treewide: remove redundant IS_ERR() before error code check
[linux/fpc-iii.git] / drivers / gpu / drm / amd / display / dc / basics / fixpt31_32.c
blob1e9a2d3520684c20923843d433a87a7aac50b6ea
1 /*
2 * Copyright 2012-15 Advanced Micro Devices, Inc.
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
11 * The above copyright notice and this permission notice shall be included in
12 * all copies or substantial portions of the Software.
14 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
17 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20 * OTHER DEALINGS IN THE SOFTWARE.
22 * Authors: AMD
26 #include "dm_services.h"
27 #include "include/fixed31_32.h"
29 static inline unsigned long long abs_i64(
30 long long arg)
32 if (arg > 0)
33 return (unsigned long long)arg;
34 else
35 return (unsigned long long)(-arg);
39 * @brief
40 * result = dividend / divisor
41 * *remainder = dividend % divisor
43 static inline unsigned long long complete_integer_division_u64(
44 unsigned long long dividend,
45 unsigned long long divisor,
46 unsigned long long *remainder)
48 unsigned long long result;
50 ASSERT(divisor);
52 result = div64_u64_rem(dividend, divisor, remainder);
54 return result;
58 #define FRACTIONAL_PART_MASK \
59 ((1ULL << FIXED31_32_BITS_PER_FRACTIONAL_PART) - 1)
61 #define GET_INTEGER_PART(x) \
62 ((x) >> FIXED31_32_BITS_PER_FRACTIONAL_PART)
64 #define GET_FRACTIONAL_PART(x) \
65 (FRACTIONAL_PART_MASK & (x))
67 struct fixed31_32 dc_fixpt_from_fraction(long long numerator, long long denominator)
69 struct fixed31_32 res;
71 bool arg1_negative = numerator < 0;
72 bool arg2_negative = denominator < 0;
74 unsigned long long arg1_value = arg1_negative ? -numerator : numerator;
75 unsigned long long arg2_value = arg2_negative ? -denominator : denominator;
77 unsigned long long remainder;
79 /* determine integer part */
81 unsigned long long res_value = complete_integer_division_u64(
82 arg1_value, arg2_value, &remainder);
84 ASSERT(res_value <= LONG_MAX);
86 /* determine fractional part */
88 unsigned int i = FIXED31_32_BITS_PER_FRACTIONAL_PART;
90 do {
91 remainder <<= 1;
93 res_value <<= 1;
95 if (remainder >= arg2_value) {
96 res_value |= 1;
97 remainder -= arg2_value;
99 } while (--i != 0);
102 /* round up LSB */
104 unsigned long long summand = (remainder << 1) >= arg2_value;
106 ASSERT(res_value <= LLONG_MAX - summand);
108 res_value += summand;
111 res.value = (long long)res_value;
113 if (arg1_negative ^ arg2_negative)
114 res.value = -res.value;
116 return res;
119 struct fixed31_32 dc_fixpt_mul(struct fixed31_32 arg1, struct fixed31_32 arg2)
121 struct fixed31_32 res;
123 bool arg1_negative = arg1.value < 0;
124 bool arg2_negative = arg2.value < 0;
126 unsigned long long arg1_value = arg1_negative ? -arg1.value : arg1.value;
127 unsigned long long arg2_value = arg2_negative ? -arg2.value : arg2.value;
129 unsigned long long arg1_int = GET_INTEGER_PART(arg1_value);
130 unsigned long long arg2_int = GET_INTEGER_PART(arg2_value);
132 unsigned long long arg1_fra = GET_FRACTIONAL_PART(arg1_value);
133 unsigned long long arg2_fra = GET_FRACTIONAL_PART(arg2_value);
135 unsigned long long tmp;
137 res.value = arg1_int * arg2_int;
139 ASSERT(res.value <= LONG_MAX);
141 res.value <<= FIXED31_32_BITS_PER_FRACTIONAL_PART;
143 tmp = arg1_int * arg2_fra;
145 ASSERT(tmp <= (unsigned long long)(LLONG_MAX - res.value));
147 res.value += tmp;
149 tmp = arg2_int * arg1_fra;
151 ASSERT(tmp <= (unsigned long long)(LLONG_MAX - res.value));
153 res.value += tmp;
155 tmp = arg1_fra * arg2_fra;
157 tmp = (tmp >> FIXED31_32_BITS_PER_FRACTIONAL_PART) +
158 (tmp >= (unsigned long long)dc_fixpt_half.value);
160 ASSERT(tmp <= (unsigned long long)(LLONG_MAX - res.value));
162 res.value += tmp;
164 if (arg1_negative ^ arg2_negative)
165 res.value = -res.value;
167 return res;
170 struct fixed31_32 dc_fixpt_sqr(struct fixed31_32 arg)
172 struct fixed31_32 res;
174 unsigned long long arg_value = abs_i64(arg.value);
176 unsigned long long arg_int = GET_INTEGER_PART(arg_value);
178 unsigned long long arg_fra = GET_FRACTIONAL_PART(arg_value);
180 unsigned long long tmp;
182 res.value = arg_int * arg_int;
184 ASSERT(res.value <= LONG_MAX);
186 res.value <<= FIXED31_32_BITS_PER_FRACTIONAL_PART;
188 tmp = arg_int * arg_fra;
190 ASSERT(tmp <= (unsigned long long)(LLONG_MAX - res.value));
192 res.value += tmp;
194 ASSERT(tmp <= (unsigned long long)(LLONG_MAX - res.value));
196 res.value += tmp;
198 tmp = arg_fra * arg_fra;
200 tmp = (tmp >> FIXED31_32_BITS_PER_FRACTIONAL_PART) +
201 (tmp >= (unsigned long long)dc_fixpt_half.value);
203 ASSERT(tmp <= (unsigned long long)(LLONG_MAX - res.value));
205 res.value += tmp;
207 return res;
210 struct fixed31_32 dc_fixpt_recip(struct fixed31_32 arg)
213 * @note
214 * Good idea to use Newton's method
217 ASSERT(arg.value);
219 return dc_fixpt_from_fraction(
220 dc_fixpt_one.value,
221 arg.value);
224 struct fixed31_32 dc_fixpt_sinc(struct fixed31_32 arg)
226 struct fixed31_32 square;
228 struct fixed31_32 res = dc_fixpt_one;
230 int n = 27;
232 struct fixed31_32 arg_norm = arg;
234 if (dc_fixpt_le(
235 dc_fixpt_two_pi,
236 dc_fixpt_abs(arg))) {
237 arg_norm = dc_fixpt_sub(
238 arg_norm,
239 dc_fixpt_mul_int(
240 dc_fixpt_two_pi,
241 (int)div64_s64(
242 arg_norm.value,
243 dc_fixpt_two_pi.value)));
246 square = dc_fixpt_sqr(arg_norm);
248 do {
249 res = dc_fixpt_sub(
250 dc_fixpt_one,
251 dc_fixpt_div_int(
252 dc_fixpt_mul(
253 square,
254 res),
255 n * (n - 1)));
257 n -= 2;
258 } while (n > 2);
260 if (arg.value != arg_norm.value)
261 res = dc_fixpt_div(
262 dc_fixpt_mul(res, arg_norm),
263 arg);
265 return res;
268 struct fixed31_32 dc_fixpt_sin(struct fixed31_32 arg)
270 return dc_fixpt_mul(
271 arg,
272 dc_fixpt_sinc(arg));
275 struct fixed31_32 dc_fixpt_cos(struct fixed31_32 arg)
277 /* TODO implement argument normalization */
279 const struct fixed31_32 square = dc_fixpt_sqr(arg);
281 struct fixed31_32 res = dc_fixpt_one;
283 int n = 26;
285 do {
286 res = dc_fixpt_sub(
287 dc_fixpt_one,
288 dc_fixpt_div_int(
289 dc_fixpt_mul(
290 square,
291 res),
292 n * (n - 1)));
294 n -= 2;
295 } while (n != 0);
297 return res;
301 * @brief
302 * result = exp(arg),
303 * where abs(arg) < 1
305 * Calculated as Taylor series.
307 static struct fixed31_32 fixed31_32_exp_from_taylor_series(struct fixed31_32 arg)
309 unsigned int n = 9;
311 struct fixed31_32 res = dc_fixpt_from_fraction(
312 n + 2,
313 n + 1);
314 /* TODO find correct res */
316 ASSERT(dc_fixpt_lt(arg, dc_fixpt_one));
319 res = dc_fixpt_add(
320 dc_fixpt_one,
321 dc_fixpt_div_int(
322 dc_fixpt_mul(
323 arg,
324 res),
325 n));
326 while (--n != 1);
328 return dc_fixpt_add(
329 dc_fixpt_one,
330 dc_fixpt_mul(
331 arg,
332 res));
335 struct fixed31_32 dc_fixpt_exp(struct fixed31_32 arg)
338 * @brief
339 * Main equation is:
340 * exp(x) = exp(r + m * ln(2)) = (1 << m) * exp(r),
341 * where m = round(x / ln(2)), r = x - m * ln(2)
344 if (dc_fixpt_le(
345 dc_fixpt_ln2_div_2,
346 dc_fixpt_abs(arg))) {
347 int m = dc_fixpt_round(
348 dc_fixpt_div(
349 arg,
350 dc_fixpt_ln2));
352 struct fixed31_32 r = dc_fixpt_sub(
353 arg,
354 dc_fixpt_mul_int(
355 dc_fixpt_ln2,
356 m));
358 ASSERT(m != 0);
360 ASSERT(dc_fixpt_lt(
361 dc_fixpt_abs(r),
362 dc_fixpt_one));
364 if (m > 0)
365 return dc_fixpt_shl(
366 fixed31_32_exp_from_taylor_series(r),
367 (unsigned char)m);
368 else
369 return dc_fixpt_div_int(
370 fixed31_32_exp_from_taylor_series(r),
371 1LL << -m);
372 } else if (arg.value != 0)
373 return fixed31_32_exp_from_taylor_series(arg);
374 else
375 return dc_fixpt_one;
378 struct fixed31_32 dc_fixpt_log(struct fixed31_32 arg)
380 struct fixed31_32 res = dc_fixpt_neg(dc_fixpt_one);
381 /* TODO improve 1st estimation */
383 struct fixed31_32 error;
385 ASSERT(arg.value > 0);
386 /* TODO if arg is negative, return NaN */
387 /* TODO if arg is zero, return -INF */
389 do {
390 struct fixed31_32 res1 = dc_fixpt_add(
391 dc_fixpt_sub(
392 res,
393 dc_fixpt_one),
394 dc_fixpt_div(
395 arg,
396 dc_fixpt_exp(res)));
398 error = dc_fixpt_sub(
399 res,
400 res1);
402 res = res1;
403 /* TODO determine max_allowed_error based on quality of exp() */
404 } while (abs_i64(error.value) > 100ULL);
406 return res;
410 /* this function is a generic helper to translate fixed point value to
411 * specified integer format that will consist of integer_bits integer part and
412 * fractional_bits fractional part. For example it is used in
413 * dc_fixpt_u2d19 to receive 2 bits integer part and 19 bits fractional
414 * part in 32 bits. It is used in hw programming (scaler)
417 static inline unsigned int ux_dy(
418 long long value,
419 unsigned int integer_bits,
420 unsigned int fractional_bits)
422 /* 1. create mask of integer part */
423 unsigned int result = (1 << integer_bits) - 1;
424 /* 2. mask out fractional part */
425 unsigned int fractional_part = FRACTIONAL_PART_MASK & value;
426 /* 3. shrink fixed point integer part to be of integer_bits width*/
427 result &= GET_INTEGER_PART(value);
428 /* 4. make space for fractional part to be filled in after integer */
429 result <<= fractional_bits;
430 /* 5. shrink fixed point fractional part to of fractional_bits width*/
431 fractional_part >>= FIXED31_32_BITS_PER_FRACTIONAL_PART - fractional_bits;
432 /* 6. merge the result */
433 return result | fractional_part;
436 static inline unsigned int clamp_ux_dy(
437 long long value,
438 unsigned int integer_bits,
439 unsigned int fractional_bits,
440 unsigned int min_clamp)
442 unsigned int truncated_val = ux_dy(value, integer_bits, fractional_bits);
444 if (value >= (1LL << (integer_bits + FIXED31_32_BITS_PER_FRACTIONAL_PART)))
445 return (1 << (integer_bits + fractional_bits)) - 1;
446 else if (truncated_val > min_clamp)
447 return truncated_val;
448 else
449 return min_clamp;
452 unsigned int dc_fixpt_u4d19(struct fixed31_32 arg)
454 return ux_dy(arg.value, 4, 19);
457 unsigned int dc_fixpt_u3d19(struct fixed31_32 arg)
459 return ux_dy(arg.value, 3, 19);
462 unsigned int dc_fixpt_u2d19(struct fixed31_32 arg)
464 return ux_dy(arg.value, 2, 19);
467 unsigned int dc_fixpt_u0d19(struct fixed31_32 arg)
469 return ux_dy(arg.value, 0, 19);
472 unsigned int dc_fixpt_clamp_u0d14(struct fixed31_32 arg)
474 return clamp_ux_dy(arg.value, 0, 14, 1);
477 unsigned int dc_fixpt_clamp_u0d10(struct fixed31_32 arg)
479 return clamp_ux_dy(arg.value, 0, 10, 1);
482 int dc_fixpt_s4d19(struct fixed31_32 arg)
484 if (arg.value < 0)
485 return -(int)ux_dy(dc_fixpt_abs(arg).value, 4, 19);
486 else
487 return ux_dy(arg.value, 4, 19);