned int bit_num
,
1003 unsigned int chunk_size
)
1005 return (uint32_t *) ((uint64_t) start_addr
+ bit_num
* chunk_size
);
1008 int kfd_gtt_sa_allocate(struct kfd_dev
*kfd
, unsigned int size
,
1009 struct kfd_mem_obj
**mem_obj
)
1011 unsigned int found
, start_search
, cur_size
;
1016 if (size
> kfd
->gtt_sa_num_of_chunks
* kfd
->gtt_sa_chunk_size
)
1019 *mem_obj
= kzalloc(sizeof(struct kfd_mem_obj
), GFP_KERNEL
);
1023 pr_debug("Allocated mem_obj = %p for size = %d\n", *mem_obj
, size
);
1027 mutex_lock(&kfd
->gtt_sa_lock
);
1029 kfd_gtt_restart_search
:
1030 /* Find the first chunk that is free */
1031 found
= find_next_zero_bit(kfd
->gtt_sa_bitmap
,
1032 kfd
->gtt_sa_num_of_chunks
,
1035 pr_debug("Found = %d\n", found
);
1037 /* If there wasn't any free chunk, bail out */
1038 if (found
== kfd
->gtt_sa_num_of_chunks
)
1039 goto kfd_gtt_no_free_chunk
;
1041 /* Update fields of mem_obj */
1042 (*mem_obj
)->range_start
= found
;
1043 (*mem_obj
)->range_end
= found
;
1044 (*mem_obj
)->gpu_addr
= kfd_gtt_sa_calc_gpu_addr(
1045 kfd
->gtt_start_gpu_addr
,
1047 kfd
->gtt_sa_chunk_size
);
1048 (*mem_obj
)->cpu_ptr
= kfd_gtt_sa_calc_cpu_addr(
1049 kfd
->gtt_start_cpu_ptr
,
1051 kfd
->gtt_sa_chunk_size
);
1053 pr_debug("gpu_addr = %p, cpu_addr = %p\n",
1054 (uint64_t *) (*mem_obj
)->gpu_addr
, (*mem_obj
)->cpu_ptr
);
1056 /* If we need only one chunk, mark it as allocated and get out */
1057 if (size
<= kfd
->gtt_sa_chunk_size
) {
1058 pr_debug("Single bit\n");
1059 set_bit(found
, kfd
->gtt_sa_bitmap
);
1063 /* Otherwise, try to see if we have enough contiguous chunks */
1064 cur_size
= size
- kfd
->gtt_sa_chunk_size
;
1066 (*mem_obj
)->range_end
=
1067 find_next_zero_bit(kfd
->gtt_sa_bitmap
,
1068 kfd
->gtt_sa_num_of_chunks
, ++found
);
1070 * If next free chunk is not contiguous than we need to
1071 * restart our search from the last free chunk we found (which
1072 * wasn't contiguous to the previous ones
1074 if ((*mem_obj
)->range_end
!= found
) {
1075 start_search
= found
;
1076 goto kfd_gtt_restart_search
;
1080 * If we reached end of buffer, bail out with error
1082 if (found
== kfd
->gtt_sa_num_of_chunks
)
1083 goto kfd_gtt_no_free_chunk
;
1085 /* Check if we don't need another chunk */
1086 if (cur_size
<= kfd
->gtt_sa_chunk_size
)
1089 cur_size
-= kfd
->gtt_sa_chunk_size
;
1091 } while (cur_size
> 0);
1093 pr_debug("range_start = %d, range_end = %d\n",
1094 (*mem_obj
)->range_start
, (*mem_obj
)->range_end
);
1096 /* Mark the chunks as allocated */
1097 for (found
= (*mem_obj
)->range_start
;
1098 found
<= (*mem_obj
)->range_end
;
1100 set_bit(found
, kfd
->gtt_sa_bitmap
);
1103 mutex_unlock(&kfd
->gtt_sa_lock
);
1106 kfd_gtt_no_free_chunk
:
1107 pr_debug("Allocation failed with mem_obj = %p\n", mem_obj
);
1108 mutex_unlock(&kfd
->gtt_sa_lock
);
1113 int kfd_gtt_sa_free(struct kfd_dev
*kfd
, struct kfd_mem_obj
*mem_obj
)
1117 /* Act like kfree when trying to free a NULL object */
1121 pr_debug("Free mem_obj = %p, range_start = %d, range_end = %d\n",
1122 mem_obj
, mem_obj
->range_start
, mem_obj
->range_end
);
1124 mutex_lock(&kfd
->gtt_sa_lock
);
1126 /* Mark the chunks as free */
1127 for (bit
= mem_obj
->range_start
;
1128 bit
<= mem_obj
->range_end
;
1130 clear_bit(bit
, kfd
->gtt_sa_bitmap
);
1132 mutex_unlock(&kfd
->gtt_sa_lock
);
1138 void kgd2kfd_set_sram_ecc_flag(struct kfd_dev
*kfd
)
1141 atomic_inc(&kfd
->sram_ecc_flag
);
1144 void kfd_inc_compute_active(struct kfd_dev
*kfd
)
1146 if (atomic_inc_return(&kfd
->compute_profile
) == 1)
1147 amdgpu_amdkfd_set_compute_idle(kfd
->kgd
, false);
1150 void kfd_dec_compute_active(struct kfd_dev
*kfd
)
1152 int count
= atomic_dec_return(&kfd
->compute_profile
);
1155 amdgpu_amdkfd_set_compute_idle(kfd
->kgd
, true);
1156 WARN_ONCE(count
< 0, "Compute profile ref. count error");
1159 #if defined(CONFIG_DEBUG_FS)
1161 /* This function will send a package to HIQ to hang the HWS
1162 * which will trigger a GPU reset and bring the HWS back to normal state
1164 int kfd_debugfs_hang_hws(struct kfd_dev
*dev
)
1168 if (dev
->dqm
->sched_policy
!= KFD_SCHED_POLICY_HWS
) {
1169 pr_err("HWS is not enabled");
1173 r
= pm_debugfs_hang_hws(&dev
->dqm
->packets
);
1175 r
= dqm_debugfs_execute_queues(dev
->dqm
);