treewide: remove redundant IS_ERR() before error code check
[linux/fpc-iii.git] / drivers / gpu / drm / amd / display / dc / calcs / bw_fixed.c
blob6ca288fb5fb9e69ee8f154b23e5a393d8d44d374
1 /*
2 * Copyright 2015 Advanced Micro Devices, Inc.
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
11 * The above copyright notice and this permission notice shall be included in
12 * all copies or substantial portions of the Software.
14 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
17 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20 * OTHER DEALINGS IN THE SOFTWARE.
22 * Authors: AMD
25 #include "dm_services.h"
26 #include "bw_fixed.h"
29 #define MIN_I64 \
30 (int64_t)(-(1LL << 63))
32 #define MAX_I64 \
33 (int64_t)((1ULL << 63) - 1)
35 #define FRACTIONAL_PART_MASK \
36 ((1ULL << BW_FIXED_BITS_PER_FRACTIONAL_PART) - 1)
38 #define GET_FRACTIONAL_PART(x) \
39 (FRACTIONAL_PART_MASK & (x))
41 static uint64_t abs_i64(int64_t arg)
43 if (arg >= 0)
44 return (uint64_t)(arg);
45 else
46 return (uint64_t)(-arg);
49 struct bw_fixed bw_int_to_fixed_nonconst(int64_t value)
51 struct bw_fixed res;
52 ASSERT(value < BW_FIXED_MAX_I32 && value > BW_FIXED_MIN_I32);
53 res.value = value << BW_FIXED_BITS_PER_FRACTIONAL_PART;
54 return res;
57 struct bw_fixed bw_frc_to_fixed(int64_t numerator, int64_t denominator)
59 struct bw_fixed res;
60 bool arg1_negative = numerator < 0;
61 bool arg2_negative = denominator < 0;
62 uint64_t arg1_value;
63 uint64_t arg2_value;
64 uint64_t remainder;
66 /* determine integer part */
67 uint64_t res_value;
69 ASSERT(denominator != 0);
71 arg1_value = abs_i64(numerator);
72 arg2_value = abs_i64(denominator);
73 res_value = div64_u64_rem(arg1_value, arg2_value, &remainder);
75 ASSERT(res_value <= BW_FIXED_MAX_I32);
77 /* determine fractional part */
79 uint32_t i = BW_FIXED_BITS_PER_FRACTIONAL_PART;
83 remainder <<= 1;
85 res_value <<= 1;
87 if (remainder >= arg2_value)
89 res_value |= 1;
90 remainder -= arg2_value;
92 } while (--i != 0);
95 /* round up LSB */
97 uint64_t summand = (remainder << 1) >= arg2_value;
99 ASSERT(res_value <= MAX_I64 - summand);
101 res_value += summand;
104 res.value = (int64_t)(res_value);
106 if (arg1_negative ^ arg2_negative)
107 res.value = -res.value;
108 return res;
111 struct bw_fixed bw_floor2(
112 const struct bw_fixed arg,
113 const struct bw_fixed significance)
115 struct bw_fixed result;
116 int64_t multiplicand;
118 multiplicand = div64_s64(arg.value, abs_i64(significance.value));
119 result.value = abs_i64(significance.value) * multiplicand;
120 ASSERT(abs_i64(result.value) <= abs_i64(arg.value));
121 return result;
124 struct bw_fixed bw_ceil2(
125 const struct bw_fixed arg,
126 const struct bw_fixed significance)
128 struct bw_fixed result;
129 int64_t multiplicand;
131 multiplicand = div64_s64(arg.value, abs_i64(significance.value));
132 result.value = abs_i64(significance.value) * multiplicand;
133 if (abs_i64(result.value) < abs_i64(arg.value)) {
134 if (arg.value < 0)
135 result.value -= abs_i64(significance.value);
136 else
137 result.value += abs_i64(significance.value);
139 return result;
142 struct bw_fixed bw_mul(const struct bw_fixed arg1, const struct bw_fixed arg2)
144 struct bw_fixed res;
146 bool arg1_negative = arg1.value < 0;
147 bool arg2_negative = arg2.value < 0;
149 uint64_t arg1_value = abs_i64(arg1.value);
150 uint64_t arg2_value = abs_i64(arg2.value);
152 uint64_t arg1_int = BW_FIXED_GET_INTEGER_PART(arg1_value);
153 uint64_t arg2_int = BW_FIXED_GET_INTEGER_PART(arg2_value);
155 uint64_t arg1_fra = GET_FRACTIONAL_PART(arg1_value);
156 uint64_t arg2_fra = GET_FRACTIONAL_PART(arg2_value);
158 uint64_t tmp;
160 res.value = arg1_int * arg2_int;
162 ASSERT(res.value <= BW_FIXED_MAX_I32);
164 res.value <<= BW_FIXED_BITS_PER_FRACTIONAL_PART;
166 tmp = arg1_int * arg2_fra;
168 ASSERT(tmp <= (uint64_t)(MAX_I64 - res.value));
170 res.value += tmp;
172 tmp = arg2_int * arg1_fra;
174 ASSERT(tmp <= (uint64_t)(MAX_I64 - res.value));
176 res.value += tmp;
178 tmp = arg1_fra * arg2_fra;
180 tmp = (tmp >> BW_FIXED_BITS_PER_FRACTIONAL_PART) +
181 (tmp >= (uint64_t)(bw_frc_to_fixed(1, 2).value));
183 ASSERT(tmp <= (uint64_t)(MAX_I64 - res.value));
185 res.value += tmp;
187 if (arg1_negative ^ arg2_negative)
188 res.value = -res.value;
189 return res;