treewide: remove redundant IS_ERR() before error code check
[linux/fpc-iii.git] / drivers / gpu / drm / amd / amdkfd / kfd_interrupt.c
blobbc47f6a44456440a0d85ad028fe75d5f83b3e8be
1 /*
2 * Copyright 2014 Advanced Micro Devices, Inc.
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
11 * The above copyright notice and this permission notice shall be included in
12 * all copies or substantial portions of the Software.
14 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
17 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20 * OTHER DEALINGS IN THE SOFTWARE.
24 * KFD Interrupts.
26 * AMD GPUs deliver interrupts by pushing an interrupt description onto the
27 * interrupt ring and then sending an interrupt. KGD receives the interrupt
28 * in ISR and sends us a pointer to each new entry on the interrupt ring.
30 * We generally can't process interrupt-signaled events from ISR, so we call
31 * out to each interrupt client module (currently only the scheduler) to ask if
32 * each interrupt is interesting. If they return true, then it requires further
33 * processing so we copy it to an internal interrupt ring and call each
34 * interrupt client again from a work-queue.
36 * There's no acknowledgment for the interrupts we use. The hardware simply
37 * queues a new interrupt each time without waiting.
39 * The fixed-size internal queue means that it's possible for us to lose
40 * interrupts because we have no back-pressure to the hardware.
43 #include <linux/slab.h>
44 #include <linux/device.h>
45 #include <linux/kfifo.h>
46 #include "kfd_priv.h"
48 #define KFD_IH_NUM_ENTRIES 8192
50 static void interrupt_wq(struct work_struct *);
52 int kfd_interrupt_init(struct kfd_dev *kfd)
54 int r;
56 r = kfifo_alloc(&kfd->ih_fifo,
57 KFD_IH_NUM_ENTRIES * kfd->device_info->ih_ring_entry_size,
58 GFP_KERNEL);
59 if (r) {
60 dev_err(kfd_chardev(), "Failed to allocate IH fifo\n");
61 return r;
64 kfd->ih_wq = alloc_workqueue("KFD IH", WQ_HIGHPRI, 1);
65 if (unlikely(!kfd->ih_wq)) {
66 kfifo_free(&kfd->ih_fifo);
67 dev_err(kfd_chardev(), "Failed to allocate KFD IH workqueue\n");
68 return -ENOMEM;
70 spin_lock_init(&kfd->interrupt_lock);
72 INIT_WORK(&kfd->interrupt_work, interrupt_wq);
74 kfd->interrupts_active = true;
77 * After this function returns, the interrupt will be enabled. This
78 * barrier ensures that the interrupt running on a different processor
79 * sees all the above writes.
81 smp_wmb();
83 return 0;
86 void kfd_interrupt_exit(struct kfd_dev *kfd)
89 * Stop the interrupt handler from writing to the ring and scheduling
90 * workqueue items. The spinlock ensures that any interrupt running
91 * after we have unlocked sees interrupts_active = false.
93 unsigned long flags;
95 spin_lock_irqsave(&kfd->interrupt_lock, flags);
96 kfd->interrupts_active = false;
97 spin_unlock_irqrestore(&kfd->interrupt_lock, flags);
100 * flush_work ensures that there are no outstanding
101 * work-queue items that will access interrupt_ring. New work items
102 * can't be created because we stopped interrupt handling above.
104 flush_workqueue(kfd->ih_wq);
106 kfifo_free(&kfd->ih_fifo);
110 * Assumption: single reader/writer. This function is not re-entrant
112 bool enqueue_ih_ring_entry(struct kfd_dev *kfd, const void *ih_ring_entry)
114 int count;
116 count = kfifo_in(&kfd->ih_fifo, ih_ring_entry,
117 kfd->device_info->ih_ring_entry_size);
118 if (count != kfd->device_info->ih_ring_entry_size) {
119 dev_err_ratelimited(kfd_chardev(),
120 "Interrupt ring overflow, dropping interrupt %d\n",
121 count);
122 return false;
125 return true;
129 * Assumption: single reader/writer. This function is not re-entrant
131 static bool dequeue_ih_ring_entry(struct kfd_dev *kfd, void *ih_ring_entry)
133 int count;
135 count = kfifo_out(&kfd->ih_fifo, ih_ring_entry,
136 kfd->device_info->ih_ring_entry_size);
138 WARN_ON(count && count != kfd->device_info->ih_ring_entry_size);
140 return count == kfd->device_info->ih_ring_entry_size;
143 static void interrupt_wq(struct work_struct *work)
145 struct kfd_dev *dev = container_of(work, struct kfd_dev,
146 interrupt_work);
147 uint32_t ih_ring_entry[KFD_MAX_RING_ENTRY_SIZE];
149 if (dev->device_info->ih_ring_entry_size > sizeof(ih_ring_entry)) {
150 dev_err_once(kfd_chardev(), "Ring entry too small\n");
151 return;
154 while (dequeue_ih_ring_entry(dev, ih_ring_entry))
155 dev->device_info->event_interrupt_class->interrupt_wq(dev,
156 ih_ring_entry);
159 bool interrupt_is_wanted(struct kfd_dev *dev,
160 const uint32_t *ih_ring_entry,
161 uint32_t *patched_ihre, bool *flag)
163 /* integer and bitwise OR so there is no boolean short-circuiting */
164 unsigned int wanted = 0;
166 wanted |= dev->device_info->event_interrupt_class->interrupt_isr(dev,
167 ih_ring_entry, patched_ihre, flag);
169 return wanted != 0;