treewide: remove redundant IS_ERR() before error code check
[linux/fpc-iii.git] / drivers / gpu / drm / amd / powerplay / hwmgr / vega10_hwmgr.c
blob92a65e3daff4bd7405ed6c6e06775c45d99a1968
1 /*
2 * Copyright 2016 Advanced Micro Devices, Inc.
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
11 * The above copyright notice and this permission notice shall be included in
12 * all copies or substantial portions of the Software.
14 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
17 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20 * OTHER DEALINGS IN THE SOFTWARE.
24 #include <linux/delay.h>
25 #include <linux/fb.h>
26 #include <linux/module.h>
27 #include <linux/pci.h>
28 #include <linux/slab.h>
30 #include "hwmgr.h"
31 #include "amd_powerplay.h"
32 #include "hardwaremanager.h"
33 #include "ppatomfwctrl.h"
34 #include "atomfirmware.h"
35 #include "cgs_common.h"
36 #include "vega10_powertune.h"
37 #include "smu9.h"
38 #include "smu9_driver_if.h"
39 #include "vega10_inc.h"
40 #include "soc15_common.h"
41 #include "pppcielanes.h"
42 #include "vega10_hwmgr.h"
43 #include "vega10_smumgr.h"
44 #include "vega10_processpptables.h"
45 #include "vega10_pptable.h"
46 #include "vega10_thermal.h"
47 #include "pp_debug.h"
48 #include "amd_pcie_helpers.h"
49 #include "ppinterrupt.h"
50 #include "pp_overdriver.h"
51 #include "pp_thermal.h"
52 #include "vega10_baco.h"
54 #include "smuio/smuio_9_0_offset.h"
55 #include "smuio/smuio_9_0_sh_mask.h"
57 #define HBM_MEMORY_CHANNEL_WIDTH 128
59 static const uint32_t channel_number[] = {1, 2, 0, 4, 0, 8, 0, 16, 2};
61 #define mmDF_CS_AON0_DramBaseAddress0 0x0044
62 #define mmDF_CS_AON0_DramBaseAddress0_BASE_IDX 0
64 //DF_CS_AON0_DramBaseAddress0
65 #define DF_CS_AON0_DramBaseAddress0__AddrRngVal__SHIFT 0x0
66 #define DF_CS_AON0_DramBaseAddress0__LgcyMmioHoleEn__SHIFT 0x1
67 #define DF_CS_AON0_DramBaseAddress0__IntLvNumChan__SHIFT 0x4
68 #define DF_CS_AON0_DramBaseAddress0__IntLvAddrSel__SHIFT 0x8
69 #define DF_CS_AON0_DramBaseAddress0__DramBaseAddr__SHIFT 0xc
70 #define DF_CS_AON0_DramBaseAddress0__AddrRngVal_MASK 0x00000001L
71 #define DF_CS_AON0_DramBaseAddress0__LgcyMmioHoleEn_MASK 0x00000002L
72 #define DF_CS_AON0_DramBaseAddress0__IntLvNumChan_MASK 0x000000F0L
73 #define DF_CS_AON0_DramBaseAddress0__IntLvAddrSel_MASK 0x00000700L
74 #define DF_CS_AON0_DramBaseAddress0__DramBaseAddr_MASK 0xFFFFF000L
76 typedef enum {
77 CLK_SMNCLK = 0,
78 CLK_SOCCLK,
79 CLK_MP0CLK,
80 CLK_MP1CLK,
81 CLK_LCLK,
82 CLK_DCEFCLK,
83 CLK_VCLK,
84 CLK_DCLK,
85 CLK_ECLK,
86 CLK_UCLK,
87 CLK_GFXCLK,
88 CLK_COUNT,
89 } CLOCK_ID_e;
91 static const ULONG PhwVega10_Magic = (ULONG)(PHM_VIslands_Magic);
93 struct vega10_power_state *cast_phw_vega10_power_state(
94 struct pp_hw_power_state *hw_ps)
96 PP_ASSERT_WITH_CODE((PhwVega10_Magic == hw_ps->magic),
97 "Invalid Powerstate Type!",
98 return NULL;);
100 return (struct vega10_power_state *)hw_ps;
103 const struct vega10_power_state *cast_const_phw_vega10_power_state(
104 const struct pp_hw_power_state *hw_ps)
106 PP_ASSERT_WITH_CODE((PhwVega10_Magic == hw_ps->magic),
107 "Invalid Powerstate Type!",
108 return NULL;);
110 return (const struct vega10_power_state *)hw_ps;
113 static void vega10_set_default_registry_data(struct pp_hwmgr *hwmgr)
115 struct vega10_hwmgr *data = hwmgr->backend;
117 data->registry_data.sclk_dpm_key_disabled =
118 hwmgr->feature_mask & PP_SCLK_DPM_MASK ? false : true;
119 data->registry_data.socclk_dpm_key_disabled =
120 hwmgr->feature_mask & PP_SOCCLK_DPM_MASK ? false : true;
121 data->registry_data.mclk_dpm_key_disabled =
122 hwmgr->feature_mask & PP_MCLK_DPM_MASK ? false : true;
123 data->registry_data.pcie_dpm_key_disabled =
124 hwmgr->feature_mask & PP_PCIE_DPM_MASK ? false : true;
126 data->registry_data.dcefclk_dpm_key_disabled =
127 hwmgr->feature_mask & PP_DCEFCLK_DPM_MASK ? false : true;
129 if (hwmgr->feature_mask & PP_POWER_CONTAINMENT_MASK) {
130 data->registry_data.power_containment_support = 1;
131 data->registry_data.enable_pkg_pwr_tracking_feature = 1;
132 data->registry_data.enable_tdc_limit_feature = 1;
135 data->registry_data.clock_stretcher_support =
136 hwmgr->feature_mask & PP_CLOCK_STRETCH_MASK ? true : false;
138 data->registry_data.ulv_support =
139 hwmgr->feature_mask & PP_ULV_MASK ? true : false;
141 data->registry_data.sclk_deep_sleep_support =
142 hwmgr->feature_mask & PP_SCLK_DEEP_SLEEP_MASK ? true : false;
144 data->registry_data.disable_water_mark = 0;
146 data->registry_data.fan_control_support = 1;
147 data->registry_data.thermal_support = 1;
148 data->registry_data.fw_ctf_enabled = 1;
150 data->registry_data.avfs_support =
151 hwmgr->feature_mask & PP_AVFS_MASK ? true : false;
152 data->registry_data.led_dpm_enabled = 1;
154 data->registry_data.vr0hot_enabled = 1;
155 data->registry_data.vr1hot_enabled = 1;
156 data->registry_data.regulator_hot_gpio_support = 1;
158 data->registry_data.didt_support = 1;
159 if (data->registry_data.didt_support) {
160 data->registry_data.didt_mode = 6;
161 data->registry_data.sq_ramping_support = 1;
162 data->registry_data.db_ramping_support = 0;
163 data->registry_data.td_ramping_support = 0;
164 data->registry_data.tcp_ramping_support = 0;
165 data->registry_data.dbr_ramping_support = 0;
166 data->registry_data.edc_didt_support = 1;
167 data->registry_data.gc_didt_support = 0;
168 data->registry_data.psm_didt_support = 0;
171 data->display_voltage_mode = PPVEGA10_VEGA10DISPLAYVOLTAGEMODE_DFLT;
172 data->dcef_clk_quad_eqn_a = PPREGKEY_VEGA10QUADRATICEQUATION_DFLT;
173 data->dcef_clk_quad_eqn_b = PPREGKEY_VEGA10QUADRATICEQUATION_DFLT;
174 data->dcef_clk_quad_eqn_c = PPREGKEY_VEGA10QUADRATICEQUATION_DFLT;
175 data->disp_clk_quad_eqn_a = PPREGKEY_VEGA10QUADRATICEQUATION_DFLT;
176 data->disp_clk_quad_eqn_b = PPREGKEY_VEGA10QUADRATICEQUATION_DFLT;
177 data->disp_clk_quad_eqn_c = PPREGKEY_VEGA10QUADRATICEQUATION_DFLT;
178 data->pixel_clk_quad_eqn_a = PPREGKEY_VEGA10QUADRATICEQUATION_DFLT;
179 data->pixel_clk_quad_eqn_b = PPREGKEY_VEGA10QUADRATICEQUATION_DFLT;
180 data->pixel_clk_quad_eqn_c = PPREGKEY_VEGA10QUADRATICEQUATION_DFLT;
181 data->phy_clk_quad_eqn_a = PPREGKEY_VEGA10QUADRATICEQUATION_DFLT;
182 data->phy_clk_quad_eqn_b = PPREGKEY_VEGA10QUADRATICEQUATION_DFLT;
183 data->phy_clk_quad_eqn_c = PPREGKEY_VEGA10QUADRATICEQUATION_DFLT;
185 data->gfxclk_average_alpha = PPVEGA10_VEGA10GFXCLKAVERAGEALPHA_DFLT;
186 data->socclk_average_alpha = PPVEGA10_VEGA10SOCCLKAVERAGEALPHA_DFLT;
187 data->uclk_average_alpha = PPVEGA10_VEGA10UCLKCLKAVERAGEALPHA_DFLT;
188 data->gfx_activity_average_alpha = PPVEGA10_VEGA10GFXACTIVITYAVERAGEALPHA_DFLT;
191 static int vega10_set_features_platform_caps(struct pp_hwmgr *hwmgr)
193 struct vega10_hwmgr *data = hwmgr->backend;
194 struct phm_ppt_v2_information *table_info =
195 (struct phm_ppt_v2_information *)hwmgr->pptable;
196 struct amdgpu_device *adev = hwmgr->adev;
198 phm_cap_set(hwmgr->platform_descriptor.platformCaps,
199 PHM_PlatformCaps_SclkDeepSleep);
201 phm_cap_set(hwmgr->platform_descriptor.platformCaps,
202 PHM_PlatformCaps_DynamicPatchPowerState);
204 if (data->vddci_control == VEGA10_VOLTAGE_CONTROL_NONE)
205 phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
206 PHM_PlatformCaps_ControlVDDCI);
208 phm_cap_set(hwmgr->platform_descriptor.platformCaps,
209 PHM_PlatformCaps_EnableSMU7ThermalManagement);
211 if (adev->pg_flags & AMD_PG_SUPPORT_UVD)
212 phm_cap_set(hwmgr->platform_descriptor.platformCaps,
213 PHM_PlatformCaps_UVDPowerGating);
215 if (adev->pg_flags & AMD_PG_SUPPORT_VCE)
216 phm_cap_set(hwmgr->platform_descriptor.platformCaps,
217 PHM_PlatformCaps_VCEPowerGating);
219 phm_cap_set(hwmgr->platform_descriptor.platformCaps,
220 PHM_PlatformCaps_UnTabledHardwareInterface);
222 phm_cap_set(hwmgr->platform_descriptor.platformCaps,
223 PHM_PlatformCaps_FanSpeedInTableIsRPM);
225 phm_cap_set(hwmgr->platform_descriptor.platformCaps,
226 PHM_PlatformCaps_ODFuzzyFanControlSupport);
228 phm_cap_set(hwmgr->platform_descriptor.platformCaps,
229 PHM_PlatformCaps_DynamicPowerManagement);
231 phm_cap_set(hwmgr->platform_descriptor.platformCaps,
232 PHM_PlatformCaps_SMC);
234 /* power tune caps */
235 /* assume disabled */
236 phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
237 PHM_PlatformCaps_PowerContainment);
238 phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
239 PHM_PlatformCaps_DiDtSupport);
240 phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
241 PHM_PlatformCaps_SQRamping);
242 phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
243 PHM_PlatformCaps_DBRamping);
244 phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
245 PHM_PlatformCaps_TDRamping);
246 phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
247 PHM_PlatformCaps_TCPRamping);
248 phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
249 PHM_PlatformCaps_DBRRamping);
250 phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
251 PHM_PlatformCaps_DiDtEDCEnable);
252 phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
253 PHM_PlatformCaps_GCEDC);
254 phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
255 PHM_PlatformCaps_PSM);
257 if (data->registry_data.didt_support) {
258 phm_cap_set(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_DiDtSupport);
259 if (data->registry_data.sq_ramping_support)
260 phm_cap_set(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_SQRamping);
261 if (data->registry_data.db_ramping_support)
262 phm_cap_set(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_DBRamping);
263 if (data->registry_data.td_ramping_support)
264 phm_cap_set(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_TDRamping);
265 if (data->registry_data.tcp_ramping_support)
266 phm_cap_set(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_TCPRamping);
267 if (data->registry_data.dbr_ramping_support)
268 phm_cap_set(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_DBRRamping);
269 if (data->registry_data.edc_didt_support)
270 phm_cap_set(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_DiDtEDCEnable);
271 if (data->registry_data.gc_didt_support)
272 phm_cap_set(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_GCEDC);
273 if (data->registry_data.psm_didt_support)
274 phm_cap_set(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_PSM);
277 if (data->registry_data.power_containment_support)
278 phm_cap_set(hwmgr->platform_descriptor.platformCaps,
279 PHM_PlatformCaps_PowerContainment);
280 phm_cap_set(hwmgr->platform_descriptor.platformCaps,
281 PHM_PlatformCaps_CAC);
283 if (table_info->tdp_table->usClockStretchAmount &&
284 data->registry_data.clock_stretcher_support)
285 phm_cap_set(hwmgr->platform_descriptor.platformCaps,
286 PHM_PlatformCaps_ClockStretcher);
288 phm_cap_set(hwmgr->platform_descriptor.platformCaps,
289 PHM_PlatformCaps_RegulatorHot);
290 phm_cap_set(hwmgr->platform_descriptor.platformCaps,
291 PHM_PlatformCaps_AutomaticDCTransition);
293 phm_cap_set(hwmgr->platform_descriptor.platformCaps,
294 PHM_PlatformCaps_UVDDPM);
295 phm_cap_set(hwmgr->platform_descriptor.platformCaps,
296 PHM_PlatformCaps_VCEDPM);
298 return 0;
301 static int vega10_odn_initial_default_setting(struct pp_hwmgr *hwmgr)
303 struct vega10_hwmgr *data = hwmgr->backend;
304 struct phm_ppt_v2_information *table_info =
305 (struct phm_ppt_v2_information *)(hwmgr->pptable);
306 struct vega10_odn_dpm_table *odn_table = &(data->odn_dpm_table);
307 struct vega10_odn_vddc_lookup_table *od_lookup_table;
308 struct phm_ppt_v1_voltage_lookup_table *vddc_lookup_table;
309 struct phm_ppt_v1_clock_voltage_dependency_table *dep_table[3];
310 struct phm_ppt_v1_clock_voltage_dependency_table *od_table[3];
311 struct pp_atomfwctrl_avfs_parameters avfs_params = {0};
312 uint32_t i;
313 int result;
315 result = pp_atomfwctrl_get_avfs_information(hwmgr, &avfs_params);
316 if (!result) {
317 data->odn_dpm_table.max_vddc = avfs_params.ulMaxVddc;
318 data->odn_dpm_table.min_vddc = avfs_params.ulMinVddc;
321 od_lookup_table = &odn_table->vddc_lookup_table;
322 vddc_lookup_table = table_info->vddc_lookup_table;
324 for (i = 0; i < vddc_lookup_table->count; i++)
325 od_lookup_table->entries[i].us_vdd = vddc_lookup_table->entries[i].us_vdd;
327 od_lookup_table->count = vddc_lookup_table->count;
329 dep_table[0] = table_info->vdd_dep_on_sclk;
330 dep_table[1] = table_info->vdd_dep_on_mclk;
331 dep_table[2] = table_info->vdd_dep_on_socclk;
332 od_table[0] = (struct phm_ppt_v1_clock_voltage_dependency_table *)&odn_table->vdd_dep_on_sclk;
333 od_table[1] = (struct phm_ppt_v1_clock_voltage_dependency_table *)&odn_table->vdd_dep_on_mclk;
334 od_table[2] = (struct phm_ppt_v1_clock_voltage_dependency_table *)&odn_table->vdd_dep_on_socclk;
336 for (i = 0; i < 3; i++)
337 smu_get_voltage_dependency_table_ppt_v1(dep_table[i], od_table[i]);
339 if (odn_table->max_vddc == 0 || odn_table->max_vddc > 2000)
340 odn_table->max_vddc = dep_table[0]->entries[dep_table[0]->count - 1].vddc;
341 if (odn_table->min_vddc == 0 || odn_table->min_vddc > 2000)
342 odn_table->min_vddc = dep_table[0]->entries[0].vddc;
344 i = od_table[2]->count - 1;
345 od_table[2]->entries[i].clk = hwmgr->platform_descriptor.overdriveLimit.memoryClock > od_table[2]->entries[i].clk ?
346 hwmgr->platform_descriptor.overdriveLimit.memoryClock :
347 od_table[2]->entries[i].clk;
348 od_table[2]->entries[i].vddc = odn_table->max_vddc > od_table[2]->entries[i].vddc ?
349 odn_table->max_vddc :
350 od_table[2]->entries[i].vddc;
352 return 0;
355 static void vega10_init_dpm_defaults(struct pp_hwmgr *hwmgr)
357 struct vega10_hwmgr *data = hwmgr->backend;
358 int i;
359 uint32_t sub_vendor_id, hw_revision;
360 uint32_t top32, bottom32;
361 struct amdgpu_device *adev = hwmgr->adev;
363 vega10_initialize_power_tune_defaults(hwmgr);
365 for (i = 0; i < GNLD_FEATURES_MAX; i++) {
366 data->smu_features[i].smu_feature_id = 0xffff;
367 data->smu_features[i].smu_feature_bitmap = 1 << i;
368 data->smu_features[i].enabled = false;
369 data->smu_features[i].supported = false;
372 data->smu_features[GNLD_DPM_PREFETCHER].smu_feature_id =
373 FEATURE_DPM_PREFETCHER_BIT;
374 data->smu_features[GNLD_DPM_GFXCLK].smu_feature_id =
375 FEATURE_DPM_GFXCLK_BIT;
376 data->smu_features[GNLD_DPM_UCLK].smu_feature_id =
377 FEATURE_DPM_UCLK_BIT;
378 data->smu_features[GNLD_DPM_SOCCLK].smu_feature_id =
379 FEATURE_DPM_SOCCLK_BIT;
380 data->smu_features[GNLD_DPM_UVD].smu_feature_id =
381 FEATURE_DPM_UVD_BIT;
382 data->smu_features[GNLD_DPM_VCE].smu_feature_id =
383 FEATURE_DPM_VCE_BIT;
384 data->smu_features[GNLD_DPM_MP0CLK].smu_feature_id =
385 FEATURE_DPM_MP0CLK_BIT;
386 data->smu_features[GNLD_DPM_LINK].smu_feature_id =
387 FEATURE_DPM_LINK_BIT;
388 data->smu_features[GNLD_DPM_DCEFCLK].smu_feature_id =
389 FEATURE_DPM_DCEFCLK_BIT;
390 data->smu_features[GNLD_ULV].smu_feature_id =
391 FEATURE_ULV_BIT;
392 data->smu_features[GNLD_AVFS].smu_feature_id =
393 FEATURE_AVFS_BIT;
394 data->smu_features[GNLD_DS_GFXCLK].smu_feature_id =
395 FEATURE_DS_GFXCLK_BIT;
396 data->smu_features[GNLD_DS_SOCCLK].smu_feature_id =
397 FEATURE_DS_SOCCLK_BIT;
398 data->smu_features[GNLD_DS_LCLK].smu_feature_id =
399 FEATURE_DS_LCLK_BIT;
400 data->smu_features[GNLD_PPT].smu_feature_id =
401 FEATURE_PPT_BIT;
402 data->smu_features[GNLD_TDC].smu_feature_id =
403 FEATURE_TDC_BIT;
404 data->smu_features[GNLD_THERMAL].smu_feature_id =
405 FEATURE_THERMAL_BIT;
406 data->smu_features[GNLD_GFX_PER_CU_CG].smu_feature_id =
407 FEATURE_GFX_PER_CU_CG_BIT;
408 data->smu_features[GNLD_RM].smu_feature_id =
409 FEATURE_RM_BIT;
410 data->smu_features[GNLD_DS_DCEFCLK].smu_feature_id =
411 FEATURE_DS_DCEFCLK_BIT;
412 data->smu_features[GNLD_ACDC].smu_feature_id =
413 FEATURE_ACDC_BIT;
414 data->smu_features[GNLD_VR0HOT].smu_feature_id =
415 FEATURE_VR0HOT_BIT;
416 data->smu_features[GNLD_VR1HOT].smu_feature_id =
417 FEATURE_VR1HOT_BIT;
418 data->smu_features[GNLD_FW_CTF].smu_feature_id =
419 FEATURE_FW_CTF_BIT;
420 data->smu_features[GNLD_LED_DISPLAY].smu_feature_id =
421 FEATURE_LED_DISPLAY_BIT;
422 data->smu_features[GNLD_FAN_CONTROL].smu_feature_id =
423 FEATURE_FAN_CONTROL_BIT;
424 data->smu_features[GNLD_ACG].smu_feature_id = FEATURE_ACG_BIT;
425 data->smu_features[GNLD_DIDT].smu_feature_id = FEATURE_GFX_EDC_BIT;
426 data->smu_features[GNLD_PCC_LIMIT].smu_feature_id = FEATURE_PCC_LIMIT_CONTROL_BIT;
428 if (!data->registry_data.prefetcher_dpm_key_disabled)
429 data->smu_features[GNLD_DPM_PREFETCHER].supported = true;
431 if (!data->registry_data.sclk_dpm_key_disabled)
432 data->smu_features[GNLD_DPM_GFXCLK].supported = true;
434 if (!data->registry_data.mclk_dpm_key_disabled)
435 data->smu_features[GNLD_DPM_UCLK].supported = true;
437 if (!data->registry_data.socclk_dpm_key_disabled)
438 data->smu_features[GNLD_DPM_SOCCLK].supported = true;
440 if (PP_CAP(PHM_PlatformCaps_UVDDPM))
441 data->smu_features[GNLD_DPM_UVD].supported = true;
443 if (PP_CAP(PHM_PlatformCaps_VCEDPM))
444 data->smu_features[GNLD_DPM_VCE].supported = true;
446 if (!data->registry_data.pcie_dpm_key_disabled)
447 data->smu_features[GNLD_DPM_LINK].supported = true;
449 if (!data->registry_data.dcefclk_dpm_key_disabled)
450 data->smu_features[GNLD_DPM_DCEFCLK].supported = true;
452 if (PP_CAP(PHM_PlatformCaps_SclkDeepSleep) &&
453 data->registry_data.sclk_deep_sleep_support) {
454 data->smu_features[GNLD_DS_GFXCLK].supported = true;
455 data->smu_features[GNLD_DS_SOCCLK].supported = true;
456 data->smu_features[GNLD_DS_LCLK].supported = true;
457 data->smu_features[GNLD_DS_DCEFCLK].supported = true;
460 if (data->registry_data.enable_pkg_pwr_tracking_feature)
461 data->smu_features[GNLD_PPT].supported = true;
463 if (data->registry_data.enable_tdc_limit_feature)
464 data->smu_features[GNLD_TDC].supported = true;
466 if (data->registry_data.thermal_support)
467 data->smu_features[GNLD_THERMAL].supported = true;
469 if (data->registry_data.fan_control_support)
470 data->smu_features[GNLD_FAN_CONTROL].supported = true;
472 if (data->registry_data.fw_ctf_enabled)
473 data->smu_features[GNLD_FW_CTF].supported = true;
475 if (data->registry_data.avfs_support)
476 data->smu_features[GNLD_AVFS].supported = true;
478 if (data->registry_data.led_dpm_enabled)
479 data->smu_features[GNLD_LED_DISPLAY].supported = true;
481 if (data->registry_data.vr1hot_enabled)
482 data->smu_features[GNLD_VR1HOT].supported = true;
484 if (data->registry_data.vr0hot_enabled)
485 data->smu_features[GNLD_VR0HOT].supported = true;
487 smum_send_msg_to_smc(hwmgr, PPSMC_MSG_GetSmuVersion);
488 hwmgr->smu_version = smum_get_argument(hwmgr);
489 /* ACG firmware has major version 5 */
490 if ((hwmgr->smu_version & 0xff000000) == 0x5000000)
491 data->smu_features[GNLD_ACG].supported = true;
492 if (data->registry_data.didt_support)
493 data->smu_features[GNLD_DIDT].supported = true;
495 hw_revision = adev->pdev->revision;
496 sub_vendor_id = adev->pdev->subsystem_vendor;
498 if ((hwmgr->chip_id == 0x6862 ||
499 hwmgr->chip_id == 0x6861 ||
500 hwmgr->chip_id == 0x6868) &&
501 (hw_revision == 0) &&
502 (sub_vendor_id != 0x1002))
503 data->smu_features[GNLD_PCC_LIMIT].supported = true;
505 /* Get the SN to turn into a Unique ID */
506 smum_send_msg_to_smc(hwmgr, PPSMC_MSG_ReadSerialNumTop32);
507 top32 = smum_get_argument(hwmgr);
508 smum_send_msg_to_smc(hwmgr, PPSMC_MSG_ReadSerialNumBottom32);
509 bottom32 = smum_get_argument(hwmgr);
511 adev->unique_id = ((uint64_t)bottom32 << 32) | top32;
514 #ifdef PPLIB_VEGA10_EVV_SUPPORT
515 static int vega10_get_socclk_for_voltage_evv(struct pp_hwmgr *hwmgr,
516 phm_ppt_v1_voltage_lookup_table *lookup_table,
517 uint16_t virtual_voltage_id, int32_t *socclk)
519 uint8_t entry_id;
520 uint8_t voltage_id;
521 struct phm_ppt_v2_information *table_info =
522 (struct phm_ppt_v2_information *)(hwmgr->pptable);
524 PP_ASSERT_WITH_CODE(lookup_table->count != 0,
525 "Lookup table is empty",
526 return -EINVAL);
528 /* search for leakage voltage ID 0xff01 ~ 0xff08 and sclk */
529 for (entry_id = 0; entry_id < table_info->vdd_dep_on_sclk->count; entry_id++) {
530 voltage_id = table_info->vdd_dep_on_socclk->entries[entry_id].vddInd;
531 if (lookup_table->entries[voltage_id].us_vdd == virtual_voltage_id)
532 break;
535 PP_ASSERT_WITH_CODE(entry_id < table_info->vdd_dep_on_socclk->count,
536 "Can't find requested voltage id in vdd_dep_on_socclk table!",
537 return -EINVAL);
539 *socclk = table_info->vdd_dep_on_socclk->entries[entry_id].clk;
541 return 0;
544 #define ATOM_VIRTUAL_VOLTAGE_ID0 0xff01
546 * Get Leakage VDDC based on leakage ID.
548 * @param hwmgr the address of the powerplay hardware manager.
549 * @return always 0.
551 static int vega10_get_evv_voltages(struct pp_hwmgr *hwmgr)
553 struct vega10_hwmgr *data = hwmgr->backend;
554 uint16_t vv_id;
555 uint32_t vddc = 0;
556 uint16_t i, j;
557 uint32_t sclk = 0;
558 struct phm_ppt_v2_information *table_info =
559 (struct phm_ppt_v2_information *)hwmgr->pptable;
560 struct phm_ppt_v1_clock_voltage_dependency_table *socclk_table =
561 table_info->vdd_dep_on_socclk;
562 int result;
564 for (i = 0; i < VEGA10_MAX_LEAKAGE_COUNT; i++) {
565 vv_id = ATOM_VIRTUAL_VOLTAGE_ID0 + i;
567 if (!vega10_get_socclk_for_voltage_evv(hwmgr,
568 table_info->vddc_lookup_table, vv_id, &sclk)) {
569 if (PP_CAP(PHM_PlatformCaps_ClockStretcher)) {
570 for (j = 1; j < socclk_table->count; j++) {
571 if (socclk_table->entries[j].clk == sclk &&
572 socclk_table->entries[j].cks_enable == 0) {
573 sclk += 5000;
574 break;
579 PP_ASSERT_WITH_CODE(!atomctrl_get_voltage_evv_on_sclk_ai(hwmgr,
580 VOLTAGE_TYPE_VDDC, sclk, vv_id, &vddc),
581 "Error retrieving EVV voltage value!",
582 continue);
585 /* need to make sure vddc is less than 2v or else, it could burn the ASIC. */
586 PP_ASSERT_WITH_CODE((vddc < 2000 && vddc != 0),
587 "Invalid VDDC value", result = -EINVAL;);
589 /* the voltage should not be zero nor equal to leakage ID */
590 if (vddc != 0 && vddc != vv_id) {
591 data->vddc_leakage.actual_voltage[data->vddc_leakage.count] = (uint16_t)(vddc/100);
592 data->vddc_leakage.leakage_id[data->vddc_leakage.count] = vv_id;
593 data->vddc_leakage.count++;
598 return 0;
602 * Change virtual leakage voltage to actual value.
604 * @param hwmgr the address of the powerplay hardware manager.
605 * @param pointer to changing voltage
606 * @param pointer to leakage table
608 static void vega10_patch_with_vdd_leakage(struct pp_hwmgr *hwmgr,
609 uint16_t *voltage, struct vega10_leakage_voltage *leakage_table)
611 uint32_t index;
613 /* search for leakage voltage ID 0xff01 ~ 0xff08 */
614 for (index = 0; index < leakage_table->count; index++) {
615 /* if this voltage matches a leakage voltage ID */
616 /* patch with actual leakage voltage */
617 if (leakage_table->leakage_id[index] == *voltage) {
618 *voltage = leakage_table->actual_voltage[index];
619 break;
623 if (*voltage > ATOM_VIRTUAL_VOLTAGE_ID0)
624 pr_info("Voltage value looks like a Leakage ID but it's not patched\n");
628 * Patch voltage lookup table by EVV leakages.
630 * @param hwmgr the address of the powerplay hardware manager.
631 * @param pointer to voltage lookup table
632 * @param pointer to leakage table
633 * @return always 0
635 static int vega10_patch_lookup_table_with_leakage(struct pp_hwmgr *hwmgr,
636 phm_ppt_v1_voltage_lookup_table *lookup_table,
637 struct vega10_leakage_voltage *leakage_table)
639 uint32_t i;
641 for (i = 0; i < lookup_table->count; i++)
642 vega10_patch_with_vdd_leakage(hwmgr,
643 &lookup_table->entries[i].us_vdd, leakage_table);
645 return 0;
648 static int vega10_patch_clock_voltage_limits_with_vddc_leakage(
649 struct pp_hwmgr *hwmgr, struct vega10_leakage_voltage *leakage_table,
650 uint16_t *vddc)
652 vega10_patch_with_vdd_leakage(hwmgr, (uint16_t *)vddc, leakage_table);
654 return 0;
656 #endif
658 static int vega10_patch_voltage_dependency_tables_with_lookup_table(
659 struct pp_hwmgr *hwmgr)
661 uint8_t entry_id, voltage_id;
662 unsigned i;
663 struct phm_ppt_v2_information *table_info =
664 (struct phm_ppt_v2_information *)(hwmgr->pptable);
665 struct phm_ppt_v1_mm_clock_voltage_dependency_table *mm_table =
666 table_info->mm_dep_table;
667 struct phm_ppt_v1_clock_voltage_dependency_table *mclk_table =
668 table_info->vdd_dep_on_mclk;
670 for (i = 0; i < 6; i++) {
671 struct phm_ppt_v1_clock_voltage_dependency_table *vdt;
672 switch (i) {
673 case 0: vdt = table_info->vdd_dep_on_socclk; break;
674 case 1: vdt = table_info->vdd_dep_on_sclk; break;
675 case 2: vdt = table_info->vdd_dep_on_dcefclk; break;
676 case 3: vdt = table_info->vdd_dep_on_pixclk; break;
677 case 4: vdt = table_info->vdd_dep_on_dispclk; break;
678 case 5: vdt = table_info->vdd_dep_on_phyclk; break;
681 for (entry_id = 0; entry_id < vdt->count; entry_id++) {
682 voltage_id = vdt->entries[entry_id].vddInd;
683 vdt->entries[entry_id].vddc =
684 table_info->vddc_lookup_table->entries[voltage_id].us_vdd;
688 for (entry_id = 0; entry_id < mm_table->count; ++entry_id) {
689 voltage_id = mm_table->entries[entry_id].vddcInd;
690 mm_table->entries[entry_id].vddc =
691 table_info->vddc_lookup_table->entries[voltage_id].us_vdd;
694 for (entry_id = 0; entry_id < mclk_table->count; ++entry_id) {
695 voltage_id = mclk_table->entries[entry_id].vddInd;
696 mclk_table->entries[entry_id].vddc =
697 table_info->vddc_lookup_table->entries[voltage_id].us_vdd;
698 voltage_id = mclk_table->entries[entry_id].vddciInd;
699 mclk_table->entries[entry_id].vddci =
700 table_info->vddci_lookup_table->entries[voltage_id].us_vdd;
701 voltage_id = mclk_table->entries[entry_id].mvddInd;
702 mclk_table->entries[entry_id].mvdd =
703 table_info->vddmem_lookup_table->entries[voltage_id].us_vdd;
707 return 0;
711 static int vega10_sort_lookup_table(struct pp_hwmgr *hwmgr,
712 struct phm_ppt_v1_voltage_lookup_table *lookup_table)
714 uint32_t table_size, i, j;
716 PP_ASSERT_WITH_CODE(lookup_table && lookup_table->count,
717 "Lookup table is empty", return -EINVAL);
719 table_size = lookup_table->count;
721 /* Sorting voltages */
722 for (i = 0; i < table_size - 1; i++) {
723 for (j = i + 1; j > 0; j--) {
724 if (lookup_table->entries[j].us_vdd <
725 lookup_table->entries[j - 1].us_vdd) {
726 swap(lookup_table->entries[j - 1],
727 lookup_table->entries[j]);
732 return 0;
735 static int vega10_complete_dependency_tables(struct pp_hwmgr *hwmgr)
737 int result = 0;
738 int tmp_result;
739 struct phm_ppt_v2_information *table_info =
740 (struct phm_ppt_v2_information *)(hwmgr->pptable);
741 #ifdef PPLIB_VEGA10_EVV_SUPPORT
742 struct vega10_hwmgr *data = hwmgr->backend;
744 tmp_result = vega10_patch_lookup_table_with_leakage(hwmgr,
745 table_info->vddc_lookup_table, &(data->vddc_leakage));
746 if (tmp_result)
747 result = tmp_result;
749 tmp_result = vega10_patch_clock_voltage_limits_with_vddc_leakage(hwmgr,
750 &(data->vddc_leakage), &table_info->max_clock_voltage_on_dc.vddc);
751 if (tmp_result)
752 result = tmp_result;
753 #endif
755 tmp_result = vega10_patch_voltage_dependency_tables_with_lookup_table(hwmgr);
756 if (tmp_result)
757 result = tmp_result;
759 tmp_result = vega10_sort_lookup_table(hwmgr, table_info->vddc_lookup_table);
760 if (tmp_result)
761 result = tmp_result;
763 return result;
766 static int vega10_set_private_data_based_on_pptable(struct pp_hwmgr *hwmgr)
768 struct phm_ppt_v2_information *table_info =
769 (struct phm_ppt_v2_information *)(hwmgr->pptable);
770 struct phm_ppt_v1_clock_voltage_dependency_table *allowed_sclk_vdd_table =
771 table_info->vdd_dep_on_socclk;
772 struct phm_ppt_v1_clock_voltage_dependency_table *allowed_mclk_vdd_table =
773 table_info->vdd_dep_on_mclk;
775 PP_ASSERT_WITH_CODE(allowed_sclk_vdd_table,
776 "VDD dependency on SCLK table is missing. This table is mandatory", return -EINVAL);
777 PP_ASSERT_WITH_CODE(allowed_sclk_vdd_table->count >= 1,
778 "VDD dependency on SCLK table is empty. This table is mandatory", return -EINVAL);
780 PP_ASSERT_WITH_CODE(allowed_mclk_vdd_table,
781 "VDD dependency on MCLK table is missing. This table is mandatory", return -EINVAL);
782 PP_ASSERT_WITH_CODE(allowed_mclk_vdd_table->count >= 1,
783 "VDD dependency on MCLK table is empty. This table is mandatory", return -EINVAL);
785 table_info->max_clock_voltage_on_ac.sclk =
786 allowed_sclk_vdd_table->entries[allowed_sclk_vdd_table->count - 1].clk;
787 table_info->max_clock_voltage_on_ac.mclk =
788 allowed_mclk_vdd_table->entries[allowed_mclk_vdd_table->count - 1].clk;
789 table_info->max_clock_voltage_on_ac.vddc =
790 allowed_sclk_vdd_table->entries[allowed_sclk_vdd_table->count - 1].vddc;
791 table_info->max_clock_voltage_on_ac.vddci =
792 allowed_mclk_vdd_table->entries[allowed_mclk_vdd_table->count - 1].vddci;
794 hwmgr->dyn_state.max_clock_voltage_on_ac.sclk =
795 table_info->max_clock_voltage_on_ac.sclk;
796 hwmgr->dyn_state.max_clock_voltage_on_ac.mclk =
797 table_info->max_clock_voltage_on_ac.mclk;
798 hwmgr->dyn_state.max_clock_voltage_on_ac.vddc =
799 table_info->max_clock_voltage_on_ac.vddc;
800 hwmgr->dyn_state.max_clock_voltage_on_ac.vddci =
801 table_info->max_clock_voltage_on_ac.vddci;
803 return 0;
806 static int vega10_hwmgr_backend_fini(struct pp_hwmgr *hwmgr)
808 kfree(hwmgr->dyn_state.vddc_dep_on_dal_pwrl);
809 hwmgr->dyn_state.vddc_dep_on_dal_pwrl = NULL;
811 kfree(hwmgr->backend);
812 hwmgr->backend = NULL;
814 return 0;
817 static int vega10_hwmgr_backend_init(struct pp_hwmgr *hwmgr)
819 int result = 0;
820 struct vega10_hwmgr *data;
821 uint32_t config_telemetry = 0;
822 struct pp_atomfwctrl_voltage_table vol_table;
823 struct amdgpu_device *adev = hwmgr->adev;
825 data = kzalloc(sizeof(struct vega10_hwmgr), GFP_KERNEL);
826 if (data == NULL)
827 return -ENOMEM;
829 hwmgr->backend = data;
831 hwmgr->workload_mask = 1 << hwmgr->workload_prority[PP_SMC_POWER_PROFILE_BOOTUP_DEFAULT];
832 hwmgr->power_profile_mode = PP_SMC_POWER_PROFILE_BOOTUP_DEFAULT;
833 hwmgr->default_power_profile_mode = PP_SMC_POWER_PROFILE_BOOTUP_DEFAULT;
835 vega10_set_default_registry_data(hwmgr);
836 data->disable_dpm_mask = 0xff;
838 /* need to set voltage control types before EVV patching */
839 data->vddc_control = VEGA10_VOLTAGE_CONTROL_NONE;
840 data->mvdd_control = VEGA10_VOLTAGE_CONTROL_NONE;
841 data->vddci_control = VEGA10_VOLTAGE_CONTROL_NONE;
843 /* VDDCR_SOC */
844 if (pp_atomfwctrl_is_voltage_controlled_by_gpio_v4(hwmgr,
845 VOLTAGE_TYPE_VDDC, VOLTAGE_OBJ_SVID2)) {
846 if (!pp_atomfwctrl_get_voltage_table_v4(hwmgr,
847 VOLTAGE_TYPE_VDDC, VOLTAGE_OBJ_SVID2,
848 &vol_table)) {
849 config_telemetry = ((vol_table.telemetry_slope << 8) & 0xff00) |
850 (vol_table.telemetry_offset & 0xff);
851 data->vddc_control = VEGA10_VOLTAGE_CONTROL_BY_SVID2;
853 } else {
854 kfree(hwmgr->backend);
855 hwmgr->backend = NULL;
856 PP_ASSERT_WITH_CODE(false,
857 "VDDCR_SOC is not SVID2!",
858 return -1);
861 /* MVDDC */
862 if (pp_atomfwctrl_is_voltage_controlled_by_gpio_v4(hwmgr,
863 VOLTAGE_TYPE_MVDDC, VOLTAGE_OBJ_SVID2)) {
864 if (!pp_atomfwctrl_get_voltage_table_v4(hwmgr,
865 VOLTAGE_TYPE_MVDDC, VOLTAGE_OBJ_SVID2,
866 &vol_table)) {
867 config_telemetry |=
868 ((vol_table.telemetry_slope << 24) & 0xff000000) |
869 ((vol_table.telemetry_offset << 16) & 0xff0000);
870 data->mvdd_control = VEGA10_VOLTAGE_CONTROL_BY_SVID2;
874 /* VDDCI_MEM */
875 if (PP_CAP(PHM_PlatformCaps_ControlVDDCI)) {
876 if (pp_atomfwctrl_is_voltage_controlled_by_gpio_v4(hwmgr,
877 VOLTAGE_TYPE_VDDCI, VOLTAGE_OBJ_GPIO_LUT))
878 data->vddci_control = VEGA10_VOLTAGE_CONTROL_BY_GPIO;
881 data->config_telemetry = config_telemetry;
883 vega10_set_features_platform_caps(hwmgr);
885 vega10_init_dpm_defaults(hwmgr);
887 #ifdef PPLIB_VEGA10_EVV_SUPPORT
888 /* Get leakage voltage based on leakage ID. */
889 PP_ASSERT_WITH_CODE(!vega10_get_evv_voltages(hwmgr),
890 "Get EVV Voltage Failed. Abort Driver loading!",
891 return -1);
892 #endif
894 /* Patch our voltage dependency table with actual leakage voltage
895 * We need to perform leakage translation before it's used by other functions
897 vega10_complete_dependency_tables(hwmgr);
899 /* Parse pptable data read from VBIOS */
900 vega10_set_private_data_based_on_pptable(hwmgr);
902 data->is_tlu_enabled = false;
904 hwmgr->platform_descriptor.hardwareActivityPerformanceLevels =
905 VEGA10_MAX_HARDWARE_POWERLEVELS;
906 hwmgr->platform_descriptor.hardwarePerformanceLevels = 2;
907 hwmgr->platform_descriptor.minimumClocksReductionPercentage = 50;
909 hwmgr->platform_descriptor.vbiosInterruptId = 0x20000400; /* IRQ_SOURCE1_SW_INT */
910 /* The true clock step depends on the frequency, typically 4.5 or 9 MHz. Here we use 5. */
911 hwmgr->platform_descriptor.clockStep.engineClock = 500;
912 hwmgr->platform_descriptor.clockStep.memoryClock = 500;
914 data->total_active_cus = adev->gfx.cu_info.number;
915 if (!hwmgr->not_vf)
916 return result;
918 /* Setup default Overdrive Fan control settings */
919 data->odn_fan_table.target_fan_speed =
920 hwmgr->thermal_controller.advanceFanControlParameters.usMaxFanRPM;
921 data->odn_fan_table.target_temperature =
922 hwmgr->thermal_controller.
923 advanceFanControlParameters.ucTargetTemperature;
924 data->odn_fan_table.min_performance_clock =
925 hwmgr->thermal_controller.advanceFanControlParameters.
926 ulMinFanSCLKAcousticLimit;
927 data->odn_fan_table.min_fan_limit =
928 hwmgr->thermal_controller.
929 advanceFanControlParameters.usFanPWMMinLimit *
930 hwmgr->thermal_controller.fanInfo.ulMaxRPM / 100;
932 data->mem_channels = (RREG32_SOC15(DF, 0, mmDF_CS_AON0_DramBaseAddress0) &
933 DF_CS_AON0_DramBaseAddress0__IntLvNumChan_MASK) >>
934 DF_CS_AON0_DramBaseAddress0__IntLvNumChan__SHIFT;
935 PP_ASSERT_WITH_CODE(data->mem_channels < ARRAY_SIZE(channel_number),
936 "Mem Channel Index Exceeded maximum!",
937 return -EINVAL);
939 return result;
942 static int vega10_init_sclk_threshold(struct pp_hwmgr *hwmgr)
944 struct vega10_hwmgr *data = hwmgr->backend;
946 data->low_sclk_interrupt_threshold = 0;
948 return 0;
951 static int vega10_setup_dpm_led_config(struct pp_hwmgr *hwmgr)
953 struct vega10_hwmgr *data = hwmgr->backend;
954 PPTable_t *pp_table = &(data->smc_state_table.pp_table);
956 struct pp_atomfwctrl_voltage_table table;
957 uint8_t i, j;
958 uint32_t mask = 0;
959 uint32_t tmp;
960 int32_t ret = 0;
962 ret = pp_atomfwctrl_get_voltage_table_v4(hwmgr, VOLTAGE_TYPE_LEDDPM,
963 VOLTAGE_OBJ_GPIO_LUT, &table);
965 if (!ret) {
966 tmp = table.mask_low;
967 for (i = 0, j = 0; i < 32; i++) {
968 if (tmp & 1) {
969 mask |= (uint32_t)(i << (8 * j));
970 if (++j >= 3)
971 break;
973 tmp >>= 1;
977 pp_table->LedPin0 = (uint8_t)(mask & 0xff);
978 pp_table->LedPin1 = (uint8_t)((mask >> 8) & 0xff);
979 pp_table->LedPin2 = (uint8_t)((mask >> 16) & 0xff);
980 return 0;
983 static int vega10_setup_asic_task(struct pp_hwmgr *hwmgr)
985 if (!hwmgr->not_vf)
986 return 0;
988 PP_ASSERT_WITH_CODE(!vega10_init_sclk_threshold(hwmgr),
989 "Failed to init sclk threshold!",
990 return -EINVAL);
992 PP_ASSERT_WITH_CODE(!vega10_setup_dpm_led_config(hwmgr),
993 "Failed to set up led dpm config!",
994 return -EINVAL);
996 smum_send_msg_to_smc_with_parameter(hwmgr, PPSMC_MSG_NumOfDisplays, 0);
998 return 0;
1002 * Remove repeated voltage values and create table with unique values.
1004 * @param hwmgr the address of the powerplay hardware manager.
1005 * @param vol_table the pointer to changing voltage table
1006 * @return 0 in success
1009 static int vega10_trim_voltage_table(struct pp_hwmgr *hwmgr,
1010 struct pp_atomfwctrl_voltage_table *vol_table)
1012 uint32_t i, j;
1013 uint16_t vvalue;
1014 bool found = false;
1015 struct pp_atomfwctrl_voltage_table *table;
1017 PP_ASSERT_WITH_CODE(vol_table,
1018 "Voltage Table empty.", return -EINVAL);
1019 table = kzalloc(sizeof(struct pp_atomfwctrl_voltage_table),
1020 GFP_KERNEL);
1022 if (!table)
1023 return -ENOMEM;
1025 table->mask_low = vol_table->mask_low;
1026 table->phase_delay = vol_table->phase_delay;
1028 for (i = 0; i < vol_table->count; i++) {
1029 vvalue = vol_table->entries[i].value;
1030 found = false;
1032 for (j = 0; j < table->count; j++) {
1033 if (vvalue == table->entries[j].value) {
1034 found = true;
1035 break;
1039 if (!found) {
1040 table->entries[table->count].value = vvalue;
1041 table->entries[table->count].smio_low =
1042 vol_table->entries[i].smio_low;
1043 table->count++;
1047 memcpy(vol_table, table, sizeof(struct pp_atomfwctrl_voltage_table));
1048 kfree(table);
1050 return 0;
1053 static int vega10_get_mvdd_voltage_table(struct pp_hwmgr *hwmgr,
1054 phm_ppt_v1_clock_voltage_dependency_table *dep_table,
1055 struct pp_atomfwctrl_voltage_table *vol_table)
1057 int i;
1059 PP_ASSERT_WITH_CODE(dep_table->count,
1060 "Voltage Dependency Table empty.",
1061 return -EINVAL);
1063 vol_table->mask_low = 0;
1064 vol_table->phase_delay = 0;
1065 vol_table->count = dep_table->count;
1067 for (i = 0; i < vol_table->count; i++) {
1068 vol_table->entries[i].value = dep_table->entries[i].mvdd;
1069 vol_table->entries[i].smio_low = 0;
1072 PP_ASSERT_WITH_CODE(!vega10_trim_voltage_table(hwmgr,
1073 vol_table),
1074 "Failed to trim MVDD Table!",
1075 return -1);
1077 return 0;
1080 static int vega10_get_vddci_voltage_table(struct pp_hwmgr *hwmgr,
1081 phm_ppt_v1_clock_voltage_dependency_table *dep_table,
1082 struct pp_atomfwctrl_voltage_table *vol_table)
1084 uint32_t i;
1086 PP_ASSERT_WITH_CODE(dep_table->count,
1087 "Voltage Dependency Table empty.",
1088 return -EINVAL);
1090 vol_table->mask_low = 0;
1091 vol_table->phase_delay = 0;
1092 vol_table->count = dep_table->count;
1094 for (i = 0; i < dep_table->count; i++) {
1095 vol_table->entries[i].value = dep_table->entries[i].vddci;
1096 vol_table->entries[i].smio_low = 0;
1099 PP_ASSERT_WITH_CODE(!vega10_trim_voltage_table(hwmgr, vol_table),
1100 "Failed to trim VDDCI table.",
1101 return -1);
1103 return 0;
1106 static int vega10_get_vdd_voltage_table(struct pp_hwmgr *hwmgr,
1107 phm_ppt_v1_clock_voltage_dependency_table *dep_table,
1108 struct pp_atomfwctrl_voltage_table *vol_table)
1110 int i;
1112 PP_ASSERT_WITH_CODE(dep_table->count,
1113 "Voltage Dependency Table empty.",
1114 return -EINVAL);
1116 vol_table->mask_low = 0;
1117 vol_table->phase_delay = 0;
1118 vol_table->count = dep_table->count;
1120 for (i = 0; i < vol_table->count; i++) {
1121 vol_table->entries[i].value = dep_table->entries[i].vddc;
1122 vol_table->entries[i].smio_low = 0;
1125 return 0;
1128 /* ---- Voltage Tables ----
1129 * If the voltage table would be bigger than
1130 * what will fit into the state table on
1131 * the SMC keep only the higher entries.
1133 static void vega10_trim_voltage_table_to_fit_state_table(
1134 struct pp_hwmgr *hwmgr,
1135 uint32_t max_vol_steps,
1136 struct pp_atomfwctrl_voltage_table *vol_table)
1138 unsigned int i, diff;
1140 if (vol_table->count <= max_vol_steps)
1141 return;
1143 diff = vol_table->count - max_vol_steps;
1145 for (i = 0; i < max_vol_steps; i++)
1146 vol_table->entries[i] = vol_table->entries[i + diff];
1148 vol_table->count = max_vol_steps;
1152 * Create Voltage Tables.
1154 * @param hwmgr the address of the powerplay hardware manager.
1155 * @return always 0
1157 static int vega10_construct_voltage_tables(struct pp_hwmgr *hwmgr)
1159 struct vega10_hwmgr *data = hwmgr->backend;
1160 struct phm_ppt_v2_information *table_info =
1161 (struct phm_ppt_v2_information *)hwmgr->pptable;
1162 int result;
1164 if (data->mvdd_control == VEGA10_VOLTAGE_CONTROL_BY_SVID2 ||
1165 data->mvdd_control == VEGA10_VOLTAGE_CONTROL_NONE) {
1166 result = vega10_get_mvdd_voltage_table(hwmgr,
1167 table_info->vdd_dep_on_mclk,
1168 &(data->mvdd_voltage_table));
1169 PP_ASSERT_WITH_CODE(!result,
1170 "Failed to retrieve MVDDC table!",
1171 return result);
1174 if (data->vddci_control == VEGA10_VOLTAGE_CONTROL_NONE) {
1175 result = vega10_get_vddci_voltage_table(hwmgr,
1176 table_info->vdd_dep_on_mclk,
1177 &(data->vddci_voltage_table));
1178 PP_ASSERT_WITH_CODE(!result,
1179 "Failed to retrieve VDDCI_MEM table!",
1180 return result);
1183 if (data->vddc_control == VEGA10_VOLTAGE_CONTROL_BY_SVID2 ||
1184 data->vddc_control == VEGA10_VOLTAGE_CONTROL_NONE) {
1185 result = vega10_get_vdd_voltage_table(hwmgr,
1186 table_info->vdd_dep_on_sclk,
1187 &(data->vddc_voltage_table));
1188 PP_ASSERT_WITH_CODE(!result,
1189 "Failed to retrieve VDDCR_SOC table!",
1190 return result);
1193 PP_ASSERT_WITH_CODE(data->vddc_voltage_table.count <= 16,
1194 "Too many voltage values for VDDC. Trimming to fit state table.",
1195 vega10_trim_voltage_table_to_fit_state_table(hwmgr,
1196 16, &(data->vddc_voltage_table)));
1198 PP_ASSERT_WITH_CODE(data->vddci_voltage_table.count <= 16,
1199 "Too many voltage values for VDDCI. Trimming to fit state table.",
1200 vega10_trim_voltage_table_to_fit_state_table(hwmgr,
1201 16, &(data->vddci_voltage_table)));
1203 PP_ASSERT_WITH_CODE(data->mvdd_voltage_table.count <= 16,
1204 "Too many voltage values for MVDD. Trimming to fit state table.",
1205 vega10_trim_voltage_table_to_fit_state_table(hwmgr,
1206 16, &(data->mvdd_voltage_table)));
1209 return 0;
1213 * @fn vega10_init_dpm_state
1214 * @brief Function to initialize all Soft Min/Max and Hard Min/Max to 0xff.
1216 * @param dpm_state - the address of the DPM Table to initiailize.
1217 * @return None.
1219 static void vega10_init_dpm_state(struct vega10_dpm_state *dpm_state)
1221 dpm_state->soft_min_level = 0xff;
1222 dpm_state->soft_max_level = 0xff;
1223 dpm_state->hard_min_level = 0xff;
1224 dpm_state->hard_max_level = 0xff;
1227 static void vega10_setup_default_single_dpm_table(struct pp_hwmgr *hwmgr,
1228 struct vega10_single_dpm_table *dpm_table,
1229 struct phm_ppt_v1_clock_voltage_dependency_table *dep_table)
1231 int i;
1233 dpm_table->count = 0;
1235 for (i = 0; i < dep_table->count; i++) {
1236 if (i == 0 || dpm_table->dpm_levels[dpm_table->count - 1].value <=
1237 dep_table->entries[i].clk) {
1238 dpm_table->dpm_levels[dpm_table->count].value =
1239 dep_table->entries[i].clk;
1240 dpm_table->dpm_levels[dpm_table->count].enabled = true;
1241 dpm_table->count++;
1245 static int vega10_setup_default_pcie_table(struct pp_hwmgr *hwmgr)
1247 struct vega10_hwmgr *data = hwmgr->backend;
1248 struct vega10_pcie_table *pcie_table = &(data->dpm_table.pcie_table);
1249 struct phm_ppt_v2_information *table_info =
1250 (struct phm_ppt_v2_information *)(hwmgr->pptable);
1251 struct phm_ppt_v1_pcie_table *bios_pcie_table =
1252 table_info->pcie_table;
1253 uint32_t i;
1255 PP_ASSERT_WITH_CODE(bios_pcie_table->count,
1256 "Incorrect number of PCIE States from VBIOS!",
1257 return -1);
1259 for (i = 0; i < NUM_LINK_LEVELS; i++) {
1260 if (data->registry_data.pcieSpeedOverride)
1261 pcie_table->pcie_gen[i] =
1262 data->registry_data.pcieSpeedOverride;
1263 else
1264 pcie_table->pcie_gen[i] =
1265 bios_pcie_table->entries[i].gen_speed;
1267 if (data->registry_data.pcieLaneOverride)
1268 pcie_table->pcie_lane[i] = (uint8_t)encode_pcie_lane_width(
1269 data->registry_data.pcieLaneOverride);
1270 else
1271 pcie_table->pcie_lane[i] = (uint8_t)encode_pcie_lane_width(
1272 bios_pcie_table->entries[i].lane_width);
1273 if (data->registry_data.pcieClockOverride)
1274 pcie_table->lclk[i] =
1275 data->registry_data.pcieClockOverride;
1276 else
1277 pcie_table->lclk[i] =
1278 bios_pcie_table->entries[i].pcie_sclk;
1281 pcie_table->count = NUM_LINK_LEVELS;
1283 return 0;
1287 * This function is to initialize all DPM state tables
1288 * for SMU based on the dependency table.
1289 * Dynamic state patching function will then trim these
1290 * state tables to the allowed range based
1291 * on the power policy or external client requests,
1292 * such as UVD request, etc.
1294 static int vega10_setup_default_dpm_tables(struct pp_hwmgr *hwmgr)
1296 struct vega10_hwmgr *data = hwmgr->backend;
1297 struct phm_ppt_v2_information *table_info =
1298 (struct phm_ppt_v2_information *)(hwmgr->pptable);
1299 struct vega10_single_dpm_table *dpm_table;
1300 uint32_t i;
1302 struct phm_ppt_v1_clock_voltage_dependency_table *dep_soc_table =
1303 table_info->vdd_dep_on_socclk;
1304 struct phm_ppt_v1_clock_voltage_dependency_table *dep_gfx_table =
1305 table_info->vdd_dep_on_sclk;
1306 struct phm_ppt_v1_clock_voltage_dependency_table *dep_mclk_table =
1307 table_info->vdd_dep_on_mclk;
1308 struct phm_ppt_v1_mm_clock_voltage_dependency_table *dep_mm_table =
1309 table_info->mm_dep_table;
1310 struct phm_ppt_v1_clock_voltage_dependency_table *dep_dcef_table =
1311 table_info->vdd_dep_on_dcefclk;
1312 struct phm_ppt_v1_clock_voltage_dependency_table *dep_pix_table =
1313 table_info->vdd_dep_on_pixclk;
1314 struct phm_ppt_v1_clock_voltage_dependency_table *dep_disp_table =
1315 table_info->vdd_dep_on_dispclk;
1316 struct phm_ppt_v1_clock_voltage_dependency_table *dep_phy_table =
1317 table_info->vdd_dep_on_phyclk;
1319 PP_ASSERT_WITH_CODE(dep_soc_table,
1320 "SOCCLK dependency table is missing. This table is mandatory",
1321 return -EINVAL);
1322 PP_ASSERT_WITH_CODE(dep_soc_table->count >= 1,
1323 "SOCCLK dependency table is empty. This table is mandatory",
1324 return -EINVAL);
1326 PP_ASSERT_WITH_CODE(dep_gfx_table,
1327 "GFXCLK dependency table is missing. This table is mandatory",
1328 return -EINVAL);
1329 PP_ASSERT_WITH_CODE(dep_gfx_table->count >= 1,
1330 "GFXCLK dependency table is empty. This table is mandatory",
1331 return -EINVAL);
1333 PP_ASSERT_WITH_CODE(dep_mclk_table,
1334 "MCLK dependency table is missing. This table is mandatory",
1335 return -EINVAL);
1336 PP_ASSERT_WITH_CODE(dep_mclk_table->count >= 1,
1337 "MCLK dependency table has to have is missing. This table is mandatory",
1338 return -EINVAL);
1340 /* Initialize Sclk DPM table based on allow Sclk values */
1341 dpm_table = &(data->dpm_table.soc_table);
1342 vega10_setup_default_single_dpm_table(hwmgr,
1343 dpm_table,
1344 dep_soc_table);
1346 vega10_init_dpm_state(&(dpm_table->dpm_state));
1348 dpm_table = &(data->dpm_table.gfx_table);
1349 vega10_setup_default_single_dpm_table(hwmgr,
1350 dpm_table,
1351 dep_gfx_table);
1352 if (hwmgr->platform_descriptor.overdriveLimit.engineClock == 0)
1353 hwmgr->platform_descriptor.overdriveLimit.engineClock =
1354 dpm_table->dpm_levels[dpm_table->count-1].value;
1355 vega10_init_dpm_state(&(dpm_table->dpm_state));
1357 /* Initialize Mclk DPM table based on allow Mclk values */
1358 data->dpm_table.mem_table.count = 0;
1359 dpm_table = &(data->dpm_table.mem_table);
1360 vega10_setup_default_single_dpm_table(hwmgr,
1361 dpm_table,
1362 dep_mclk_table);
1363 if (hwmgr->platform_descriptor.overdriveLimit.memoryClock == 0)
1364 hwmgr->platform_descriptor.overdriveLimit.memoryClock =
1365 dpm_table->dpm_levels[dpm_table->count-1].value;
1366 vega10_init_dpm_state(&(dpm_table->dpm_state));
1368 data->dpm_table.eclk_table.count = 0;
1369 dpm_table = &(data->dpm_table.eclk_table);
1370 for (i = 0; i < dep_mm_table->count; i++) {
1371 if (i == 0 || dpm_table->dpm_levels
1372 [dpm_table->count - 1].value <=
1373 dep_mm_table->entries[i].eclk) {
1374 dpm_table->dpm_levels[dpm_table->count].value =
1375 dep_mm_table->entries[i].eclk;
1376 dpm_table->dpm_levels[dpm_table->count].enabled =
1377 (i == 0) ? true : false;
1378 dpm_table->count++;
1381 vega10_init_dpm_state(&(dpm_table->dpm_state));
1383 data->dpm_table.vclk_table.count = 0;
1384 data->dpm_table.dclk_table.count = 0;
1385 dpm_table = &(data->dpm_table.vclk_table);
1386 for (i = 0; i < dep_mm_table->count; i++) {
1387 if (i == 0 || dpm_table->dpm_levels
1388 [dpm_table->count - 1].value <=
1389 dep_mm_table->entries[i].vclk) {
1390 dpm_table->dpm_levels[dpm_table->count].value =
1391 dep_mm_table->entries[i].vclk;
1392 dpm_table->dpm_levels[dpm_table->count].enabled =
1393 (i == 0) ? true : false;
1394 dpm_table->count++;
1397 vega10_init_dpm_state(&(dpm_table->dpm_state));
1399 dpm_table = &(data->dpm_table.dclk_table);
1400 for (i = 0; i < dep_mm_table->count; i++) {
1401 if (i == 0 || dpm_table->dpm_levels
1402 [dpm_table->count - 1].value <=
1403 dep_mm_table->entries[i].dclk) {
1404 dpm_table->dpm_levels[dpm_table->count].value =
1405 dep_mm_table->entries[i].dclk;
1406 dpm_table->dpm_levels[dpm_table->count].enabled =
1407 (i == 0) ? true : false;
1408 dpm_table->count++;
1411 vega10_init_dpm_state(&(dpm_table->dpm_state));
1413 /* Assume there is no headless Vega10 for now */
1414 dpm_table = &(data->dpm_table.dcef_table);
1415 vega10_setup_default_single_dpm_table(hwmgr,
1416 dpm_table,
1417 dep_dcef_table);
1419 vega10_init_dpm_state(&(dpm_table->dpm_state));
1421 dpm_table = &(data->dpm_table.pixel_table);
1422 vega10_setup_default_single_dpm_table(hwmgr,
1423 dpm_table,
1424 dep_pix_table);
1426 vega10_init_dpm_state(&(dpm_table->dpm_state));
1428 dpm_table = &(data->dpm_table.display_table);
1429 vega10_setup_default_single_dpm_table(hwmgr,
1430 dpm_table,
1431 dep_disp_table);
1433 vega10_init_dpm_state(&(dpm_table->dpm_state));
1435 dpm_table = &(data->dpm_table.phy_table);
1436 vega10_setup_default_single_dpm_table(hwmgr,
1437 dpm_table,
1438 dep_phy_table);
1440 vega10_init_dpm_state(&(dpm_table->dpm_state));
1442 vega10_setup_default_pcie_table(hwmgr);
1444 /* Zero out the saved copy of the CUSTOM profile
1445 * This will be checked when trying to set the profile
1446 * and will require that new values be passed in
1448 data->custom_profile_mode[0] = 0;
1449 data->custom_profile_mode[1] = 0;
1450 data->custom_profile_mode[2] = 0;
1451 data->custom_profile_mode[3] = 0;
1453 /* save a copy of the default DPM table */
1454 memcpy(&(data->golden_dpm_table), &(data->dpm_table),
1455 sizeof(struct vega10_dpm_table));
1457 return 0;
1461 * @fn vega10_populate_ulv_state
1462 * @brief Function to provide parameters for Utral Low Voltage state to SMC.
1464 * @param hwmgr - the address of the hardware manager.
1465 * @return Always 0.
1467 static int vega10_populate_ulv_state(struct pp_hwmgr *hwmgr)
1469 struct vega10_hwmgr *data = hwmgr->backend;
1470 struct phm_ppt_v2_information *table_info =
1471 (struct phm_ppt_v2_information *)(hwmgr->pptable);
1473 data->smc_state_table.pp_table.UlvOffsetVid =
1474 (uint8_t)table_info->us_ulv_voltage_offset;
1476 data->smc_state_table.pp_table.UlvSmnclkDid =
1477 (uint8_t)(table_info->us_ulv_smnclk_did);
1478 data->smc_state_table.pp_table.UlvMp1clkDid =
1479 (uint8_t)(table_info->us_ulv_mp1clk_did);
1480 data->smc_state_table.pp_table.UlvGfxclkBypass =
1481 (uint8_t)(table_info->us_ulv_gfxclk_bypass);
1482 data->smc_state_table.pp_table.UlvPhaseSheddingPsi0 =
1483 (uint8_t)(data->vddc_voltage_table.psi0_enable);
1484 data->smc_state_table.pp_table.UlvPhaseSheddingPsi1 =
1485 (uint8_t)(data->vddc_voltage_table.psi1_enable);
1487 return 0;
1490 static int vega10_populate_single_lclk_level(struct pp_hwmgr *hwmgr,
1491 uint32_t lclock, uint8_t *curr_lclk_did)
1493 struct pp_atomfwctrl_clock_dividers_soc15 dividers;
1495 PP_ASSERT_WITH_CODE(!pp_atomfwctrl_get_gpu_pll_dividers_vega10(
1496 hwmgr,
1497 COMPUTE_GPUCLK_INPUT_FLAG_DEFAULT_GPUCLK,
1498 lclock, &dividers),
1499 "Failed to get LCLK clock settings from VBIOS!",
1500 return -1);
1502 *curr_lclk_did = dividers.ulDid;
1504 return 0;
1507 static int vega10_populate_smc_link_levels(struct pp_hwmgr *hwmgr)
1509 int result = -1;
1510 struct vega10_hwmgr *data = hwmgr->backend;
1511 PPTable_t *pp_table = &(data->smc_state_table.pp_table);
1512 struct vega10_pcie_table *pcie_table =
1513 &(data->dpm_table.pcie_table);
1514 uint32_t i, j;
1516 for (i = 0; i < pcie_table->count; i++) {
1517 pp_table->PcieGenSpeed[i] = pcie_table->pcie_gen[i];
1518 pp_table->PcieLaneCount[i] = pcie_table->pcie_lane[i];
1520 result = vega10_populate_single_lclk_level(hwmgr,
1521 pcie_table->lclk[i], &(pp_table->LclkDid[i]));
1522 if (result) {
1523 pr_info("Populate LClock Level %d Failed!\n", i);
1524 return result;
1528 j = i - 1;
1529 while (i < NUM_LINK_LEVELS) {
1530 pp_table->PcieGenSpeed[i] = pcie_table->pcie_gen[j];
1531 pp_table->PcieLaneCount[i] = pcie_table->pcie_lane[j];
1533 result = vega10_populate_single_lclk_level(hwmgr,
1534 pcie_table->lclk[j], &(pp_table->LclkDid[i]));
1535 if (result) {
1536 pr_info("Populate LClock Level %d Failed!\n", i);
1537 return result;
1539 i++;
1542 return result;
1546 * Populates single SMC GFXSCLK structure using the provided engine clock
1548 * @param hwmgr the address of the hardware manager
1549 * @param gfx_clock the GFX clock to use to populate the structure.
1550 * @param current_gfxclk_level location in PPTable for the SMC GFXCLK structure.
1553 static int vega10_populate_single_gfx_level(struct pp_hwmgr *hwmgr,
1554 uint32_t gfx_clock, PllSetting_t *current_gfxclk_level,
1555 uint32_t *acg_freq)
1557 struct phm_ppt_v2_information *table_info =
1558 (struct phm_ppt_v2_information *)(hwmgr->pptable);
1559 struct phm_ppt_v1_clock_voltage_dependency_table *dep_on_sclk;
1560 struct vega10_hwmgr *data = hwmgr->backend;
1561 struct pp_atomfwctrl_clock_dividers_soc15 dividers;
1562 uint32_t gfx_max_clock =
1563 hwmgr->platform_descriptor.overdriveLimit.engineClock;
1564 uint32_t i = 0;
1566 if (hwmgr->od_enabled)
1567 dep_on_sclk = (struct phm_ppt_v1_clock_voltage_dependency_table *)
1568 &(data->odn_dpm_table.vdd_dep_on_sclk);
1569 else
1570 dep_on_sclk = table_info->vdd_dep_on_sclk;
1572 PP_ASSERT_WITH_CODE(dep_on_sclk,
1573 "Invalid SOC_VDD-GFX_CLK Dependency Table!",
1574 return -EINVAL);
1576 if (data->need_update_dpm_table & DPMTABLE_OD_UPDATE_SCLK)
1577 gfx_clock = gfx_clock > gfx_max_clock ? gfx_max_clock : gfx_clock;
1578 else {
1579 for (i = 0; i < dep_on_sclk->count; i++) {
1580 if (dep_on_sclk->entries[i].clk == gfx_clock)
1581 break;
1583 PP_ASSERT_WITH_CODE(dep_on_sclk->count > i,
1584 "Cannot find gfx_clk in SOC_VDD-GFX_CLK!",
1585 return -EINVAL);
1588 PP_ASSERT_WITH_CODE(!pp_atomfwctrl_get_gpu_pll_dividers_vega10(hwmgr,
1589 COMPUTE_GPUCLK_INPUT_FLAG_GFXCLK,
1590 gfx_clock, &dividers),
1591 "Failed to get GFX Clock settings from VBIOS!",
1592 return -EINVAL);
1594 /* Feedback Multiplier: bit 0:8 int, bit 15:12 post_div, bit 31:16 frac */
1595 current_gfxclk_level->FbMult =
1596 cpu_to_le32(dividers.ulPll_fb_mult);
1597 /* Spread FB Multiplier bit: bit 0:8 int, bit 31:16 frac */
1598 current_gfxclk_level->SsOn = dividers.ucPll_ss_enable;
1599 current_gfxclk_level->SsFbMult =
1600 cpu_to_le32(dividers.ulPll_ss_fbsmult);
1601 current_gfxclk_level->SsSlewFrac =
1602 cpu_to_le16(dividers.usPll_ss_slew_frac);
1603 current_gfxclk_level->Did = (uint8_t)(dividers.ulDid);
1605 *acg_freq = gfx_clock / 100; /* 100 Khz to Mhz conversion */
1607 return 0;
1611 * @brief Populates single SMC SOCCLK structure using the provided clock.
1613 * @param hwmgr - the address of the hardware manager.
1614 * @param soc_clock - the SOC clock to use to populate the structure.
1615 * @param current_socclk_level - location in PPTable for the SMC SOCCLK structure.
1616 * @return 0 on success..
1618 static int vega10_populate_single_soc_level(struct pp_hwmgr *hwmgr,
1619 uint32_t soc_clock, uint8_t *current_soc_did,
1620 uint8_t *current_vol_index)
1622 struct vega10_hwmgr *data = hwmgr->backend;
1623 struct phm_ppt_v2_information *table_info =
1624 (struct phm_ppt_v2_information *)(hwmgr->pptable);
1625 struct phm_ppt_v1_clock_voltage_dependency_table *dep_on_soc;
1626 struct pp_atomfwctrl_clock_dividers_soc15 dividers;
1627 uint32_t i;
1629 if (hwmgr->od_enabled) {
1630 dep_on_soc = (struct phm_ppt_v1_clock_voltage_dependency_table *)
1631 &data->odn_dpm_table.vdd_dep_on_socclk;
1632 for (i = 0; i < dep_on_soc->count; i++) {
1633 if (dep_on_soc->entries[i].clk >= soc_clock)
1634 break;
1636 } else {
1637 dep_on_soc = table_info->vdd_dep_on_socclk;
1638 for (i = 0; i < dep_on_soc->count; i++) {
1639 if (dep_on_soc->entries[i].clk == soc_clock)
1640 break;
1644 PP_ASSERT_WITH_CODE(dep_on_soc->count > i,
1645 "Cannot find SOC_CLK in SOC_VDD-SOC_CLK Dependency Table",
1646 return -EINVAL);
1648 PP_ASSERT_WITH_CODE(!pp_atomfwctrl_get_gpu_pll_dividers_vega10(hwmgr,
1649 COMPUTE_GPUCLK_INPUT_FLAG_DEFAULT_GPUCLK,
1650 soc_clock, &dividers),
1651 "Failed to get SOC Clock settings from VBIOS!",
1652 return -EINVAL);
1654 *current_soc_did = (uint8_t)dividers.ulDid;
1655 *current_vol_index = (uint8_t)(dep_on_soc->entries[i].vddInd);
1656 return 0;
1660 * Populates all SMC SCLK levels' structure based on the trimmed allowed dpm engine clock states
1662 * @param hwmgr the address of the hardware manager
1664 static int vega10_populate_all_graphic_levels(struct pp_hwmgr *hwmgr)
1666 struct vega10_hwmgr *data = hwmgr->backend;
1667 struct phm_ppt_v2_information *table_info =
1668 (struct phm_ppt_v2_information *)(hwmgr->pptable);
1669 PPTable_t *pp_table = &(data->smc_state_table.pp_table);
1670 struct vega10_single_dpm_table *dpm_table = &(data->dpm_table.gfx_table);
1671 int result = 0;
1672 uint32_t i, j;
1674 for (i = 0; i < dpm_table->count; i++) {
1675 result = vega10_populate_single_gfx_level(hwmgr,
1676 dpm_table->dpm_levels[i].value,
1677 &(pp_table->GfxclkLevel[i]),
1678 &(pp_table->AcgFreqTable[i]));
1679 if (result)
1680 return result;
1683 j = i - 1;
1684 while (i < NUM_GFXCLK_DPM_LEVELS) {
1685 result = vega10_populate_single_gfx_level(hwmgr,
1686 dpm_table->dpm_levels[j].value,
1687 &(pp_table->GfxclkLevel[i]),
1688 &(pp_table->AcgFreqTable[i]));
1689 if (result)
1690 return result;
1691 i++;
1694 pp_table->GfxclkSlewRate =
1695 cpu_to_le16(table_info->us_gfxclk_slew_rate);
1697 dpm_table = &(data->dpm_table.soc_table);
1698 for (i = 0; i < dpm_table->count; i++) {
1699 result = vega10_populate_single_soc_level(hwmgr,
1700 dpm_table->dpm_levels[i].value,
1701 &(pp_table->SocclkDid[i]),
1702 &(pp_table->SocDpmVoltageIndex[i]));
1703 if (result)
1704 return result;
1707 j = i - 1;
1708 while (i < NUM_SOCCLK_DPM_LEVELS) {
1709 result = vega10_populate_single_soc_level(hwmgr,
1710 dpm_table->dpm_levels[j].value,
1711 &(pp_table->SocclkDid[i]),
1712 &(pp_table->SocDpmVoltageIndex[i]));
1713 if (result)
1714 return result;
1715 i++;
1718 return result;
1721 static void vega10_populate_vddc_soc_levels(struct pp_hwmgr *hwmgr)
1723 struct vega10_hwmgr *data = hwmgr->backend;
1724 PPTable_t *pp_table = &(data->smc_state_table.pp_table);
1725 struct phm_ppt_v2_information *table_info = hwmgr->pptable;
1726 struct phm_ppt_v1_voltage_lookup_table *vddc_lookup_table;
1728 uint8_t soc_vid = 0;
1729 uint32_t i, max_vddc_level;
1731 if (hwmgr->od_enabled)
1732 vddc_lookup_table = (struct phm_ppt_v1_voltage_lookup_table *)&data->odn_dpm_table.vddc_lookup_table;
1733 else
1734 vddc_lookup_table = table_info->vddc_lookup_table;
1736 max_vddc_level = vddc_lookup_table->count;
1737 for (i = 0; i < max_vddc_level; i++) {
1738 soc_vid = (uint8_t)convert_to_vid(vddc_lookup_table->entries[i].us_vdd);
1739 pp_table->SocVid[i] = soc_vid;
1741 while (i < MAX_REGULAR_DPM_NUMBER) {
1742 pp_table->SocVid[i] = soc_vid;
1743 i++;
1748 * @brief Populates single SMC GFXCLK structure using the provided clock.
1750 * @param hwmgr - the address of the hardware manager.
1751 * @param mem_clock - the memory clock to use to populate the structure.
1752 * @return 0 on success..
1754 static int vega10_populate_single_memory_level(struct pp_hwmgr *hwmgr,
1755 uint32_t mem_clock, uint8_t *current_mem_vid,
1756 PllSetting_t *current_memclk_level, uint8_t *current_mem_soc_vind)
1758 struct vega10_hwmgr *data = hwmgr->backend;
1759 struct phm_ppt_v2_information *table_info =
1760 (struct phm_ppt_v2_information *)(hwmgr->pptable);
1761 struct phm_ppt_v1_clock_voltage_dependency_table *dep_on_mclk;
1762 struct pp_atomfwctrl_clock_dividers_soc15 dividers;
1763 uint32_t mem_max_clock =
1764 hwmgr->platform_descriptor.overdriveLimit.memoryClock;
1765 uint32_t i = 0;
1767 if (hwmgr->od_enabled)
1768 dep_on_mclk = (struct phm_ppt_v1_clock_voltage_dependency_table *)
1769 &data->odn_dpm_table.vdd_dep_on_mclk;
1770 else
1771 dep_on_mclk = table_info->vdd_dep_on_mclk;
1773 PP_ASSERT_WITH_CODE(dep_on_mclk,
1774 "Invalid SOC_VDD-UCLK Dependency Table!",
1775 return -EINVAL);
1777 if (data->need_update_dpm_table & DPMTABLE_OD_UPDATE_MCLK) {
1778 mem_clock = mem_clock > mem_max_clock ? mem_max_clock : mem_clock;
1779 } else {
1780 for (i = 0; i < dep_on_mclk->count; i++) {
1781 if (dep_on_mclk->entries[i].clk == mem_clock)
1782 break;
1784 PP_ASSERT_WITH_CODE(dep_on_mclk->count > i,
1785 "Cannot find UCLK in SOC_VDD-UCLK Dependency Table!",
1786 return -EINVAL);
1789 PP_ASSERT_WITH_CODE(!pp_atomfwctrl_get_gpu_pll_dividers_vega10(
1790 hwmgr, COMPUTE_GPUCLK_INPUT_FLAG_UCLK, mem_clock, &dividers),
1791 "Failed to get UCLK settings from VBIOS!",
1792 return -1);
1794 *current_mem_vid =
1795 (uint8_t)(convert_to_vid(dep_on_mclk->entries[i].mvdd));
1796 *current_mem_soc_vind =
1797 (uint8_t)(dep_on_mclk->entries[i].vddInd);
1798 current_memclk_level->FbMult = cpu_to_le32(dividers.ulPll_fb_mult);
1799 current_memclk_level->Did = (uint8_t)(dividers.ulDid);
1801 PP_ASSERT_WITH_CODE(current_memclk_level->Did >= 1,
1802 "Invalid Divider ID!",
1803 return -EINVAL);
1805 return 0;
1809 * @brief Populates all SMC MCLK levels' structure based on the trimmed allowed dpm memory clock states.
1811 * @param pHwMgr - the address of the hardware manager.
1812 * @return PP_Result_OK on success.
1814 static int vega10_populate_all_memory_levels(struct pp_hwmgr *hwmgr)
1816 struct vega10_hwmgr *data = hwmgr->backend;
1817 PPTable_t *pp_table = &(data->smc_state_table.pp_table);
1818 struct vega10_single_dpm_table *dpm_table =
1819 &(data->dpm_table.mem_table);
1820 int result = 0;
1821 uint32_t i, j;
1823 for (i = 0; i < dpm_table->count; i++) {
1824 result = vega10_populate_single_memory_level(hwmgr,
1825 dpm_table->dpm_levels[i].value,
1826 &(pp_table->MemVid[i]),
1827 &(pp_table->UclkLevel[i]),
1828 &(pp_table->MemSocVoltageIndex[i]));
1829 if (result)
1830 return result;
1833 j = i - 1;
1834 while (i < NUM_UCLK_DPM_LEVELS) {
1835 result = vega10_populate_single_memory_level(hwmgr,
1836 dpm_table->dpm_levels[j].value,
1837 &(pp_table->MemVid[i]),
1838 &(pp_table->UclkLevel[i]),
1839 &(pp_table->MemSocVoltageIndex[i]));
1840 if (result)
1841 return result;
1842 i++;
1845 pp_table->NumMemoryChannels = (uint16_t)(data->mem_channels);
1846 pp_table->MemoryChannelWidth =
1847 (uint16_t)(HBM_MEMORY_CHANNEL_WIDTH *
1848 channel_number[data->mem_channels]);
1850 pp_table->LowestUclkReservedForUlv =
1851 (uint8_t)(data->lowest_uclk_reserved_for_ulv);
1853 return result;
1856 static int vega10_populate_single_display_type(struct pp_hwmgr *hwmgr,
1857 DSPCLK_e disp_clock)
1859 struct vega10_hwmgr *data = hwmgr->backend;
1860 PPTable_t *pp_table = &(data->smc_state_table.pp_table);
1861 struct phm_ppt_v2_information *table_info =
1862 (struct phm_ppt_v2_information *)
1863 (hwmgr->pptable);
1864 struct phm_ppt_v1_clock_voltage_dependency_table *dep_table;
1865 uint32_t i;
1866 uint16_t clk = 0, vddc = 0;
1867 uint8_t vid = 0;
1869 switch (disp_clock) {
1870 case DSPCLK_DCEFCLK:
1871 dep_table = table_info->vdd_dep_on_dcefclk;
1872 break;
1873 case DSPCLK_DISPCLK:
1874 dep_table = table_info->vdd_dep_on_dispclk;
1875 break;
1876 case DSPCLK_PIXCLK:
1877 dep_table = table_info->vdd_dep_on_pixclk;
1878 break;
1879 case DSPCLK_PHYCLK:
1880 dep_table = table_info->vdd_dep_on_phyclk;
1881 break;
1882 default:
1883 return -1;
1886 PP_ASSERT_WITH_CODE(dep_table->count <= NUM_DSPCLK_LEVELS,
1887 "Number Of Entries Exceeded maximum!",
1888 return -1);
1890 for (i = 0; i < dep_table->count; i++) {
1891 clk = (uint16_t)(dep_table->entries[i].clk / 100);
1892 vddc = table_info->vddc_lookup_table->
1893 entries[dep_table->entries[i].vddInd].us_vdd;
1894 vid = (uint8_t)convert_to_vid(vddc);
1895 pp_table->DisplayClockTable[disp_clock][i].Freq =
1896 cpu_to_le16(clk);
1897 pp_table->DisplayClockTable[disp_clock][i].Vid =
1898 cpu_to_le16(vid);
1901 while (i < NUM_DSPCLK_LEVELS) {
1902 pp_table->DisplayClockTable[disp_clock][i].Freq =
1903 cpu_to_le16(clk);
1904 pp_table->DisplayClockTable[disp_clock][i].Vid =
1905 cpu_to_le16(vid);
1906 i++;
1909 return 0;
1912 static int vega10_populate_all_display_clock_levels(struct pp_hwmgr *hwmgr)
1914 uint32_t i;
1916 for (i = 0; i < DSPCLK_COUNT; i++) {
1917 PP_ASSERT_WITH_CODE(!vega10_populate_single_display_type(hwmgr, i),
1918 "Failed to populate Clock in DisplayClockTable!",
1919 return -1);
1922 return 0;
1925 static int vega10_populate_single_eclock_level(struct pp_hwmgr *hwmgr,
1926 uint32_t eclock, uint8_t *current_eclk_did,
1927 uint8_t *current_soc_vol)
1929 struct phm_ppt_v2_information *table_info =
1930 (struct phm_ppt_v2_information *)(hwmgr->pptable);
1931 struct phm_ppt_v1_mm_clock_voltage_dependency_table *dep_table =
1932 table_info->mm_dep_table;
1933 struct pp_atomfwctrl_clock_dividers_soc15 dividers;
1934 uint32_t i;
1936 PP_ASSERT_WITH_CODE(!pp_atomfwctrl_get_gpu_pll_dividers_vega10(hwmgr,
1937 COMPUTE_GPUCLK_INPUT_FLAG_DEFAULT_GPUCLK,
1938 eclock, &dividers),
1939 "Failed to get ECLK clock settings from VBIOS!",
1940 return -1);
1942 *current_eclk_did = (uint8_t)dividers.ulDid;
1944 for (i = 0; i < dep_table->count; i++) {
1945 if (dep_table->entries[i].eclk == eclock)
1946 *current_soc_vol = dep_table->entries[i].vddcInd;
1949 return 0;
1952 static int vega10_populate_smc_vce_levels(struct pp_hwmgr *hwmgr)
1954 struct vega10_hwmgr *data = hwmgr->backend;
1955 PPTable_t *pp_table = &(data->smc_state_table.pp_table);
1956 struct vega10_single_dpm_table *dpm_table = &(data->dpm_table.eclk_table);
1957 int result = -EINVAL;
1958 uint32_t i, j;
1960 for (i = 0; i < dpm_table->count; i++) {
1961 result = vega10_populate_single_eclock_level(hwmgr,
1962 dpm_table->dpm_levels[i].value,
1963 &(pp_table->EclkDid[i]),
1964 &(pp_table->VceDpmVoltageIndex[i]));
1965 if (result)
1966 return result;
1969 j = i - 1;
1970 while (i < NUM_VCE_DPM_LEVELS) {
1971 result = vega10_populate_single_eclock_level(hwmgr,
1972 dpm_table->dpm_levels[j].value,
1973 &(pp_table->EclkDid[i]),
1974 &(pp_table->VceDpmVoltageIndex[i]));
1975 if (result)
1976 return result;
1977 i++;
1980 return result;
1983 static int vega10_populate_single_vclock_level(struct pp_hwmgr *hwmgr,
1984 uint32_t vclock, uint8_t *current_vclk_did)
1986 struct pp_atomfwctrl_clock_dividers_soc15 dividers;
1988 PP_ASSERT_WITH_CODE(!pp_atomfwctrl_get_gpu_pll_dividers_vega10(hwmgr,
1989 COMPUTE_GPUCLK_INPUT_FLAG_DEFAULT_GPUCLK,
1990 vclock, &dividers),
1991 "Failed to get VCLK clock settings from VBIOS!",
1992 return -EINVAL);
1994 *current_vclk_did = (uint8_t)dividers.ulDid;
1996 return 0;
1999 static int vega10_populate_single_dclock_level(struct pp_hwmgr *hwmgr,
2000 uint32_t dclock, uint8_t *current_dclk_did)
2002 struct pp_atomfwctrl_clock_dividers_soc15 dividers;
2004 PP_ASSERT_WITH_CODE(!pp_atomfwctrl_get_gpu_pll_dividers_vega10(hwmgr,
2005 COMPUTE_GPUCLK_INPUT_FLAG_DEFAULT_GPUCLK,
2006 dclock, &dividers),
2007 "Failed to get DCLK clock settings from VBIOS!",
2008 return -EINVAL);
2010 *current_dclk_did = (uint8_t)dividers.ulDid;
2012 return 0;
2015 static int vega10_populate_smc_uvd_levels(struct pp_hwmgr *hwmgr)
2017 struct vega10_hwmgr *data = hwmgr->backend;
2018 PPTable_t *pp_table = &(data->smc_state_table.pp_table);
2019 struct vega10_single_dpm_table *vclk_dpm_table =
2020 &(data->dpm_table.vclk_table);
2021 struct vega10_single_dpm_table *dclk_dpm_table =
2022 &(data->dpm_table.dclk_table);
2023 struct phm_ppt_v2_information *table_info =
2024 (struct phm_ppt_v2_information *)(hwmgr->pptable);
2025 struct phm_ppt_v1_mm_clock_voltage_dependency_table *dep_table =
2026 table_info->mm_dep_table;
2027 int result = -EINVAL;
2028 uint32_t i, j;
2030 for (i = 0; i < vclk_dpm_table->count; i++) {
2031 result = vega10_populate_single_vclock_level(hwmgr,
2032 vclk_dpm_table->dpm_levels[i].value,
2033 &(pp_table->VclkDid[i]));
2034 if (result)
2035 return result;
2038 j = i - 1;
2039 while (i < NUM_UVD_DPM_LEVELS) {
2040 result = vega10_populate_single_vclock_level(hwmgr,
2041 vclk_dpm_table->dpm_levels[j].value,
2042 &(pp_table->VclkDid[i]));
2043 if (result)
2044 return result;
2045 i++;
2048 for (i = 0; i < dclk_dpm_table->count; i++) {
2049 result = vega10_populate_single_dclock_level(hwmgr,
2050 dclk_dpm_table->dpm_levels[i].value,
2051 &(pp_table->DclkDid[i]));
2052 if (result)
2053 return result;
2056 j = i - 1;
2057 while (i < NUM_UVD_DPM_LEVELS) {
2058 result = vega10_populate_single_dclock_level(hwmgr,
2059 dclk_dpm_table->dpm_levels[j].value,
2060 &(pp_table->DclkDid[i]));
2061 if (result)
2062 return result;
2063 i++;
2066 for (i = 0; i < dep_table->count; i++) {
2067 if (dep_table->entries[i].vclk ==
2068 vclk_dpm_table->dpm_levels[i].value &&
2069 dep_table->entries[i].dclk ==
2070 dclk_dpm_table->dpm_levels[i].value)
2071 pp_table->UvdDpmVoltageIndex[i] =
2072 dep_table->entries[i].vddcInd;
2073 else
2074 return -1;
2077 j = i - 1;
2078 while (i < NUM_UVD_DPM_LEVELS) {
2079 pp_table->UvdDpmVoltageIndex[i] = dep_table->entries[j].vddcInd;
2080 i++;
2083 return 0;
2086 static int vega10_populate_clock_stretcher_table(struct pp_hwmgr *hwmgr)
2088 struct vega10_hwmgr *data = hwmgr->backend;
2089 PPTable_t *pp_table = &(data->smc_state_table.pp_table);
2090 struct phm_ppt_v2_information *table_info =
2091 (struct phm_ppt_v2_information *)(hwmgr->pptable);
2092 struct phm_ppt_v1_clock_voltage_dependency_table *dep_table =
2093 table_info->vdd_dep_on_sclk;
2094 uint32_t i;
2096 for (i = 0; i < dep_table->count; i++) {
2097 pp_table->CksEnable[i] = dep_table->entries[i].cks_enable;
2098 pp_table->CksVidOffset[i] = (uint8_t)(dep_table->entries[i].cks_voffset
2099 * VOLTAGE_VID_OFFSET_SCALE2 / VOLTAGE_VID_OFFSET_SCALE1);
2102 return 0;
2105 static int vega10_populate_avfs_parameters(struct pp_hwmgr *hwmgr)
2107 struct vega10_hwmgr *data = hwmgr->backend;
2108 PPTable_t *pp_table = &(data->smc_state_table.pp_table);
2109 struct phm_ppt_v2_information *table_info =
2110 (struct phm_ppt_v2_information *)(hwmgr->pptable);
2111 struct phm_ppt_v1_clock_voltage_dependency_table *dep_table =
2112 table_info->vdd_dep_on_sclk;
2113 struct pp_atomfwctrl_avfs_parameters avfs_params = {0};
2114 int result = 0;
2115 uint32_t i;
2117 pp_table->MinVoltageVid = (uint8_t)0xff;
2118 pp_table->MaxVoltageVid = (uint8_t)0;
2120 if (data->smu_features[GNLD_AVFS].supported) {
2121 result = pp_atomfwctrl_get_avfs_information(hwmgr, &avfs_params);
2122 if (!result) {
2123 pp_table->MinVoltageVid = (uint8_t)
2124 convert_to_vid((uint16_t)(avfs_params.ulMinVddc));
2125 pp_table->MaxVoltageVid = (uint8_t)
2126 convert_to_vid((uint16_t)(avfs_params.ulMaxVddc));
2128 pp_table->AConstant[0] = cpu_to_le32(avfs_params.ulMeanNsigmaAcontant0);
2129 pp_table->AConstant[1] = cpu_to_le32(avfs_params.ulMeanNsigmaAcontant1);
2130 pp_table->AConstant[2] = cpu_to_le32(avfs_params.ulMeanNsigmaAcontant2);
2131 pp_table->DC_tol_sigma = cpu_to_le16(avfs_params.usMeanNsigmaDcTolSigma);
2132 pp_table->Platform_mean = cpu_to_le16(avfs_params.usMeanNsigmaPlatformMean);
2133 pp_table->Platform_sigma = cpu_to_le16(avfs_params.usMeanNsigmaDcTolSigma);
2134 pp_table->PSM_Age_CompFactor = cpu_to_le16(avfs_params.usPsmAgeComfactor);
2136 pp_table->BtcGbVdroopTableCksOff.a0 =
2137 cpu_to_le32(avfs_params.ulGbVdroopTableCksoffA0);
2138 pp_table->BtcGbVdroopTableCksOff.a0_shift = 20;
2139 pp_table->BtcGbVdroopTableCksOff.a1 =
2140 cpu_to_le32(avfs_params.ulGbVdroopTableCksoffA1);
2141 pp_table->BtcGbVdroopTableCksOff.a1_shift = 20;
2142 pp_table->BtcGbVdroopTableCksOff.a2 =
2143 cpu_to_le32(avfs_params.ulGbVdroopTableCksoffA2);
2144 pp_table->BtcGbVdroopTableCksOff.a2_shift = 20;
2146 pp_table->OverrideBtcGbCksOn = avfs_params.ucEnableGbVdroopTableCkson;
2147 pp_table->BtcGbVdroopTableCksOn.a0 =
2148 cpu_to_le32(avfs_params.ulGbVdroopTableCksonA0);
2149 pp_table->BtcGbVdroopTableCksOn.a0_shift = 20;
2150 pp_table->BtcGbVdroopTableCksOn.a1 =
2151 cpu_to_le32(avfs_params.ulGbVdroopTableCksonA1);
2152 pp_table->BtcGbVdroopTableCksOn.a1_shift = 20;
2153 pp_table->BtcGbVdroopTableCksOn.a2 =
2154 cpu_to_le32(avfs_params.ulGbVdroopTableCksonA2);
2155 pp_table->BtcGbVdroopTableCksOn.a2_shift = 20;
2157 pp_table->AvfsGbCksOn.m1 =
2158 cpu_to_le32(avfs_params.ulGbFuseTableCksonM1);
2159 pp_table->AvfsGbCksOn.m2 =
2160 cpu_to_le32(avfs_params.ulGbFuseTableCksonM2);
2161 pp_table->AvfsGbCksOn.b =
2162 cpu_to_le32(avfs_params.ulGbFuseTableCksonB);
2163 pp_table->AvfsGbCksOn.m1_shift = 24;
2164 pp_table->AvfsGbCksOn.m2_shift = 12;
2165 pp_table->AvfsGbCksOn.b_shift = 0;
2167 pp_table->OverrideAvfsGbCksOn =
2168 avfs_params.ucEnableGbFuseTableCkson;
2169 pp_table->AvfsGbCksOff.m1 =
2170 cpu_to_le32(avfs_params.ulGbFuseTableCksoffM1);
2171 pp_table->AvfsGbCksOff.m2 =
2172 cpu_to_le32(avfs_params.ulGbFuseTableCksoffM2);
2173 pp_table->AvfsGbCksOff.b =
2174 cpu_to_le32(avfs_params.ulGbFuseTableCksoffB);
2175 pp_table->AvfsGbCksOff.m1_shift = 24;
2176 pp_table->AvfsGbCksOff.m2_shift = 12;
2177 pp_table->AvfsGbCksOff.b_shift = 0;
2179 for (i = 0; i < dep_table->count; i++)
2180 pp_table->StaticVoltageOffsetVid[i] =
2181 convert_to_vid((uint8_t)(dep_table->entries[i].sclk_offset));
2183 if ((PPREGKEY_VEGA10QUADRATICEQUATION_DFLT !=
2184 data->disp_clk_quad_eqn_a) &&
2185 (PPREGKEY_VEGA10QUADRATICEQUATION_DFLT !=
2186 data->disp_clk_quad_eqn_b)) {
2187 pp_table->DisplayClock2Gfxclk[DSPCLK_DISPCLK].m1 =
2188 (int32_t)data->disp_clk_quad_eqn_a;
2189 pp_table->DisplayClock2Gfxclk[DSPCLK_DISPCLK].m2 =
2190 (int32_t)data->disp_clk_quad_eqn_b;
2191 pp_table->DisplayClock2Gfxclk[DSPCLK_DISPCLK].b =
2192 (int32_t)data->disp_clk_quad_eqn_c;
2193 } else {
2194 pp_table->DisplayClock2Gfxclk[DSPCLK_DISPCLK].m1 =
2195 (int32_t)avfs_params.ulDispclk2GfxclkM1;
2196 pp_table->DisplayClock2Gfxclk[DSPCLK_DISPCLK].m2 =
2197 (int32_t)avfs_params.ulDispclk2GfxclkM2;
2198 pp_table->DisplayClock2Gfxclk[DSPCLK_DISPCLK].b =
2199 (int32_t)avfs_params.ulDispclk2GfxclkB;
2202 pp_table->DisplayClock2Gfxclk[DSPCLK_DISPCLK].m1_shift = 24;
2203 pp_table->DisplayClock2Gfxclk[DSPCLK_DISPCLK].m2_shift = 12;
2204 pp_table->DisplayClock2Gfxclk[DSPCLK_DISPCLK].b_shift = 12;
2206 if ((PPREGKEY_VEGA10QUADRATICEQUATION_DFLT !=
2207 data->dcef_clk_quad_eqn_a) &&
2208 (PPREGKEY_VEGA10QUADRATICEQUATION_DFLT !=
2209 data->dcef_clk_quad_eqn_b)) {
2210 pp_table->DisplayClock2Gfxclk[DSPCLK_DCEFCLK].m1 =
2211 (int32_t)data->dcef_clk_quad_eqn_a;
2212 pp_table->DisplayClock2Gfxclk[DSPCLK_DCEFCLK].m2 =
2213 (int32_t)data->dcef_clk_quad_eqn_b;
2214 pp_table->DisplayClock2Gfxclk[DSPCLK_DCEFCLK].b =
2215 (int32_t)data->dcef_clk_quad_eqn_c;
2216 } else {
2217 pp_table->DisplayClock2Gfxclk[DSPCLK_DCEFCLK].m1 =
2218 (int32_t)avfs_params.ulDcefclk2GfxclkM1;
2219 pp_table->DisplayClock2Gfxclk[DSPCLK_DCEFCLK].m2 =
2220 (int32_t)avfs_params.ulDcefclk2GfxclkM2;
2221 pp_table->DisplayClock2Gfxclk[DSPCLK_DCEFCLK].b =
2222 (int32_t)avfs_params.ulDcefclk2GfxclkB;
2225 pp_table->DisplayClock2Gfxclk[DSPCLK_DCEFCLK].m1_shift = 24;
2226 pp_table->DisplayClock2Gfxclk[DSPCLK_DCEFCLK].m2_shift = 12;
2227 pp_table->DisplayClock2Gfxclk[DSPCLK_DCEFCLK].b_shift = 12;
2229 if ((PPREGKEY_VEGA10QUADRATICEQUATION_DFLT !=
2230 data->pixel_clk_quad_eqn_a) &&
2231 (PPREGKEY_VEGA10QUADRATICEQUATION_DFLT !=
2232 data->pixel_clk_quad_eqn_b)) {
2233 pp_table->DisplayClock2Gfxclk[DSPCLK_PIXCLK].m1 =
2234 (int32_t)data->pixel_clk_quad_eqn_a;
2235 pp_table->DisplayClock2Gfxclk[DSPCLK_PIXCLK].m2 =
2236 (int32_t)data->pixel_clk_quad_eqn_b;
2237 pp_table->DisplayClock2Gfxclk[DSPCLK_PIXCLK].b =
2238 (int32_t)data->pixel_clk_quad_eqn_c;
2239 } else {
2240 pp_table->DisplayClock2Gfxclk[DSPCLK_PIXCLK].m1 =
2241 (int32_t)avfs_params.ulPixelclk2GfxclkM1;
2242 pp_table->DisplayClock2Gfxclk[DSPCLK_PIXCLK].m2 =
2243 (int32_t)avfs_params.ulPixelclk2GfxclkM2;
2244 pp_table->DisplayClock2Gfxclk[DSPCLK_PIXCLK].b =
2245 (int32_t)avfs_params.ulPixelclk2GfxclkB;
2248 pp_table->DisplayClock2Gfxclk[DSPCLK_PIXCLK].m1_shift = 24;
2249 pp_table->DisplayClock2Gfxclk[DSPCLK_PIXCLK].m2_shift = 12;
2250 pp_table->DisplayClock2Gfxclk[DSPCLK_PIXCLK].b_shift = 12;
2251 if ((PPREGKEY_VEGA10QUADRATICEQUATION_DFLT !=
2252 data->phy_clk_quad_eqn_a) &&
2253 (PPREGKEY_VEGA10QUADRATICEQUATION_DFLT !=
2254 data->phy_clk_quad_eqn_b)) {
2255 pp_table->DisplayClock2Gfxclk[DSPCLK_PHYCLK].m1 =
2256 (int32_t)data->phy_clk_quad_eqn_a;
2257 pp_table->DisplayClock2Gfxclk[DSPCLK_PHYCLK].m2 =
2258 (int32_t)data->phy_clk_quad_eqn_b;
2259 pp_table->DisplayClock2Gfxclk[DSPCLK_PHYCLK].b =
2260 (int32_t)data->phy_clk_quad_eqn_c;
2261 } else {
2262 pp_table->DisplayClock2Gfxclk[DSPCLK_PHYCLK].m1 =
2263 (int32_t)avfs_params.ulPhyclk2GfxclkM1;
2264 pp_table->DisplayClock2Gfxclk[DSPCLK_PHYCLK].m2 =
2265 (int32_t)avfs_params.ulPhyclk2GfxclkM2;
2266 pp_table->DisplayClock2Gfxclk[DSPCLK_PHYCLK].b =
2267 (int32_t)avfs_params.ulPhyclk2GfxclkB;
2270 pp_table->DisplayClock2Gfxclk[DSPCLK_PHYCLK].m1_shift = 24;
2271 pp_table->DisplayClock2Gfxclk[DSPCLK_PHYCLK].m2_shift = 12;
2272 pp_table->DisplayClock2Gfxclk[DSPCLK_PHYCLK].b_shift = 12;
2274 pp_table->AcgBtcGbVdroopTable.a0 = avfs_params.ulAcgGbVdroopTableA0;
2275 pp_table->AcgBtcGbVdroopTable.a0_shift = 20;
2276 pp_table->AcgBtcGbVdroopTable.a1 = avfs_params.ulAcgGbVdroopTableA1;
2277 pp_table->AcgBtcGbVdroopTable.a1_shift = 20;
2278 pp_table->AcgBtcGbVdroopTable.a2 = avfs_params.ulAcgGbVdroopTableA2;
2279 pp_table->AcgBtcGbVdroopTable.a2_shift = 20;
2281 pp_table->AcgAvfsGb.m1 = avfs_params.ulAcgGbFuseTableM1;
2282 pp_table->AcgAvfsGb.m2 = avfs_params.ulAcgGbFuseTableM2;
2283 pp_table->AcgAvfsGb.b = avfs_params.ulAcgGbFuseTableB;
2284 pp_table->AcgAvfsGb.m1_shift = 24;
2285 pp_table->AcgAvfsGb.m2_shift = 12;
2286 pp_table->AcgAvfsGb.b_shift = 0;
2288 } else {
2289 data->smu_features[GNLD_AVFS].supported = false;
2293 return 0;
2296 static int vega10_acg_enable(struct pp_hwmgr *hwmgr)
2298 struct vega10_hwmgr *data = hwmgr->backend;
2299 uint32_t agc_btc_response;
2301 if (data->smu_features[GNLD_ACG].supported) {
2302 if (0 == vega10_enable_smc_features(hwmgr, true,
2303 data->smu_features[GNLD_DPM_PREFETCHER].smu_feature_bitmap))
2304 data->smu_features[GNLD_DPM_PREFETCHER].enabled = true;
2306 smum_send_msg_to_smc(hwmgr, PPSMC_MSG_InitializeAcg);
2308 smum_send_msg_to_smc(hwmgr, PPSMC_MSG_RunAcgBtc);
2309 agc_btc_response = smum_get_argument(hwmgr);
2311 if (1 == agc_btc_response) {
2312 if (1 == data->acg_loop_state)
2313 smum_send_msg_to_smc(hwmgr, PPSMC_MSG_RunAcgInClosedLoop);
2314 else if (2 == data->acg_loop_state)
2315 smum_send_msg_to_smc(hwmgr, PPSMC_MSG_RunAcgInOpenLoop);
2316 if (0 == vega10_enable_smc_features(hwmgr, true,
2317 data->smu_features[GNLD_ACG].smu_feature_bitmap))
2318 data->smu_features[GNLD_ACG].enabled = true;
2319 } else {
2320 pr_info("[ACG_Enable] ACG BTC Returned Failed Status!\n");
2321 data->smu_features[GNLD_ACG].enabled = false;
2325 return 0;
2328 static int vega10_acg_disable(struct pp_hwmgr *hwmgr)
2330 struct vega10_hwmgr *data = hwmgr->backend;
2332 if (data->smu_features[GNLD_ACG].supported &&
2333 data->smu_features[GNLD_ACG].enabled)
2334 if (!vega10_enable_smc_features(hwmgr, false,
2335 data->smu_features[GNLD_ACG].smu_feature_bitmap))
2336 data->smu_features[GNLD_ACG].enabled = false;
2338 return 0;
2341 static int vega10_populate_gpio_parameters(struct pp_hwmgr *hwmgr)
2343 struct vega10_hwmgr *data = hwmgr->backend;
2344 PPTable_t *pp_table = &(data->smc_state_table.pp_table);
2345 struct pp_atomfwctrl_gpio_parameters gpio_params = {0};
2346 int result;
2348 result = pp_atomfwctrl_get_gpio_information(hwmgr, &gpio_params);
2349 if (!result) {
2350 if (PP_CAP(PHM_PlatformCaps_RegulatorHot) &&
2351 data->registry_data.regulator_hot_gpio_support) {
2352 pp_table->VR0HotGpio = gpio_params.ucVR0HotGpio;
2353 pp_table->VR0HotPolarity = gpio_params.ucVR0HotPolarity;
2354 pp_table->VR1HotGpio = gpio_params.ucVR1HotGpio;
2355 pp_table->VR1HotPolarity = gpio_params.ucVR1HotPolarity;
2356 } else {
2357 pp_table->VR0HotGpio = 0;
2358 pp_table->VR0HotPolarity = 0;
2359 pp_table->VR1HotGpio = 0;
2360 pp_table->VR1HotPolarity = 0;
2363 if (PP_CAP(PHM_PlatformCaps_AutomaticDCTransition) &&
2364 data->registry_data.ac_dc_switch_gpio_support) {
2365 pp_table->AcDcGpio = gpio_params.ucAcDcGpio;
2366 pp_table->AcDcPolarity = gpio_params.ucAcDcPolarity;
2367 } else {
2368 pp_table->AcDcGpio = 0;
2369 pp_table->AcDcPolarity = 0;
2373 return result;
2376 static int vega10_avfs_enable(struct pp_hwmgr *hwmgr, bool enable)
2378 struct vega10_hwmgr *data = hwmgr->backend;
2380 if (data->smu_features[GNLD_AVFS].supported) {
2381 /* Already enabled or disabled */
2382 if (!(enable ^ data->smu_features[GNLD_AVFS].enabled))
2383 return 0;
2385 if (enable) {
2386 PP_ASSERT_WITH_CODE(!vega10_enable_smc_features(hwmgr,
2387 true,
2388 data->smu_features[GNLD_AVFS].smu_feature_bitmap),
2389 "[avfs_control] Attempt to Enable AVFS feature Failed!",
2390 return -1);
2391 data->smu_features[GNLD_AVFS].enabled = true;
2392 } else {
2393 PP_ASSERT_WITH_CODE(!vega10_enable_smc_features(hwmgr,
2394 false,
2395 data->smu_features[GNLD_AVFS].smu_feature_bitmap),
2396 "[avfs_control] Attempt to Disable AVFS feature Failed!",
2397 return -1);
2398 data->smu_features[GNLD_AVFS].enabled = false;
2402 return 0;
2405 static int vega10_update_avfs(struct pp_hwmgr *hwmgr)
2407 struct vega10_hwmgr *data = hwmgr->backend;
2409 if (data->need_update_dpm_table & DPMTABLE_OD_UPDATE_VDDC) {
2410 vega10_avfs_enable(hwmgr, false);
2411 } else if (data->need_update_dpm_table) {
2412 vega10_avfs_enable(hwmgr, false);
2413 vega10_avfs_enable(hwmgr, true);
2414 } else {
2415 vega10_avfs_enable(hwmgr, true);
2418 return 0;
2421 static int vega10_populate_and_upload_avfs_fuse_override(struct pp_hwmgr *hwmgr)
2423 int result = 0;
2425 uint64_t serial_number = 0;
2426 uint32_t top32, bottom32;
2427 struct phm_fuses_default fuse;
2429 struct vega10_hwmgr *data = hwmgr->backend;
2430 AvfsFuseOverride_t *avfs_fuse_table = &(data->smc_state_table.avfs_fuse_override_table);
2432 smum_send_msg_to_smc(hwmgr, PPSMC_MSG_ReadSerialNumTop32);
2433 top32 = smum_get_argument(hwmgr);
2435 smum_send_msg_to_smc(hwmgr, PPSMC_MSG_ReadSerialNumBottom32);
2436 bottom32 = smum_get_argument(hwmgr);
2438 serial_number = ((uint64_t)bottom32 << 32) | top32;
2440 if (pp_override_get_default_fuse_value(serial_number, &fuse) == 0) {
2441 avfs_fuse_table->VFT0_b = fuse.VFT0_b;
2442 avfs_fuse_table->VFT0_m1 = fuse.VFT0_m1;
2443 avfs_fuse_table->VFT0_m2 = fuse.VFT0_m2;
2444 avfs_fuse_table->VFT1_b = fuse.VFT1_b;
2445 avfs_fuse_table->VFT1_m1 = fuse.VFT1_m1;
2446 avfs_fuse_table->VFT1_m2 = fuse.VFT1_m2;
2447 avfs_fuse_table->VFT2_b = fuse.VFT2_b;
2448 avfs_fuse_table->VFT2_m1 = fuse.VFT2_m1;
2449 avfs_fuse_table->VFT2_m2 = fuse.VFT2_m2;
2450 result = smum_smc_table_manager(hwmgr, (uint8_t *)avfs_fuse_table,
2451 AVFSFUSETABLE, false);
2452 PP_ASSERT_WITH_CODE(!result,
2453 "Failed to upload FuseOVerride!",
2457 return result;
2460 static void vega10_check_dpm_table_updated(struct pp_hwmgr *hwmgr)
2462 struct vega10_hwmgr *data = hwmgr->backend;
2463 struct vega10_odn_dpm_table *odn_table = &(data->odn_dpm_table);
2464 struct phm_ppt_v2_information *table_info = hwmgr->pptable;
2465 struct phm_ppt_v1_clock_voltage_dependency_table *dep_table;
2466 struct phm_ppt_v1_clock_voltage_dependency_table *odn_dep_table;
2467 uint32_t i;
2469 dep_table = table_info->vdd_dep_on_mclk;
2470 odn_dep_table = (struct phm_ppt_v1_clock_voltage_dependency_table *)&(odn_table->vdd_dep_on_mclk);
2472 for (i = 0; i < dep_table->count; i++) {
2473 if (dep_table->entries[i].vddc != odn_dep_table->entries[i].vddc) {
2474 data->need_update_dpm_table |= DPMTABLE_OD_UPDATE_VDDC | DPMTABLE_OD_UPDATE_MCLK;
2475 return;
2479 dep_table = table_info->vdd_dep_on_sclk;
2480 odn_dep_table = (struct phm_ppt_v1_clock_voltage_dependency_table *)&(odn_table->vdd_dep_on_sclk);
2481 for (i = 0; i < dep_table->count; i++) {
2482 if (dep_table->entries[i].vddc != odn_dep_table->entries[i].vddc) {
2483 data->need_update_dpm_table |= DPMTABLE_OD_UPDATE_VDDC | DPMTABLE_OD_UPDATE_SCLK;
2484 return;
2490 * Initializes the SMC table and uploads it
2492 * @param hwmgr the address of the powerplay hardware manager.
2493 * @param pInput the pointer to input data (PowerState)
2494 * @return always 0
2496 static int vega10_init_smc_table(struct pp_hwmgr *hwmgr)
2498 int result;
2499 struct vega10_hwmgr *data = hwmgr->backend;
2500 struct phm_ppt_v2_information *table_info =
2501 (struct phm_ppt_v2_information *)(hwmgr->pptable);
2502 PPTable_t *pp_table = &(data->smc_state_table.pp_table);
2503 struct pp_atomfwctrl_voltage_table voltage_table;
2504 struct pp_atomfwctrl_bios_boot_up_values boot_up_values;
2505 struct vega10_odn_dpm_table *odn_table = &(data->odn_dpm_table);
2507 result = vega10_setup_default_dpm_tables(hwmgr);
2508 PP_ASSERT_WITH_CODE(!result,
2509 "Failed to setup default DPM tables!",
2510 return result);
2512 if (!hwmgr->not_vf)
2513 return 0;
2515 /* initialize ODN table */
2516 if (hwmgr->od_enabled) {
2517 if (odn_table->max_vddc) {
2518 data->need_update_dpm_table |= DPMTABLE_OD_UPDATE_SCLK | DPMTABLE_OD_UPDATE_MCLK;
2519 vega10_check_dpm_table_updated(hwmgr);
2520 } else {
2521 vega10_odn_initial_default_setting(hwmgr);
2525 pp_atomfwctrl_get_voltage_table_v4(hwmgr, VOLTAGE_TYPE_VDDC,
2526 VOLTAGE_OBJ_SVID2, &voltage_table);
2527 pp_table->MaxVidStep = voltage_table.max_vid_step;
2529 pp_table->GfxDpmVoltageMode =
2530 (uint8_t)(table_info->uc_gfx_dpm_voltage_mode);
2531 pp_table->SocDpmVoltageMode =
2532 (uint8_t)(table_info->uc_soc_dpm_voltage_mode);
2533 pp_table->UclkDpmVoltageMode =
2534 (uint8_t)(table_info->uc_uclk_dpm_voltage_mode);
2535 pp_table->UvdDpmVoltageMode =
2536 (uint8_t)(table_info->uc_uvd_dpm_voltage_mode);
2537 pp_table->VceDpmVoltageMode =
2538 (uint8_t)(table_info->uc_vce_dpm_voltage_mode);
2539 pp_table->Mp0DpmVoltageMode =
2540 (uint8_t)(table_info->uc_mp0_dpm_voltage_mode);
2542 pp_table->DisplayDpmVoltageMode =
2543 (uint8_t)(table_info->uc_dcef_dpm_voltage_mode);
2545 data->vddc_voltage_table.psi0_enable = voltage_table.psi0_enable;
2546 data->vddc_voltage_table.psi1_enable = voltage_table.psi1_enable;
2548 if (data->registry_data.ulv_support &&
2549 table_info->us_ulv_voltage_offset) {
2550 result = vega10_populate_ulv_state(hwmgr);
2551 PP_ASSERT_WITH_CODE(!result,
2552 "Failed to initialize ULV state!",
2553 return result);
2556 result = vega10_populate_smc_link_levels(hwmgr);
2557 PP_ASSERT_WITH_CODE(!result,
2558 "Failed to initialize Link Level!",
2559 return result);
2561 result = vega10_populate_all_graphic_levels(hwmgr);
2562 PP_ASSERT_WITH_CODE(!result,
2563 "Failed to initialize Graphics Level!",
2564 return result);
2566 result = vega10_populate_all_memory_levels(hwmgr);
2567 PP_ASSERT_WITH_CODE(!result,
2568 "Failed to initialize Memory Level!",
2569 return result);
2571 vega10_populate_vddc_soc_levels(hwmgr);
2573 result = vega10_populate_all_display_clock_levels(hwmgr);
2574 PP_ASSERT_WITH_CODE(!result,
2575 "Failed to initialize Display Level!",
2576 return result);
2578 result = vega10_populate_smc_vce_levels(hwmgr);
2579 PP_ASSERT_WITH_CODE(!result,
2580 "Failed to initialize VCE Level!",
2581 return result);
2583 result = vega10_populate_smc_uvd_levels(hwmgr);
2584 PP_ASSERT_WITH_CODE(!result,
2585 "Failed to initialize UVD Level!",
2586 return result);
2588 if (data->registry_data.clock_stretcher_support) {
2589 result = vega10_populate_clock_stretcher_table(hwmgr);
2590 PP_ASSERT_WITH_CODE(!result,
2591 "Failed to populate Clock Stretcher Table!",
2592 return result);
2595 result = pp_atomfwctrl_get_vbios_bootup_values(hwmgr, &boot_up_values);
2596 if (!result) {
2597 data->vbios_boot_state.vddc = boot_up_values.usVddc;
2598 data->vbios_boot_state.vddci = boot_up_values.usVddci;
2599 data->vbios_boot_state.mvddc = boot_up_values.usMvddc;
2600 data->vbios_boot_state.gfx_clock = boot_up_values.ulGfxClk;
2601 data->vbios_boot_state.mem_clock = boot_up_values.ulUClk;
2602 pp_atomfwctrl_get_clk_information_by_clkid(hwmgr,
2603 SMU9_SYSPLL0_SOCCLK_ID, 0, &boot_up_values.ulSocClk);
2605 pp_atomfwctrl_get_clk_information_by_clkid(hwmgr,
2606 SMU9_SYSPLL0_DCEFCLK_ID, 0, &boot_up_values.ulDCEFClk);
2608 data->vbios_boot_state.soc_clock = boot_up_values.ulSocClk;
2609 data->vbios_boot_state.dcef_clock = boot_up_values.ulDCEFClk;
2610 if (0 != boot_up_values.usVddc) {
2611 smum_send_msg_to_smc_with_parameter(hwmgr,
2612 PPSMC_MSG_SetFloorSocVoltage,
2613 (boot_up_values.usVddc * 4));
2614 data->vbios_boot_state.bsoc_vddc_lock = true;
2615 } else {
2616 data->vbios_boot_state.bsoc_vddc_lock = false;
2618 smum_send_msg_to_smc_with_parameter(hwmgr,
2619 PPSMC_MSG_SetMinDeepSleepDcefclk,
2620 (uint32_t)(data->vbios_boot_state.dcef_clock / 100));
2623 result = vega10_populate_avfs_parameters(hwmgr);
2624 PP_ASSERT_WITH_CODE(!result,
2625 "Failed to initialize AVFS Parameters!",
2626 return result);
2628 result = vega10_populate_gpio_parameters(hwmgr);
2629 PP_ASSERT_WITH_CODE(!result,
2630 "Failed to initialize GPIO Parameters!",
2631 return result);
2633 pp_table->GfxclkAverageAlpha = (uint8_t)
2634 (data->gfxclk_average_alpha);
2635 pp_table->SocclkAverageAlpha = (uint8_t)
2636 (data->socclk_average_alpha);
2637 pp_table->UclkAverageAlpha = (uint8_t)
2638 (data->uclk_average_alpha);
2639 pp_table->GfxActivityAverageAlpha = (uint8_t)
2640 (data->gfx_activity_average_alpha);
2642 vega10_populate_and_upload_avfs_fuse_override(hwmgr);
2644 result = smum_smc_table_manager(hwmgr, (uint8_t *)pp_table, PPTABLE, false);
2646 PP_ASSERT_WITH_CODE(!result,
2647 "Failed to upload PPtable!", return result);
2649 result = vega10_avfs_enable(hwmgr, true);
2650 PP_ASSERT_WITH_CODE(!result, "Attempt to enable AVFS feature Failed!",
2651 return result);
2652 vega10_acg_enable(hwmgr);
2654 return 0;
2657 static int vega10_enable_thermal_protection(struct pp_hwmgr *hwmgr)
2659 struct vega10_hwmgr *data = hwmgr->backend;
2661 if (data->smu_features[GNLD_THERMAL].supported) {
2662 if (data->smu_features[GNLD_THERMAL].enabled)
2663 pr_info("THERMAL Feature Already enabled!");
2665 PP_ASSERT_WITH_CODE(
2666 !vega10_enable_smc_features(hwmgr,
2667 true,
2668 data->smu_features[GNLD_THERMAL].smu_feature_bitmap),
2669 "Enable THERMAL Feature Failed!",
2670 return -1);
2671 data->smu_features[GNLD_THERMAL].enabled = true;
2674 return 0;
2677 static int vega10_disable_thermal_protection(struct pp_hwmgr *hwmgr)
2679 struct vega10_hwmgr *data = hwmgr->backend;
2681 if (data->smu_features[GNLD_THERMAL].supported) {
2682 if (!data->smu_features[GNLD_THERMAL].enabled)
2683 pr_info("THERMAL Feature Already disabled!");
2685 PP_ASSERT_WITH_CODE(
2686 !vega10_enable_smc_features(hwmgr,
2687 false,
2688 data->smu_features[GNLD_THERMAL].smu_feature_bitmap),
2689 "disable THERMAL Feature Failed!",
2690 return -1);
2691 data->smu_features[GNLD_THERMAL].enabled = false;
2694 return 0;
2697 static int vega10_enable_vrhot_feature(struct pp_hwmgr *hwmgr)
2699 struct vega10_hwmgr *data = hwmgr->backend;
2701 if (PP_CAP(PHM_PlatformCaps_RegulatorHot)) {
2702 if (data->smu_features[GNLD_VR0HOT].supported) {
2703 PP_ASSERT_WITH_CODE(
2704 !vega10_enable_smc_features(hwmgr,
2705 true,
2706 data->smu_features[GNLD_VR0HOT].smu_feature_bitmap),
2707 "Attempt to Enable VR0 Hot feature Failed!",
2708 return -1);
2709 data->smu_features[GNLD_VR0HOT].enabled = true;
2710 } else {
2711 if (data->smu_features[GNLD_VR1HOT].supported) {
2712 PP_ASSERT_WITH_CODE(
2713 !vega10_enable_smc_features(hwmgr,
2714 true,
2715 data->smu_features[GNLD_VR1HOT].smu_feature_bitmap),
2716 "Attempt to Enable VR0 Hot feature Failed!",
2717 return -1);
2718 data->smu_features[GNLD_VR1HOT].enabled = true;
2722 return 0;
2725 static int vega10_enable_ulv(struct pp_hwmgr *hwmgr)
2727 struct vega10_hwmgr *data = hwmgr->backend;
2729 if (data->registry_data.ulv_support) {
2730 PP_ASSERT_WITH_CODE(!vega10_enable_smc_features(hwmgr,
2731 true, data->smu_features[GNLD_ULV].smu_feature_bitmap),
2732 "Enable ULV Feature Failed!",
2733 return -1);
2734 data->smu_features[GNLD_ULV].enabled = true;
2737 return 0;
2740 static int vega10_disable_ulv(struct pp_hwmgr *hwmgr)
2742 struct vega10_hwmgr *data = hwmgr->backend;
2744 if (data->registry_data.ulv_support) {
2745 PP_ASSERT_WITH_CODE(!vega10_enable_smc_features(hwmgr,
2746 false, data->smu_features[GNLD_ULV].smu_feature_bitmap),
2747 "disable ULV Feature Failed!",
2748 return -EINVAL);
2749 data->smu_features[GNLD_ULV].enabled = false;
2752 return 0;
2755 static int vega10_enable_deep_sleep_master_switch(struct pp_hwmgr *hwmgr)
2757 struct vega10_hwmgr *data = hwmgr->backend;
2759 if (data->smu_features[GNLD_DS_GFXCLK].supported) {
2760 PP_ASSERT_WITH_CODE(!vega10_enable_smc_features(hwmgr,
2761 true, data->smu_features[GNLD_DS_GFXCLK].smu_feature_bitmap),
2762 "Attempt to Enable DS_GFXCLK Feature Failed!",
2763 return -EINVAL);
2764 data->smu_features[GNLD_DS_GFXCLK].enabled = true;
2767 if (data->smu_features[GNLD_DS_SOCCLK].supported) {
2768 PP_ASSERT_WITH_CODE(!vega10_enable_smc_features(hwmgr,
2769 true, data->smu_features[GNLD_DS_SOCCLK].smu_feature_bitmap),
2770 "Attempt to Enable DS_SOCCLK Feature Failed!",
2771 return -EINVAL);
2772 data->smu_features[GNLD_DS_SOCCLK].enabled = true;
2775 if (data->smu_features[GNLD_DS_LCLK].supported) {
2776 PP_ASSERT_WITH_CODE(!vega10_enable_smc_features(hwmgr,
2777 true, data->smu_features[GNLD_DS_LCLK].smu_feature_bitmap),
2778 "Attempt to Enable DS_LCLK Feature Failed!",
2779 return -EINVAL);
2780 data->smu_features[GNLD_DS_LCLK].enabled = true;
2783 if (data->smu_features[GNLD_DS_DCEFCLK].supported) {
2784 PP_ASSERT_WITH_CODE(!vega10_enable_smc_features(hwmgr,
2785 true, data->smu_features[GNLD_DS_DCEFCLK].smu_feature_bitmap),
2786 "Attempt to Enable DS_DCEFCLK Feature Failed!",
2787 return -EINVAL);
2788 data->smu_features[GNLD_DS_DCEFCLK].enabled = true;
2791 return 0;
2794 static int vega10_disable_deep_sleep_master_switch(struct pp_hwmgr *hwmgr)
2796 struct vega10_hwmgr *data = hwmgr->backend;
2798 if (data->smu_features[GNLD_DS_GFXCLK].supported) {
2799 PP_ASSERT_WITH_CODE(!vega10_enable_smc_features(hwmgr,
2800 false, data->smu_features[GNLD_DS_GFXCLK].smu_feature_bitmap),
2801 "Attempt to disable DS_GFXCLK Feature Failed!",
2802 return -EINVAL);
2803 data->smu_features[GNLD_DS_GFXCLK].enabled = false;
2806 if (data->smu_features[GNLD_DS_SOCCLK].supported) {
2807 PP_ASSERT_WITH_CODE(!vega10_enable_smc_features(hwmgr,
2808 false, data->smu_features[GNLD_DS_SOCCLK].smu_feature_bitmap),
2809 "Attempt to disable DS_ Feature Failed!",
2810 return -EINVAL);
2811 data->smu_features[GNLD_DS_SOCCLK].enabled = false;
2814 if (data->smu_features[GNLD_DS_LCLK].supported) {
2815 PP_ASSERT_WITH_CODE(!vega10_enable_smc_features(hwmgr,
2816 false, data->smu_features[GNLD_DS_LCLK].smu_feature_bitmap),
2817 "Attempt to disable DS_LCLK Feature Failed!",
2818 return -EINVAL);
2819 data->smu_features[GNLD_DS_LCLK].enabled = false;
2822 if (data->smu_features[GNLD_DS_DCEFCLK].supported) {
2823 PP_ASSERT_WITH_CODE(!vega10_enable_smc_features(hwmgr,
2824 false, data->smu_features[GNLD_DS_DCEFCLK].smu_feature_bitmap),
2825 "Attempt to disable DS_DCEFCLK Feature Failed!",
2826 return -EINVAL);
2827 data->smu_features[GNLD_DS_DCEFCLK].enabled = false;
2830 return 0;
2833 static int vega10_stop_dpm(struct pp_hwmgr *hwmgr, uint32_t bitmap)
2835 struct vega10_hwmgr *data = hwmgr->backend;
2836 uint32_t i, feature_mask = 0;
2838 if (!hwmgr->not_vf)
2839 return 0;
2841 if(data->smu_features[GNLD_LED_DISPLAY].supported == true){
2842 PP_ASSERT_WITH_CODE(!vega10_enable_smc_features(hwmgr,
2843 false, data->smu_features[GNLD_LED_DISPLAY].smu_feature_bitmap),
2844 "Attempt to disable LED DPM feature failed!", return -EINVAL);
2845 data->smu_features[GNLD_LED_DISPLAY].enabled = false;
2848 for (i = 0; i < GNLD_DPM_MAX; i++) {
2849 if (data->smu_features[i].smu_feature_bitmap & bitmap) {
2850 if (data->smu_features[i].supported) {
2851 if (data->smu_features[i].enabled) {
2852 feature_mask |= data->smu_features[i].
2853 smu_feature_bitmap;
2854 data->smu_features[i].enabled = false;
2860 vega10_enable_smc_features(hwmgr, false, feature_mask);
2862 return 0;
2866 * @brief Tell SMC to enabled the supported DPMs.
2868 * @param hwmgr - the address of the powerplay hardware manager.
2869 * @Param bitmap - bitmap for the features to enabled.
2870 * @return 0 on at least one DPM is successfully enabled.
2872 static int vega10_start_dpm(struct pp_hwmgr *hwmgr, uint32_t bitmap)
2874 struct vega10_hwmgr *data = hwmgr->backend;
2875 uint32_t i, feature_mask = 0;
2877 for (i = 0; i < GNLD_DPM_MAX; i++) {
2878 if (data->smu_features[i].smu_feature_bitmap & bitmap) {
2879 if (data->smu_features[i].supported) {
2880 if (!data->smu_features[i].enabled) {
2881 feature_mask |= data->smu_features[i].
2882 smu_feature_bitmap;
2883 data->smu_features[i].enabled = true;
2889 if (vega10_enable_smc_features(hwmgr,
2890 true, feature_mask)) {
2891 for (i = 0; i < GNLD_DPM_MAX; i++) {
2892 if (data->smu_features[i].smu_feature_bitmap &
2893 feature_mask)
2894 data->smu_features[i].enabled = false;
2898 if(data->smu_features[GNLD_LED_DISPLAY].supported == true){
2899 PP_ASSERT_WITH_CODE(!vega10_enable_smc_features(hwmgr,
2900 true, data->smu_features[GNLD_LED_DISPLAY].smu_feature_bitmap),
2901 "Attempt to Enable LED DPM feature Failed!", return -EINVAL);
2902 data->smu_features[GNLD_LED_DISPLAY].enabled = true;
2905 if (data->vbios_boot_state.bsoc_vddc_lock) {
2906 smum_send_msg_to_smc_with_parameter(hwmgr,
2907 PPSMC_MSG_SetFloorSocVoltage, 0);
2908 data->vbios_boot_state.bsoc_vddc_lock = false;
2911 if (PP_CAP(PHM_PlatformCaps_Falcon_QuickTransition)) {
2912 if (data->smu_features[GNLD_ACDC].supported) {
2913 PP_ASSERT_WITH_CODE(!vega10_enable_smc_features(hwmgr,
2914 true, data->smu_features[GNLD_ACDC].smu_feature_bitmap),
2915 "Attempt to Enable DS_GFXCLK Feature Failed!",
2916 return -1);
2917 data->smu_features[GNLD_ACDC].enabled = true;
2921 return 0;
2924 static int vega10_enable_disable_PCC_limit_feature(struct pp_hwmgr *hwmgr, bool enable)
2926 struct vega10_hwmgr *data = hwmgr->backend;
2928 if (data->smu_features[GNLD_PCC_LIMIT].supported) {
2929 if (enable == data->smu_features[GNLD_PCC_LIMIT].enabled)
2930 pr_info("GNLD_PCC_LIMIT has been %s \n", enable ? "enabled" : "disabled");
2931 PP_ASSERT_WITH_CODE(!vega10_enable_smc_features(hwmgr,
2932 enable, data->smu_features[GNLD_PCC_LIMIT].smu_feature_bitmap),
2933 "Attempt to Enable PCC Limit feature Failed!",
2934 return -EINVAL);
2935 data->smu_features[GNLD_PCC_LIMIT].enabled = enable;
2938 return 0;
2941 static int vega10_enable_dpm_tasks(struct pp_hwmgr *hwmgr)
2943 struct vega10_hwmgr *data = hwmgr->backend;
2944 int tmp_result, result = 0;
2946 if (hwmgr->not_vf) {
2947 vega10_enable_disable_PCC_limit_feature(hwmgr, true);
2949 smum_send_msg_to_smc_with_parameter(hwmgr,
2950 PPSMC_MSG_ConfigureTelemetry, data->config_telemetry);
2952 tmp_result = vega10_construct_voltage_tables(hwmgr);
2953 PP_ASSERT_WITH_CODE(!tmp_result,
2954 "Failed to construct voltage tables!",
2955 result = tmp_result);
2958 if (hwmgr->not_vf || hwmgr->pp_one_vf) {
2959 tmp_result = vega10_init_smc_table(hwmgr);
2960 PP_ASSERT_WITH_CODE(!tmp_result,
2961 "Failed to initialize SMC table!",
2962 result = tmp_result);
2965 if (hwmgr->not_vf) {
2966 if (PP_CAP(PHM_PlatformCaps_ThermalController)) {
2967 tmp_result = vega10_enable_thermal_protection(hwmgr);
2968 PP_ASSERT_WITH_CODE(!tmp_result,
2969 "Failed to enable thermal protection!",
2970 result = tmp_result);
2973 tmp_result = vega10_enable_vrhot_feature(hwmgr);
2974 PP_ASSERT_WITH_CODE(!tmp_result,
2975 "Failed to enable VR hot feature!",
2976 result = tmp_result);
2978 tmp_result = vega10_enable_deep_sleep_master_switch(hwmgr);
2979 PP_ASSERT_WITH_CODE(!tmp_result,
2980 "Failed to enable deep sleep master switch!",
2981 result = tmp_result);
2984 if (hwmgr->not_vf) {
2985 tmp_result = vega10_start_dpm(hwmgr, SMC_DPM_FEATURES);
2986 PP_ASSERT_WITH_CODE(!tmp_result,
2987 "Failed to start DPM!", result = tmp_result);
2990 if (hwmgr->not_vf) {
2991 /* enable didt, do not abort if failed didt */
2992 tmp_result = vega10_enable_didt_config(hwmgr);
2993 PP_ASSERT(!tmp_result,
2994 "Failed to enable didt config!");
2997 tmp_result = vega10_enable_power_containment(hwmgr);
2998 PP_ASSERT_WITH_CODE(!tmp_result,
2999 "Failed to enable power containment!",
3000 result = tmp_result);
3002 if (hwmgr->not_vf) {
3003 tmp_result = vega10_power_control_set_level(hwmgr);
3004 PP_ASSERT_WITH_CODE(!tmp_result,
3005 "Failed to power control set level!",
3006 result = tmp_result);
3008 tmp_result = vega10_enable_ulv(hwmgr);
3009 PP_ASSERT_WITH_CODE(!tmp_result,
3010 "Failed to enable ULV!",
3011 result = tmp_result);
3014 return result;
3017 static int vega10_get_power_state_size(struct pp_hwmgr *hwmgr)
3019 return sizeof(struct vega10_power_state);
3022 static int vega10_get_pp_table_entry_callback_func(struct pp_hwmgr *hwmgr,
3023 void *state, struct pp_power_state *power_state,
3024 void *pp_table, uint32_t classification_flag)
3026 ATOM_Vega10_GFXCLK_Dependency_Record_V2 *patom_record_V2;
3027 struct vega10_power_state *vega10_power_state =
3028 cast_phw_vega10_power_state(&(power_state->hardware));
3029 struct vega10_performance_level *performance_level;
3030 ATOM_Vega10_State *state_entry = (ATOM_Vega10_State *)state;
3031 ATOM_Vega10_POWERPLAYTABLE *powerplay_table =
3032 (ATOM_Vega10_POWERPLAYTABLE *)pp_table;
3033 ATOM_Vega10_SOCCLK_Dependency_Table *socclk_dep_table =
3034 (ATOM_Vega10_SOCCLK_Dependency_Table *)
3035 (((unsigned long)powerplay_table) +
3036 le16_to_cpu(powerplay_table->usSocclkDependencyTableOffset));
3037 ATOM_Vega10_GFXCLK_Dependency_Table *gfxclk_dep_table =
3038 (ATOM_Vega10_GFXCLK_Dependency_Table *)
3039 (((unsigned long)powerplay_table) +
3040 le16_to_cpu(powerplay_table->usGfxclkDependencyTableOffset));
3041 ATOM_Vega10_MCLK_Dependency_Table *mclk_dep_table =
3042 (ATOM_Vega10_MCLK_Dependency_Table *)
3043 (((unsigned long)powerplay_table) +
3044 le16_to_cpu(powerplay_table->usMclkDependencyTableOffset));
3047 /* The following fields are not initialized here:
3048 * id orderedList allStatesList
3050 power_state->classification.ui_label =
3051 (le16_to_cpu(state_entry->usClassification) &
3052 ATOM_PPLIB_CLASSIFICATION_UI_MASK) >>
3053 ATOM_PPLIB_CLASSIFICATION_UI_SHIFT;
3054 power_state->classification.flags = classification_flag;
3055 /* NOTE: There is a classification2 flag in BIOS
3056 * that is not being used right now
3058 power_state->classification.temporary_state = false;
3059 power_state->classification.to_be_deleted = false;
3061 power_state->validation.disallowOnDC =
3062 ((le32_to_cpu(state_entry->ulCapsAndSettings) &
3063 ATOM_Vega10_DISALLOW_ON_DC) != 0);
3065 power_state->display.disableFrameModulation = false;
3066 power_state->display.limitRefreshrate = false;
3067 power_state->display.enableVariBright =
3068 ((le32_to_cpu(state_entry->ulCapsAndSettings) &
3069 ATOM_Vega10_ENABLE_VARIBRIGHT) != 0);
3071 power_state->validation.supportedPowerLevels = 0;
3072 power_state->uvd_clocks.VCLK = 0;
3073 power_state->uvd_clocks.DCLK = 0;
3074 power_state->temperatures.min = 0;
3075 power_state->temperatures.max = 0;
3077 performance_level = &(vega10_power_state->performance_levels
3078 [vega10_power_state->performance_level_count++]);
3080 PP_ASSERT_WITH_CODE(
3081 (vega10_power_state->performance_level_count <
3082 NUM_GFXCLK_DPM_LEVELS),
3083 "Performance levels exceeds SMC limit!",
3084 return -1);
3086 PP_ASSERT_WITH_CODE(
3087 (vega10_power_state->performance_level_count <=
3088 hwmgr->platform_descriptor.
3089 hardwareActivityPerformanceLevels),
3090 "Performance levels exceeds Driver limit!",
3091 return -1);
3093 /* Performance levels are arranged from low to high. */
3094 performance_level->soc_clock = socclk_dep_table->entries
3095 [state_entry->ucSocClockIndexLow].ulClk;
3096 performance_level->gfx_clock = gfxclk_dep_table->entries
3097 [state_entry->ucGfxClockIndexLow].ulClk;
3098 performance_level->mem_clock = mclk_dep_table->entries
3099 [state_entry->ucMemClockIndexLow].ulMemClk;
3101 performance_level = &(vega10_power_state->performance_levels
3102 [vega10_power_state->performance_level_count++]);
3103 performance_level->soc_clock = socclk_dep_table->entries
3104 [state_entry->ucSocClockIndexHigh].ulClk;
3105 if (gfxclk_dep_table->ucRevId == 0) {
3106 /* under vega10 pp one vf mode, the gfx clk dpm need be lower
3107 * to level-4 due to the limited 110w-power
3109 if (hwmgr->pp_one_vf && (state_entry->ucGfxClockIndexHigh > 0))
3110 performance_level->gfx_clock =
3111 gfxclk_dep_table->entries[4].ulClk;
3112 else
3113 performance_level->gfx_clock = gfxclk_dep_table->entries
3114 [state_entry->ucGfxClockIndexHigh].ulClk;
3115 } else if (gfxclk_dep_table->ucRevId == 1) {
3116 patom_record_V2 = (ATOM_Vega10_GFXCLK_Dependency_Record_V2 *)gfxclk_dep_table->entries;
3117 if (hwmgr->pp_one_vf && (state_entry->ucGfxClockIndexHigh > 0))
3118 performance_level->gfx_clock = patom_record_V2[4].ulClk;
3119 else
3120 performance_level->gfx_clock =
3121 patom_record_V2[state_entry->ucGfxClockIndexHigh].ulClk;
3124 performance_level->mem_clock = mclk_dep_table->entries
3125 [state_entry->ucMemClockIndexHigh].ulMemClk;
3126 return 0;
3129 static int vega10_get_pp_table_entry(struct pp_hwmgr *hwmgr,
3130 unsigned long entry_index, struct pp_power_state *state)
3132 int result;
3133 struct vega10_power_state *ps;
3135 state->hardware.magic = PhwVega10_Magic;
3137 ps = cast_phw_vega10_power_state(&state->hardware);
3139 result = vega10_get_powerplay_table_entry(hwmgr, entry_index, state,
3140 vega10_get_pp_table_entry_callback_func);
3143 * This is the earliest time we have all the dependency table
3144 * and the VBIOS boot state
3146 /* set DC compatible flag if this state supports DC */
3147 if (!state->validation.disallowOnDC)
3148 ps->dc_compatible = true;
3150 ps->uvd_clks.vclk = state->uvd_clocks.VCLK;
3151 ps->uvd_clks.dclk = state->uvd_clocks.DCLK;
3153 return 0;
3156 static int vega10_patch_boot_state(struct pp_hwmgr *hwmgr,
3157 struct pp_hw_power_state *hw_ps)
3159 return 0;
3162 static int vega10_apply_state_adjust_rules(struct pp_hwmgr *hwmgr,
3163 struct pp_power_state *request_ps,
3164 const struct pp_power_state *current_ps)
3166 struct amdgpu_device *adev = hwmgr->adev;
3167 struct vega10_power_state *vega10_ps =
3168 cast_phw_vega10_power_state(&request_ps->hardware);
3169 uint32_t sclk;
3170 uint32_t mclk;
3171 struct PP_Clocks minimum_clocks = {0};
3172 bool disable_mclk_switching;
3173 bool disable_mclk_switching_for_frame_lock;
3174 bool disable_mclk_switching_for_vr;
3175 bool force_mclk_high;
3176 const struct phm_clock_and_voltage_limits *max_limits;
3177 uint32_t i;
3178 struct vega10_hwmgr *data = hwmgr->backend;
3179 struct phm_ppt_v2_information *table_info =
3180 (struct phm_ppt_v2_information *)(hwmgr->pptable);
3181 int32_t count;
3182 uint32_t stable_pstate_sclk_dpm_percentage;
3183 uint32_t stable_pstate_sclk = 0, stable_pstate_mclk = 0;
3184 uint32_t latency;
3186 data->battery_state = (PP_StateUILabel_Battery ==
3187 request_ps->classification.ui_label);
3189 if (vega10_ps->performance_level_count != 2)
3190 pr_info("VI should always have 2 performance levels");
3192 max_limits = adev->pm.ac_power ?
3193 &(hwmgr->dyn_state.max_clock_voltage_on_ac) :
3194 &(hwmgr->dyn_state.max_clock_voltage_on_dc);
3196 /* Cap clock DPM tables at DC MAX if it is in DC. */
3197 if (!adev->pm.ac_power) {
3198 for (i = 0; i < vega10_ps->performance_level_count; i++) {
3199 if (vega10_ps->performance_levels[i].mem_clock >
3200 max_limits->mclk)
3201 vega10_ps->performance_levels[i].mem_clock =
3202 max_limits->mclk;
3203 if (vega10_ps->performance_levels[i].gfx_clock >
3204 max_limits->sclk)
3205 vega10_ps->performance_levels[i].gfx_clock =
3206 max_limits->sclk;
3210 /* result = PHM_CheckVBlankTime(hwmgr, &vblankTooShort);*/
3211 minimum_clocks.engineClock = hwmgr->display_config->min_core_set_clock;
3212 minimum_clocks.memoryClock = hwmgr->display_config->min_mem_set_clock;
3214 if (PP_CAP(PHM_PlatformCaps_StablePState)) {
3215 stable_pstate_sclk_dpm_percentage =
3216 data->registry_data.stable_pstate_sclk_dpm_percentage;
3217 PP_ASSERT_WITH_CODE(
3218 data->registry_data.stable_pstate_sclk_dpm_percentage >= 1 &&
3219 data->registry_data.stable_pstate_sclk_dpm_percentage <= 100,
3220 "percent sclk value must range from 1% to 100%, setting default value",
3221 stable_pstate_sclk_dpm_percentage = 75);
3223 max_limits = &(hwmgr->dyn_state.max_clock_voltage_on_ac);
3224 stable_pstate_sclk = (max_limits->sclk *
3225 stable_pstate_sclk_dpm_percentage) / 100;
3227 for (count = table_info->vdd_dep_on_sclk->count - 1;
3228 count >= 0; count--) {
3229 if (stable_pstate_sclk >=
3230 table_info->vdd_dep_on_sclk->entries[count].clk) {
3231 stable_pstate_sclk =
3232 table_info->vdd_dep_on_sclk->entries[count].clk;
3233 break;
3237 if (count < 0)
3238 stable_pstate_sclk = table_info->vdd_dep_on_sclk->entries[0].clk;
3240 stable_pstate_mclk = max_limits->mclk;
3242 minimum_clocks.engineClock = stable_pstate_sclk;
3243 minimum_clocks.memoryClock = stable_pstate_mclk;
3246 disable_mclk_switching_for_frame_lock =
3247 PP_CAP(PHM_PlatformCaps_DisableMclkSwitchingForFrameLock);
3248 disable_mclk_switching_for_vr =
3249 PP_CAP(PHM_PlatformCaps_DisableMclkSwitchForVR);
3250 force_mclk_high = PP_CAP(PHM_PlatformCaps_ForceMclkHigh);
3252 if (hwmgr->display_config->num_display == 0)
3253 disable_mclk_switching = false;
3254 else
3255 disable_mclk_switching = ((1 < hwmgr->display_config->num_display) &&
3256 !hwmgr->display_config->multi_monitor_in_sync) ||
3257 disable_mclk_switching_for_frame_lock ||
3258 disable_mclk_switching_for_vr ||
3259 force_mclk_high;
3261 sclk = vega10_ps->performance_levels[0].gfx_clock;
3262 mclk = vega10_ps->performance_levels[0].mem_clock;
3264 if (sclk < minimum_clocks.engineClock)
3265 sclk = (minimum_clocks.engineClock > max_limits->sclk) ?
3266 max_limits->sclk : minimum_clocks.engineClock;
3268 if (mclk < minimum_clocks.memoryClock)
3269 mclk = (minimum_clocks.memoryClock > max_limits->mclk) ?
3270 max_limits->mclk : minimum_clocks.memoryClock;
3272 vega10_ps->performance_levels[0].gfx_clock = sclk;
3273 vega10_ps->performance_levels[0].mem_clock = mclk;
3275 if (vega10_ps->performance_levels[1].gfx_clock <
3276 vega10_ps->performance_levels[0].gfx_clock)
3277 vega10_ps->performance_levels[0].gfx_clock =
3278 vega10_ps->performance_levels[1].gfx_clock;
3280 if (disable_mclk_switching) {
3281 /* Set Mclk the max of level 0 and level 1 */
3282 if (mclk < vega10_ps->performance_levels[1].mem_clock)
3283 mclk = vega10_ps->performance_levels[1].mem_clock;
3285 /* Find the lowest MCLK frequency that is within
3286 * the tolerable latency defined in DAL
3288 latency = hwmgr->display_config->dce_tolerable_mclk_in_active_latency;
3289 for (i = 0; i < data->mclk_latency_table.count; i++) {
3290 if ((data->mclk_latency_table.entries[i].latency <= latency) &&
3291 (data->mclk_latency_table.entries[i].frequency >=
3292 vega10_ps->performance_levels[0].mem_clock) &&
3293 (data->mclk_latency_table.entries[i].frequency <=
3294 vega10_ps->performance_levels[1].mem_clock))
3295 mclk = data->mclk_latency_table.entries[i].frequency;
3297 vega10_ps->performance_levels[0].mem_clock = mclk;
3298 } else {
3299 if (vega10_ps->performance_levels[1].mem_clock <
3300 vega10_ps->performance_levels[0].mem_clock)
3301 vega10_ps->performance_levels[0].mem_clock =
3302 vega10_ps->performance_levels[1].mem_clock;
3305 if (PP_CAP(PHM_PlatformCaps_StablePState)) {
3306 for (i = 0; i < vega10_ps->performance_level_count; i++) {
3307 vega10_ps->performance_levels[i].gfx_clock = stable_pstate_sclk;
3308 vega10_ps->performance_levels[i].mem_clock = stable_pstate_mclk;
3312 return 0;
3315 static int vega10_find_dpm_states_clocks_in_dpm_table(struct pp_hwmgr *hwmgr, const void *input)
3317 struct vega10_hwmgr *data = hwmgr->backend;
3318 const struct phm_set_power_state_input *states =
3319 (const struct phm_set_power_state_input *)input;
3320 const struct vega10_power_state *vega10_ps =
3321 cast_const_phw_vega10_power_state(states->pnew_state);
3322 struct vega10_single_dpm_table *sclk_table = &(data->dpm_table.gfx_table);
3323 uint32_t sclk = vega10_ps->performance_levels
3324 [vega10_ps->performance_level_count - 1].gfx_clock;
3325 struct vega10_single_dpm_table *mclk_table = &(data->dpm_table.mem_table);
3326 uint32_t mclk = vega10_ps->performance_levels
3327 [vega10_ps->performance_level_count - 1].mem_clock;
3328 uint32_t i;
3330 for (i = 0; i < sclk_table->count; i++) {
3331 if (sclk == sclk_table->dpm_levels[i].value)
3332 break;
3335 if (i >= sclk_table->count) {
3336 if (sclk > sclk_table->dpm_levels[i-1].value) {
3337 data->need_update_dpm_table |= DPMTABLE_OD_UPDATE_SCLK;
3338 sclk_table->dpm_levels[i-1].value = sclk;
3342 for (i = 0; i < mclk_table->count; i++) {
3343 if (mclk == mclk_table->dpm_levels[i].value)
3344 break;
3347 if (i >= mclk_table->count) {
3348 if (mclk > mclk_table->dpm_levels[i-1].value) {
3349 data->need_update_dpm_table |= DPMTABLE_OD_UPDATE_MCLK;
3350 mclk_table->dpm_levels[i-1].value = mclk;
3354 if (data->display_timing.num_existing_displays != hwmgr->display_config->num_display)
3355 data->need_update_dpm_table |= DPMTABLE_UPDATE_MCLK;
3357 return 0;
3360 static int vega10_populate_and_upload_sclk_mclk_dpm_levels(
3361 struct pp_hwmgr *hwmgr, const void *input)
3363 int result = 0;
3364 struct vega10_hwmgr *data = hwmgr->backend;
3365 struct vega10_dpm_table *dpm_table = &data->dpm_table;
3366 struct vega10_odn_dpm_table *odn_table = &data->odn_dpm_table;
3367 struct vega10_odn_clock_voltage_dependency_table *odn_clk_table = &odn_table->vdd_dep_on_sclk;
3368 int count;
3370 if (!data->need_update_dpm_table)
3371 return 0;
3373 if (hwmgr->od_enabled && data->need_update_dpm_table & DPMTABLE_OD_UPDATE_SCLK) {
3374 for (count = 0; count < dpm_table->gfx_table.count; count++)
3375 dpm_table->gfx_table.dpm_levels[count].value = odn_clk_table->entries[count].clk;
3378 odn_clk_table = &odn_table->vdd_dep_on_mclk;
3379 if (hwmgr->od_enabled && data->need_update_dpm_table & DPMTABLE_OD_UPDATE_MCLK) {
3380 for (count = 0; count < dpm_table->mem_table.count; count++)
3381 dpm_table->mem_table.dpm_levels[count].value = odn_clk_table->entries[count].clk;
3384 if (data->need_update_dpm_table &
3385 (DPMTABLE_OD_UPDATE_SCLK + DPMTABLE_UPDATE_SCLK + DPMTABLE_UPDATE_SOCCLK)) {
3386 result = vega10_populate_all_graphic_levels(hwmgr);
3387 PP_ASSERT_WITH_CODE((0 == result),
3388 "Failed to populate SCLK during PopulateNewDPMClocksStates Function!",
3389 return result);
3392 if (data->need_update_dpm_table &
3393 (DPMTABLE_OD_UPDATE_MCLK + DPMTABLE_UPDATE_MCLK)) {
3394 result = vega10_populate_all_memory_levels(hwmgr);
3395 PP_ASSERT_WITH_CODE((0 == result),
3396 "Failed to populate MCLK during PopulateNewDPMClocksStates Function!",
3397 return result);
3400 vega10_populate_vddc_soc_levels(hwmgr);
3402 return result;
3405 static int vega10_trim_single_dpm_states(struct pp_hwmgr *hwmgr,
3406 struct vega10_single_dpm_table *dpm_table,
3407 uint32_t low_limit, uint32_t high_limit)
3409 uint32_t i;
3411 for (i = 0; i < dpm_table->count; i++) {
3412 if ((dpm_table->dpm_levels[i].value < low_limit) ||
3413 (dpm_table->dpm_levels[i].value > high_limit))
3414 dpm_table->dpm_levels[i].enabled = false;
3415 else
3416 dpm_table->dpm_levels[i].enabled = true;
3418 return 0;
3421 static int vega10_trim_single_dpm_states_with_mask(struct pp_hwmgr *hwmgr,
3422 struct vega10_single_dpm_table *dpm_table,
3423 uint32_t low_limit, uint32_t high_limit,
3424 uint32_t disable_dpm_mask)
3426 uint32_t i;
3428 for (i = 0; i < dpm_table->count; i++) {
3429 if ((dpm_table->dpm_levels[i].value < low_limit) ||
3430 (dpm_table->dpm_levels[i].value > high_limit))
3431 dpm_table->dpm_levels[i].enabled = false;
3432 else if (!((1 << i) & disable_dpm_mask))
3433 dpm_table->dpm_levels[i].enabled = false;
3434 else
3435 dpm_table->dpm_levels[i].enabled = true;
3437 return 0;
3440 static int vega10_trim_dpm_states(struct pp_hwmgr *hwmgr,
3441 const struct vega10_power_state *vega10_ps)
3443 struct vega10_hwmgr *data = hwmgr->backend;
3444 uint32_t high_limit_count;
3446 PP_ASSERT_WITH_CODE((vega10_ps->performance_level_count >= 1),
3447 "power state did not have any performance level",
3448 return -1);
3450 high_limit_count = (vega10_ps->performance_level_count == 1) ? 0 : 1;
3452 vega10_trim_single_dpm_states(hwmgr,
3453 &(data->dpm_table.soc_table),
3454 vega10_ps->performance_levels[0].soc_clock,
3455 vega10_ps->performance_levels[high_limit_count].soc_clock);
3457 vega10_trim_single_dpm_states_with_mask(hwmgr,
3458 &(data->dpm_table.gfx_table),
3459 vega10_ps->performance_levels[0].gfx_clock,
3460 vega10_ps->performance_levels[high_limit_count].gfx_clock,
3461 data->disable_dpm_mask);
3463 vega10_trim_single_dpm_states(hwmgr,
3464 &(data->dpm_table.mem_table),
3465 vega10_ps->performance_levels[0].mem_clock,
3466 vega10_ps->performance_levels[high_limit_count].mem_clock);
3468 return 0;
3471 static uint32_t vega10_find_lowest_dpm_level(
3472 struct vega10_single_dpm_table *table)
3474 uint32_t i;
3476 for (i = 0; i < table->count; i++) {
3477 if (table->dpm_levels[i].enabled)
3478 break;
3481 return i;
3484 static uint32_t vega10_find_highest_dpm_level(
3485 struct vega10_single_dpm_table *table)
3487 uint32_t i = 0;
3489 if (table->count <= MAX_REGULAR_DPM_NUMBER) {
3490 for (i = table->count; i > 0; i--) {
3491 if (table->dpm_levels[i - 1].enabled)
3492 return i - 1;
3494 } else {
3495 pr_info("DPM Table Has Too Many Entries!");
3496 return MAX_REGULAR_DPM_NUMBER - 1;
3499 return i;
3502 static void vega10_apply_dal_minimum_voltage_request(
3503 struct pp_hwmgr *hwmgr)
3505 return;
3508 static int vega10_get_soc_index_for_max_uclk(struct pp_hwmgr *hwmgr)
3510 struct phm_ppt_v1_clock_voltage_dependency_table *vdd_dep_table_on_mclk;
3511 struct phm_ppt_v2_information *table_info =
3512 (struct phm_ppt_v2_information *)(hwmgr->pptable);
3514 vdd_dep_table_on_mclk = table_info->vdd_dep_on_mclk;
3516 return vdd_dep_table_on_mclk->entries[NUM_UCLK_DPM_LEVELS - 1].vddInd + 1;
3519 static int vega10_upload_dpm_bootup_level(struct pp_hwmgr *hwmgr)
3521 struct vega10_hwmgr *data = hwmgr->backend;
3522 uint32_t socclk_idx;
3524 vega10_apply_dal_minimum_voltage_request(hwmgr);
3526 if (!data->registry_data.sclk_dpm_key_disabled) {
3527 if (data->smc_state_table.gfx_boot_level !=
3528 data->dpm_table.gfx_table.dpm_state.soft_min_level) {
3529 smum_send_msg_to_smc_with_parameter(hwmgr,
3530 PPSMC_MSG_SetSoftMinGfxclkByIndex,
3531 data->smc_state_table.gfx_boot_level);
3533 data->dpm_table.gfx_table.dpm_state.soft_min_level =
3534 data->smc_state_table.gfx_boot_level;
3538 if (!data->registry_data.mclk_dpm_key_disabled) {
3539 if (data->smc_state_table.mem_boot_level !=
3540 data->dpm_table.mem_table.dpm_state.soft_min_level) {
3541 if ((data->smc_state_table.mem_boot_level == NUM_UCLK_DPM_LEVELS - 1)
3542 && hwmgr->not_vf) {
3543 socclk_idx = vega10_get_soc_index_for_max_uclk(hwmgr);
3544 smum_send_msg_to_smc_with_parameter(hwmgr,
3545 PPSMC_MSG_SetSoftMinSocclkByIndex,
3546 socclk_idx);
3547 } else {
3548 smum_send_msg_to_smc_with_parameter(hwmgr,
3549 PPSMC_MSG_SetSoftMinUclkByIndex,
3550 data->smc_state_table.mem_boot_level);
3552 data->dpm_table.mem_table.dpm_state.soft_min_level =
3553 data->smc_state_table.mem_boot_level;
3557 if (!hwmgr->not_vf)
3558 return 0;
3560 if (!data->registry_data.socclk_dpm_key_disabled) {
3561 if (data->smc_state_table.soc_boot_level !=
3562 data->dpm_table.soc_table.dpm_state.soft_min_level) {
3563 smum_send_msg_to_smc_with_parameter(hwmgr,
3564 PPSMC_MSG_SetSoftMinSocclkByIndex,
3565 data->smc_state_table.soc_boot_level);
3566 data->dpm_table.soc_table.dpm_state.soft_min_level =
3567 data->smc_state_table.soc_boot_level;
3571 return 0;
3574 static int vega10_upload_dpm_max_level(struct pp_hwmgr *hwmgr)
3576 struct vega10_hwmgr *data = hwmgr->backend;
3578 vega10_apply_dal_minimum_voltage_request(hwmgr);
3580 if (!data->registry_data.sclk_dpm_key_disabled) {
3581 if (data->smc_state_table.gfx_max_level !=
3582 data->dpm_table.gfx_table.dpm_state.soft_max_level) {
3583 smum_send_msg_to_smc_with_parameter(hwmgr,
3584 PPSMC_MSG_SetSoftMaxGfxclkByIndex,
3585 data->smc_state_table.gfx_max_level);
3586 data->dpm_table.gfx_table.dpm_state.soft_max_level =
3587 data->smc_state_table.gfx_max_level;
3591 if (!data->registry_data.mclk_dpm_key_disabled) {
3592 if (data->smc_state_table.mem_max_level !=
3593 data->dpm_table.mem_table.dpm_state.soft_max_level) {
3594 smum_send_msg_to_smc_with_parameter(hwmgr,
3595 PPSMC_MSG_SetSoftMaxUclkByIndex,
3596 data->smc_state_table.mem_max_level);
3597 data->dpm_table.mem_table.dpm_state.soft_max_level =
3598 data->smc_state_table.mem_max_level;
3602 if (!hwmgr->not_vf)
3603 return 0;
3605 if (!data->registry_data.socclk_dpm_key_disabled) {
3606 if (data->smc_state_table.soc_max_level !=
3607 data->dpm_table.soc_table.dpm_state.soft_max_level) {
3608 smum_send_msg_to_smc_with_parameter(hwmgr,
3609 PPSMC_MSG_SetSoftMaxSocclkByIndex,
3610 data->smc_state_table.soc_max_level);
3611 data->dpm_table.soc_table.dpm_state.soft_max_level =
3612 data->smc_state_table.soc_max_level;
3616 return 0;
3619 static int vega10_generate_dpm_level_enable_mask(
3620 struct pp_hwmgr *hwmgr, const void *input)
3622 struct vega10_hwmgr *data = hwmgr->backend;
3623 const struct phm_set_power_state_input *states =
3624 (const struct phm_set_power_state_input *)input;
3625 const struct vega10_power_state *vega10_ps =
3626 cast_const_phw_vega10_power_state(states->pnew_state);
3627 int i;
3629 PP_ASSERT_WITH_CODE(!vega10_trim_dpm_states(hwmgr, vega10_ps),
3630 "Attempt to Trim DPM States Failed!",
3631 return -1);
3633 data->smc_state_table.gfx_boot_level =
3634 vega10_find_lowest_dpm_level(&(data->dpm_table.gfx_table));
3635 data->smc_state_table.gfx_max_level =
3636 vega10_find_highest_dpm_level(&(data->dpm_table.gfx_table));
3637 data->smc_state_table.mem_boot_level =
3638 vega10_find_lowest_dpm_level(&(data->dpm_table.mem_table));
3639 data->smc_state_table.mem_max_level =
3640 vega10_find_highest_dpm_level(&(data->dpm_table.mem_table));
3641 data->smc_state_table.soc_boot_level =
3642 vega10_find_lowest_dpm_level(&(data->dpm_table.soc_table));
3643 data->smc_state_table.soc_max_level =
3644 vega10_find_highest_dpm_level(&(data->dpm_table.soc_table));
3646 PP_ASSERT_WITH_CODE(!vega10_upload_dpm_bootup_level(hwmgr),
3647 "Attempt to upload DPM Bootup Levels Failed!",
3648 return -1);
3649 PP_ASSERT_WITH_CODE(!vega10_upload_dpm_max_level(hwmgr),
3650 "Attempt to upload DPM Max Levels Failed!",
3651 return -1);
3652 for(i = data->smc_state_table.gfx_boot_level; i < data->smc_state_table.gfx_max_level; i++)
3653 data->dpm_table.gfx_table.dpm_levels[i].enabled = true;
3656 for(i = data->smc_state_table.mem_boot_level; i < data->smc_state_table.mem_max_level; i++)
3657 data->dpm_table.mem_table.dpm_levels[i].enabled = true;
3659 for (i = data->smc_state_table.soc_boot_level; i < data->smc_state_table.soc_max_level; i++)
3660 data->dpm_table.soc_table.dpm_levels[i].enabled = true;
3662 return 0;
3665 int vega10_enable_disable_vce_dpm(struct pp_hwmgr *hwmgr, bool enable)
3667 struct vega10_hwmgr *data = hwmgr->backend;
3669 if (data->smu_features[GNLD_DPM_VCE].supported) {
3670 PP_ASSERT_WITH_CODE(!vega10_enable_smc_features(hwmgr,
3671 enable,
3672 data->smu_features[GNLD_DPM_VCE].smu_feature_bitmap),
3673 "Attempt to Enable/Disable DPM VCE Failed!",
3674 return -1);
3675 data->smu_features[GNLD_DPM_VCE].enabled = enable;
3678 return 0;
3681 static int vega10_update_sclk_threshold(struct pp_hwmgr *hwmgr)
3683 struct vega10_hwmgr *data = hwmgr->backend;
3684 uint32_t low_sclk_interrupt_threshold = 0;
3686 if (PP_CAP(PHM_PlatformCaps_SclkThrottleLowNotification) &&
3687 (data->low_sclk_interrupt_threshold != 0)) {
3688 low_sclk_interrupt_threshold =
3689 data->low_sclk_interrupt_threshold;
3691 data->smc_state_table.pp_table.LowGfxclkInterruptThreshold =
3692 cpu_to_le32(low_sclk_interrupt_threshold);
3694 /* This message will also enable SmcToHost Interrupt */
3695 smum_send_msg_to_smc_with_parameter(hwmgr,
3696 PPSMC_MSG_SetLowGfxclkInterruptThreshold,
3697 (uint32_t)low_sclk_interrupt_threshold);
3700 return 0;
3703 static int vega10_set_power_state_tasks(struct pp_hwmgr *hwmgr,
3704 const void *input)
3706 int tmp_result, result = 0;
3707 struct vega10_hwmgr *data = hwmgr->backend;
3708 PPTable_t *pp_table = &(data->smc_state_table.pp_table);
3710 tmp_result = vega10_find_dpm_states_clocks_in_dpm_table(hwmgr, input);
3711 PP_ASSERT_WITH_CODE(!tmp_result,
3712 "Failed to find DPM states clocks in DPM table!",
3713 result = tmp_result);
3715 tmp_result = vega10_populate_and_upload_sclk_mclk_dpm_levels(hwmgr, input);
3716 PP_ASSERT_WITH_CODE(!tmp_result,
3717 "Failed to populate and upload SCLK MCLK DPM levels!",
3718 result = tmp_result);
3720 tmp_result = vega10_generate_dpm_level_enable_mask(hwmgr, input);
3721 PP_ASSERT_WITH_CODE(!tmp_result,
3722 "Failed to generate DPM level enabled mask!",
3723 result = tmp_result);
3725 tmp_result = vega10_update_sclk_threshold(hwmgr);
3726 PP_ASSERT_WITH_CODE(!tmp_result,
3727 "Failed to update SCLK threshold!",
3728 result = tmp_result);
3730 result = smum_smc_table_manager(hwmgr, (uint8_t *)pp_table, PPTABLE, false);
3731 PP_ASSERT_WITH_CODE(!result,
3732 "Failed to upload PPtable!", return result);
3735 * If a custom pp table is loaded, set DPMTABLE_OD_UPDATE_VDDC flag.
3736 * That effectively disables AVFS feature.
3738 if(hwmgr->hardcode_pp_table != NULL)
3739 data->need_update_dpm_table |= DPMTABLE_OD_UPDATE_VDDC;
3741 vega10_update_avfs(hwmgr);
3744 * Clear all OD flags except DPMTABLE_OD_UPDATE_VDDC.
3745 * That will help to keep AVFS disabled.
3747 data->need_update_dpm_table &= DPMTABLE_OD_UPDATE_VDDC;
3749 return 0;
3752 static uint32_t vega10_dpm_get_sclk(struct pp_hwmgr *hwmgr, bool low)
3754 struct pp_power_state *ps;
3755 struct vega10_power_state *vega10_ps;
3757 if (hwmgr == NULL)
3758 return -EINVAL;
3760 ps = hwmgr->request_ps;
3762 if (ps == NULL)
3763 return -EINVAL;
3765 vega10_ps = cast_phw_vega10_power_state(&ps->hardware);
3767 if (low)
3768 return vega10_ps->performance_levels[0].gfx_clock;
3769 else
3770 return vega10_ps->performance_levels
3771 [vega10_ps->performance_level_count - 1].gfx_clock;
3774 static uint32_t vega10_dpm_get_mclk(struct pp_hwmgr *hwmgr, bool low)
3776 struct pp_power_state *ps;
3777 struct vega10_power_state *vega10_ps;
3779 if (hwmgr == NULL)
3780 return -EINVAL;
3782 ps = hwmgr->request_ps;
3784 if (ps == NULL)
3785 return -EINVAL;
3787 vega10_ps = cast_phw_vega10_power_state(&ps->hardware);
3789 if (low)
3790 return vega10_ps->performance_levels[0].mem_clock;
3791 else
3792 return vega10_ps->performance_levels
3793 [vega10_ps->performance_level_count-1].mem_clock;
3796 static int vega10_get_gpu_power(struct pp_hwmgr *hwmgr,
3797 uint32_t *query)
3799 uint32_t value;
3801 if (!query)
3802 return -EINVAL;
3804 smum_send_msg_to_smc(hwmgr, PPSMC_MSG_GetCurrPkgPwr);
3805 value = smum_get_argument(hwmgr);
3807 /* SMC returning actual watts, keep consistent with legacy asics, low 8 bit as 8 fractional bits */
3808 *query = value << 8;
3810 return 0;
3813 static int vega10_read_sensor(struct pp_hwmgr *hwmgr, int idx,
3814 void *value, int *size)
3816 struct amdgpu_device *adev = hwmgr->adev;
3817 uint32_t sclk_mhz, mclk_idx, activity_percent = 0;
3818 struct vega10_hwmgr *data = hwmgr->backend;
3819 struct vega10_dpm_table *dpm_table = &data->dpm_table;
3820 int ret = 0;
3821 uint32_t val_vid;
3823 switch (idx) {
3824 case AMDGPU_PP_SENSOR_GFX_SCLK:
3825 smum_send_msg_to_smc(hwmgr, PPSMC_MSG_GetAverageGfxclkActualFrequency);
3826 sclk_mhz = smum_get_argument(hwmgr);
3827 *((uint32_t *)value) = sclk_mhz * 100;
3828 break;
3829 case AMDGPU_PP_SENSOR_GFX_MCLK:
3830 smum_send_msg_to_smc(hwmgr, PPSMC_MSG_GetCurrentUclkIndex);
3831 mclk_idx = smum_get_argument(hwmgr);
3832 if (mclk_idx < dpm_table->mem_table.count) {
3833 *((uint32_t *)value) = dpm_table->mem_table.dpm_levels[mclk_idx].value;
3834 *size = 4;
3835 } else {
3836 ret = -EINVAL;
3838 break;
3839 case AMDGPU_PP_SENSOR_GPU_LOAD:
3840 smum_send_msg_to_smc_with_parameter(hwmgr, PPSMC_MSG_GetAverageGfxActivity, 0);
3841 activity_percent = smum_get_argument(hwmgr);
3842 *((uint32_t *)value) = activity_percent > 100 ? 100 : activity_percent;
3843 *size = 4;
3844 break;
3845 case AMDGPU_PP_SENSOR_GPU_TEMP:
3846 *((uint32_t *)value) = vega10_thermal_get_temperature(hwmgr);
3847 *size = 4;
3848 break;
3849 case AMDGPU_PP_SENSOR_HOTSPOT_TEMP:
3850 smum_send_msg_to_smc(hwmgr, PPSMC_MSG_GetTemperatureHotspot);
3851 *((uint32_t *)value) = smum_get_argument(hwmgr) *
3852 PP_TEMPERATURE_UNITS_PER_CENTIGRADES;
3853 *size = 4;
3854 break;
3855 case AMDGPU_PP_SENSOR_MEM_TEMP:
3856 smum_send_msg_to_smc(hwmgr, PPSMC_MSG_GetTemperatureHBM);
3857 *((uint32_t *)value) = smum_get_argument(hwmgr) *
3858 PP_TEMPERATURE_UNITS_PER_CENTIGRADES;
3859 *size = 4;
3860 break;
3861 case AMDGPU_PP_SENSOR_UVD_POWER:
3862 *((uint32_t *)value) = data->uvd_power_gated ? 0 : 1;
3863 *size = 4;
3864 break;
3865 case AMDGPU_PP_SENSOR_VCE_POWER:
3866 *((uint32_t *)value) = data->vce_power_gated ? 0 : 1;
3867 *size = 4;
3868 break;
3869 case AMDGPU_PP_SENSOR_GPU_POWER:
3870 ret = vega10_get_gpu_power(hwmgr, (uint32_t *)value);
3871 break;
3872 case AMDGPU_PP_SENSOR_VDDGFX:
3873 val_vid = (RREG32_SOC15(SMUIO, 0, mmSMUSVI0_PLANE0_CURRENTVID) &
3874 SMUSVI0_PLANE0_CURRENTVID__CURRENT_SVI0_PLANE0_VID_MASK) >>
3875 SMUSVI0_PLANE0_CURRENTVID__CURRENT_SVI0_PLANE0_VID__SHIFT;
3876 *((uint32_t *)value) = (uint32_t)convert_to_vddc((uint8_t)val_vid);
3877 return 0;
3878 case AMDGPU_PP_SENSOR_ENABLED_SMC_FEATURES_MASK:
3879 ret = vega10_get_enabled_smc_features(hwmgr, (uint64_t *)value);
3880 if (!ret)
3881 *size = 8;
3882 break;
3883 default:
3884 ret = -EINVAL;
3885 break;
3888 return ret;
3891 static void vega10_notify_smc_display_change(struct pp_hwmgr *hwmgr,
3892 bool has_disp)
3894 smum_send_msg_to_smc_with_parameter(hwmgr,
3895 PPSMC_MSG_SetUclkFastSwitch,
3896 has_disp ? 1 : 0);
3899 int vega10_display_clock_voltage_request(struct pp_hwmgr *hwmgr,
3900 struct pp_display_clock_request *clock_req)
3902 int result = 0;
3903 enum amd_pp_clock_type clk_type = clock_req->clock_type;
3904 uint32_t clk_freq = clock_req->clock_freq_in_khz / 1000;
3905 DSPCLK_e clk_select = 0;
3906 uint32_t clk_request = 0;
3908 switch (clk_type) {
3909 case amd_pp_dcef_clock:
3910 clk_select = DSPCLK_DCEFCLK;
3911 break;
3912 case amd_pp_disp_clock:
3913 clk_select = DSPCLK_DISPCLK;
3914 break;
3915 case amd_pp_pixel_clock:
3916 clk_select = DSPCLK_PIXCLK;
3917 break;
3918 case amd_pp_phy_clock:
3919 clk_select = DSPCLK_PHYCLK;
3920 break;
3921 default:
3922 pr_info("[DisplayClockVoltageRequest]Invalid Clock Type!");
3923 result = -1;
3924 break;
3927 if (!result) {
3928 clk_request = (clk_freq << 16) | clk_select;
3929 smum_send_msg_to_smc_with_parameter(hwmgr,
3930 PPSMC_MSG_RequestDisplayClockByFreq,
3931 clk_request);
3934 return result;
3937 static uint8_t vega10_get_uclk_index(struct pp_hwmgr *hwmgr,
3938 struct phm_ppt_v1_clock_voltage_dependency_table *mclk_table,
3939 uint32_t frequency)
3941 uint8_t count;
3942 uint8_t i;
3944 if (mclk_table == NULL || mclk_table->count == 0)
3945 return 0;
3947 count = (uint8_t)(mclk_table->count);
3949 for(i = 0; i < count; i++) {
3950 if(mclk_table->entries[i].clk >= frequency)
3951 return i;
3954 return i-1;
3957 static int vega10_notify_smc_display_config_after_ps_adjustment(
3958 struct pp_hwmgr *hwmgr)
3960 struct vega10_hwmgr *data = hwmgr->backend;
3961 struct vega10_single_dpm_table *dpm_table =
3962 &data->dpm_table.dcef_table;
3963 struct phm_ppt_v2_information *table_info =
3964 (struct phm_ppt_v2_information *)hwmgr->pptable;
3965 struct phm_ppt_v1_clock_voltage_dependency_table *mclk_table = table_info->vdd_dep_on_mclk;
3966 uint32_t idx;
3967 struct PP_Clocks min_clocks = {0};
3968 uint32_t i;
3969 struct pp_display_clock_request clock_req;
3971 if ((hwmgr->display_config->num_display > 1) &&
3972 !hwmgr->display_config->multi_monitor_in_sync &&
3973 !hwmgr->display_config->nb_pstate_switch_disable)
3974 vega10_notify_smc_display_change(hwmgr, false);
3975 else
3976 vega10_notify_smc_display_change(hwmgr, true);
3978 min_clocks.dcefClock = hwmgr->display_config->min_dcef_set_clk;
3979 min_clocks.dcefClockInSR = hwmgr->display_config->min_dcef_deep_sleep_set_clk;
3980 min_clocks.memoryClock = hwmgr->display_config->min_mem_set_clock;
3982 for (i = 0; i < dpm_table->count; i++) {
3983 if (dpm_table->dpm_levels[i].value == min_clocks.dcefClock)
3984 break;
3987 if (i < dpm_table->count) {
3988 clock_req.clock_type = amd_pp_dcef_clock;
3989 clock_req.clock_freq_in_khz = dpm_table->dpm_levels[i].value * 10;
3990 if (!vega10_display_clock_voltage_request(hwmgr, &clock_req)) {
3991 smum_send_msg_to_smc_with_parameter(
3992 hwmgr, PPSMC_MSG_SetMinDeepSleepDcefclk,
3993 min_clocks.dcefClockInSR / 100);
3994 } else {
3995 pr_info("Attempt to set Hard Min for DCEFCLK Failed!");
3997 } else {
3998 pr_debug("Cannot find requested DCEFCLK!");
4001 if (min_clocks.memoryClock != 0) {
4002 idx = vega10_get_uclk_index(hwmgr, mclk_table, min_clocks.memoryClock);
4003 smum_send_msg_to_smc_with_parameter(hwmgr, PPSMC_MSG_SetSoftMinUclkByIndex, idx);
4004 data->dpm_table.mem_table.dpm_state.soft_min_level= idx;
4007 return 0;
4010 static int vega10_force_dpm_highest(struct pp_hwmgr *hwmgr)
4012 struct vega10_hwmgr *data = hwmgr->backend;
4014 data->smc_state_table.gfx_boot_level =
4015 data->smc_state_table.gfx_max_level =
4016 vega10_find_highest_dpm_level(&(data->dpm_table.gfx_table));
4017 data->smc_state_table.mem_boot_level =
4018 data->smc_state_table.mem_max_level =
4019 vega10_find_highest_dpm_level(&(data->dpm_table.mem_table));
4021 PP_ASSERT_WITH_CODE(!vega10_upload_dpm_bootup_level(hwmgr),
4022 "Failed to upload boot level to highest!",
4023 return -1);
4025 PP_ASSERT_WITH_CODE(!vega10_upload_dpm_max_level(hwmgr),
4026 "Failed to upload dpm max level to highest!",
4027 return -1);
4029 return 0;
4032 static int vega10_force_dpm_lowest(struct pp_hwmgr *hwmgr)
4034 struct vega10_hwmgr *data = hwmgr->backend;
4036 data->smc_state_table.gfx_boot_level =
4037 data->smc_state_table.gfx_max_level =
4038 vega10_find_lowest_dpm_level(&(data->dpm_table.gfx_table));
4039 data->smc_state_table.mem_boot_level =
4040 data->smc_state_table.mem_max_level =
4041 vega10_find_lowest_dpm_level(&(data->dpm_table.mem_table));
4043 PP_ASSERT_WITH_CODE(!vega10_upload_dpm_bootup_level(hwmgr),
4044 "Failed to upload boot level to highest!",
4045 return -1);
4047 PP_ASSERT_WITH_CODE(!vega10_upload_dpm_max_level(hwmgr),
4048 "Failed to upload dpm max level to highest!",
4049 return -1);
4051 return 0;
4055 static int vega10_unforce_dpm_levels(struct pp_hwmgr *hwmgr)
4057 struct vega10_hwmgr *data = hwmgr->backend;
4059 data->smc_state_table.gfx_boot_level =
4060 vega10_find_lowest_dpm_level(&(data->dpm_table.gfx_table));
4061 data->smc_state_table.gfx_max_level =
4062 vega10_find_highest_dpm_level(&(data->dpm_table.gfx_table));
4063 data->smc_state_table.mem_boot_level =
4064 vega10_find_lowest_dpm_level(&(data->dpm_table.mem_table));
4065 data->smc_state_table.mem_max_level =
4066 vega10_find_highest_dpm_level(&(data->dpm_table.mem_table));
4068 PP_ASSERT_WITH_CODE(!vega10_upload_dpm_bootup_level(hwmgr),
4069 "Failed to upload DPM Bootup Levels!",
4070 return -1);
4072 PP_ASSERT_WITH_CODE(!vega10_upload_dpm_max_level(hwmgr),
4073 "Failed to upload DPM Max Levels!",
4074 return -1);
4075 return 0;
4078 static int vega10_get_profiling_clk_mask(struct pp_hwmgr *hwmgr, enum amd_dpm_forced_level level,
4079 uint32_t *sclk_mask, uint32_t *mclk_mask, uint32_t *soc_mask)
4081 struct phm_ppt_v2_information *table_info =
4082 (struct phm_ppt_v2_information *)(hwmgr->pptable);
4084 if (table_info->vdd_dep_on_sclk->count > VEGA10_UMD_PSTATE_GFXCLK_LEVEL &&
4085 table_info->vdd_dep_on_socclk->count > VEGA10_UMD_PSTATE_SOCCLK_LEVEL &&
4086 table_info->vdd_dep_on_mclk->count > VEGA10_UMD_PSTATE_MCLK_LEVEL) {
4087 *sclk_mask = VEGA10_UMD_PSTATE_GFXCLK_LEVEL;
4088 *soc_mask = VEGA10_UMD_PSTATE_SOCCLK_LEVEL;
4089 *mclk_mask = VEGA10_UMD_PSTATE_MCLK_LEVEL;
4090 hwmgr->pstate_sclk = table_info->vdd_dep_on_sclk->entries[VEGA10_UMD_PSTATE_GFXCLK_LEVEL].clk;
4091 hwmgr->pstate_mclk = table_info->vdd_dep_on_mclk->entries[VEGA10_UMD_PSTATE_MCLK_LEVEL].clk;
4094 if (level == AMD_DPM_FORCED_LEVEL_PROFILE_MIN_SCLK) {
4095 *sclk_mask = 0;
4096 } else if (level == AMD_DPM_FORCED_LEVEL_PROFILE_MIN_MCLK) {
4097 *mclk_mask = 0;
4098 } else if (level == AMD_DPM_FORCED_LEVEL_PROFILE_PEAK) {
4099 /* under vega10 pp one vf mode, the gfx clk dpm need be lower
4100 * to level-4 due to the limited power
4102 if (hwmgr->pp_one_vf)
4103 *sclk_mask = 4;
4104 else
4105 *sclk_mask = table_info->vdd_dep_on_sclk->count - 1;
4106 *soc_mask = table_info->vdd_dep_on_socclk->count - 1;
4107 *mclk_mask = table_info->vdd_dep_on_mclk->count - 1;
4110 return 0;
4113 static void vega10_set_fan_control_mode(struct pp_hwmgr *hwmgr, uint32_t mode)
4115 if (!hwmgr->not_vf)
4116 return;
4118 switch (mode) {
4119 case AMD_FAN_CTRL_NONE:
4120 vega10_fan_ctrl_set_fan_speed_percent(hwmgr, 100);
4121 break;
4122 case AMD_FAN_CTRL_MANUAL:
4123 if (PP_CAP(PHM_PlatformCaps_MicrocodeFanControl))
4124 vega10_fan_ctrl_stop_smc_fan_control(hwmgr);
4125 break;
4126 case AMD_FAN_CTRL_AUTO:
4127 if (PP_CAP(PHM_PlatformCaps_MicrocodeFanControl))
4128 vega10_fan_ctrl_start_smc_fan_control(hwmgr);
4129 break;
4130 default:
4131 break;
4135 static int vega10_force_clock_level(struct pp_hwmgr *hwmgr,
4136 enum pp_clock_type type, uint32_t mask)
4138 struct vega10_hwmgr *data = hwmgr->backend;
4140 switch (type) {
4141 case PP_SCLK:
4142 data->smc_state_table.gfx_boot_level = mask ? (ffs(mask) - 1) : 0;
4143 data->smc_state_table.gfx_max_level = mask ? (fls(mask) - 1) : 0;
4145 PP_ASSERT_WITH_CODE(!vega10_upload_dpm_bootup_level(hwmgr),
4146 "Failed to upload boot level to lowest!",
4147 return -EINVAL);
4149 PP_ASSERT_WITH_CODE(!vega10_upload_dpm_max_level(hwmgr),
4150 "Failed to upload dpm max level to highest!",
4151 return -EINVAL);
4152 break;
4154 case PP_MCLK:
4155 data->smc_state_table.mem_boot_level = mask ? (ffs(mask) - 1) : 0;
4156 data->smc_state_table.mem_max_level = mask ? (fls(mask) - 1) : 0;
4158 PP_ASSERT_WITH_CODE(!vega10_upload_dpm_bootup_level(hwmgr),
4159 "Failed to upload boot level to lowest!",
4160 return -EINVAL);
4162 PP_ASSERT_WITH_CODE(!vega10_upload_dpm_max_level(hwmgr),
4163 "Failed to upload dpm max level to highest!",
4164 return -EINVAL);
4166 break;
4168 case PP_SOCCLK:
4169 data->smc_state_table.soc_boot_level = mask ? (ffs(mask) - 1) : 0;
4170 data->smc_state_table.soc_max_level = mask ? (fls(mask) - 1) : 0;
4172 PP_ASSERT_WITH_CODE(!vega10_upload_dpm_bootup_level(hwmgr),
4173 "Failed to upload boot level to lowest!",
4174 return -EINVAL);
4176 PP_ASSERT_WITH_CODE(!vega10_upload_dpm_max_level(hwmgr),
4177 "Failed to upload dpm max level to highest!",
4178 return -EINVAL);
4180 break;
4182 case PP_DCEFCLK:
4183 pr_info("Setting DCEFCLK min/max dpm level is not supported!\n");
4184 break;
4186 case PP_PCIE:
4187 default:
4188 break;
4191 return 0;
4194 static int vega10_dpm_force_dpm_level(struct pp_hwmgr *hwmgr,
4195 enum amd_dpm_forced_level level)
4197 int ret = 0;
4198 uint32_t sclk_mask = 0;
4199 uint32_t mclk_mask = 0;
4200 uint32_t soc_mask = 0;
4202 if (hwmgr->pstate_sclk == 0)
4203 vega10_get_profiling_clk_mask(hwmgr, level, &sclk_mask, &mclk_mask, &soc_mask);
4205 switch (level) {
4206 case AMD_DPM_FORCED_LEVEL_HIGH:
4207 ret = vega10_force_dpm_highest(hwmgr);
4208 break;
4209 case AMD_DPM_FORCED_LEVEL_LOW:
4210 ret = vega10_force_dpm_lowest(hwmgr);
4211 break;
4212 case AMD_DPM_FORCED_LEVEL_AUTO:
4213 ret = vega10_unforce_dpm_levels(hwmgr);
4214 break;
4215 case AMD_DPM_FORCED_LEVEL_PROFILE_STANDARD:
4216 case AMD_DPM_FORCED_LEVEL_PROFILE_MIN_SCLK:
4217 case AMD_DPM_FORCED_LEVEL_PROFILE_MIN_MCLK:
4218 case AMD_DPM_FORCED_LEVEL_PROFILE_PEAK:
4219 ret = vega10_get_profiling_clk_mask(hwmgr, level, &sclk_mask, &mclk_mask, &soc_mask);
4220 if (ret)
4221 return ret;
4222 vega10_force_clock_level(hwmgr, PP_SCLK, 1<<sclk_mask);
4223 vega10_force_clock_level(hwmgr, PP_MCLK, 1<<mclk_mask);
4224 break;
4225 case AMD_DPM_FORCED_LEVEL_MANUAL:
4226 case AMD_DPM_FORCED_LEVEL_PROFILE_EXIT:
4227 default:
4228 break;
4231 if (!hwmgr->not_vf)
4232 return ret;
4234 if (!ret) {
4235 if (level == AMD_DPM_FORCED_LEVEL_PROFILE_PEAK && hwmgr->dpm_level != AMD_DPM_FORCED_LEVEL_PROFILE_PEAK)
4236 vega10_set_fan_control_mode(hwmgr, AMD_FAN_CTRL_NONE);
4237 else if (level != AMD_DPM_FORCED_LEVEL_PROFILE_PEAK && hwmgr->dpm_level == AMD_DPM_FORCED_LEVEL_PROFILE_PEAK)
4238 vega10_set_fan_control_mode(hwmgr, AMD_FAN_CTRL_AUTO);
4241 return ret;
4244 static uint32_t vega10_get_fan_control_mode(struct pp_hwmgr *hwmgr)
4246 struct vega10_hwmgr *data = hwmgr->backend;
4248 if (data->smu_features[GNLD_FAN_CONTROL].enabled == false)
4249 return AMD_FAN_CTRL_MANUAL;
4250 else
4251 return AMD_FAN_CTRL_AUTO;
4254 static int vega10_get_dal_power_level(struct pp_hwmgr *hwmgr,
4255 struct amd_pp_simple_clock_info *info)
4257 struct phm_ppt_v2_information *table_info =
4258 (struct phm_ppt_v2_information *)hwmgr->pptable;
4259 struct phm_clock_and_voltage_limits *max_limits =
4260 &table_info->max_clock_voltage_on_ac;
4262 info->engine_max_clock = max_limits->sclk;
4263 info->memory_max_clock = max_limits->mclk;
4265 return 0;
4268 static void vega10_get_sclks(struct pp_hwmgr *hwmgr,
4269 struct pp_clock_levels_with_latency *clocks)
4271 struct phm_ppt_v2_information *table_info =
4272 (struct phm_ppt_v2_information *)hwmgr->pptable;
4273 struct phm_ppt_v1_clock_voltage_dependency_table *dep_table =
4274 table_info->vdd_dep_on_sclk;
4275 uint32_t i;
4277 clocks->num_levels = 0;
4278 for (i = 0; i < dep_table->count; i++) {
4279 if (dep_table->entries[i].clk) {
4280 clocks->data[clocks->num_levels].clocks_in_khz =
4281 dep_table->entries[i].clk * 10;
4282 clocks->num_levels++;
4288 static void vega10_get_memclocks(struct pp_hwmgr *hwmgr,
4289 struct pp_clock_levels_with_latency *clocks)
4291 struct phm_ppt_v2_information *table_info =
4292 (struct phm_ppt_v2_information *)hwmgr->pptable;
4293 struct phm_ppt_v1_clock_voltage_dependency_table *dep_table =
4294 table_info->vdd_dep_on_mclk;
4295 struct vega10_hwmgr *data = hwmgr->backend;
4296 uint32_t j = 0;
4297 uint32_t i;
4299 for (i = 0; i < dep_table->count; i++) {
4300 if (dep_table->entries[i].clk) {
4302 clocks->data[j].clocks_in_khz =
4303 dep_table->entries[i].clk * 10;
4304 data->mclk_latency_table.entries[j].frequency =
4305 dep_table->entries[i].clk;
4306 clocks->data[j].latency_in_us =
4307 data->mclk_latency_table.entries[j].latency = 25;
4308 j++;
4311 clocks->num_levels = data->mclk_latency_table.count = j;
4314 static void vega10_get_dcefclocks(struct pp_hwmgr *hwmgr,
4315 struct pp_clock_levels_with_latency *clocks)
4317 struct phm_ppt_v2_information *table_info =
4318 (struct phm_ppt_v2_information *)hwmgr->pptable;
4319 struct phm_ppt_v1_clock_voltage_dependency_table *dep_table =
4320 table_info->vdd_dep_on_dcefclk;
4321 uint32_t i;
4323 for (i = 0; i < dep_table->count; i++) {
4324 clocks->data[i].clocks_in_khz = dep_table->entries[i].clk * 10;
4325 clocks->data[i].latency_in_us = 0;
4326 clocks->num_levels++;
4330 static void vega10_get_socclocks(struct pp_hwmgr *hwmgr,
4331 struct pp_clock_levels_with_latency *clocks)
4333 struct phm_ppt_v2_information *table_info =
4334 (struct phm_ppt_v2_information *)hwmgr->pptable;
4335 struct phm_ppt_v1_clock_voltage_dependency_table *dep_table =
4336 table_info->vdd_dep_on_socclk;
4337 uint32_t i;
4339 for (i = 0; i < dep_table->count; i++) {
4340 clocks->data[i].clocks_in_khz = dep_table->entries[i].clk * 10;
4341 clocks->data[i].latency_in_us = 0;
4342 clocks->num_levels++;
4346 static int vega10_get_clock_by_type_with_latency(struct pp_hwmgr *hwmgr,
4347 enum amd_pp_clock_type type,
4348 struct pp_clock_levels_with_latency *clocks)
4350 switch (type) {
4351 case amd_pp_sys_clock:
4352 vega10_get_sclks(hwmgr, clocks);
4353 break;
4354 case amd_pp_mem_clock:
4355 vega10_get_memclocks(hwmgr, clocks);
4356 break;
4357 case amd_pp_dcef_clock:
4358 vega10_get_dcefclocks(hwmgr, clocks);
4359 break;
4360 case amd_pp_soc_clock:
4361 vega10_get_socclocks(hwmgr, clocks);
4362 break;
4363 default:
4364 return -1;
4367 return 0;
4370 static int vega10_get_clock_by_type_with_voltage(struct pp_hwmgr *hwmgr,
4371 enum amd_pp_clock_type type,
4372 struct pp_clock_levels_with_voltage *clocks)
4374 struct phm_ppt_v2_information *table_info =
4375 (struct phm_ppt_v2_information *)hwmgr->pptable;
4376 struct phm_ppt_v1_clock_voltage_dependency_table *dep_table;
4377 uint32_t i;
4379 switch (type) {
4380 case amd_pp_mem_clock:
4381 dep_table = table_info->vdd_dep_on_mclk;
4382 break;
4383 case amd_pp_dcef_clock:
4384 dep_table = table_info->vdd_dep_on_dcefclk;
4385 break;
4386 case amd_pp_disp_clock:
4387 dep_table = table_info->vdd_dep_on_dispclk;
4388 break;
4389 case amd_pp_pixel_clock:
4390 dep_table = table_info->vdd_dep_on_pixclk;
4391 break;
4392 case amd_pp_phy_clock:
4393 dep_table = table_info->vdd_dep_on_phyclk;
4394 break;
4395 default:
4396 return -1;
4399 for (i = 0; i < dep_table->count; i++) {
4400 clocks->data[i].clocks_in_khz = dep_table->entries[i].clk * 10;
4401 clocks->data[i].voltage_in_mv = (uint32_t)(table_info->vddc_lookup_table->
4402 entries[dep_table->entries[i].vddInd].us_vdd);
4403 clocks->num_levels++;
4406 if (i < dep_table->count)
4407 return -1;
4409 return 0;
4412 static int vega10_set_watermarks_for_clocks_ranges(struct pp_hwmgr *hwmgr,
4413 void *clock_range)
4415 struct vega10_hwmgr *data = hwmgr->backend;
4416 struct dm_pp_wm_sets_with_clock_ranges_soc15 *wm_with_clock_ranges = clock_range;
4417 Watermarks_t *table = &(data->smc_state_table.water_marks_table);
4419 if (!data->registry_data.disable_water_mark) {
4420 smu_set_watermarks_for_clocks_ranges(table, wm_with_clock_ranges);
4421 data->water_marks_bitmap = WaterMarksExist;
4424 return 0;
4427 static int vega10_get_ppfeature_status(struct pp_hwmgr *hwmgr, char *buf)
4429 static const char *ppfeature_name[] = {
4430 "DPM_PREFETCHER",
4431 "GFXCLK_DPM",
4432 "UCLK_DPM",
4433 "SOCCLK_DPM",
4434 "UVD_DPM",
4435 "VCE_DPM",
4436 "ULV",
4437 "MP0CLK_DPM",
4438 "LINK_DPM",
4439 "DCEFCLK_DPM",
4440 "AVFS",
4441 "GFXCLK_DS",
4442 "SOCCLK_DS",
4443 "LCLK_DS",
4444 "PPT",
4445 "TDC",
4446 "THERMAL",
4447 "GFX_PER_CU_CG",
4448 "RM",
4449 "DCEFCLK_DS",
4450 "ACDC",
4451 "VR0HOT",
4452 "VR1HOT",
4453 "FW_CTF",
4454 "LED_DISPLAY",
4455 "FAN_CONTROL",
4456 "FAST_PPT",
4457 "DIDT",
4458 "ACG",
4459 "PCC_LIMIT"};
4460 static const char *output_title[] = {
4461 "FEATURES",
4462 "BITMASK",
4463 "ENABLEMENT"};
4464 uint64_t features_enabled;
4465 int i;
4466 int ret = 0;
4467 int size = 0;
4469 ret = vega10_get_enabled_smc_features(hwmgr, &features_enabled);
4470 PP_ASSERT_WITH_CODE(!ret,
4471 "[EnableAllSmuFeatures] Failed to get enabled smc features!",
4472 return ret);
4474 size += sprintf(buf + size, "Current ppfeatures: 0x%016llx\n", features_enabled);
4475 size += sprintf(buf + size, "%-19s %-22s %s\n",
4476 output_title[0],
4477 output_title[1],
4478 output_title[2]);
4479 for (i = 0; i < GNLD_FEATURES_MAX; i++) {
4480 size += sprintf(buf + size, "%-19s 0x%016llx %6s\n",
4481 ppfeature_name[i],
4482 1ULL << i,
4483 (features_enabled & (1ULL << i)) ? "Y" : "N");
4486 return size;
4489 static int vega10_set_ppfeature_status(struct pp_hwmgr *hwmgr, uint64_t new_ppfeature_masks)
4491 uint64_t features_enabled;
4492 uint64_t features_to_enable;
4493 uint64_t features_to_disable;
4494 int ret = 0;
4496 if (new_ppfeature_masks >= (1ULL << GNLD_FEATURES_MAX))
4497 return -EINVAL;
4499 ret = vega10_get_enabled_smc_features(hwmgr, &features_enabled);
4500 if (ret)
4501 return ret;
4503 features_to_disable =
4504 features_enabled & ~new_ppfeature_masks;
4505 features_to_enable =
4506 ~features_enabled & new_ppfeature_masks;
4508 pr_debug("features_to_disable 0x%llx\n", features_to_disable);
4509 pr_debug("features_to_enable 0x%llx\n", features_to_enable);
4511 if (features_to_disable) {
4512 ret = vega10_enable_smc_features(hwmgr, false, features_to_disable);
4513 if (ret)
4514 return ret;
4517 if (features_to_enable) {
4518 ret = vega10_enable_smc_features(hwmgr, true, features_to_enable);
4519 if (ret)
4520 return ret;
4523 return 0;
4526 static int vega10_print_clock_levels(struct pp_hwmgr *hwmgr,
4527 enum pp_clock_type type, char *buf)
4529 struct vega10_hwmgr *data = hwmgr->backend;
4530 struct vega10_single_dpm_table *sclk_table = &(data->dpm_table.gfx_table);
4531 struct vega10_single_dpm_table *mclk_table = &(data->dpm_table.mem_table);
4532 struct vega10_single_dpm_table *soc_table = &(data->dpm_table.soc_table);
4533 struct vega10_single_dpm_table *dcef_table = &(data->dpm_table.dcef_table);
4534 struct vega10_pcie_table *pcie_table = &(data->dpm_table.pcie_table);
4535 struct vega10_odn_clock_voltage_dependency_table *podn_vdd_dep = NULL;
4537 int i, now, size = 0, count = 0;
4539 switch (type) {
4540 case PP_SCLK:
4541 if (data->registry_data.sclk_dpm_key_disabled)
4542 break;
4544 smum_send_msg_to_smc(hwmgr, PPSMC_MSG_GetCurrentGfxclkIndex);
4545 now = smum_get_argument(hwmgr);
4547 if (hwmgr->pp_one_vf &&
4548 (hwmgr->dpm_level == AMD_DPM_FORCED_LEVEL_PROFILE_PEAK))
4549 count = 5;
4550 else
4551 count = sclk_table->count;
4552 for (i = 0; i < count; i++)
4553 size += sprintf(buf + size, "%d: %uMhz %s\n",
4554 i, sclk_table->dpm_levels[i].value / 100,
4555 (i == now) ? "*" : "");
4556 break;
4557 case PP_MCLK:
4558 if (data->registry_data.mclk_dpm_key_disabled)
4559 break;
4561 smum_send_msg_to_smc(hwmgr, PPSMC_MSG_GetCurrentUclkIndex);
4562 now = smum_get_argument(hwmgr);
4564 for (i = 0; i < mclk_table->count; i++)
4565 size += sprintf(buf + size, "%d: %uMhz %s\n",
4566 i, mclk_table->dpm_levels[i].value / 100,
4567 (i == now) ? "*" : "");
4568 break;
4569 case PP_SOCCLK:
4570 if (data->registry_data.socclk_dpm_key_disabled)
4571 break;
4573 smum_send_msg_to_smc(hwmgr, PPSMC_MSG_GetCurrentSocclkIndex);
4574 now = smum_get_argument(hwmgr);
4576 for (i = 0; i < soc_table->count; i++)
4577 size += sprintf(buf + size, "%d: %uMhz %s\n",
4578 i, soc_table->dpm_levels[i].value / 100,
4579 (i == now) ? "*" : "");
4580 break;
4581 case PP_DCEFCLK:
4582 if (data->registry_data.dcefclk_dpm_key_disabled)
4583 break;
4585 smum_send_msg_to_smc_with_parameter(hwmgr,
4586 PPSMC_MSG_GetClockFreqMHz, CLK_DCEFCLK);
4587 now = smum_get_argument(hwmgr);
4589 for (i = 0; i < dcef_table->count; i++)
4590 size += sprintf(buf + size, "%d: %uMhz %s\n",
4591 i, dcef_table->dpm_levels[i].value / 100,
4592 (dcef_table->dpm_levels[i].value / 100 == now) ?
4593 "*" : "");
4594 break;
4595 case PP_PCIE:
4596 smum_send_msg_to_smc(hwmgr, PPSMC_MSG_GetCurrentLinkIndex);
4597 now = smum_get_argument(hwmgr);
4599 for (i = 0; i < pcie_table->count; i++)
4600 size += sprintf(buf + size, "%d: %s %s\n", i,
4601 (pcie_table->pcie_gen[i] == 0) ? "2.5GT/s, x1" :
4602 (pcie_table->pcie_gen[i] == 1) ? "5.0GT/s, x16" :
4603 (pcie_table->pcie_gen[i] == 2) ? "8.0GT/s, x16" : "",
4604 (i == now) ? "*" : "");
4605 break;
4606 case OD_SCLK:
4607 if (hwmgr->od_enabled) {
4608 size = sprintf(buf, "%s:\n", "OD_SCLK");
4609 podn_vdd_dep = &data->odn_dpm_table.vdd_dep_on_sclk;
4610 for (i = 0; i < podn_vdd_dep->count; i++)
4611 size += sprintf(buf + size, "%d: %10uMhz %10umV\n",
4612 i, podn_vdd_dep->entries[i].clk / 100,
4613 podn_vdd_dep->entries[i].vddc);
4615 break;
4616 case OD_MCLK:
4617 if (hwmgr->od_enabled) {
4618 size = sprintf(buf, "%s:\n", "OD_MCLK");
4619 podn_vdd_dep = &data->odn_dpm_table.vdd_dep_on_mclk;
4620 for (i = 0; i < podn_vdd_dep->count; i++)
4621 size += sprintf(buf + size, "%d: %10uMhz %10umV\n",
4622 i, podn_vdd_dep->entries[i].clk/100,
4623 podn_vdd_dep->entries[i].vddc);
4625 break;
4626 case OD_RANGE:
4627 if (hwmgr->od_enabled) {
4628 size = sprintf(buf, "%s:\n", "OD_RANGE");
4629 size += sprintf(buf + size, "SCLK: %7uMHz %10uMHz\n",
4630 data->golden_dpm_table.gfx_table.dpm_levels[0].value/100,
4631 hwmgr->platform_descriptor.overdriveLimit.engineClock/100);
4632 size += sprintf(buf + size, "MCLK: %7uMHz %10uMHz\n",
4633 data->golden_dpm_table.mem_table.dpm_levels[0].value/100,
4634 hwmgr->platform_descriptor.overdriveLimit.memoryClock/100);
4635 size += sprintf(buf + size, "VDDC: %7umV %11umV\n",
4636 data->odn_dpm_table.min_vddc,
4637 data->odn_dpm_table.max_vddc);
4639 break;
4640 default:
4641 break;
4643 return size;
4646 static int vega10_display_configuration_changed_task(struct pp_hwmgr *hwmgr)
4648 struct vega10_hwmgr *data = hwmgr->backend;
4649 Watermarks_t *wm_table = &(data->smc_state_table.water_marks_table);
4650 int result = 0;
4652 if ((data->water_marks_bitmap & WaterMarksExist) &&
4653 !(data->water_marks_bitmap & WaterMarksLoaded)) {
4654 result = smum_smc_table_manager(hwmgr, (uint8_t *)wm_table, WMTABLE, false);
4655 PP_ASSERT_WITH_CODE(result, "Failed to update WMTABLE!", return EINVAL);
4656 data->water_marks_bitmap |= WaterMarksLoaded;
4659 if (data->water_marks_bitmap & WaterMarksLoaded) {
4660 smum_send_msg_to_smc_with_parameter(hwmgr,
4661 PPSMC_MSG_NumOfDisplays, hwmgr->display_config->num_display);
4664 return result;
4667 int vega10_enable_disable_uvd_dpm(struct pp_hwmgr *hwmgr, bool enable)
4669 struct vega10_hwmgr *data = hwmgr->backend;
4671 if (data->smu_features[GNLD_DPM_UVD].supported) {
4672 PP_ASSERT_WITH_CODE(!vega10_enable_smc_features(hwmgr,
4673 enable,
4674 data->smu_features[GNLD_DPM_UVD].smu_feature_bitmap),
4675 "Attempt to Enable/Disable DPM UVD Failed!",
4676 return -1);
4677 data->smu_features[GNLD_DPM_UVD].enabled = enable;
4679 return 0;
4682 static void vega10_power_gate_vce(struct pp_hwmgr *hwmgr, bool bgate)
4684 struct vega10_hwmgr *data = hwmgr->backend;
4686 data->vce_power_gated = bgate;
4687 vega10_enable_disable_vce_dpm(hwmgr, !bgate);
4690 static void vega10_power_gate_uvd(struct pp_hwmgr *hwmgr, bool bgate)
4692 struct vega10_hwmgr *data = hwmgr->backend;
4694 data->uvd_power_gated = bgate;
4695 vega10_enable_disable_uvd_dpm(hwmgr, !bgate);
4698 static inline bool vega10_are_power_levels_equal(
4699 const struct vega10_performance_level *pl1,
4700 const struct vega10_performance_level *pl2)
4702 return ((pl1->soc_clock == pl2->soc_clock) &&
4703 (pl1->gfx_clock == pl2->gfx_clock) &&
4704 (pl1->mem_clock == pl2->mem_clock));
4707 static int vega10_check_states_equal(struct pp_hwmgr *hwmgr,
4708 const struct pp_hw_power_state *pstate1,
4709 const struct pp_hw_power_state *pstate2, bool *equal)
4711 const struct vega10_power_state *psa;
4712 const struct vega10_power_state *psb;
4713 int i;
4715 if (pstate1 == NULL || pstate2 == NULL || equal == NULL)
4716 return -EINVAL;
4718 psa = cast_const_phw_vega10_power_state(pstate1);
4719 psb = cast_const_phw_vega10_power_state(pstate2);
4720 /* If the two states don't even have the same number of performance levels they cannot be the same state. */
4721 if (psa->performance_level_count != psb->performance_level_count) {
4722 *equal = false;
4723 return 0;
4726 for (i = 0; i < psa->performance_level_count; i++) {
4727 if (!vega10_are_power_levels_equal(&(psa->performance_levels[i]), &(psb->performance_levels[i]))) {
4728 /* If we have found even one performance level pair that is different the states are different. */
4729 *equal = false;
4730 return 0;
4734 /* If all performance levels are the same try to use the UVD clocks to break the tie.*/
4735 *equal = ((psa->uvd_clks.vclk == psb->uvd_clks.vclk) && (psa->uvd_clks.dclk == psb->uvd_clks.dclk));
4736 *equal &= ((psa->vce_clks.evclk == psb->vce_clks.evclk) && (psa->vce_clks.ecclk == psb->vce_clks.ecclk));
4737 *equal &= (psa->sclk_threshold == psb->sclk_threshold);
4739 return 0;
4742 static bool
4743 vega10_check_smc_update_required_for_display_configuration(struct pp_hwmgr *hwmgr)
4745 struct vega10_hwmgr *data = hwmgr->backend;
4746 bool is_update_required = false;
4748 if (data->display_timing.num_existing_displays != hwmgr->display_config->num_display)
4749 is_update_required = true;
4751 if (PP_CAP(PHM_PlatformCaps_SclkDeepSleep)) {
4752 if (data->display_timing.min_clock_in_sr != hwmgr->display_config->min_core_set_clock_in_sr)
4753 is_update_required = true;
4756 return is_update_required;
4759 static int vega10_disable_dpm_tasks(struct pp_hwmgr *hwmgr)
4761 int tmp_result, result = 0;
4763 if (!hwmgr->not_vf)
4764 return 0;
4766 if (PP_CAP(PHM_PlatformCaps_ThermalController))
4767 vega10_disable_thermal_protection(hwmgr);
4769 tmp_result = vega10_disable_power_containment(hwmgr);
4770 PP_ASSERT_WITH_CODE((tmp_result == 0),
4771 "Failed to disable power containment!", result = tmp_result);
4773 tmp_result = vega10_disable_didt_config(hwmgr);
4774 PP_ASSERT_WITH_CODE((tmp_result == 0),
4775 "Failed to disable didt config!", result = tmp_result);
4777 tmp_result = vega10_avfs_enable(hwmgr, false);
4778 PP_ASSERT_WITH_CODE((tmp_result == 0),
4779 "Failed to disable AVFS!", result = tmp_result);
4781 tmp_result = vega10_stop_dpm(hwmgr, SMC_DPM_FEATURES);
4782 PP_ASSERT_WITH_CODE((tmp_result == 0),
4783 "Failed to stop DPM!", result = tmp_result);
4785 tmp_result = vega10_disable_deep_sleep_master_switch(hwmgr);
4786 PP_ASSERT_WITH_CODE((tmp_result == 0),
4787 "Failed to disable deep sleep!", result = tmp_result);
4789 tmp_result = vega10_disable_ulv(hwmgr);
4790 PP_ASSERT_WITH_CODE((tmp_result == 0),
4791 "Failed to disable ulv!", result = tmp_result);
4793 tmp_result = vega10_acg_disable(hwmgr);
4794 PP_ASSERT_WITH_CODE((tmp_result == 0),
4795 "Failed to disable acg!", result = tmp_result);
4797 vega10_enable_disable_PCC_limit_feature(hwmgr, false);
4798 return result;
4801 static int vega10_power_off_asic(struct pp_hwmgr *hwmgr)
4803 struct vega10_hwmgr *data = hwmgr->backend;
4804 int result;
4806 result = vega10_disable_dpm_tasks(hwmgr);
4807 PP_ASSERT_WITH_CODE((0 == result),
4808 "[disable_dpm_tasks] Failed to disable DPM!",
4810 data->water_marks_bitmap &= ~(WaterMarksLoaded);
4812 return result;
4815 static int vega10_get_sclk_od(struct pp_hwmgr *hwmgr)
4817 struct vega10_hwmgr *data = hwmgr->backend;
4818 struct vega10_single_dpm_table *sclk_table = &(data->dpm_table.gfx_table);
4819 struct vega10_single_dpm_table *golden_sclk_table =
4820 &(data->golden_dpm_table.gfx_table);
4821 int value = sclk_table->dpm_levels[sclk_table->count - 1].value;
4822 int golden_value = golden_sclk_table->dpm_levels
4823 [golden_sclk_table->count - 1].value;
4825 value -= golden_value;
4826 value = DIV_ROUND_UP(value * 100, golden_value);
4828 return value;
4831 static int vega10_set_sclk_od(struct pp_hwmgr *hwmgr, uint32_t value)
4833 struct vega10_hwmgr *data = hwmgr->backend;
4834 struct vega10_single_dpm_table *golden_sclk_table =
4835 &(data->golden_dpm_table.gfx_table);
4836 struct pp_power_state *ps;
4837 struct vega10_power_state *vega10_ps;
4839 ps = hwmgr->request_ps;
4841 if (ps == NULL)
4842 return -EINVAL;
4844 vega10_ps = cast_phw_vega10_power_state(&ps->hardware);
4846 vega10_ps->performance_levels
4847 [vega10_ps->performance_level_count - 1].gfx_clock =
4848 golden_sclk_table->dpm_levels
4849 [golden_sclk_table->count - 1].value *
4850 value / 100 +
4851 golden_sclk_table->dpm_levels
4852 [golden_sclk_table->count - 1].value;
4854 if (vega10_ps->performance_levels
4855 [vega10_ps->performance_level_count - 1].gfx_clock >
4856 hwmgr->platform_descriptor.overdriveLimit.engineClock) {
4857 vega10_ps->performance_levels
4858 [vega10_ps->performance_level_count - 1].gfx_clock =
4859 hwmgr->platform_descriptor.overdriveLimit.engineClock;
4860 pr_warn("max sclk supported by vbios is %d\n",
4861 hwmgr->platform_descriptor.overdriveLimit.engineClock);
4863 return 0;
4866 static int vega10_get_mclk_od(struct pp_hwmgr *hwmgr)
4868 struct vega10_hwmgr *data = hwmgr->backend;
4869 struct vega10_single_dpm_table *mclk_table = &(data->dpm_table.mem_table);
4870 struct vega10_single_dpm_table *golden_mclk_table =
4871 &(data->golden_dpm_table.mem_table);
4872 int value = mclk_table->dpm_levels[mclk_table->count - 1].value;
4873 int golden_value = golden_mclk_table->dpm_levels
4874 [golden_mclk_table->count - 1].value;
4876 value -= golden_value;
4877 value = DIV_ROUND_UP(value * 100, golden_value);
4879 return value;
4882 static int vega10_set_mclk_od(struct pp_hwmgr *hwmgr, uint32_t value)
4884 struct vega10_hwmgr *data = hwmgr->backend;
4885 struct vega10_single_dpm_table *golden_mclk_table =
4886 &(data->golden_dpm_table.mem_table);
4887 struct pp_power_state *ps;
4888 struct vega10_power_state *vega10_ps;
4890 ps = hwmgr->request_ps;
4892 if (ps == NULL)
4893 return -EINVAL;
4895 vega10_ps = cast_phw_vega10_power_state(&ps->hardware);
4897 vega10_ps->performance_levels
4898 [vega10_ps->performance_level_count - 1].mem_clock =
4899 golden_mclk_table->dpm_levels
4900 [golden_mclk_table->count - 1].value *
4901 value / 100 +
4902 golden_mclk_table->dpm_levels
4903 [golden_mclk_table->count - 1].value;
4905 if (vega10_ps->performance_levels
4906 [vega10_ps->performance_level_count - 1].mem_clock >
4907 hwmgr->platform_descriptor.overdriveLimit.memoryClock) {
4908 vega10_ps->performance_levels
4909 [vega10_ps->performance_level_count - 1].mem_clock =
4910 hwmgr->platform_descriptor.overdriveLimit.memoryClock;
4911 pr_warn("max mclk supported by vbios is %d\n",
4912 hwmgr->platform_descriptor.overdriveLimit.memoryClock);
4915 return 0;
4918 static int vega10_notify_cac_buffer_info(struct pp_hwmgr *hwmgr,
4919 uint32_t virtual_addr_low,
4920 uint32_t virtual_addr_hi,
4921 uint32_t mc_addr_low,
4922 uint32_t mc_addr_hi,
4923 uint32_t size)
4925 smum_send_msg_to_smc_with_parameter(hwmgr,
4926 PPSMC_MSG_SetSystemVirtualDramAddrHigh,
4927 virtual_addr_hi);
4928 smum_send_msg_to_smc_with_parameter(hwmgr,
4929 PPSMC_MSG_SetSystemVirtualDramAddrLow,
4930 virtual_addr_low);
4931 smum_send_msg_to_smc_with_parameter(hwmgr,
4932 PPSMC_MSG_DramLogSetDramAddrHigh,
4933 mc_addr_hi);
4935 smum_send_msg_to_smc_with_parameter(hwmgr,
4936 PPSMC_MSG_DramLogSetDramAddrLow,
4937 mc_addr_low);
4939 smum_send_msg_to_smc_with_parameter(hwmgr,
4940 PPSMC_MSG_DramLogSetDramSize,
4941 size);
4942 return 0;
4945 static int vega10_get_thermal_temperature_range(struct pp_hwmgr *hwmgr,
4946 struct PP_TemperatureRange *thermal_data)
4948 struct vega10_hwmgr *data = hwmgr->backend;
4949 PPTable_t *pp_table = &(data->smc_state_table.pp_table);
4951 memcpy(thermal_data, &SMU7ThermalWithDelayPolicy[0], sizeof(struct PP_TemperatureRange));
4953 thermal_data->max = pp_table->TedgeLimit *
4954 PP_TEMPERATURE_UNITS_PER_CENTIGRADES;
4955 thermal_data->edge_emergency_max = (pp_table->TedgeLimit + CTF_OFFSET_EDGE) *
4956 PP_TEMPERATURE_UNITS_PER_CENTIGRADES;
4957 thermal_data->hotspot_crit_max = pp_table->ThotspotLimit *
4958 PP_TEMPERATURE_UNITS_PER_CENTIGRADES;
4959 thermal_data->hotspot_emergency_max = (pp_table->ThotspotLimit + CTF_OFFSET_HOTSPOT) *
4960 PP_TEMPERATURE_UNITS_PER_CENTIGRADES;
4961 thermal_data->mem_crit_max = pp_table->ThbmLimit *
4962 PP_TEMPERATURE_UNITS_PER_CENTIGRADES;
4963 thermal_data->mem_emergency_max = (pp_table->ThbmLimit + CTF_OFFSET_HBM)*
4964 PP_TEMPERATURE_UNITS_PER_CENTIGRADES;
4966 return 0;
4969 static int vega10_get_power_profile_mode(struct pp_hwmgr *hwmgr, char *buf)
4971 struct vega10_hwmgr *data = hwmgr->backend;
4972 uint32_t i, size = 0;
4973 static const uint8_t profile_mode_setting[6][4] = {{70, 60, 0, 0,},
4974 {70, 60, 1, 3,},
4975 {90, 60, 0, 0,},
4976 {70, 60, 0, 0,},
4977 {70, 90, 0, 0,},
4978 {30, 60, 0, 6,},
4980 static const char *profile_name[7] = {"BOOTUP_DEFAULT",
4981 "3D_FULL_SCREEN",
4982 "POWER_SAVING",
4983 "VIDEO",
4984 "VR",
4985 "COMPUTE",
4986 "CUSTOM"};
4987 static const char *title[6] = {"NUM",
4988 "MODE_NAME",
4989 "BUSY_SET_POINT",
4990 "FPS",
4991 "USE_RLC_BUSY",
4992 "MIN_ACTIVE_LEVEL"};
4994 if (!buf)
4995 return -EINVAL;
4997 size += sprintf(buf + size, "%s %16s %s %s %s %s\n",title[0],
4998 title[1], title[2], title[3], title[4], title[5]);
5000 for (i = 0; i < PP_SMC_POWER_PROFILE_CUSTOM; i++)
5001 size += sprintf(buf + size, "%3d %14s%s: %14d %3d %10d %14d\n",
5002 i, profile_name[i], (i == hwmgr->power_profile_mode) ? "*" : " ",
5003 profile_mode_setting[i][0], profile_mode_setting[i][1],
5004 profile_mode_setting[i][2], profile_mode_setting[i][3]);
5005 size += sprintf(buf + size, "%3d %14s%s: %14d %3d %10d %14d\n", i,
5006 profile_name[i], (i == hwmgr->power_profile_mode) ? "*" : " ",
5007 data->custom_profile_mode[0], data->custom_profile_mode[1],
5008 data->custom_profile_mode[2], data->custom_profile_mode[3]);
5009 return size;
5012 static int vega10_set_power_profile_mode(struct pp_hwmgr *hwmgr, long *input, uint32_t size)
5014 struct vega10_hwmgr *data = hwmgr->backend;
5015 uint8_t busy_set_point;
5016 uint8_t FPS;
5017 uint8_t use_rlc_busy;
5018 uint8_t min_active_level;
5019 uint32_t power_profile_mode = input[size];
5021 if (power_profile_mode == PP_SMC_POWER_PROFILE_CUSTOM) {
5022 if (size != 0 && size != 4)
5023 return -EINVAL;
5025 /* If size = 0 and the CUSTOM profile has been set already
5026 * then just apply the profile. The copy stored in the hwmgr
5027 * is zeroed out on init
5029 if (size == 0) {
5030 if (data->custom_profile_mode[0] != 0)
5031 goto out;
5032 else
5033 return -EINVAL;
5036 data->custom_profile_mode[0] = busy_set_point = input[0];
5037 data->custom_profile_mode[1] = FPS = input[1];
5038 data->custom_profile_mode[2] = use_rlc_busy = input[2];
5039 data->custom_profile_mode[3] = min_active_level = input[3];
5040 smum_send_msg_to_smc_with_parameter(hwmgr,
5041 PPSMC_MSG_SetCustomGfxDpmParameters,
5042 busy_set_point | FPS<<8 |
5043 use_rlc_busy << 16 | min_active_level<<24);
5046 out:
5047 smum_send_msg_to_smc_with_parameter(hwmgr, PPSMC_MSG_SetWorkloadMask,
5048 1 << power_profile_mode);
5049 hwmgr->power_profile_mode = power_profile_mode;
5051 return 0;
5055 static bool vega10_check_clk_voltage_valid(struct pp_hwmgr *hwmgr,
5056 enum PP_OD_DPM_TABLE_COMMAND type,
5057 uint32_t clk,
5058 uint32_t voltage)
5060 struct vega10_hwmgr *data = hwmgr->backend;
5061 struct vega10_odn_dpm_table *odn_table = &(data->odn_dpm_table);
5062 struct vega10_single_dpm_table *golden_table;
5064 if (voltage < odn_table->min_vddc || voltage > odn_table->max_vddc) {
5065 pr_info("OD voltage is out of range [%d - %d] mV\n", odn_table->min_vddc, odn_table->max_vddc);
5066 return false;
5069 if (type == PP_OD_EDIT_SCLK_VDDC_TABLE) {
5070 golden_table = &(data->golden_dpm_table.gfx_table);
5071 if (golden_table->dpm_levels[0].value > clk ||
5072 hwmgr->platform_descriptor.overdriveLimit.engineClock < clk) {
5073 pr_info("OD engine clock is out of range [%d - %d] MHz\n",
5074 golden_table->dpm_levels[0].value/100,
5075 hwmgr->platform_descriptor.overdriveLimit.engineClock/100);
5076 return false;
5078 } else if (type == PP_OD_EDIT_MCLK_VDDC_TABLE) {
5079 golden_table = &(data->golden_dpm_table.mem_table);
5080 if (golden_table->dpm_levels[0].value > clk ||
5081 hwmgr->platform_descriptor.overdriveLimit.memoryClock < clk) {
5082 pr_info("OD memory clock is out of range [%d - %d] MHz\n",
5083 golden_table->dpm_levels[0].value/100,
5084 hwmgr->platform_descriptor.overdriveLimit.memoryClock/100);
5085 return false;
5087 } else {
5088 return false;
5091 return true;
5094 static void vega10_odn_update_power_state(struct pp_hwmgr *hwmgr)
5096 struct vega10_hwmgr *data = hwmgr->backend;
5097 struct pp_power_state *ps = hwmgr->request_ps;
5098 struct vega10_power_state *vega10_ps;
5099 struct vega10_single_dpm_table *gfx_dpm_table =
5100 &data->dpm_table.gfx_table;
5101 struct vega10_single_dpm_table *soc_dpm_table =
5102 &data->dpm_table.soc_table;
5103 struct vega10_single_dpm_table *mem_dpm_table =
5104 &data->dpm_table.mem_table;
5105 int max_level;
5107 if (!ps)
5108 return;
5110 vega10_ps = cast_phw_vega10_power_state(&ps->hardware);
5111 max_level = vega10_ps->performance_level_count - 1;
5113 if (vega10_ps->performance_levels[max_level].gfx_clock !=
5114 gfx_dpm_table->dpm_levels[gfx_dpm_table->count - 1].value)
5115 vega10_ps->performance_levels[max_level].gfx_clock =
5116 gfx_dpm_table->dpm_levels[gfx_dpm_table->count - 1].value;
5118 if (vega10_ps->performance_levels[max_level].soc_clock !=
5119 soc_dpm_table->dpm_levels[soc_dpm_table->count - 1].value)
5120 vega10_ps->performance_levels[max_level].soc_clock =
5121 soc_dpm_table->dpm_levels[soc_dpm_table->count - 1].value;
5123 if (vega10_ps->performance_levels[max_level].mem_clock !=
5124 mem_dpm_table->dpm_levels[mem_dpm_table->count - 1].value)
5125 vega10_ps->performance_levels[max_level].mem_clock =
5126 mem_dpm_table->dpm_levels[mem_dpm_table->count - 1].value;
5128 if (!hwmgr->ps)
5129 return;
5131 ps = (struct pp_power_state *)((unsigned long)(hwmgr->ps) + hwmgr->ps_size * (hwmgr->num_ps - 1));
5132 vega10_ps = cast_phw_vega10_power_state(&ps->hardware);
5133 max_level = vega10_ps->performance_level_count - 1;
5135 if (vega10_ps->performance_levels[max_level].gfx_clock !=
5136 gfx_dpm_table->dpm_levels[gfx_dpm_table->count - 1].value)
5137 vega10_ps->performance_levels[max_level].gfx_clock =
5138 gfx_dpm_table->dpm_levels[gfx_dpm_table->count - 1].value;
5140 if (vega10_ps->performance_levels[max_level].soc_clock !=
5141 soc_dpm_table->dpm_levels[soc_dpm_table->count - 1].value)
5142 vega10_ps->performance_levels[max_level].soc_clock =
5143 soc_dpm_table->dpm_levels[soc_dpm_table->count - 1].value;
5145 if (vega10_ps->performance_levels[max_level].mem_clock !=
5146 mem_dpm_table->dpm_levels[mem_dpm_table->count - 1].value)
5147 vega10_ps->performance_levels[max_level].mem_clock =
5148 mem_dpm_table->dpm_levels[mem_dpm_table->count - 1].value;
5151 static void vega10_odn_update_soc_table(struct pp_hwmgr *hwmgr,
5152 enum PP_OD_DPM_TABLE_COMMAND type)
5154 struct vega10_hwmgr *data = hwmgr->backend;
5155 struct phm_ppt_v2_information *table_info = hwmgr->pptable;
5156 struct phm_ppt_v1_clock_voltage_dependency_table *dep_table = table_info->vdd_dep_on_socclk;
5157 struct vega10_single_dpm_table *dpm_table = &data->golden_dpm_table.mem_table;
5159 struct vega10_odn_clock_voltage_dependency_table *podn_vdd_dep_on_socclk =
5160 &data->odn_dpm_table.vdd_dep_on_socclk;
5161 struct vega10_odn_vddc_lookup_table *od_vddc_lookup_table = &data->odn_dpm_table.vddc_lookup_table;
5163 struct vega10_odn_clock_voltage_dependency_table *podn_vdd_dep;
5164 uint8_t i, j;
5166 if (type == PP_OD_EDIT_SCLK_VDDC_TABLE) {
5167 podn_vdd_dep = &data->odn_dpm_table.vdd_dep_on_sclk;
5168 for (i = 0; i < podn_vdd_dep->count; i++)
5169 od_vddc_lookup_table->entries[i].us_vdd = podn_vdd_dep->entries[i].vddc;
5170 } else if (type == PP_OD_EDIT_MCLK_VDDC_TABLE) {
5171 podn_vdd_dep = &data->odn_dpm_table.vdd_dep_on_mclk;
5172 for (i = 0; i < dpm_table->count; i++) {
5173 for (j = 0; j < od_vddc_lookup_table->count; j++) {
5174 if (od_vddc_lookup_table->entries[j].us_vdd >
5175 podn_vdd_dep->entries[i].vddc)
5176 break;
5178 if (j == od_vddc_lookup_table->count) {
5179 j = od_vddc_lookup_table->count - 1;
5180 od_vddc_lookup_table->entries[j].us_vdd =
5181 podn_vdd_dep->entries[i].vddc;
5182 data->need_update_dpm_table |= DPMTABLE_OD_UPDATE_VDDC;
5184 podn_vdd_dep->entries[i].vddInd = j;
5186 dpm_table = &data->dpm_table.soc_table;
5187 for (i = 0; i < dep_table->count; i++) {
5188 if (dep_table->entries[i].vddInd == podn_vdd_dep->entries[podn_vdd_dep->count-1].vddInd &&
5189 dep_table->entries[i].clk < podn_vdd_dep->entries[podn_vdd_dep->count-1].clk) {
5190 data->need_update_dpm_table |= DPMTABLE_UPDATE_SOCCLK;
5191 for (; (i < dep_table->count) &&
5192 (dep_table->entries[i].clk < podn_vdd_dep->entries[podn_vdd_dep->count - 1].clk); i++) {
5193 podn_vdd_dep_on_socclk->entries[i].clk = podn_vdd_dep->entries[podn_vdd_dep->count-1].clk;
5194 dpm_table->dpm_levels[i].value = podn_vdd_dep_on_socclk->entries[i].clk;
5196 break;
5197 } else {
5198 dpm_table->dpm_levels[i].value = dep_table->entries[i].clk;
5199 podn_vdd_dep_on_socclk->entries[i].vddc = dep_table->entries[i].vddc;
5200 podn_vdd_dep_on_socclk->entries[i].vddInd = dep_table->entries[i].vddInd;
5201 podn_vdd_dep_on_socclk->entries[i].clk = dep_table->entries[i].clk;
5204 if (podn_vdd_dep_on_socclk->entries[podn_vdd_dep_on_socclk->count - 1].clk <
5205 podn_vdd_dep->entries[podn_vdd_dep->count - 1].clk) {
5206 data->need_update_dpm_table |= DPMTABLE_UPDATE_SOCCLK;
5207 podn_vdd_dep_on_socclk->entries[podn_vdd_dep_on_socclk->count - 1].clk =
5208 podn_vdd_dep->entries[podn_vdd_dep->count - 1].clk;
5209 dpm_table->dpm_levels[podn_vdd_dep_on_socclk->count - 1].value =
5210 podn_vdd_dep->entries[podn_vdd_dep->count - 1].clk;
5212 if (podn_vdd_dep_on_socclk->entries[podn_vdd_dep_on_socclk->count - 1].vddInd <
5213 podn_vdd_dep->entries[podn_vdd_dep->count - 1].vddInd) {
5214 data->need_update_dpm_table |= DPMTABLE_UPDATE_SOCCLK;
5215 podn_vdd_dep_on_socclk->entries[podn_vdd_dep_on_socclk->count - 1].vddInd =
5216 podn_vdd_dep->entries[podn_vdd_dep->count - 1].vddInd;
5219 vega10_odn_update_power_state(hwmgr);
5222 static int vega10_odn_edit_dpm_table(struct pp_hwmgr *hwmgr,
5223 enum PP_OD_DPM_TABLE_COMMAND type,
5224 long *input, uint32_t size)
5226 struct vega10_hwmgr *data = hwmgr->backend;
5227 struct vega10_odn_clock_voltage_dependency_table *podn_vdd_dep_table;
5228 struct vega10_single_dpm_table *dpm_table;
5230 uint32_t input_clk;
5231 uint32_t input_vol;
5232 uint32_t input_level;
5233 uint32_t i;
5235 PP_ASSERT_WITH_CODE(input, "NULL user input for clock and voltage",
5236 return -EINVAL);
5238 if (!hwmgr->od_enabled) {
5239 pr_info("OverDrive feature not enabled\n");
5240 return -EINVAL;
5243 if (PP_OD_EDIT_SCLK_VDDC_TABLE == type) {
5244 dpm_table = &data->dpm_table.gfx_table;
5245 podn_vdd_dep_table = &data->odn_dpm_table.vdd_dep_on_sclk;
5246 data->need_update_dpm_table |= DPMTABLE_OD_UPDATE_SCLK;
5247 } else if (PP_OD_EDIT_MCLK_VDDC_TABLE == type) {
5248 dpm_table = &data->dpm_table.mem_table;
5249 podn_vdd_dep_table = &data->odn_dpm_table.vdd_dep_on_mclk;
5250 data->need_update_dpm_table |= DPMTABLE_OD_UPDATE_MCLK;
5251 } else if (PP_OD_RESTORE_DEFAULT_TABLE == type) {
5252 memcpy(&(data->dpm_table), &(data->golden_dpm_table), sizeof(struct vega10_dpm_table));
5253 vega10_odn_initial_default_setting(hwmgr);
5254 vega10_odn_update_power_state(hwmgr);
5255 /* force to update all clock tables */
5256 data->need_update_dpm_table = DPMTABLE_UPDATE_SCLK |
5257 DPMTABLE_UPDATE_MCLK |
5258 DPMTABLE_UPDATE_SOCCLK;
5259 return 0;
5260 } else if (PP_OD_COMMIT_DPM_TABLE == type) {
5261 vega10_check_dpm_table_updated(hwmgr);
5262 return 0;
5263 } else {
5264 return -EINVAL;
5267 for (i = 0; i < size; i += 3) {
5268 if (i + 3 > size || input[i] >= podn_vdd_dep_table->count) {
5269 pr_info("invalid clock voltage input\n");
5270 return 0;
5272 input_level = input[i];
5273 input_clk = input[i+1] * 100;
5274 input_vol = input[i+2];
5276 if (vega10_check_clk_voltage_valid(hwmgr, type, input_clk, input_vol)) {
5277 dpm_table->dpm_levels[input_level].value = input_clk;
5278 podn_vdd_dep_table->entries[input_level].clk = input_clk;
5279 podn_vdd_dep_table->entries[input_level].vddc = input_vol;
5280 } else {
5281 return -EINVAL;
5284 vega10_odn_update_soc_table(hwmgr, type);
5285 return 0;
5288 static int vega10_set_mp1_state(struct pp_hwmgr *hwmgr,
5289 enum pp_mp1_state mp1_state)
5291 uint16_t msg;
5292 int ret;
5294 switch (mp1_state) {
5295 case PP_MP1_STATE_UNLOAD:
5296 msg = PPSMC_MSG_PrepareMp1ForUnload;
5297 break;
5298 case PP_MP1_STATE_SHUTDOWN:
5299 case PP_MP1_STATE_RESET:
5300 case PP_MP1_STATE_NONE:
5301 default:
5302 return 0;
5305 PP_ASSERT_WITH_CODE((ret = smum_send_msg_to_smc(hwmgr, msg)) == 0,
5306 "[PrepareMp1] Failed!",
5307 return ret);
5309 return 0;
5312 static int vega10_get_performance_level(struct pp_hwmgr *hwmgr, const struct pp_hw_power_state *state,
5313 PHM_PerformanceLevelDesignation designation, uint32_t index,
5314 PHM_PerformanceLevel *level)
5316 const struct vega10_power_state *ps;
5317 uint32_t i;
5319 if (level == NULL || hwmgr == NULL || state == NULL)
5320 return -EINVAL;
5322 ps = cast_const_phw_vega10_power_state(state);
5324 i = index > ps->performance_level_count - 1 ?
5325 ps->performance_level_count - 1 : index;
5327 level->coreClock = ps->performance_levels[i].gfx_clock;
5328 level->memory_clock = ps->performance_levels[i].mem_clock;
5330 return 0;
5333 static int vega10_disable_power_features_for_compute_performance(struct pp_hwmgr *hwmgr, bool disable)
5335 struct vega10_hwmgr *data = hwmgr->backend;
5336 uint32_t feature_mask = 0;
5338 if (disable) {
5339 feature_mask |= data->smu_features[GNLD_ULV].enabled ?
5340 data->smu_features[GNLD_ULV].smu_feature_bitmap : 0;
5341 feature_mask |= data->smu_features[GNLD_DS_GFXCLK].enabled ?
5342 data->smu_features[GNLD_DS_GFXCLK].smu_feature_bitmap : 0;
5343 feature_mask |= data->smu_features[GNLD_DS_SOCCLK].enabled ?
5344 data->smu_features[GNLD_DS_SOCCLK].smu_feature_bitmap : 0;
5345 feature_mask |= data->smu_features[GNLD_DS_LCLK].enabled ?
5346 data->smu_features[GNLD_DS_LCLK].smu_feature_bitmap : 0;
5347 feature_mask |= data->smu_features[GNLD_DS_DCEFCLK].enabled ?
5348 data->smu_features[GNLD_DS_DCEFCLK].smu_feature_bitmap : 0;
5349 } else {
5350 feature_mask |= (!data->smu_features[GNLD_ULV].enabled) ?
5351 data->smu_features[GNLD_ULV].smu_feature_bitmap : 0;
5352 feature_mask |= (!data->smu_features[GNLD_DS_GFXCLK].enabled) ?
5353 data->smu_features[GNLD_DS_GFXCLK].smu_feature_bitmap : 0;
5354 feature_mask |= (!data->smu_features[GNLD_DS_SOCCLK].enabled) ?
5355 data->smu_features[GNLD_DS_SOCCLK].smu_feature_bitmap : 0;
5356 feature_mask |= (!data->smu_features[GNLD_DS_LCLK].enabled) ?
5357 data->smu_features[GNLD_DS_LCLK].smu_feature_bitmap : 0;
5358 feature_mask |= (!data->smu_features[GNLD_DS_DCEFCLK].enabled) ?
5359 data->smu_features[GNLD_DS_DCEFCLK].smu_feature_bitmap : 0;
5362 if (feature_mask)
5363 PP_ASSERT_WITH_CODE(!vega10_enable_smc_features(hwmgr,
5364 !disable, feature_mask),
5365 "enable/disable power features for compute performance Failed!",
5366 return -EINVAL);
5368 if (disable) {
5369 data->smu_features[GNLD_ULV].enabled = false;
5370 data->smu_features[GNLD_DS_GFXCLK].enabled = false;
5371 data->smu_features[GNLD_DS_SOCCLK].enabled = false;
5372 data->smu_features[GNLD_DS_LCLK].enabled = false;
5373 data->smu_features[GNLD_DS_DCEFCLK].enabled = false;
5374 } else {
5375 data->smu_features[GNLD_ULV].enabled = true;
5376 data->smu_features[GNLD_DS_GFXCLK].enabled = true;
5377 data->smu_features[GNLD_DS_SOCCLK].enabled = true;
5378 data->smu_features[GNLD_DS_LCLK].enabled = true;
5379 data->smu_features[GNLD_DS_DCEFCLK].enabled = true;
5382 return 0;
5386 static const struct pp_hwmgr_func vega10_hwmgr_funcs = {
5387 .backend_init = vega10_hwmgr_backend_init,
5388 .backend_fini = vega10_hwmgr_backend_fini,
5389 .asic_setup = vega10_setup_asic_task,
5390 .dynamic_state_management_enable = vega10_enable_dpm_tasks,
5391 .dynamic_state_management_disable = vega10_disable_dpm_tasks,
5392 .get_num_of_pp_table_entries =
5393 vega10_get_number_of_powerplay_table_entries,
5394 .get_power_state_size = vega10_get_power_state_size,
5395 .get_pp_table_entry = vega10_get_pp_table_entry,
5396 .patch_boot_state = vega10_patch_boot_state,
5397 .apply_state_adjust_rules = vega10_apply_state_adjust_rules,
5398 .power_state_set = vega10_set_power_state_tasks,
5399 .get_sclk = vega10_dpm_get_sclk,
5400 .get_mclk = vega10_dpm_get_mclk,
5401 .notify_smc_display_config_after_ps_adjustment =
5402 vega10_notify_smc_display_config_after_ps_adjustment,
5403 .force_dpm_level = vega10_dpm_force_dpm_level,
5404 .stop_thermal_controller = vega10_thermal_stop_thermal_controller,
5405 .get_fan_speed_info = vega10_fan_ctrl_get_fan_speed_info,
5406 .get_fan_speed_percent = vega10_fan_ctrl_get_fan_speed_percent,
5407 .set_fan_speed_percent = vega10_fan_ctrl_set_fan_speed_percent,
5408 .reset_fan_speed_to_default =
5409 vega10_fan_ctrl_reset_fan_speed_to_default,
5410 .get_fan_speed_rpm = vega10_fan_ctrl_get_fan_speed_rpm,
5411 .set_fan_speed_rpm = vega10_fan_ctrl_set_fan_speed_rpm,
5412 .uninitialize_thermal_controller =
5413 vega10_thermal_ctrl_uninitialize_thermal_controller,
5414 .set_fan_control_mode = vega10_set_fan_control_mode,
5415 .get_fan_control_mode = vega10_get_fan_control_mode,
5416 .read_sensor = vega10_read_sensor,
5417 .get_dal_power_level = vega10_get_dal_power_level,
5418 .get_clock_by_type_with_latency = vega10_get_clock_by_type_with_latency,
5419 .get_clock_by_type_with_voltage = vega10_get_clock_by_type_with_voltage,
5420 .set_watermarks_for_clocks_ranges = vega10_set_watermarks_for_clocks_ranges,
5421 .display_clock_voltage_request = vega10_display_clock_voltage_request,
5422 .force_clock_level = vega10_force_clock_level,
5423 .print_clock_levels = vega10_print_clock_levels,
5424 .display_config_changed = vega10_display_configuration_changed_task,
5425 .powergate_uvd = vega10_power_gate_uvd,
5426 .powergate_vce = vega10_power_gate_vce,
5427 .check_states_equal = vega10_check_states_equal,
5428 .check_smc_update_required_for_display_configuration =
5429 vega10_check_smc_update_required_for_display_configuration,
5430 .power_off_asic = vega10_power_off_asic,
5431 .disable_smc_firmware_ctf = vega10_thermal_disable_alert,
5432 .get_sclk_od = vega10_get_sclk_od,
5433 .set_sclk_od = vega10_set_sclk_od,
5434 .get_mclk_od = vega10_get_mclk_od,
5435 .set_mclk_od = vega10_set_mclk_od,
5436 .avfs_control = vega10_avfs_enable,
5437 .notify_cac_buffer_info = vega10_notify_cac_buffer_info,
5438 .get_thermal_temperature_range = vega10_get_thermal_temperature_range,
5439 .register_irq_handlers = smu9_register_irq_handlers,
5440 .start_thermal_controller = vega10_start_thermal_controller,
5441 .get_power_profile_mode = vega10_get_power_profile_mode,
5442 .set_power_profile_mode = vega10_set_power_profile_mode,
5443 .set_power_limit = vega10_set_power_limit,
5444 .odn_edit_dpm_table = vega10_odn_edit_dpm_table,
5445 .get_performance_level = vega10_get_performance_level,
5446 .get_asic_baco_capability = smu9_baco_get_capability,
5447 .get_asic_baco_state = smu9_baco_get_state,
5448 .set_asic_baco_state = vega10_baco_set_state,
5449 .enable_mgpu_fan_boost = vega10_enable_mgpu_fan_boost,
5450 .get_ppfeature_status = vega10_get_ppfeature_status,
5451 .set_ppfeature_status = vega10_set_ppfeature_status,
5452 .set_mp1_state = vega10_set_mp1_state,
5453 .disable_power_features_for_compute_performance =
5454 vega10_disable_power_features_for_compute_performance,
5457 int vega10_hwmgr_init(struct pp_hwmgr *hwmgr)
5459 struct amdgpu_device *adev = hwmgr->adev;
5461 hwmgr->hwmgr_func = &vega10_hwmgr_funcs;
5462 hwmgr->pptable_func = &vega10_pptable_funcs;
5463 if (amdgpu_passthrough(adev))
5464 return vega10_baco_set_cap(hwmgr);
5466 return 0;