2 * Copyright 2017 Advanced Micro Devices, Inc.
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
11 * The above copyright notice and this permission notice shall be included in
12 * all copies or substantial portions of the Software.
14 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
17 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20 * OTHER DEALINGS IN THE SOFTWARE.
23 #include <linux/module.h>
24 #include <linux/slab.h>
26 #include "linux/delay.h"
27 #include <linux/types.h>
28 #include <linux/pci.h>
32 #include "ci_smumgr.h"
34 #include "smu7_hwmgr.h"
35 #include "hardwaremanager.h"
36 #include "ppatomctrl.h"
37 #include "cgs_common.h"
39 #include "pppcielanes.h"
41 #include "smu/smu_7_0_1_d.h"
42 #include "smu/smu_7_0_1_sh_mask.h"
44 #include "dce/dce_8_0_d.h"
45 #include "dce/dce_8_0_sh_mask.h"
47 #include "bif/bif_4_1_d.h"
48 #include "bif/bif_4_1_sh_mask.h"
50 #include "gca/gfx_7_2_d.h"
51 #include "gca/gfx_7_2_sh_mask.h"
53 #include "gmc/gmc_7_1_d.h"
54 #include "gmc/gmc_7_1_sh_mask.h"
56 #include "processpptables.h"
58 #define MC_CG_ARB_FREQ_F0 0x0a
59 #define MC_CG_ARB_FREQ_F1 0x0b
60 #define MC_CG_ARB_FREQ_F2 0x0c
61 #define MC_CG_ARB_FREQ_F3 0x0d
63 #define SMC_RAM_END 0x40000
65 #define CISLAND_MINIMUM_ENGINE_CLOCK 800
66 #define CISLAND_MAX_DEEPSLEEP_DIVIDER_ID 5
68 static const struct ci_pt_defaults defaults_hawaii_xt
= {
69 1, 0xF, 0xFD, 0x19, 5, 0x14, 0, 0xB0000,
70 { 0x2E, 0x00, 0x00, 0x88, 0x00, 0x00, 0x72, 0x60, 0x51, 0xA7, 0x79, 0x6B, 0x90, 0xBD, 0x79 },
71 { 0x217, 0x217, 0x217, 0x242, 0x242, 0x242, 0x269, 0x269, 0x269, 0x2A1, 0x2A1, 0x2A1, 0x2C9, 0x2C9, 0x2C9 }
74 static const struct ci_pt_defaults defaults_hawaii_pro
= {
75 1, 0xF, 0xFD, 0x19, 5, 0x14, 0, 0x65062,
76 { 0x2E, 0x00, 0x00, 0x88, 0x00, 0x00, 0x72, 0x60, 0x51, 0xA7, 0x79, 0x6B, 0x90, 0xBD, 0x79 },
77 { 0x217, 0x217, 0x217, 0x242, 0x242, 0x242, 0x269, 0x269, 0x269, 0x2A1, 0x2A1, 0x2A1, 0x2C9, 0x2C9, 0x2C9 }
80 static const struct ci_pt_defaults defaults_bonaire_xt
= {
81 1, 0xF, 0xFD, 0x19, 5, 45, 0, 0xB0000,
82 { 0x79, 0x253, 0x25D, 0xAE, 0x72, 0x80, 0x83, 0x86, 0x6F, 0xC8, 0xC9, 0xC9, 0x2F, 0x4D, 0x61 },
83 { 0x17C, 0x172, 0x180, 0x1BC, 0x1B3, 0x1BD, 0x206, 0x200, 0x203, 0x25D, 0x25A, 0x255, 0x2C3, 0x2C5, 0x2B4 }
87 static const struct ci_pt_defaults defaults_saturn_xt
= {
88 1, 0xF, 0xFD, 0x19, 5, 55, 0, 0x70000,
89 { 0x8C, 0x247, 0x249, 0xA6, 0x80, 0x81, 0x8B, 0x89, 0x86, 0xC9, 0xCA, 0xC9, 0x4D, 0x4D, 0x4D },
90 { 0x187, 0x187, 0x187, 0x1C7, 0x1C7, 0x1C7, 0x210, 0x210, 0x210, 0x266, 0x266, 0x266, 0x2C9, 0x2C9, 0x2C9 }
94 static int ci_set_smc_sram_address(struct pp_hwmgr
*hwmgr
,
95 uint32_t smc_addr
, uint32_t limit
)
97 if ((0 != (3 & smc_addr
))
98 || ((smc_addr
+ 3) >= limit
)) {
99 pr_err("smc_addr invalid \n");
103 cgs_write_register(hwmgr
->device
, mmSMC_IND_INDEX_0
, smc_addr
);
104 PHM_WRITE_FIELD(hwmgr
->device
, SMC_IND_ACCESS_CNTL
, AUTO_INCREMENT_IND_0
, 0);
108 static int ci_copy_bytes_to_smc(struct pp_hwmgr
*hwmgr
, uint32_t smc_start_address
,
109 const uint8_t *src
, uint32_t byte_count
, uint32_t limit
)
113 uint32_t original_data
;
115 uint32_t extra_shift
;
117 if ((3 & smc_start_address
)
118 || ((smc_start_address
+ byte_count
) >= limit
)) {
119 pr_err("smc_start_address invalid \n");
123 addr
= smc_start_address
;
125 while (byte_count
>= 4) {
126 /* Bytes are written into the SMC address space with the MSB first. */
127 data
= src
[0] * 0x1000000 + src
[1] * 0x10000 + src
[2] * 0x100 + src
[3];
129 result
= ci_set_smc_sram_address(hwmgr
, addr
, limit
);
134 cgs_write_register(hwmgr
->device
, mmSMC_IND_DATA_0
, data
);
141 if (0 != byte_count
) {
145 result
= ci_set_smc_sram_address(hwmgr
, addr
, limit
);
151 original_data
= cgs_read_register(hwmgr
->device
, mmSMC_IND_DATA_0
);
153 extra_shift
= 8 * (4 - byte_count
);
155 while (byte_count
> 0) {
156 /* Bytes are written into the SMC addres space with the MSB first. */
157 data
= (0x100 * data
) + *src
++;
161 data
<<= extra_shift
;
163 data
|= (original_data
& ~((~0UL) << extra_shift
));
165 result
= ci_set_smc_sram_address(hwmgr
, addr
, limit
);
170 cgs_write_register(hwmgr
->device
, mmSMC_IND_DATA_0
, data
);
177 static int ci_program_jump_on_start(struct pp_hwmgr
*hwmgr
)
179 static const unsigned char data
[4] = { 0xE0, 0x00, 0x80, 0x40 };
181 ci_copy_bytes_to_smc(hwmgr
, 0x0, data
, 4, sizeof(data
)+1);
186 bool ci_is_smc_ram_running(struct pp_hwmgr
*hwmgr
)
188 return ((0 == PHM_READ_VFPF_INDIRECT_FIELD(hwmgr
->device
,
189 CGS_IND_REG__SMC
, SMC_SYSCON_CLOCK_CNTL_0
, ck_disable
))
190 && (0x20100 <= cgs_read_ind_register(hwmgr
->device
,
191 CGS_IND_REG__SMC
, ixSMC_PC_C
)));
194 static int ci_read_smc_sram_dword(struct pp_hwmgr
*hwmgr
, uint32_t smc_addr
,
195 uint32_t *value
, uint32_t limit
)
199 result
= ci_set_smc_sram_address(hwmgr
, smc_addr
, limit
);
204 *value
= cgs_read_register(hwmgr
->device
, mmSMC_IND_DATA_0
);
208 static int ci_send_msg_to_smc(struct pp_hwmgr
*hwmgr
, uint16_t msg
)
212 cgs_write_register(hwmgr
->device
, mmSMC_RESP_0
, 0);
213 cgs_write_register(hwmgr
->device
, mmSMC_MESSAGE_0
, msg
);
215 PHM_WAIT_FIELD_UNEQUAL(hwmgr
, SMC_RESP_0
, SMC_RESP
, 0);
217 ret
= PHM_READ_FIELD(hwmgr
->device
, SMC_RESP_0
, SMC_RESP
);
220 pr_info("\n failed to send message %x ret is %d\n", msg
, ret
);
225 static int ci_send_msg_to_smc_with_parameter(struct pp_hwmgr
*hwmgr
,
226 uint16_t msg
, uint32_t parameter
)
228 cgs_write_register(hwmgr
->device
, mmSMC_MSG_ARG_0
, parameter
);
229 return ci_send_msg_to_smc(hwmgr
, msg
);
232 static void ci_initialize_power_tune_defaults(struct pp_hwmgr
*hwmgr
)
234 struct ci_smumgr
*smu_data
= (struct ci_smumgr
*)(hwmgr
->smu_backend
);
235 struct amdgpu_device
*adev
= hwmgr
->adev
;
238 dev_id
= adev
->pdev
->device
;
243 smu_data
->power_tune_defaults
= &defaults_hawaii_pro
;
247 smu_data
->power_tune_defaults
= &defaults_hawaii_xt
;
253 smu_data
->power_tune_defaults
= &defaults_saturn_xt
;
270 smu_data
->power_tune_defaults
= &defaults_bonaire_xt
;
275 static int ci_get_dependency_volt_by_clk(struct pp_hwmgr
*hwmgr
,
276 struct phm_clock_voltage_dependency_table
*allowed_clock_voltage_table
,
277 uint32_t clock
, uint32_t *vol
)
281 if (allowed_clock_voltage_table
->count
== 0)
284 for (i
= 0; i
< allowed_clock_voltage_table
->count
; i
++) {
285 if (allowed_clock_voltage_table
->entries
[i
].clk
>= clock
) {
286 *vol
= allowed_clock_voltage_table
->entries
[i
].v
;
291 *vol
= allowed_clock_voltage_table
->entries
[i
- 1].v
;
295 static int ci_calculate_sclk_params(struct pp_hwmgr
*hwmgr
,
296 uint32_t clock
, struct SMU7_Discrete_GraphicsLevel
*sclk
)
298 const struct smu7_hwmgr
*data
= (struct smu7_hwmgr
*)(hwmgr
->backend
);
299 struct pp_atomctrl_clock_dividers_vi dividers
;
300 uint32_t spll_func_cntl
= data
->clock_registers
.vCG_SPLL_FUNC_CNTL
;
301 uint32_t spll_func_cntl_3
= data
->clock_registers
.vCG_SPLL_FUNC_CNTL_3
;
302 uint32_t spll_func_cntl_4
= data
->clock_registers
.vCG_SPLL_FUNC_CNTL_4
;
303 uint32_t cg_spll_spread_spectrum
= data
->clock_registers
.vCG_SPLL_SPREAD_SPECTRUM
;
304 uint32_t cg_spll_spread_spectrum_2
= data
->clock_registers
.vCG_SPLL_SPREAD_SPECTRUM_2
;
306 uint32_t ref_divider
;
310 /* get the engine clock dividers for this clock value */
311 result
= atomctrl_get_engine_pll_dividers_vi(hwmgr
, clock
, ÷rs
);
313 PP_ASSERT_WITH_CODE(result
== 0,
314 "Error retrieving Engine Clock dividers from VBIOS.",
317 /* To get FBDIV we need to multiply this by 16384 and divide it by Fref. */
318 ref_clock
= atomctrl_get_reference_clock(hwmgr
);
319 ref_divider
= 1 + dividers
.uc_pll_ref_div
;
321 /* low 14 bits is fraction and high 12 bits is divider */
322 fbdiv
= dividers
.ul_fb_div
.ul_fb_divider
& 0x3FFFFFF;
324 /* SPLL_FUNC_CNTL setup */
325 spll_func_cntl
= PHM_SET_FIELD(spll_func_cntl
, CG_SPLL_FUNC_CNTL
,
326 SPLL_REF_DIV
, dividers
.uc_pll_ref_div
);
327 spll_func_cntl
= PHM_SET_FIELD(spll_func_cntl
, CG_SPLL_FUNC_CNTL
,
328 SPLL_PDIV_A
, dividers
.uc_pll_post_div
);
330 /* SPLL_FUNC_CNTL_3 setup*/
331 spll_func_cntl_3
= PHM_SET_FIELD(spll_func_cntl_3
, CG_SPLL_FUNC_CNTL_3
,
334 /* set to use fractional accumulation*/
335 spll_func_cntl_3
= PHM_SET_FIELD(spll_func_cntl_3
, CG_SPLL_FUNC_CNTL_3
,
338 if (phm_cap_enabled(hwmgr
->platform_descriptor
.platformCaps
,
339 PHM_PlatformCaps_EngineSpreadSpectrumSupport
)) {
340 struct pp_atomctrl_internal_ss_info ss_info
;
341 uint32_t vco_freq
= clock
* dividers
.uc_pll_post_div
;
343 if (!atomctrl_get_engine_clock_spread_spectrum(hwmgr
,
344 vco_freq
, &ss_info
)) {
345 uint32_t clk_s
= ref_clock
* 5 /
346 (ref_divider
* ss_info
.speed_spectrum_rate
);
347 uint32_t clk_v
= 4 * ss_info
.speed_spectrum_percentage
*
348 fbdiv
/ (clk_s
* 10000);
350 cg_spll_spread_spectrum
= PHM_SET_FIELD(cg_spll_spread_spectrum
,
351 CG_SPLL_SPREAD_SPECTRUM
, CLKS
, clk_s
);
352 cg_spll_spread_spectrum
= PHM_SET_FIELD(cg_spll_spread_spectrum
,
353 CG_SPLL_SPREAD_SPECTRUM
, SSEN
, 1);
354 cg_spll_spread_spectrum_2
= PHM_SET_FIELD(cg_spll_spread_spectrum_2
,
355 CG_SPLL_SPREAD_SPECTRUM_2
, CLKV
, clk_v
);
359 sclk
->SclkFrequency
= clock
;
360 sclk
->CgSpllFuncCntl3
= spll_func_cntl_3
;
361 sclk
->CgSpllFuncCntl4
= spll_func_cntl_4
;
362 sclk
->SpllSpreadSpectrum
= cg_spll_spread_spectrum
;
363 sclk
->SpllSpreadSpectrum2
= cg_spll_spread_spectrum_2
;
364 sclk
->SclkDid
= (uint8_t)dividers
.pll_post_divider
;
369 static void ci_populate_phase_value_based_on_sclk(struct pp_hwmgr
*hwmgr
,
370 const struct phm_phase_shedding_limits_table
*pl
,
371 uint32_t sclk
, uint32_t *p_shed
)
375 /* use the minimum phase shedding */
378 for (i
= 0; i
< pl
->count
; i
++) {
379 if (sclk
< pl
->entries
[i
].Sclk
) {
386 static uint8_t ci_get_sleep_divider_id_from_clock(uint32_t clock
,
391 uint32_t min
= min_t(uint32_t, clock_insr
, CISLAND_MINIMUM_ENGINE_CLOCK
);
394 pr_info("Engine clock can't satisfy stutter requirement!\n");
397 for (i
= CISLAND_MAX_DEEPSLEEP_DIVIDER_ID
; ; i
--) {
400 if (temp
>= min
|| i
== 0)
406 static int ci_populate_single_graphic_level(struct pp_hwmgr
*hwmgr
,
407 uint32_t clock
, struct SMU7_Discrete_GraphicsLevel
*level
)
410 struct smu7_hwmgr
*data
= (struct smu7_hwmgr
*)(hwmgr
->backend
);
413 result
= ci_calculate_sclk_params(hwmgr
, clock
, level
);
415 /* populate graphics levels */
416 result
= ci_get_dependency_volt_by_clk(hwmgr
,
417 hwmgr
->dyn_state
.vddc_dependency_on_sclk
, clock
,
418 (uint32_t *)(&level
->MinVddc
));
420 pr_err("vdd_dep_on_sclk table is NULL\n");
424 level
->SclkFrequency
= clock
;
425 level
->MinVddcPhases
= 1;
427 if (data
->vddc_phase_shed_control
)
428 ci_populate_phase_value_based_on_sclk(hwmgr
,
429 hwmgr
->dyn_state
.vddc_phase_shed_limits_table
,
431 &level
->MinVddcPhases
);
433 level
->ActivityLevel
= data
->current_profile_setting
.sclk_activity
;
434 level
->CcPwrDynRm
= 0;
435 level
->CcPwrDynRm1
= 0;
436 level
->EnabledForActivity
= 0;
437 /* this level can be used for throttling.*/
438 level
->EnabledForThrottle
= 1;
439 level
->UpH
= data
->current_profile_setting
.sclk_up_hyst
;
440 level
->DownH
= data
->current_profile_setting
.sclk_down_hyst
;
441 level
->VoltageDownH
= 0;
442 level
->PowerThrottle
= 0;
445 if (phm_cap_enabled(hwmgr
->platform_descriptor
.platformCaps
,
446 PHM_PlatformCaps_SclkDeepSleep
))
447 level
->DeepSleepDivId
=
448 ci_get_sleep_divider_id_from_clock(clock
,
449 CISLAND_MINIMUM_ENGINE_CLOCK
);
451 /* Default to slow, highest DPM level will be set to PPSMC_DISPLAY_WATERMARK_LOW later.*/
452 level
->DisplayWatermark
= PPSMC_DISPLAY_WATERMARK_LOW
;
455 level
->MinVddc
= PP_HOST_TO_SMC_UL(level
->MinVddc
* VOLTAGE_SCALE
);
456 CONVERT_FROM_HOST_TO_SMC_UL(level
->MinVddcPhases
);
457 CONVERT_FROM_HOST_TO_SMC_UL(level
->SclkFrequency
);
458 CONVERT_FROM_HOST_TO_SMC_US(level
->ActivityLevel
);
459 CONVERT_FROM_HOST_TO_SMC_UL(level
->CgSpllFuncCntl3
);
460 CONVERT_FROM_HOST_TO_SMC_UL(level
->CgSpllFuncCntl4
);
461 CONVERT_FROM_HOST_TO_SMC_UL(level
->SpllSpreadSpectrum
);
462 CONVERT_FROM_HOST_TO_SMC_UL(level
->SpllSpreadSpectrum2
);
463 CONVERT_FROM_HOST_TO_SMC_UL(level
->CcPwrDynRm
);
464 CONVERT_FROM_HOST_TO_SMC_UL(level
->CcPwrDynRm1
);
470 static int ci_populate_all_graphic_levels(struct pp_hwmgr
*hwmgr
)
472 struct smu7_hwmgr
*data
= (struct smu7_hwmgr
*)(hwmgr
->backend
);
473 struct ci_smumgr
*smu_data
= (struct ci_smumgr
*)(hwmgr
->smu_backend
);
474 struct smu7_dpm_table
*dpm_table
= &data
->dpm_table
;
476 uint32_t array
= smu_data
->dpm_table_start
+
477 offsetof(SMU7_Discrete_DpmTable
, GraphicsLevel
);
478 uint32_t array_size
= sizeof(struct SMU7_Discrete_GraphicsLevel
) *
479 SMU7_MAX_LEVELS_GRAPHICS
;
480 struct SMU7_Discrete_GraphicsLevel
*levels
=
481 smu_data
->smc_state_table
.GraphicsLevel
;
484 for (i
= 0; i
< dpm_table
->sclk_table
.count
; i
++) {
485 result
= ci_populate_single_graphic_level(hwmgr
,
486 dpm_table
->sclk_table
.dpm_levels
[i
].value
,
491 smu_data
->smc_state_table
.GraphicsLevel
[i
].DeepSleepDivId
= 0;
492 if (i
== (dpm_table
->sclk_table
.count
- 1))
493 smu_data
->smc_state_table
.GraphicsLevel
[i
].DisplayWatermark
=
494 PPSMC_DISPLAY_WATERMARK_HIGH
;
497 smu_data
->smc_state_table
.GraphicsLevel
[0].EnabledForActivity
= 1;
499 smu_data
->smc_state_table
.GraphicsDpmLevelCount
= (u8
)dpm_table
->sclk_table
.count
;
500 data
->dpm_level_enable_mask
.sclk_dpm_enable_mask
=
501 phm_get_dpm_level_enable_mask_value(&dpm_table
->sclk_table
);
503 result
= ci_copy_bytes_to_smc(hwmgr
, array
,
504 (u8
*)levels
, array_size
,
511 static int ci_populate_svi_load_line(struct pp_hwmgr
*hwmgr
)
513 struct ci_smumgr
*smu_data
= (struct ci_smumgr
*)(hwmgr
->smu_backend
);
514 const struct ci_pt_defaults
*defaults
= smu_data
->power_tune_defaults
;
516 smu_data
->power_tune_table
.SviLoadLineEn
= defaults
->svi_load_line_en
;
517 smu_data
->power_tune_table
.SviLoadLineVddC
= defaults
->svi_load_line_vddc
;
518 smu_data
->power_tune_table
.SviLoadLineTrimVddC
= 3;
519 smu_data
->power_tune_table
.SviLoadLineOffsetVddC
= 0;
524 static int ci_populate_tdc_limit(struct pp_hwmgr
*hwmgr
)
527 struct ci_smumgr
*smu_data
= (struct ci_smumgr
*)(hwmgr
->smu_backend
);
528 const struct ci_pt_defaults
*defaults
= smu_data
->power_tune_defaults
;
530 tdc_limit
= (uint16_t)(hwmgr
->dyn_state
.cac_dtp_table
->usTDC
* 256);
531 smu_data
->power_tune_table
.TDC_VDDC_PkgLimit
=
532 CONVERT_FROM_HOST_TO_SMC_US(tdc_limit
);
533 smu_data
->power_tune_table
.TDC_VDDC_ThrottleReleaseLimitPerc
=
534 defaults
->tdc_vddc_throttle_release_limit_perc
;
535 smu_data
->power_tune_table
.TDC_MAWt
= defaults
->tdc_mawt
;
540 static int ci_populate_dw8(struct pp_hwmgr
*hwmgr
, uint32_t fuse_table_offset
)
542 struct ci_smumgr
*smu_data
= (struct ci_smumgr
*)(hwmgr
->smu_backend
);
543 const struct ci_pt_defaults
*defaults
= smu_data
->power_tune_defaults
;
546 if (ci_read_smc_sram_dword(hwmgr
,
548 offsetof(SMU7_Discrete_PmFuses
, TdcWaterfallCtl
),
549 (uint32_t *)&temp
, SMC_RAM_END
))
550 PP_ASSERT_WITH_CODE(false,
551 "Attempt to read PmFuses.DW6 (SviLoadLineEn) from SMC Failed!",
554 smu_data
->power_tune_table
.TdcWaterfallCtl
= defaults
->tdc_waterfall_ctl
;
559 static int ci_populate_fuzzy_fan(struct pp_hwmgr
*hwmgr
, uint32_t fuse_table_offset
)
562 struct ci_smumgr
*smu_data
= (struct ci_smumgr
*)(hwmgr
->smu_backend
);
564 if ((hwmgr
->thermal_controller
.advanceFanControlParameters
.usFanOutputSensitivity
& (1 << 15))
565 || 0 == hwmgr
->thermal_controller
.advanceFanControlParameters
.usFanOutputSensitivity
)
566 tmp
= hwmgr
->thermal_controller
.advanceFanControlParameters
.usFanOutputSensitivity
;
568 tmp
= hwmgr
->thermal_controller
.advanceFanControlParameters
.usDefaultFanOutputSensitivity
;
570 smu_data
->power_tune_table
.FuzzyFan_PwmSetDelta
= CONVERT_FROM_HOST_TO_SMC_US(tmp
);
575 static int ci_populate_bapm_vddc_vid_sidd(struct pp_hwmgr
*hwmgr
)
578 struct ci_smumgr
*smu_data
= (struct ci_smumgr
*)(hwmgr
->smu_backend
);
579 uint8_t *hi_vid
= smu_data
->power_tune_table
.BapmVddCVidHiSidd
;
580 uint8_t *lo_vid
= smu_data
->power_tune_table
.BapmVddCVidLoSidd
;
581 uint8_t *hi2_vid
= smu_data
->power_tune_table
.BapmVddCVidHiSidd2
;
583 PP_ASSERT_WITH_CODE(NULL
!= hwmgr
->dyn_state
.cac_leakage_table
,
584 "The CAC Leakage table does not exist!", return -EINVAL
);
585 PP_ASSERT_WITH_CODE(hwmgr
->dyn_state
.cac_leakage_table
->count
<= 8,
586 "There should never be more than 8 entries for BapmVddcVid!!!", return -EINVAL
);
587 PP_ASSERT_WITH_CODE(hwmgr
->dyn_state
.cac_leakage_table
->count
== hwmgr
->dyn_state
.vddc_dependency_on_sclk
->count
,
588 "CACLeakageTable->count and VddcDependencyOnSCLk->count not equal", return -EINVAL
);
590 for (i
= 0; (uint32_t) i
< hwmgr
->dyn_state
.cac_leakage_table
->count
; i
++) {
591 if (phm_cap_enabled(hwmgr
->platform_descriptor
.platformCaps
, PHM_PlatformCaps_EVV
)) {
592 lo_vid
[i
] = convert_to_vid(hwmgr
->dyn_state
.cac_leakage_table
->entries
[i
].Vddc1
);
593 hi_vid
[i
] = convert_to_vid(hwmgr
->dyn_state
.cac_leakage_table
->entries
[i
].Vddc2
);
594 hi2_vid
[i
] = convert_to_vid(hwmgr
->dyn_state
.cac_leakage_table
->entries
[i
].Vddc3
);
596 lo_vid
[i
] = convert_to_vid(hwmgr
->dyn_state
.cac_leakage_table
->entries
[i
].Vddc
);
597 hi_vid
[i
] = convert_to_vid(hwmgr
->dyn_state
.cac_leakage_table
->entries
[i
].Leakage
);
604 static int ci_populate_vddc_vid(struct pp_hwmgr
*hwmgr
)
607 struct ci_smumgr
*smu_data
= (struct ci_smumgr
*)(hwmgr
->smu_backend
);
608 uint8_t *vid
= smu_data
->power_tune_table
.VddCVid
;
609 struct smu7_hwmgr
*data
= (struct smu7_hwmgr
*)(hwmgr
->backend
);
611 PP_ASSERT_WITH_CODE(data
->vddc_voltage_table
.count
<= 8,
612 "There should never be more than 8 entries for VddcVid!!!",
615 for (i
= 0; i
< (int)data
->vddc_voltage_table
.count
; i
++)
616 vid
[i
] = convert_to_vid(data
->vddc_voltage_table
.entries
[i
].value
);
621 static int ci_min_max_v_gnbl_pm_lid_from_bapm_vddc(struct pp_hwmgr
*hwmgr
)
623 struct ci_smumgr
*smu_data
= (struct ci_smumgr
*)(hwmgr
->smu_backend
);
624 u8
*hi_vid
= smu_data
->power_tune_table
.BapmVddCVidHiSidd
;
625 u8
*lo_vid
= smu_data
->power_tune_table
.BapmVddCVidLoSidd
;
628 min
= max
= hi_vid
[0];
629 for (i
= 0; i
< 8; i
++) {
630 if (0 != hi_vid
[i
]) {
637 if (0 != lo_vid
[i
]) {
645 if ((min
== 0) || (max
== 0))
647 smu_data
->power_tune_table
.GnbLPMLMaxVid
= (u8
)max
;
648 smu_data
->power_tune_table
.GnbLPMLMinVid
= (u8
)min
;
653 static int ci_populate_bapm_vddc_base_leakage_sidd(struct pp_hwmgr
*hwmgr
)
655 struct ci_smumgr
*smu_data
= (struct ci_smumgr
*)(hwmgr
->smu_backend
);
658 struct phm_cac_tdp_table
*cac_table
= hwmgr
->dyn_state
.cac_dtp_table
;
660 HiSidd
= (uint16_t)(cac_table
->usHighCACLeakage
/ 100 * 256);
661 LoSidd
= (uint16_t)(cac_table
->usLowCACLeakage
/ 100 * 256);
663 smu_data
->power_tune_table
.BapmVddCBaseLeakageHiSidd
=
664 CONVERT_FROM_HOST_TO_SMC_US(HiSidd
);
665 smu_data
->power_tune_table
.BapmVddCBaseLeakageLoSidd
=
666 CONVERT_FROM_HOST_TO_SMC_US(LoSidd
);
671 static int ci_populate_pm_fuses(struct pp_hwmgr
*hwmgr
)
673 struct ci_smumgr
*smu_data
= (struct ci_smumgr
*)(hwmgr
->smu_backend
);
674 uint32_t pm_fuse_table_offset
;
677 if (phm_cap_enabled(hwmgr
->platform_descriptor
.platformCaps
,
678 PHM_PlatformCaps_PowerContainment
)) {
679 if (ci_read_smc_sram_dword(hwmgr
,
680 SMU7_FIRMWARE_HEADER_LOCATION
+
681 offsetof(SMU7_Firmware_Header
, PmFuseTable
),
682 &pm_fuse_table_offset
, SMC_RAM_END
)) {
683 pr_err("Attempt to get pm_fuse_table_offset Failed!\n");
688 ret
= ci_populate_bapm_vddc_vid_sidd(hwmgr
);
690 ret
|= ci_populate_vddc_vid(hwmgr
);
692 ret
|= ci_populate_svi_load_line(hwmgr
);
694 ret
|= ci_populate_tdc_limit(hwmgr
);
696 ret
|= ci_populate_dw8(hwmgr
, pm_fuse_table_offset
);
698 ret
|= ci_populate_fuzzy_fan(hwmgr
, pm_fuse_table_offset
);
700 ret
|= ci_min_max_v_gnbl_pm_lid_from_bapm_vddc(hwmgr
);
702 ret
|= ci_populate_bapm_vddc_base_leakage_sidd(hwmgr
);
706 ret
= ci_copy_bytes_to_smc(hwmgr
, pm_fuse_table_offset
,
707 (uint8_t *)&smu_data
->power_tune_table
,
708 sizeof(struct SMU7_Discrete_PmFuses
), SMC_RAM_END
);
713 static int ci_populate_bapm_parameters_in_dpm_table(struct pp_hwmgr
*hwmgr
)
715 struct ci_smumgr
*smu_data
= (struct ci_smumgr
*)(hwmgr
->smu_backend
);
716 struct smu7_hwmgr
*data
= (struct smu7_hwmgr
*)(hwmgr
->backend
);
717 const struct ci_pt_defaults
*defaults
= smu_data
->power_tune_defaults
;
718 SMU7_Discrete_DpmTable
*dpm_table
= &(smu_data
->smc_state_table
);
719 struct phm_cac_tdp_table
*cac_dtp_table
= hwmgr
->dyn_state
.cac_dtp_table
;
720 struct phm_ppm_table
*ppm
= hwmgr
->dyn_state
.ppm_parameter_table
;
721 const uint16_t *def1
, *def2
;
724 dpm_table
->DefaultTdp
= PP_HOST_TO_SMC_US((uint16_t)(cac_dtp_table
->usTDP
* 256));
725 dpm_table
->TargetTdp
= PP_HOST_TO_SMC_US((uint16_t)(cac_dtp_table
->usConfigurableTDP
* 256));
727 dpm_table
->DTETjOffset
= 0;
728 dpm_table
->GpuTjMax
= (uint8_t)(data
->thermal_temp_setting
.temperature_high
/ PP_TEMPERATURE_UNITS_PER_CENTIGRADES
);
729 dpm_table
->GpuTjHyst
= 8;
731 dpm_table
->DTEAmbientTempBase
= defaults
->dte_ambient_temp_base
;
734 dpm_table
->PPM_PkgPwrLimit
= (uint16_t)ppm
->dgpu_tdp
* 256 / 1000;
735 dpm_table
->PPM_TemperatureLimit
= (uint16_t)ppm
->tj_max
* 256;
737 dpm_table
->PPM_PkgPwrLimit
= 0;
738 dpm_table
->PPM_TemperatureLimit
= 0;
741 CONVERT_FROM_HOST_TO_SMC_US(dpm_table
->PPM_PkgPwrLimit
);
742 CONVERT_FROM_HOST_TO_SMC_US(dpm_table
->PPM_TemperatureLimit
);
744 dpm_table
->BAPM_TEMP_GRADIENT
= PP_HOST_TO_SMC_UL(defaults
->bapm_temp_gradient
);
745 def1
= defaults
->bapmti_r
;
746 def2
= defaults
->bapmti_rc
;
748 for (i
= 0; i
< SMU7_DTE_ITERATIONS
; i
++) {
749 for (j
= 0; j
< SMU7_DTE_SOURCES
; j
++) {
750 for (k
= 0; k
< SMU7_DTE_SINKS
; k
++) {
751 dpm_table
->BAPMTI_R
[i
][j
][k
] = PP_HOST_TO_SMC_US(*def1
);
752 dpm_table
->BAPMTI_RC
[i
][j
][k
] = PP_HOST_TO_SMC_US(*def2
);
762 static int ci_get_std_voltage_value_sidd(struct pp_hwmgr
*hwmgr
,
763 pp_atomctrl_voltage_table_entry
*tab
, uint16_t *hi
,
767 bool vol_found
= false;
768 *hi
= tab
->value
* VOLTAGE_SCALE
;
769 *lo
= tab
->value
* VOLTAGE_SCALE
;
771 PP_ASSERT_WITH_CODE(NULL
!= hwmgr
->dyn_state
.vddc_dependency_on_sclk
,
772 "The SCLK/VDDC Dependency Table does not exist.\n",
775 if (NULL
== hwmgr
->dyn_state
.cac_leakage_table
) {
776 pr_warn("CAC Leakage Table does not exist, using vddc.\n");
780 for (v_index
= 0; (uint32_t)v_index
< hwmgr
->dyn_state
.vddc_dependency_on_sclk
->count
; v_index
++) {
781 if (tab
->value
== hwmgr
->dyn_state
.vddc_dependency_on_sclk
->entries
[v_index
].v
) {
783 if ((uint32_t)v_index
< hwmgr
->dyn_state
.cac_leakage_table
->count
) {
784 *lo
= hwmgr
->dyn_state
.cac_leakage_table
->entries
[v_index
].Vddc
* VOLTAGE_SCALE
;
785 *hi
= (uint16_t)(hwmgr
->dyn_state
.cac_leakage_table
->entries
[v_index
].Leakage
* VOLTAGE_SCALE
);
787 pr_warn("Index from SCLK/VDDC Dependency Table exceeds the CAC Leakage Table index, using maximum index from CAC table.\n");
788 *lo
= hwmgr
->dyn_state
.cac_leakage_table
->entries
[hwmgr
->dyn_state
.cac_leakage_table
->count
- 1].Vddc
* VOLTAGE_SCALE
;
789 *hi
= (uint16_t)(hwmgr
->dyn_state
.cac_leakage_table
->entries
[hwmgr
->dyn_state
.cac_leakage_table
->count
- 1].Leakage
* VOLTAGE_SCALE
);
796 for (v_index
= 0; (uint32_t)v_index
< hwmgr
->dyn_state
.vddc_dependency_on_sclk
->count
; v_index
++) {
797 if (tab
->value
<= hwmgr
->dyn_state
.vddc_dependency_on_sclk
->entries
[v_index
].v
) {
799 if ((uint32_t)v_index
< hwmgr
->dyn_state
.cac_leakage_table
->count
) {
800 *lo
= hwmgr
->dyn_state
.cac_leakage_table
->entries
[v_index
].Vddc
* VOLTAGE_SCALE
;
801 *hi
= (uint16_t)(hwmgr
->dyn_state
.cac_leakage_table
->entries
[v_index
].Leakage
) * VOLTAGE_SCALE
;
803 pr_warn("Index from SCLK/VDDC Dependency Table exceeds the CAC Leakage Table index in second look up, using maximum index from CAC table.");
804 *lo
= hwmgr
->dyn_state
.cac_leakage_table
->entries
[hwmgr
->dyn_state
.cac_leakage_table
->count
- 1].Vddc
* VOLTAGE_SCALE
;
805 *hi
= (uint16_t)(hwmgr
->dyn_state
.cac_leakage_table
->entries
[hwmgr
->dyn_state
.cac_leakage_table
->count
- 1].Leakage
* VOLTAGE_SCALE
);
812 pr_warn("Unable to get std_vddc from SCLK/VDDC Dependency Table, using vddc.\n");
818 static int ci_populate_smc_voltage_table(struct pp_hwmgr
*hwmgr
,
819 pp_atomctrl_voltage_table_entry
*tab
,
820 SMU7_Discrete_VoltageLevel
*smc_voltage_tab
)
824 result
= ci_get_std_voltage_value_sidd(hwmgr
, tab
,
825 &smc_voltage_tab
->StdVoltageHiSidd
,
826 &smc_voltage_tab
->StdVoltageLoSidd
);
828 smc_voltage_tab
->StdVoltageHiSidd
= tab
->value
* VOLTAGE_SCALE
;
829 smc_voltage_tab
->StdVoltageLoSidd
= tab
->value
* VOLTAGE_SCALE
;
832 smc_voltage_tab
->Voltage
= PP_HOST_TO_SMC_US(tab
->value
* VOLTAGE_SCALE
);
833 CONVERT_FROM_HOST_TO_SMC_US(smc_voltage_tab
->StdVoltageHiSidd
);
834 CONVERT_FROM_HOST_TO_SMC_US(smc_voltage_tab
->StdVoltageLoSidd
);
839 static int ci_populate_smc_vddc_table(struct pp_hwmgr
*hwmgr
,
840 SMU7_Discrete_DpmTable
*table
)
844 struct smu7_hwmgr
*data
= (struct smu7_hwmgr
*)(hwmgr
->backend
);
846 table
->VddcLevelCount
= data
->vddc_voltage_table
.count
;
847 for (count
= 0; count
< table
->VddcLevelCount
; count
++) {
848 result
= ci_populate_smc_voltage_table(hwmgr
,
849 &(data
->vddc_voltage_table
.entries
[count
]),
850 &(table
->VddcLevel
[count
]));
851 PP_ASSERT_WITH_CODE(0 == result
, "do not populate SMC VDDC voltage table", return -EINVAL
);
853 /* GPIO voltage control */
854 if (SMU7_VOLTAGE_CONTROL_BY_GPIO
== data
->voltage_control
) {
855 table
->VddcLevel
[count
].Smio
= (uint8_t) count
;
856 table
->Smio
[count
] |= data
->vddc_voltage_table
.entries
[count
].smio_low
;
857 table
->SmioMaskVddcVid
|= data
->vddc_voltage_table
.entries
[count
].smio_low
;
859 table
->VddcLevel
[count
].Smio
= 0;
863 CONVERT_FROM_HOST_TO_SMC_UL(table
->VddcLevelCount
);
868 static int ci_populate_smc_vdd_ci_table(struct pp_hwmgr
*hwmgr
,
869 SMU7_Discrete_DpmTable
*table
)
871 struct smu7_hwmgr
*data
= (struct smu7_hwmgr
*)(hwmgr
->backend
);
875 table
->VddciLevelCount
= data
->vddci_voltage_table
.count
;
877 for (count
= 0; count
< table
->VddciLevelCount
; count
++) {
878 result
= ci_populate_smc_voltage_table(hwmgr
,
879 &(data
->vddci_voltage_table
.entries
[count
]),
880 &(table
->VddciLevel
[count
]));
881 PP_ASSERT_WITH_CODE(result
== 0, "do not populate SMC VDDCI voltage table", return -EINVAL
);
882 if (SMU7_VOLTAGE_CONTROL_BY_GPIO
== data
->vddci_control
) {
883 table
->VddciLevel
[count
].Smio
= (uint8_t) count
;
884 table
->Smio
[count
] |= data
->vddci_voltage_table
.entries
[count
].smio_low
;
885 table
->SmioMaskVddciVid
|= data
->vddci_voltage_table
.entries
[count
].smio_low
;
887 table
->VddciLevel
[count
].Smio
= 0;
891 CONVERT_FROM_HOST_TO_SMC_UL(table
->VddciLevelCount
);
896 static int ci_populate_smc_mvdd_table(struct pp_hwmgr
*hwmgr
,
897 SMU7_Discrete_DpmTable
*table
)
899 struct smu7_hwmgr
*data
= (struct smu7_hwmgr
*)(hwmgr
->backend
);
903 table
->MvddLevelCount
= data
->mvdd_voltage_table
.count
;
905 for (count
= 0; count
< table
->MvddLevelCount
; count
++) {
906 result
= ci_populate_smc_voltage_table(hwmgr
,
907 &(data
->mvdd_voltage_table
.entries
[count
]),
908 &table
->MvddLevel
[count
]);
909 PP_ASSERT_WITH_CODE(result
== 0, "do not populate SMC mvdd voltage table", return -EINVAL
);
910 if (SMU7_VOLTAGE_CONTROL_BY_GPIO
== data
->mvdd_control
) {
911 table
->MvddLevel
[count
].Smio
= (uint8_t) count
;
912 table
->Smio
[count
] |= data
->mvdd_voltage_table
.entries
[count
].smio_low
;
913 table
->SmioMaskMvddVid
|= data
->mvdd_voltage_table
.entries
[count
].smio_low
;
915 table
->MvddLevel
[count
].Smio
= 0;
919 CONVERT_FROM_HOST_TO_SMC_UL(table
->MvddLevelCount
);
925 static int ci_populate_smc_voltage_tables(struct pp_hwmgr
*hwmgr
,
926 SMU7_Discrete_DpmTable
*table
)
930 result
= ci_populate_smc_vddc_table(hwmgr
, table
);
931 PP_ASSERT_WITH_CODE(0 == result
,
932 "can not populate VDDC voltage table to SMC", return -EINVAL
);
934 result
= ci_populate_smc_vdd_ci_table(hwmgr
, table
);
935 PP_ASSERT_WITH_CODE(0 == result
,
936 "can not populate VDDCI voltage table to SMC", return -EINVAL
);
938 result
= ci_populate_smc_mvdd_table(hwmgr
, table
);
939 PP_ASSERT_WITH_CODE(0 == result
,
940 "can not populate MVDD voltage table to SMC", return -EINVAL
);
945 static int ci_populate_ulv_level(struct pp_hwmgr
*hwmgr
,
946 struct SMU7_Discrete_Ulv
*state
)
948 uint32_t voltage_response_time
, ulv_voltage
;
950 struct smu7_hwmgr
*data
= (struct smu7_hwmgr
*)(hwmgr
->backend
);
952 state
->CcPwrDynRm
= 0;
953 state
->CcPwrDynRm1
= 0;
955 result
= pp_tables_get_response_times(hwmgr
, &voltage_response_time
, &ulv_voltage
);
956 PP_ASSERT_WITH_CODE((0 == result
), "can not get ULV voltage value", return result
;);
958 if (ulv_voltage
== 0) {
959 data
->ulv_supported
= false;
963 if (data
->voltage_control
!= SMU7_VOLTAGE_CONTROL_BY_SVID2
) {
964 /* use minimum voltage if ulv voltage in pptable is bigger than minimum voltage */
965 if (ulv_voltage
> hwmgr
->dyn_state
.vddc_dependency_on_sclk
->entries
[0].v
)
966 state
->VddcOffset
= 0;
968 /* used in SMIO Mode. not implemented for now. this is backup only for CI. */
969 state
->VddcOffset
= (uint16_t)(hwmgr
->dyn_state
.vddc_dependency_on_sclk
->entries
[0].v
- ulv_voltage
);
971 /* use minimum voltage if ulv voltage in pptable is bigger than minimum voltage */
972 if (ulv_voltage
> hwmgr
->dyn_state
.vddc_dependency_on_sclk
->entries
[0].v
)
973 state
->VddcOffsetVid
= 0;
974 else /* used in SVI2 Mode */
975 state
->VddcOffsetVid
= (uint8_t)(
976 (hwmgr
->dyn_state
.vddc_dependency_on_sclk
->entries
[0].v
- ulv_voltage
)
977 * VOLTAGE_VID_OFFSET_SCALE2
978 / VOLTAGE_VID_OFFSET_SCALE1
);
980 state
->VddcPhase
= 1;
982 CONVERT_FROM_HOST_TO_SMC_UL(state
->CcPwrDynRm
);
983 CONVERT_FROM_HOST_TO_SMC_UL(state
->CcPwrDynRm1
);
984 CONVERT_FROM_HOST_TO_SMC_US(state
->VddcOffset
);
989 static int ci_populate_ulv_state(struct pp_hwmgr
*hwmgr
,
990 SMU7_Discrete_Ulv
*ulv_level
)
992 return ci_populate_ulv_level(hwmgr
, ulv_level
);
995 static int ci_populate_smc_link_level(struct pp_hwmgr
*hwmgr
, SMU7_Discrete_DpmTable
*table
)
997 struct smu7_hwmgr
*data
= (struct smu7_hwmgr
*)(hwmgr
->backend
);
998 struct smu7_dpm_table
*dpm_table
= &data
->dpm_table
;
999 struct ci_smumgr
*smu_data
= (struct ci_smumgr
*)(hwmgr
->smu_backend
);
1002 /* Index dpm_table->pcie_speed_table.count is reserved for PCIE boot level.*/
1003 for (i
= 0; i
<= dpm_table
->pcie_speed_table
.count
; i
++) {
1004 table
->LinkLevel
[i
].PcieGenSpeed
=
1005 (uint8_t)dpm_table
->pcie_speed_table
.dpm_levels
[i
].value
;
1006 table
->LinkLevel
[i
].PcieLaneCount
=
1007 (uint8_t)encode_pcie_lane_width(dpm_table
->pcie_speed_table
.dpm_levels
[i
].param1
);
1008 table
->LinkLevel
[i
].EnabledForActivity
= 1;
1009 table
->LinkLevel
[i
].DownT
= PP_HOST_TO_SMC_UL(5);
1010 table
->LinkLevel
[i
].UpT
= PP_HOST_TO_SMC_UL(30);
1013 smu_data
->smc_state_table
.LinkLevelCount
=
1014 (uint8_t)dpm_table
->pcie_speed_table
.count
;
1015 data
->dpm_level_enable_mask
.pcie_dpm_enable_mask
=
1016 phm_get_dpm_level_enable_mask_value(&dpm_table
->pcie_speed_table
);
1021 static int ci_calculate_mclk_params(
1022 struct pp_hwmgr
*hwmgr
,
1023 uint32_t memory_clock
,
1024 SMU7_Discrete_MemoryLevel
*mclk
,
1029 struct smu7_hwmgr
*data
= (struct smu7_hwmgr
*)(hwmgr
->backend
);
1030 uint32_t dll_cntl
= data
->clock_registers
.vDLL_CNTL
;
1031 uint32_t mclk_pwrmgt_cntl
= data
->clock_registers
.vMCLK_PWRMGT_CNTL
;
1032 uint32_t mpll_ad_func_cntl
= data
->clock_registers
.vMPLL_AD_FUNC_CNTL
;
1033 uint32_t mpll_dq_func_cntl
= data
->clock_registers
.vMPLL_DQ_FUNC_CNTL
;
1034 uint32_t mpll_func_cntl
= data
->clock_registers
.vMPLL_FUNC_CNTL
;
1035 uint32_t mpll_func_cntl_1
= data
->clock_registers
.vMPLL_FUNC_CNTL_1
;
1036 uint32_t mpll_func_cntl_2
= data
->clock_registers
.vMPLL_FUNC_CNTL_2
;
1037 uint32_t mpll_ss1
= data
->clock_registers
.vMPLL_SS1
;
1038 uint32_t mpll_ss2
= data
->clock_registers
.vMPLL_SS2
;
1040 pp_atomctrl_memory_clock_param mpll_param
;
1043 result
= atomctrl_get_memory_pll_dividers_si(hwmgr
,
1044 memory_clock
, &mpll_param
, strobe_mode
);
1045 PP_ASSERT_WITH_CODE(0 == result
,
1046 "Error retrieving Memory Clock Parameters from VBIOS.", return result
);
1048 mpll_func_cntl
= PHM_SET_FIELD(mpll_func_cntl
, MPLL_FUNC_CNTL
, BWCTRL
, mpll_param
.bw_ctrl
);
1050 mpll_func_cntl_1
= PHM_SET_FIELD(mpll_func_cntl_1
,
1051 MPLL_FUNC_CNTL_1
, CLKF
, mpll_param
.mpll_fb_divider
.cl_kf
);
1052 mpll_func_cntl_1
= PHM_SET_FIELD(mpll_func_cntl_1
,
1053 MPLL_FUNC_CNTL_1
, CLKFRAC
, mpll_param
.mpll_fb_divider
.clk_frac
);
1054 mpll_func_cntl_1
= PHM_SET_FIELD(mpll_func_cntl_1
,
1055 MPLL_FUNC_CNTL_1
, VCO_MODE
, mpll_param
.vco_mode
);
1057 mpll_ad_func_cntl
= PHM_SET_FIELD(mpll_ad_func_cntl
,
1058 MPLL_AD_FUNC_CNTL
, YCLK_POST_DIV
, mpll_param
.mpll_post_divider
);
1060 if (data
->is_memory_gddr5
) {
1061 mpll_dq_func_cntl
= PHM_SET_FIELD(mpll_dq_func_cntl
,
1062 MPLL_DQ_FUNC_CNTL
, YCLK_SEL
, mpll_param
.yclk_sel
);
1063 mpll_dq_func_cntl
= PHM_SET_FIELD(mpll_dq_func_cntl
,
1064 MPLL_DQ_FUNC_CNTL
, YCLK_POST_DIV
, mpll_param
.mpll_post_divider
);
1067 if (phm_cap_enabled(hwmgr
->platform_descriptor
.platformCaps
,
1068 PHM_PlatformCaps_MemorySpreadSpectrumSupport
)) {
1069 pp_atomctrl_internal_ss_info ss_info
;
1072 uint32_t reference_clock
= atomctrl_get_mpll_reference_clock(hwmgr
);
1074 /* for GDDR5 for all modes and DDR3 */
1075 if (1 == mpll_param
.qdr
)
1076 freq_nom
= memory_clock
* 4 * (1 << mpll_param
.mpll_post_divider
);
1078 freq_nom
= memory_clock
* 2 * (1 << mpll_param
.mpll_post_divider
);
1080 /* tmp = (freq_nom / reference_clock * reference_divider) ^ 2 Note: S.I. reference_divider = 1*/
1081 tmp
= (freq_nom
/ reference_clock
);
1084 if (0 == atomctrl_get_memory_clock_spread_spectrum(hwmgr
, freq_nom
, &ss_info
)) {
1085 uint32_t clks
= reference_clock
* 5 / ss_info
.speed_spectrum_rate
;
1087 (uint32_t)((((131 * ss_info
.speed_spectrum_percentage
*
1088 ss_info
.speed_spectrum_rate
) / 100) * tmp
) / freq_nom
);
1090 mpll_ss1
= PHM_SET_FIELD(mpll_ss1
, MPLL_SS1
, CLKV
, clkv
);
1091 mpll_ss2
= PHM_SET_FIELD(mpll_ss2
, MPLL_SS2
, CLKS
, clks
);
1095 mclk_pwrmgt_cntl
= PHM_SET_FIELD(mclk_pwrmgt_cntl
,
1096 MCLK_PWRMGT_CNTL
, DLL_SPEED
, mpll_param
.dll_speed
);
1097 mclk_pwrmgt_cntl
= PHM_SET_FIELD(mclk_pwrmgt_cntl
,
1098 MCLK_PWRMGT_CNTL
, MRDCK0_PDNB
, dllStateOn
);
1099 mclk_pwrmgt_cntl
= PHM_SET_FIELD(mclk_pwrmgt_cntl
,
1100 MCLK_PWRMGT_CNTL
, MRDCK1_PDNB
, dllStateOn
);
1103 mclk
->MclkFrequency
= memory_clock
;
1104 mclk
->MpllFuncCntl
= mpll_func_cntl
;
1105 mclk
->MpllFuncCntl_1
= mpll_func_cntl_1
;
1106 mclk
->MpllFuncCntl_2
= mpll_func_cntl_2
;
1107 mclk
->MpllAdFuncCntl
= mpll_ad_func_cntl
;
1108 mclk
->MpllDqFuncCntl
= mpll_dq_func_cntl
;
1109 mclk
->MclkPwrmgtCntl
= mclk_pwrmgt_cntl
;
1110 mclk
->DllCntl
= dll_cntl
;
1111 mclk
->MpllSs1
= mpll_ss1
;
1112 mclk
->MpllSs2
= mpll_ss2
;
1117 static uint8_t ci_get_mclk_frequency_ratio(uint32_t memory_clock
,
1120 uint8_t mc_para_index
;
1123 if (memory_clock
< 12500)
1124 mc_para_index
= 0x00;
1125 else if (memory_clock
> 47500)
1126 mc_para_index
= 0x0f;
1128 mc_para_index
= (uint8_t)((memory_clock
- 10000) / 2500);
1130 if (memory_clock
< 65000)
1131 mc_para_index
= 0x00;
1132 else if (memory_clock
> 135000)
1133 mc_para_index
= 0x0f;
1135 mc_para_index
= (uint8_t)((memory_clock
- 60000) / 5000);
1138 return mc_para_index
;
1141 static uint8_t ci_get_ddr3_mclk_frequency_ratio(uint32_t memory_clock
)
1143 uint8_t mc_para_index
;
1145 if (memory_clock
< 10000)
1147 else if (memory_clock
>= 80000)
1148 mc_para_index
= 0x0f;
1150 mc_para_index
= (uint8_t)((memory_clock
- 10000) / 5000 + 1);
1152 return mc_para_index
;
1155 static int ci_populate_phase_value_based_on_mclk(struct pp_hwmgr
*hwmgr
, const struct phm_phase_shedding_limits_table
*pl
,
1156 uint32_t memory_clock
, uint32_t *p_shed
)
1162 for (i
= 0; i
< pl
->count
; i
++) {
1163 if (memory_clock
< pl
->entries
[i
].Mclk
) {
1172 static int ci_populate_single_memory_level(
1173 struct pp_hwmgr
*hwmgr
,
1174 uint32_t memory_clock
,
1175 SMU7_Discrete_MemoryLevel
*memory_level
1178 struct smu7_hwmgr
*data
= (struct smu7_hwmgr
*)(hwmgr
->backend
);
1181 uint32_t mclk_edc_wr_enable_threshold
= 40000;
1182 uint32_t mclk_edc_enable_threshold
= 40000;
1183 uint32_t mclk_strobe_mode_threshold
= 40000;
1185 if (hwmgr
->dyn_state
.vddc_dependency_on_mclk
!= NULL
) {
1186 result
= ci_get_dependency_volt_by_clk(hwmgr
,
1187 hwmgr
->dyn_state
.vddc_dependency_on_mclk
, memory_clock
, &memory_level
->MinVddc
);
1188 PP_ASSERT_WITH_CODE((0 == result
),
1189 "can not find MinVddc voltage value from memory VDDC voltage dependency table", return result
);
1192 if (NULL
!= hwmgr
->dyn_state
.vddci_dependency_on_mclk
) {
1193 result
= ci_get_dependency_volt_by_clk(hwmgr
,
1194 hwmgr
->dyn_state
.vddci_dependency_on_mclk
,
1196 &memory_level
->MinVddci
);
1197 PP_ASSERT_WITH_CODE((0 == result
),
1198 "can not find MinVddci voltage value from memory VDDCI voltage dependency table", return result
);
1201 if (NULL
!= hwmgr
->dyn_state
.mvdd_dependency_on_mclk
) {
1202 result
= ci_get_dependency_volt_by_clk(hwmgr
,
1203 hwmgr
->dyn_state
.mvdd_dependency_on_mclk
,
1205 &memory_level
->MinMvdd
);
1206 PP_ASSERT_WITH_CODE((0 == result
),
1207 "can not find MinVddci voltage value from memory MVDD voltage dependency table", return result
);
1210 memory_level
->MinVddcPhases
= 1;
1212 if (data
->vddc_phase_shed_control
) {
1213 ci_populate_phase_value_based_on_mclk(hwmgr
, hwmgr
->dyn_state
.vddc_phase_shed_limits_table
,
1214 memory_clock
, &memory_level
->MinVddcPhases
);
1217 memory_level
->EnabledForThrottle
= 1;
1218 memory_level
->EnabledForActivity
= 1;
1219 memory_level
->UpH
= data
->current_profile_setting
.mclk_up_hyst
;
1220 memory_level
->DownH
= data
->current_profile_setting
.mclk_down_hyst
;
1221 memory_level
->VoltageDownH
= 0;
1223 /* Indicates maximum activity level for this performance level.*/
1224 memory_level
->ActivityLevel
= data
->current_profile_setting
.mclk_activity
;
1225 memory_level
->StutterEnable
= 0;
1226 memory_level
->StrobeEnable
= 0;
1227 memory_level
->EdcReadEnable
= 0;
1228 memory_level
->EdcWriteEnable
= 0;
1229 memory_level
->RttEnable
= 0;
1231 /* default set to low watermark. Highest level will be set to high later.*/
1232 memory_level
->DisplayWatermark
= PPSMC_DISPLAY_WATERMARK_LOW
;
1234 data
->display_timing
.num_existing_displays
= hwmgr
->display_config
->num_display
;
1235 data
->display_timing
.vrefresh
= hwmgr
->display_config
->vrefresh
;
1237 /* stutter mode not support on ci */
1239 /* decide strobe mode*/
1240 memory_level
->StrobeEnable
= (mclk_strobe_mode_threshold
!= 0) &&
1241 (memory_clock
<= mclk_strobe_mode_threshold
);
1243 /* decide EDC mode and memory clock ratio*/
1244 if (data
->is_memory_gddr5
) {
1245 memory_level
->StrobeRatio
= ci_get_mclk_frequency_ratio(memory_clock
,
1246 memory_level
->StrobeEnable
);
1248 if ((mclk_edc_enable_threshold
!= 0) &&
1249 (memory_clock
> mclk_edc_enable_threshold
)) {
1250 memory_level
->EdcReadEnable
= 1;
1253 if ((mclk_edc_wr_enable_threshold
!= 0) &&
1254 (memory_clock
> mclk_edc_wr_enable_threshold
)) {
1255 memory_level
->EdcWriteEnable
= 1;
1258 if (memory_level
->StrobeEnable
) {
1259 if (ci_get_mclk_frequency_ratio(memory_clock
, 1) >=
1260 ((cgs_read_register(hwmgr
->device
, mmMC_SEQ_MISC7
) >> 16) & 0xf))
1261 dll_state_on
= ((cgs_read_register(hwmgr
->device
, mmMC_SEQ_MISC5
) >> 1) & 0x1) ? 1 : 0;
1263 dll_state_on
= ((cgs_read_register(hwmgr
->device
, mmMC_SEQ_MISC6
) >> 1) & 0x1) ? 1 : 0;
1265 dll_state_on
= data
->dll_default_on
;
1267 memory_level
->StrobeRatio
=
1268 ci_get_ddr3_mclk_frequency_ratio(memory_clock
);
1269 dll_state_on
= ((cgs_read_register(hwmgr
->device
, mmMC_SEQ_MISC5
) >> 1) & 0x1) ? 1 : 0;
1272 result
= ci_calculate_mclk_params(hwmgr
,
1273 memory_clock
, memory_level
, memory_level
->StrobeEnable
, dll_state_on
);
1276 memory_level
->MinVddc
= PP_HOST_TO_SMC_UL(memory_level
->MinVddc
* VOLTAGE_SCALE
);
1277 CONVERT_FROM_HOST_TO_SMC_UL(memory_level
->MinVddcPhases
);
1278 memory_level
->MinVddci
= PP_HOST_TO_SMC_UL(memory_level
->MinVddci
* VOLTAGE_SCALE
);
1279 memory_level
->MinMvdd
= PP_HOST_TO_SMC_UL(memory_level
->MinMvdd
* VOLTAGE_SCALE
);
1280 /* MCLK frequency in units of 10KHz*/
1281 CONVERT_FROM_HOST_TO_SMC_UL(memory_level
->MclkFrequency
);
1282 /* Indicates maximum activity level for this performance level.*/
1283 CONVERT_FROM_HOST_TO_SMC_US(memory_level
->ActivityLevel
);
1284 CONVERT_FROM_HOST_TO_SMC_UL(memory_level
->MpllFuncCntl
);
1285 CONVERT_FROM_HOST_TO_SMC_UL(memory_level
->MpllFuncCntl_1
);
1286 CONVERT_FROM_HOST_TO_SMC_UL(memory_level
->MpllFuncCntl_2
);
1287 CONVERT_FROM_HOST_TO_SMC_UL(memory_level
->MpllAdFuncCntl
);
1288 CONVERT_FROM_HOST_TO_SMC_UL(memory_level
->MpllDqFuncCntl
);
1289 CONVERT_FROM_HOST_TO_SMC_UL(memory_level
->MclkPwrmgtCntl
);
1290 CONVERT_FROM_HOST_TO_SMC_UL(memory_level
->DllCntl
);
1291 CONVERT_FROM_HOST_TO_SMC_UL(memory_level
->MpllSs1
);
1292 CONVERT_FROM_HOST_TO_SMC_UL(memory_level
->MpllSs2
);
1298 static int ci_populate_all_memory_levels(struct pp_hwmgr
*hwmgr
)
1300 struct smu7_hwmgr
*data
= (struct smu7_hwmgr
*)(hwmgr
->backend
);
1301 struct ci_smumgr
*smu_data
= (struct ci_smumgr
*)(hwmgr
->smu_backend
);
1302 struct smu7_dpm_table
*dpm_table
= &data
->dpm_table
;
1304 struct amdgpu_device
*adev
= hwmgr
->adev
;
1307 uint32_t level_array_address
= smu_data
->dpm_table_start
+ offsetof(SMU7_Discrete_DpmTable
, MemoryLevel
);
1308 uint32_t level_array_size
= sizeof(SMU7_Discrete_MemoryLevel
) * SMU7_MAX_LEVELS_MEMORY
;
1309 SMU7_Discrete_MemoryLevel
*levels
= smu_data
->smc_state_table
.MemoryLevel
;
1312 memset(levels
, 0x00, level_array_size
);
1314 for (i
= 0; i
< dpm_table
->mclk_table
.count
; i
++) {
1315 PP_ASSERT_WITH_CODE((0 != dpm_table
->mclk_table
.dpm_levels
[i
].value
),
1316 "can not populate memory level as memory clock is zero", return -EINVAL
);
1317 result
= ci_populate_single_memory_level(hwmgr
, dpm_table
->mclk_table
.dpm_levels
[i
].value
,
1318 &(smu_data
->smc_state_table
.MemoryLevel
[i
]));
1323 smu_data
->smc_state_table
.MemoryLevel
[0].EnabledForActivity
= 1;
1325 dev_id
= adev
->pdev
->device
;
1327 if ((dpm_table
->mclk_table
.count
>= 2)
1328 && ((dev_id
== 0x67B0) || (dev_id
== 0x67B1))) {
1329 smu_data
->smc_state_table
.MemoryLevel
[1].MinVddci
=
1330 smu_data
->smc_state_table
.MemoryLevel
[0].MinVddci
;
1331 smu_data
->smc_state_table
.MemoryLevel
[1].MinMvdd
=
1332 smu_data
->smc_state_table
.MemoryLevel
[0].MinMvdd
;
1334 smu_data
->smc_state_table
.MemoryLevel
[0].ActivityLevel
= 0x1F;
1335 CONVERT_FROM_HOST_TO_SMC_US(smu_data
->smc_state_table
.MemoryLevel
[0].ActivityLevel
);
1337 smu_data
->smc_state_table
.MemoryDpmLevelCount
= (uint8_t)dpm_table
->mclk_table
.count
;
1338 data
->dpm_level_enable_mask
.mclk_dpm_enable_mask
= phm_get_dpm_level_enable_mask_value(&dpm_table
->mclk_table
);
1339 smu_data
->smc_state_table
.MemoryLevel
[dpm_table
->mclk_table
.count
-1].DisplayWatermark
= PPSMC_DISPLAY_WATERMARK_HIGH
;
1341 result
= ci_copy_bytes_to_smc(hwmgr
,
1342 level_array_address
, (uint8_t *)levels
, (uint32_t)level_array_size
,
1348 static int ci_populate_mvdd_value(struct pp_hwmgr
*hwmgr
, uint32_t mclk
,
1349 SMU7_Discrete_VoltageLevel
*voltage
)
1351 const struct smu7_hwmgr
*data
= (struct smu7_hwmgr
*)(hwmgr
->backend
);
1355 if (SMU7_VOLTAGE_CONTROL_NONE
!= data
->mvdd_control
) {
1356 /* find mvdd value which clock is more than request */
1357 for (i
= 0; i
< hwmgr
->dyn_state
.mvdd_dependency_on_mclk
->count
; i
++) {
1358 if (mclk
<= hwmgr
->dyn_state
.mvdd_dependency_on_mclk
->entries
[i
].clk
) {
1359 /* Always round to higher voltage. */
1360 voltage
->Voltage
= data
->mvdd_voltage_table
.entries
[i
].value
;
1365 PP_ASSERT_WITH_CODE(i
< hwmgr
->dyn_state
.mvdd_dependency_on_mclk
->count
,
1366 "MVDD Voltage is outside the supported range.", return -EINVAL
);
1375 static int ci_populate_smc_acpi_level(struct pp_hwmgr
*hwmgr
,
1376 SMU7_Discrete_DpmTable
*table
)
1379 const struct smu7_hwmgr
*data
= (struct smu7_hwmgr
*)(hwmgr
->backend
);
1380 struct pp_atomctrl_clock_dividers_vi dividers
;
1382 SMU7_Discrete_VoltageLevel voltage_level
;
1383 uint32_t spll_func_cntl
= data
->clock_registers
.vCG_SPLL_FUNC_CNTL
;
1384 uint32_t spll_func_cntl_2
= data
->clock_registers
.vCG_SPLL_FUNC_CNTL_2
;
1385 uint32_t dll_cntl
= data
->clock_registers
.vDLL_CNTL
;
1386 uint32_t mclk_pwrmgt_cntl
= data
->clock_registers
.vMCLK_PWRMGT_CNTL
;
1389 /* The ACPI state should not do DPM on DC (or ever).*/
1390 table
->ACPILevel
.Flags
&= ~PPSMC_SWSTATE_FLAG_DC
;
1392 if (data
->acpi_vddc
)
1393 table
->ACPILevel
.MinVddc
= PP_HOST_TO_SMC_UL(data
->acpi_vddc
* VOLTAGE_SCALE
);
1395 table
->ACPILevel
.MinVddc
= PP_HOST_TO_SMC_UL(data
->min_vddc_in_pptable
* VOLTAGE_SCALE
);
1397 table
->ACPILevel
.MinVddcPhases
= data
->vddc_phase_shed_control
? 0 : 1;
1398 /* assign zero for now*/
1399 table
->ACPILevel
.SclkFrequency
= atomctrl_get_reference_clock(hwmgr
);
1401 /* get the engine clock dividers for this clock value*/
1402 result
= atomctrl_get_engine_pll_dividers_vi(hwmgr
,
1403 table
->ACPILevel
.SclkFrequency
, ÷rs
);
1405 PP_ASSERT_WITH_CODE(result
== 0,
1406 "Error retrieving Engine Clock dividers from VBIOS.", return result
);
1408 /* divider ID for required SCLK*/
1409 table
->ACPILevel
.SclkDid
= (uint8_t)dividers
.pll_post_divider
;
1410 table
->ACPILevel
.DisplayWatermark
= PPSMC_DISPLAY_WATERMARK_LOW
;
1411 table
->ACPILevel
.DeepSleepDivId
= 0;
1413 spll_func_cntl
= PHM_SET_FIELD(spll_func_cntl
,
1414 CG_SPLL_FUNC_CNTL
, SPLL_PWRON
, 0);
1415 spll_func_cntl
= PHM_SET_FIELD(spll_func_cntl
,
1416 CG_SPLL_FUNC_CNTL
, SPLL_RESET
, 1);
1417 spll_func_cntl_2
= PHM_SET_FIELD(spll_func_cntl_2
,
1418 CG_SPLL_FUNC_CNTL_2
, SCLK_MUX_SEL
, 4);
1420 table
->ACPILevel
.CgSpllFuncCntl
= spll_func_cntl
;
1421 table
->ACPILevel
.CgSpllFuncCntl2
= spll_func_cntl_2
;
1422 table
->ACPILevel
.CgSpllFuncCntl3
= data
->clock_registers
.vCG_SPLL_FUNC_CNTL_3
;
1423 table
->ACPILevel
.CgSpllFuncCntl4
= data
->clock_registers
.vCG_SPLL_FUNC_CNTL_4
;
1424 table
->ACPILevel
.SpllSpreadSpectrum
= data
->clock_registers
.vCG_SPLL_SPREAD_SPECTRUM
;
1425 table
->ACPILevel
.SpllSpreadSpectrum2
= data
->clock_registers
.vCG_SPLL_SPREAD_SPECTRUM_2
;
1426 table
->ACPILevel
.CcPwrDynRm
= 0;
1427 table
->ACPILevel
.CcPwrDynRm1
= 0;
1429 /* For various features to be enabled/disabled while this level is active.*/
1430 CONVERT_FROM_HOST_TO_SMC_UL(table
->ACPILevel
.Flags
);
1431 /* SCLK frequency in units of 10KHz*/
1432 CONVERT_FROM_HOST_TO_SMC_UL(table
->ACPILevel
.SclkFrequency
);
1433 CONVERT_FROM_HOST_TO_SMC_UL(table
->ACPILevel
.CgSpllFuncCntl
);
1434 CONVERT_FROM_HOST_TO_SMC_UL(table
->ACPILevel
.CgSpllFuncCntl2
);
1435 CONVERT_FROM_HOST_TO_SMC_UL(table
->ACPILevel
.CgSpllFuncCntl3
);
1436 CONVERT_FROM_HOST_TO_SMC_UL(table
->ACPILevel
.CgSpllFuncCntl4
);
1437 CONVERT_FROM_HOST_TO_SMC_UL(table
->ACPILevel
.SpllSpreadSpectrum
);
1438 CONVERT_FROM_HOST_TO_SMC_UL(table
->ACPILevel
.SpllSpreadSpectrum2
);
1439 CONVERT_FROM_HOST_TO_SMC_UL(table
->ACPILevel
.CcPwrDynRm
);
1440 CONVERT_FROM_HOST_TO_SMC_UL(table
->ACPILevel
.CcPwrDynRm1
);
1443 /* table->MemoryACPILevel.MinVddcPhases = table->ACPILevel.MinVddcPhases;*/
1444 table
->MemoryACPILevel
.MinVddc
= table
->ACPILevel
.MinVddc
;
1445 table
->MemoryACPILevel
.MinVddcPhases
= table
->ACPILevel
.MinVddcPhases
;
1447 if (SMU7_VOLTAGE_CONTROL_NONE
== data
->vddci_control
)
1448 table
->MemoryACPILevel
.MinVddci
= table
->MemoryACPILevel
.MinVddc
;
1450 if (data
->acpi_vddci
!= 0)
1451 table
->MemoryACPILevel
.MinVddci
= PP_HOST_TO_SMC_UL(data
->acpi_vddci
* VOLTAGE_SCALE
);
1453 table
->MemoryACPILevel
.MinVddci
= PP_HOST_TO_SMC_UL(data
->min_vddci_in_pptable
* VOLTAGE_SCALE
);
1456 if (0 == ci_populate_mvdd_value(hwmgr
, 0, &voltage_level
))
1457 table
->MemoryACPILevel
.MinMvdd
=
1458 PP_HOST_TO_SMC_UL(voltage_level
.Voltage
* VOLTAGE_SCALE
);
1460 table
->MemoryACPILevel
.MinMvdd
= 0;
1462 /* Force reset on DLL*/
1463 mclk_pwrmgt_cntl
= PHM_SET_FIELD(mclk_pwrmgt_cntl
,
1464 MCLK_PWRMGT_CNTL
, MRDCK0_RESET
, 0x1);
1465 mclk_pwrmgt_cntl
= PHM_SET_FIELD(mclk_pwrmgt_cntl
,
1466 MCLK_PWRMGT_CNTL
, MRDCK1_RESET
, 0x1);
1468 /* Disable DLL in ACPIState*/
1469 mclk_pwrmgt_cntl
= PHM_SET_FIELD(mclk_pwrmgt_cntl
,
1470 MCLK_PWRMGT_CNTL
, MRDCK0_PDNB
, 0);
1471 mclk_pwrmgt_cntl
= PHM_SET_FIELD(mclk_pwrmgt_cntl
,
1472 MCLK_PWRMGT_CNTL
, MRDCK1_PDNB
, 0);
1474 /* Enable DLL bypass signal*/
1475 dll_cntl
= PHM_SET_FIELD(dll_cntl
,
1476 DLL_CNTL
, MRDCK0_BYPASS
, 0);
1477 dll_cntl
= PHM_SET_FIELD(dll_cntl
,
1478 DLL_CNTL
, MRDCK1_BYPASS
, 0);
1480 table
->MemoryACPILevel
.DllCntl
=
1481 PP_HOST_TO_SMC_UL(dll_cntl
);
1482 table
->MemoryACPILevel
.MclkPwrmgtCntl
=
1483 PP_HOST_TO_SMC_UL(mclk_pwrmgt_cntl
);
1484 table
->MemoryACPILevel
.MpllAdFuncCntl
=
1485 PP_HOST_TO_SMC_UL(data
->clock_registers
.vMPLL_AD_FUNC_CNTL
);
1486 table
->MemoryACPILevel
.MpllDqFuncCntl
=
1487 PP_HOST_TO_SMC_UL(data
->clock_registers
.vMPLL_DQ_FUNC_CNTL
);
1488 table
->MemoryACPILevel
.MpllFuncCntl
=
1489 PP_HOST_TO_SMC_UL(data
->clock_registers
.vMPLL_FUNC_CNTL
);
1490 table
->MemoryACPILevel
.MpllFuncCntl_1
=
1491 PP_HOST_TO_SMC_UL(data
->clock_registers
.vMPLL_FUNC_CNTL_1
);
1492 table
->MemoryACPILevel
.MpllFuncCntl_2
=
1493 PP_HOST_TO_SMC_UL(data
->clock_registers
.vMPLL_FUNC_CNTL_2
);
1494 table
->MemoryACPILevel
.MpllSs1
=
1495 PP_HOST_TO_SMC_UL(data
->clock_registers
.vMPLL_SS1
);
1496 table
->MemoryACPILevel
.MpllSs2
=
1497 PP_HOST_TO_SMC_UL(data
->clock_registers
.vMPLL_SS2
);
1499 table
->MemoryACPILevel
.EnabledForThrottle
= 0;
1500 table
->MemoryACPILevel
.EnabledForActivity
= 0;
1501 table
->MemoryACPILevel
.UpH
= 0;
1502 table
->MemoryACPILevel
.DownH
= 100;
1503 table
->MemoryACPILevel
.VoltageDownH
= 0;
1504 /* Indicates maximum activity level for this performance level.*/
1505 table
->MemoryACPILevel
.ActivityLevel
= PP_HOST_TO_SMC_US(data
->current_profile_setting
.mclk_activity
);
1507 table
->MemoryACPILevel
.StutterEnable
= 0;
1508 table
->MemoryACPILevel
.StrobeEnable
= 0;
1509 table
->MemoryACPILevel
.EdcReadEnable
= 0;
1510 table
->MemoryACPILevel
.EdcWriteEnable
= 0;
1511 table
->MemoryACPILevel
.RttEnable
= 0;
1516 static int ci_populate_smc_uvd_level(struct pp_hwmgr
*hwmgr
,
1517 SMU7_Discrete_DpmTable
*table
)
1521 struct pp_atomctrl_clock_dividers_vi dividers
;
1522 struct phm_uvd_clock_voltage_dependency_table
*uvd_table
=
1523 hwmgr
->dyn_state
.uvd_clock_voltage_dependency_table
;
1525 table
->UvdLevelCount
= (uint8_t)(uvd_table
->count
);
1527 for (count
= 0; count
< table
->UvdLevelCount
; count
++) {
1528 table
->UvdLevel
[count
].VclkFrequency
=
1529 uvd_table
->entries
[count
].vclk
;
1530 table
->UvdLevel
[count
].DclkFrequency
=
1531 uvd_table
->entries
[count
].dclk
;
1532 table
->UvdLevel
[count
].MinVddc
=
1533 uvd_table
->entries
[count
].v
* VOLTAGE_SCALE
;
1534 table
->UvdLevel
[count
].MinVddcPhases
= 1;
1536 result
= atomctrl_get_dfs_pll_dividers_vi(hwmgr
,
1537 table
->UvdLevel
[count
].VclkFrequency
, ÷rs
);
1538 PP_ASSERT_WITH_CODE((0 == result
),
1539 "can not find divide id for Vclk clock", return result
);
1541 table
->UvdLevel
[count
].VclkDivider
= (uint8_t)dividers
.pll_post_divider
;
1543 result
= atomctrl_get_dfs_pll_dividers_vi(hwmgr
,
1544 table
->UvdLevel
[count
].DclkFrequency
, ÷rs
);
1545 PP_ASSERT_WITH_CODE((0 == result
),
1546 "can not find divide id for Dclk clock", return result
);
1548 table
->UvdLevel
[count
].DclkDivider
= (uint8_t)dividers
.pll_post_divider
;
1549 CONVERT_FROM_HOST_TO_SMC_UL(table
->UvdLevel
[count
].VclkFrequency
);
1550 CONVERT_FROM_HOST_TO_SMC_UL(table
->UvdLevel
[count
].DclkFrequency
);
1551 CONVERT_FROM_HOST_TO_SMC_US(table
->UvdLevel
[count
].MinVddc
);
1557 static int ci_populate_smc_vce_level(struct pp_hwmgr
*hwmgr
,
1558 SMU7_Discrete_DpmTable
*table
)
1560 int result
= -EINVAL
;
1562 struct pp_atomctrl_clock_dividers_vi dividers
;
1563 struct phm_vce_clock_voltage_dependency_table
*vce_table
=
1564 hwmgr
->dyn_state
.vce_clock_voltage_dependency_table
;
1566 table
->VceLevelCount
= (uint8_t)(vce_table
->count
);
1567 table
->VceBootLevel
= 0;
1569 for (count
= 0; count
< table
->VceLevelCount
; count
++) {
1570 table
->VceLevel
[count
].Frequency
= vce_table
->entries
[count
].evclk
;
1571 table
->VceLevel
[count
].MinVoltage
=
1572 vce_table
->entries
[count
].v
* VOLTAGE_SCALE
;
1573 table
->VceLevel
[count
].MinPhases
= 1;
1575 result
= atomctrl_get_dfs_pll_dividers_vi(hwmgr
,
1576 table
->VceLevel
[count
].Frequency
, ÷rs
);
1577 PP_ASSERT_WITH_CODE((0 == result
),
1578 "can not find divide id for VCE engine clock",
1581 table
->VceLevel
[count
].Divider
= (uint8_t)dividers
.pll_post_divider
;
1583 CONVERT_FROM_HOST_TO_SMC_UL(table
->VceLevel
[count
].Frequency
);
1584 CONVERT_FROM_HOST_TO_SMC_US(table
->VceLevel
[count
].MinVoltage
);
1589 static int ci_populate_smc_acp_level(struct pp_hwmgr
*hwmgr
,
1590 SMU7_Discrete_DpmTable
*table
)
1592 int result
= -EINVAL
;
1594 struct pp_atomctrl_clock_dividers_vi dividers
;
1595 struct phm_acp_clock_voltage_dependency_table
*acp_table
=
1596 hwmgr
->dyn_state
.acp_clock_voltage_dependency_table
;
1598 table
->AcpLevelCount
= (uint8_t)(acp_table
->count
);
1599 table
->AcpBootLevel
= 0;
1601 for (count
= 0; count
< table
->AcpLevelCount
; count
++) {
1602 table
->AcpLevel
[count
].Frequency
= acp_table
->entries
[count
].acpclk
;
1603 table
->AcpLevel
[count
].MinVoltage
= acp_table
->entries
[count
].v
;
1604 table
->AcpLevel
[count
].MinPhases
= 1;
1606 result
= atomctrl_get_dfs_pll_dividers_vi(hwmgr
,
1607 table
->AcpLevel
[count
].Frequency
, ÷rs
);
1608 PP_ASSERT_WITH_CODE((0 == result
),
1609 "can not find divide id for engine clock", return result
);
1611 table
->AcpLevel
[count
].Divider
= (uint8_t)dividers
.pll_post_divider
;
1613 CONVERT_FROM_HOST_TO_SMC_UL(table
->AcpLevel
[count
].Frequency
);
1614 CONVERT_FROM_HOST_TO_SMC_US(table
->AcpLevel
[count
].MinVoltage
);
1619 static int ci_populate_memory_timing_parameters(
1620 struct pp_hwmgr
*hwmgr
,
1621 uint32_t engine_clock
,
1622 uint32_t memory_clock
,
1623 struct SMU7_Discrete_MCArbDramTimingTableEntry
*arb_regs
1626 uint32_t dramTiming
;
1627 uint32_t dramTiming2
;
1631 result
= atomctrl_set_engine_dram_timings_rv770(hwmgr
,
1632 engine_clock
, memory_clock
);
1634 PP_ASSERT_WITH_CODE(result
== 0,
1635 "Error calling VBIOS to set DRAM_TIMING.", return result
);
1637 dramTiming
= cgs_read_register(hwmgr
->device
, mmMC_ARB_DRAM_TIMING
);
1638 dramTiming2
= cgs_read_register(hwmgr
->device
, mmMC_ARB_DRAM_TIMING2
);
1639 burstTime
= PHM_READ_FIELD(hwmgr
->device
, MC_ARB_BURST_TIME
, STATE0
);
1641 arb_regs
->McArbDramTiming
= PP_HOST_TO_SMC_UL(dramTiming
);
1642 arb_regs
->McArbDramTiming2
= PP_HOST_TO_SMC_UL(dramTiming2
);
1643 arb_regs
->McArbBurstTime
= (uint8_t)burstTime
;
1648 static int ci_program_memory_timing_parameters(struct pp_hwmgr
*hwmgr
)
1650 struct smu7_hwmgr
*data
= (struct smu7_hwmgr
*)(hwmgr
->backend
);
1651 struct ci_smumgr
*smu_data
= (struct ci_smumgr
*)(hwmgr
->smu_backend
);
1653 SMU7_Discrete_MCArbDramTimingTable arb_regs
;
1656 memset(&arb_regs
, 0x00, sizeof(SMU7_Discrete_MCArbDramTimingTable
));
1658 for (i
= 0; i
< data
->dpm_table
.sclk_table
.count
; i
++) {
1659 for (j
= 0; j
< data
->dpm_table
.mclk_table
.count
; j
++) {
1660 result
= ci_populate_memory_timing_parameters
1661 (hwmgr
, data
->dpm_table
.sclk_table
.dpm_levels
[i
].value
,
1662 data
->dpm_table
.mclk_table
.dpm_levels
[j
].value
,
1663 &arb_regs
.entries
[i
][j
]);
1671 result
= ci_copy_bytes_to_smc(
1673 smu_data
->arb_table_start
,
1674 (uint8_t *)&arb_regs
,
1675 sizeof(SMU7_Discrete_MCArbDramTimingTable
),
1683 static int ci_populate_smc_boot_level(struct pp_hwmgr
*hwmgr
,
1684 SMU7_Discrete_DpmTable
*table
)
1687 struct smu7_hwmgr
*data
= (struct smu7_hwmgr
*)(hwmgr
->backend
);
1688 struct ci_smumgr
*smu_data
= (struct ci_smumgr
*)(hwmgr
->smu_backend
);
1690 table
->GraphicsBootLevel
= 0;
1691 table
->MemoryBootLevel
= 0;
1693 /* find boot level from dpm table*/
1694 result
= phm_find_boot_level(&(data
->dpm_table
.sclk_table
),
1695 data
->vbios_boot_state
.sclk_bootup_value
,
1696 (uint32_t *)&(smu_data
->smc_state_table
.GraphicsBootLevel
));
1699 smu_data
->smc_state_table
.GraphicsBootLevel
= 0;
1700 pr_err("VBIOS did not find boot engine clock value in dependency table. Using Graphics DPM level 0!\n");
1704 result
= phm_find_boot_level(&(data
->dpm_table
.mclk_table
),
1705 data
->vbios_boot_state
.mclk_bootup_value
,
1706 (uint32_t *)&(smu_data
->smc_state_table
.MemoryBootLevel
));
1709 smu_data
->smc_state_table
.MemoryBootLevel
= 0;
1710 pr_err("VBIOS did not find boot engine clock value in dependency table. Using Memory DPM level 0!\n");
1714 table
->BootVddc
= data
->vbios_boot_state
.vddc_bootup_value
;
1715 table
->BootVddci
= data
->vbios_boot_state
.vddci_bootup_value
;
1716 table
->BootMVdd
= data
->vbios_boot_state
.mvdd_bootup_value
;
1721 static int ci_populate_mc_reg_address(struct pp_hwmgr
*hwmgr
,
1722 SMU7_Discrete_MCRegisters
*mc_reg_table
)
1724 const struct ci_smumgr
*smu_data
= (struct ci_smumgr
*)hwmgr
->smu_backend
;
1728 for (i
= 0, j
= 0; j
< smu_data
->mc_reg_table
.last
; j
++) {
1729 if (smu_data
->mc_reg_table
.validflag
& 1<<j
) {
1730 PP_ASSERT_WITH_CODE(i
< SMU7_DISCRETE_MC_REGISTER_ARRAY_SIZE
,
1731 "Index of mc_reg_table->address[] array out of boundary", return -EINVAL
);
1732 mc_reg_table
->address
[i
].s0
=
1733 PP_HOST_TO_SMC_US(smu_data
->mc_reg_table
.mc_reg_address
[j
].s0
);
1734 mc_reg_table
->address
[i
].s1
=
1735 PP_HOST_TO_SMC_US(smu_data
->mc_reg_table
.mc_reg_address
[j
].s1
);
1740 mc_reg_table
->last
= (uint8_t)i
;
1745 static void ci_convert_mc_registers(
1746 const struct ci_mc_reg_entry
*entry
,
1747 SMU7_Discrete_MCRegisterSet
*data
,
1748 uint32_t num_entries
, uint32_t valid_flag
)
1752 for (i
= 0, j
= 0; j
< num_entries
; j
++) {
1753 if (valid_flag
& 1<<j
) {
1754 data
->value
[i
] = PP_HOST_TO_SMC_UL(entry
->mc_data
[j
]);
1760 static int ci_convert_mc_reg_table_entry_to_smc(
1761 struct pp_hwmgr
*hwmgr
,
1762 const uint32_t memory_clock
,
1763 SMU7_Discrete_MCRegisterSet
*mc_reg_table_data
1766 struct ci_smumgr
*smu_data
= (struct ci_smumgr
*)(hwmgr
->smu_backend
);
1769 for (i
= 0; i
< smu_data
->mc_reg_table
.num_entries
; i
++) {
1771 smu_data
->mc_reg_table
.mc_reg_table_entry
[i
].mclk_max
) {
1776 if ((i
== smu_data
->mc_reg_table
.num_entries
) && (i
> 0))
1779 ci_convert_mc_registers(&smu_data
->mc_reg_table
.mc_reg_table_entry
[i
],
1780 mc_reg_table_data
, smu_data
->mc_reg_table
.last
,
1781 smu_data
->mc_reg_table
.validflag
);
1786 static int ci_convert_mc_reg_table_to_smc(struct pp_hwmgr
*hwmgr
,
1787 SMU7_Discrete_MCRegisters
*mc_regs
)
1790 struct smu7_hwmgr
*data
= (struct smu7_hwmgr
*)(hwmgr
->backend
);
1794 for (i
= 0; i
< data
->dpm_table
.mclk_table
.count
; i
++) {
1795 res
= ci_convert_mc_reg_table_entry_to_smc(
1797 data
->dpm_table
.mclk_table
.dpm_levels
[i
].value
,
1808 static int ci_update_and_upload_mc_reg_table(struct pp_hwmgr
*hwmgr
)
1810 struct ci_smumgr
*smu_data
= (struct ci_smumgr
*)(hwmgr
->smu_backend
);
1811 struct smu7_hwmgr
*data
= (struct smu7_hwmgr
*)(hwmgr
->backend
);
1815 if (0 == (data
->need_update_smu7_dpm_table
& DPMTABLE_OD_UPDATE_MCLK
))
1819 memset(&smu_data
->mc_regs
, 0, sizeof(SMU7_Discrete_MCRegisters
));
1821 result
= ci_convert_mc_reg_table_to_smc(hwmgr
, &(smu_data
->mc_regs
));
1826 address
= smu_data
->mc_reg_table_start
+ (uint32_t)offsetof(SMU7_Discrete_MCRegisters
, data
[0]);
1828 return ci_copy_bytes_to_smc(hwmgr
, address
,
1829 (uint8_t *)&smu_data
->mc_regs
.data
[0],
1830 sizeof(SMU7_Discrete_MCRegisterSet
) * data
->dpm_table
.mclk_table
.count
,
1834 static int ci_populate_initial_mc_reg_table(struct pp_hwmgr
*hwmgr
)
1837 struct ci_smumgr
*smu_data
= (struct ci_smumgr
*)(hwmgr
->smu_backend
);
1839 memset(&smu_data
->mc_regs
, 0x00, sizeof(SMU7_Discrete_MCRegisters
));
1840 result
= ci_populate_mc_reg_address(hwmgr
, &(smu_data
->mc_regs
));
1841 PP_ASSERT_WITH_CODE(0 == result
,
1842 "Failed to initialize MCRegTable for the MC register addresses!", return result
;);
1844 result
= ci_convert_mc_reg_table_to_smc(hwmgr
, &smu_data
->mc_regs
);
1845 PP_ASSERT_WITH_CODE(0 == result
,
1846 "Failed to initialize MCRegTable for driver state!", return result
;);
1848 return ci_copy_bytes_to_smc(hwmgr
, smu_data
->mc_reg_table_start
,
1849 (uint8_t *)&smu_data
->mc_regs
, sizeof(SMU7_Discrete_MCRegisters
), SMC_RAM_END
);
1852 static int ci_populate_smc_initial_state(struct pp_hwmgr
*hwmgr
)
1854 struct smu7_hwmgr
*data
= (struct smu7_hwmgr
*)(hwmgr
->backend
);
1855 struct ci_smumgr
*smu_data
= (struct ci_smumgr
*)(hwmgr
->smu_backend
);
1856 uint8_t count
, level
;
1858 count
= (uint8_t)(hwmgr
->dyn_state
.vddc_dependency_on_sclk
->count
);
1860 for (level
= 0; level
< count
; level
++) {
1861 if (hwmgr
->dyn_state
.vddc_dependency_on_sclk
->entries
[level
].clk
1862 >= data
->vbios_boot_state
.sclk_bootup_value
) {
1863 smu_data
->smc_state_table
.GraphicsBootLevel
= level
;
1868 count
= (uint8_t)(hwmgr
->dyn_state
.vddc_dependency_on_mclk
->count
);
1870 for (level
= 0; level
< count
; level
++) {
1871 if (hwmgr
->dyn_state
.vddc_dependency_on_mclk
->entries
[level
].clk
1872 >= data
->vbios_boot_state
.mclk_bootup_value
) {
1873 smu_data
->smc_state_table
.MemoryBootLevel
= level
;
1881 static int ci_populate_smc_svi2_config(struct pp_hwmgr
*hwmgr
,
1882 SMU7_Discrete_DpmTable
*table
)
1884 struct smu7_hwmgr
*data
= (struct smu7_hwmgr
*)(hwmgr
->backend
);
1886 if (SMU7_VOLTAGE_CONTROL_BY_SVID2
== data
->voltage_control
)
1887 table
->SVI2Enable
= 1;
1889 table
->SVI2Enable
= 0;
1893 static int ci_start_smc(struct pp_hwmgr
*hwmgr
)
1895 /* set smc instruct start point at 0x0 */
1896 ci_program_jump_on_start(hwmgr
);
1898 /* enable smc clock */
1899 PHM_WRITE_INDIRECT_FIELD(hwmgr
->device
, CGS_IND_REG__SMC
, SMC_SYSCON_CLOCK_CNTL_0
, ck_disable
, 0);
1901 PHM_WRITE_INDIRECT_FIELD(hwmgr
->device
, CGS_IND_REG__SMC
, SMC_SYSCON_RESET_CNTL
, rst_reg
, 0);
1903 PHM_WAIT_INDIRECT_FIELD(hwmgr
, SMC_IND
, FIRMWARE_FLAGS
,
1904 INTERRUPTS_ENABLED
, 1);
1909 static int ci_populate_vr_config(struct pp_hwmgr
*hwmgr
, SMU7_Discrete_DpmTable
*table
)
1911 struct smu7_hwmgr
*data
= (struct smu7_hwmgr
*)(hwmgr
->backend
);
1914 config
= VR_SVI2_PLANE_1
;
1915 table
->VRConfig
|= (config
<<VRCONF_VDDGFX_SHIFT
);
1917 if (SMU7_VOLTAGE_CONTROL_BY_SVID2
== data
->voltage_control
) {
1918 config
= VR_SVI2_PLANE_2
;
1919 table
->VRConfig
|= config
;
1921 pr_info("VDDCshould be on SVI2 controller!");
1924 if (SMU7_VOLTAGE_CONTROL_BY_SVID2
== data
->vddci_control
) {
1925 config
= VR_SVI2_PLANE_2
;
1926 table
->VRConfig
|= (config
<<VRCONF_VDDCI_SHIFT
);
1927 } else if (SMU7_VOLTAGE_CONTROL_BY_GPIO
== data
->vddci_control
) {
1928 config
= VR_SMIO_PATTERN_1
;
1929 table
->VRConfig
|= (config
<<VRCONF_VDDCI_SHIFT
);
1932 if (SMU7_VOLTAGE_CONTROL_BY_GPIO
== data
->mvdd_control
) {
1933 config
= VR_SMIO_PATTERN_2
;
1934 table
->VRConfig
|= (config
<<VRCONF_MVDD_SHIFT
);
1940 static int ci_init_smc_table(struct pp_hwmgr
*hwmgr
)
1943 struct smu7_hwmgr
*data
= (struct smu7_hwmgr
*)(hwmgr
->backend
);
1944 struct ci_smumgr
*smu_data
= (struct ci_smumgr
*)(hwmgr
->smu_backend
);
1945 SMU7_Discrete_DpmTable
*table
= &(smu_data
->smc_state_table
);
1946 struct pp_atomctrl_gpio_pin_assignment gpio_pin
;
1949 ci_initialize_power_tune_defaults(hwmgr
);
1950 memset(&(smu_data
->smc_state_table
), 0x00, sizeof(smu_data
->smc_state_table
));
1952 if (SMU7_VOLTAGE_CONTROL_NONE
!= data
->voltage_control
)
1953 ci_populate_smc_voltage_tables(hwmgr
, table
);
1955 if (phm_cap_enabled(hwmgr
->platform_descriptor
.platformCaps
,
1956 PHM_PlatformCaps_AutomaticDCTransition
))
1957 table
->SystemFlags
|= PPSMC_SYSTEMFLAG_GPIO_DC
;
1960 if (phm_cap_enabled(hwmgr
->platform_descriptor
.platformCaps
,
1961 PHM_PlatformCaps_StepVddc
))
1962 table
->SystemFlags
|= PPSMC_SYSTEMFLAG_STEPVDDC
;
1964 if (data
->is_memory_gddr5
)
1965 table
->SystemFlags
|= PPSMC_SYSTEMFLAG_GDDR5
;
1967 if (data
->ulv_supported
) {
1968 result
= ci_populate_ulv_state(hwmgr
, &(table
->Ulv
));
1969 PP_ASSERT_WITH_CODE(0 == result
,
1970 "Failed to initialize ULV state!", return result
);
1972 cgs_write_ind_register(hwmgr
->device
, CGS_IND_REG__SMC
,
1973 ixCG_ULV_PARAMETER
, 0x40035);
1976 result
= ci_populate_all_graphic_levels(hwmgr
);
1977 PP_ASSERT_WITH_CODE(0 == result
,
1978 "Failed to initialize Graphics Level!", return result
);
1980 result
= ci_populate_all_memory_levels(hwmgr
);
1981 PP_ASSERT_WITH_CODE(0 == result
,
1982 "Failed to initialize Memory Level!", return result
);
1984 result
= ci_populate_smc_link_level(hwmgr
, table
);
1985 PP_ASSERT_WITH_CODE(0 == result
,
1986 "Failed to initialize Link Level!", return result
);
1988 result
= ci_populate_smc_acpi_level(hwmgr
, table
);
1989 PP_ASSERT_WITH_CODE(0 == result
,
1990 "Failed to initialize ACPI Level!", return result
);
1992 result
= ci_populate_smc_vce_level(hwmgr
, table
);
1993 PP_ASSERT_WITH_CODE(0 == result
,
1994 "Failed to initialize VCE Level!", return result
);
1996 result
= ci_populate_smc_acp_level(hwmgr
, table
);
1997 PP_ASSERT_WITH_CODE(0 == result
,
1998 "Failed to initialize ACP Level!", return result
);
2000 /* Since only the initial state is completely set up at this point (the other states are just copies of the boot state) we only */
2001 /* need to populate the ARB settings for the initial state. */
2002 result
= ci_program_memory_timing_parameters(hwmgr
);
2003 PP_ASSERT_WITH_CODE(0 == result
,
2004 "Failed to Write ARB settings for the initial state.", return result
);
2006 result
= ci_populate_smc_uvd_level(hwmgr
, table
);
2007 PP_ASSERT_WITH_CODE(0 == result
,
2008 "Failed to initialize UVD Level!", return result
);
2010 table
->UvdBootLevel
= 0;
2011 table
->VceBootLevel
= 0;
2012 table
->AcpBootLevel
= 0;
2013 table
->SamuBootLevel
= 0;
2015 table
->GraphicsBootLevel
= 0;
2016 table
->MemoryBootLevel
= 0;
2018 result
= ci_populate_smc_boot_level(hwmgr
, table
);
2019 PP_ASSERT_WITH_CODE(0 == result
,
2020 "Failed to initialize Boot Level!", return result
);
2022 result
= ci_populate_smc_initial_state(hwmgr
);
2023 PP_ASSERT_WITH_CODE(0 == result
, "Failed to initialize Boot State!", return result
);
2025 result
= ci_populate_bapm_parameters_in_dpm_table(hwmgr
);
2026 PP_ASSERT_WITH_CODE(0 == result
, "Failed to populate BAPM Parameters!", return result
);
2028 table
->UVDInterval
= 1;
2029 table
->VCEInterval
= 1;
2030 table
->ACPInterval
= 1;
2031 table
->SAMUInterval
= 1;
2032 table
->GraphicsVoltageChangeEnable
= 1;
2033 table
->GraphicsThermThrottleEnable
= 1;
2034 table
->GraphicsInterval
= 1;
2035 table
->VoltageInterval
= 1;
2036 table
->ThermalInterval
= 1;
2038 table
->TemperatureLimitHigh
=
2039 (data
->thermal_temp_setting
.temperature_high
*
2040 SMU7_Q88_FORMAT_CONVERSION_UNIT
) / PP_TEMPERATURE_UNITS_PER_CENTIGRADES
;
2041 table
->TemperatureLimitLow
=
2042 (data
->thermal_temp_setting
.temperature_low
*
2043 SMU7_Q88_FORMAT_CONVERSION_UNIT
) / PP_TEMPERATURE_UNITS_PER_CENTIGRADES
;
2045 table
->MemoryVoltageChangeEnable
= 1;
2046 table
->MemoryInterval
= 1;
2047 table
->VoltageResponseTime
= 0;
2048 table
->VddcVddciDelta
= 4000;
2049 table
->PhaseResponseTime
= 0;
2050 table
->MemoryThermThrottleEnable
= 1;
2052 PP_ASSERT_WITH_CODE((1 <= data
->dpm_table
.pcie_speed_table
.count
),
2053 "There must be 1 or more PCIE levels defined in PPTable.",
2056 table
->PCIeBootLinkLevel
= (uint8_t)data
->dpm_table
.pcie_speed_table
.count
;
2057 table
->PCIeGenInterval
= 1;
2059 result
= ci_populate_vr_config(hwmgr
, table
);
2060 PP_ASSERT_WITH_CODE(0 == result
,
2061 "Failed to populate VRConfig setting!", return result
);
2062 data
->vr_config
= table
->VRConfig
;
2064 ci_populate_smc_svi2_config(hwmgr
, table
);
2066 for (i
= 0; i
< SMU7_MAX_ENTRIES_SMIO
; i
++)
2067 CONVERT_FROM_HOST_TO_SMC_UL(table
->Smio
[i
]);
2069 table
->ThermGpio
= 17;
2070 table
->SclkStepSize
= 0x4000;
2071 if (atomctrl_get_pp_assign_pin(hwmgr
, VDDC_VRHOT_GPIO_PINID
, &gpio_pin
)) {
2072 table
->VRHotGpio
= gpio_pin
.uc_gpio_pin_bit_shift
;
2073 phm_cap_set(hwmgr
->platform_descriptor
.platformCaps
,
2074 PHM_PlatformCaps_RegulatorHot
);
2076 table
->VRHotGpio
= SMU7_UNUSED_GPIO_PIN
;
2077 phm_cap_unset(hwmgr
->platform_descriptor
.platformCaps
,
2078 PHM_PlatformCaps_RegulatorHot
);
2081 table
->AcDcGpio
= SMU7_UNUSED_GPIO_PIN
;
2083 CONVERT_FROM_HOST_TO_SMC_UL(table
->SystemFlags
);
2084 CONVERT_FROM_HOST_TO_SMC_UL(table
->VRConfig
);
2085 CONVERT_FROM_HOST_TO_SMC_UL(table
->SmioMaskVddcVid
);
2086 CONVERT_FROM_HOST_TO_SMC_UL(table
->SmioMaskVddcPhase
);
2087 CONVERT_FROM_HOST_TO_SMC_UL(table
->SmioMaskVddciVid
);
2088 CONVERT_FROM_HOST_TO_SMC_UL(table
->SmioMaskMvddVid
);
2089 CONVERT_FROM_HOST_TO_SMC_UL(table
->SclkStepSize
);
2090 CONVERT_FROM_HOST_TO_SMC_US(table
->TemperatureLimitHigh
);
2091 CONVERT_FROM_HOST_TO_SMC_US(table
->TemperatureLimitLow
);
2092 table
->VddcVddciDelta
= PP_HOST_TO_SMC_US(table
->VddcVddciDelta
);
2093 CONVERT_FROM_HOST_TO_SMC_US(table
->VoltageResponseTime
);
2094 CONVERT_FROM_HOST_TO_SMC_US(table
->PhaseResponseTime
);
2096 table
->BootVddc
= PP_HOST_TO_SMC_US(table
->BootVddc
* VOLTAGE_SCALE
);
2097 table
->BootVddci
= PP_HOST_TO_SMC_US(table
->BootVddci
* VOLTAGE_SCALE
);
2098 table
->BootMVdd
= PP_HOST_TO_SMC_US(table
->BootMVdd
* VOLTAGE_SCALE
);
2100 /* Upload all dpm data to SMC memory.(dpm level, dpm level count etc) */
2101 result
= ci_copy_bytes_to_smc(hwmgr
, smu_data
->dpm_table_start
+
2102 offsetof(SMU7_Discrete_DpmTable
, SystemFlags
),
2103 (uint8_t *)&(table
->SystemFlags
),
2104 sizeof(SMU7_Discrete_DpmTable
)-3 * sizeof(SMU7_PIDController
),
2107 PP_ASSERT_WITH_CODE(0 == result
,
2108 "Failed to upload dpm data to SMC memory!", return result
;);
2110 result
= ci_populate_initial_mc_reg_table(hwmgr
);
2111 PP_ASSERT_WITH_CODE((0 == result
),
2112 "Failed to populate initialize MC Reg table!", return result
);
2114 result
= ci_populate_pm_fuses(hwmgr
);
2115 PP_ASSERT_WITH_CODE(0 == result
,
2116 "Failed to populate PM fuses to SMC memory!", return result
);
2118 ci_start_smc(hwmgr
);
2123 static int ci_thermal_setup_fan_table(struct pp_hwmgr
*hwmgr
)
2125 struct ci_smumgr
*ci_data
= (struct ci_smumgr
*)(hwmgr
->smu_backend
);
2126 SMU7_Discrete_FanTable fan_table
= { FDO_MODE_HARDWARE
};
2128 uint32_t t_diff1
, t_diff2
, pwm_diff1
, pwm_diff2
;
2129 uint16_t fdo_min
, slope1
, slope2
;
2130 uint32_t reference_clock
;
2134 if (!phm_cap_enabled(hwmgr
->platform_descriptor
.platformCaps
, PHM_PlatformCaps_MicrocodeFanControl
))
2137 if (hwmgr
->thermal_controller
.fanInfo
.bNoFan
) {
2138 phm_cap_unset(hwmgr
->platform_descriptor
.platformCaps
,
2139 PHM_PlatformCaps_MicrocodeFanControl
);
2143 if (0 == ci_data
->fan_table_start
) {
2144 phm_cap_unset(hwmgr
->platform_descriptor
.platformCaps
, PHM_PlatformCaps_MicrocodeFanControl
);
2148 duty100
= PHM_READ_VFPF_INDIRECT_FIELD(hwmgr
->device
, CGS_IND_REG__SMC
, CG_FDO_CTRL1
, FMAX_DUTY100
);
2151 phm_cap_unset(hwmgr
->platform_descriptor
.platformCaps
, PHM_PlatformCaps_MicrocodeFanControl
);
2155 tmp64
= hwmgr
->thermal_controller
.advanceFanControlParameters
.usPWMMin
* duty100
;
2156 do_div(tmp64
, 10000);
2157 fdo_min
= (uint16_t)tmp64
;
2159 t_diff1
= hwmgr
->thermal_controller
.advanceFanControlParameters
.usTMed
- hwmgr
->thermal_controller
.advanceFanControlParameters
.usTMin
;
2160 t_diff2
= hwmgr
->thermal_controller
.advanceFanControlParameters
.usTHigh
- hwmgr
->thermal_controller
.advanceFanControlParameters
.usTMed
;
2162 pwm_diff1
= hwmgr
->thermal_controller
.advanceFanControlParameters
.usPWMMed
- hwmgr
->thermal_controller
.advanceFanControlParameters
.usPWMMin
;
2163 pwm_diff2
= hwmgr
->thermal_controller
.advanceFanControlParameters
.usPWMHigh
- hwmgr
->thermal_controller
.advanceFanControlParameters
.usPWMMed
;
2165 slope1
= (uint16_t)((50 + ((16 * duty100
* pwm_diff1
) / t_diff1
)) / 100);
2166 slope2
= (uint16_t)((50 + ((16 * duty100
* pwm_diff2
) / t_diff2
)) / 100);
2168 fan_table
.TempMin
= cpu_to_be16((50 + hwmgr
->thermal_controller
.advanceFanControlParameters
.usTMin
) / 100);
2169 fan_table
.TempMed
= cpu_to_be16((50 + hwmgr
->thermal_controller
.advanceFanControlParameters
.usTMed
) / 100);
2170 fan_table
.TempMax
= cpu_to_be16((50 + hwmgr
->thermal_controller
.advanceFanControlParameters
.usTMax
) / 100);
2172 fan_table
.Slope1
= cpu_to_be16(slope1
);
2173 fan_table
.Slope2
= cpu_to_be16(slope2
);
2175 fan_table
.FdoMin
= cpu_to_be16(fdo_min
);
2177 fan_table
.HystDown
= cpu_to_be16(hwmgr
->thermal_controller
.advanceFanControlParameters
.ucTHyst
);
2179 fan_table
.HystUp
= cpu_to_be16(1);
2181 fan_table
.HystSlope
= cpu_to_be16(1);
2183 fan_table
.TempRespLim
= cpu_to_be16(5);
2185 reference_clock
= amdgpu_asic_get_xclk((struct amdgpu_device
*)hwmgr
->adev
);
2187 fan_table
.RefreshPeriod
= cpu_to_be32((hwmgr
->thermal_controller
.advanceFanControlParameters
.ulCycleDelay
* reference_clock
) / 1600);
2189 fan_table
.FdoMax
= cpu_to_be16((uint16_t)duty100
);
2191 fan_table
.TempSrc
= (uint8_t)PHM_READ_VFPF_INDIRECT_FIELD(hwmgr
->device
, CGS_IND_REG__SMC
, CG_MULT_THERMAL_CTRL
, TEMP_SEL
);
2193 res
= ci_copy_bytes_to_smc(hwmgr
, ci_data
->fan_table_start
, (uint8_t *)&fan_table
, (uint32_t)sizeof(fan_table
), SMC_RAM_END
);
2198 static int ci_program_mem_timing_parameters(struct pp_hwmgr
*hwmgr
)
2200 struct smu7_hwmgr
*data
= (struct smu7_hwmgr
*)(hwmgr
->backend
);
2202 if (data
->need_update_smu7_dpm_table
&
2203 (DPMTABLE_OD_UPDATE_SCLK
+ DPMTABLE_OD_UPDATE_MCLK
))
2204 return ci_program_memory_timing_parameters(hwmgr
);
2209 static int ci_update_sclk_threshold(struct pp_hwmgr
*hwmgr
)
2211 struct smu7_hwmgr
*data
= (struct smu7_hwmgr
*)(hwmgr
->backend
);
2212 struct ci_smumgr
*smu_data
= (struct ci_smumgr
*)(hwmgr
->smu_backend
);
2215 uint32_t low_sclk_interrupt_threshold
= 0;
2217 if (phm_cap_enabled(hwmgr
->platform_descriptor
.platformCaps
,
2218 PHM_PlatformCaps_SclkThrottleLowNotification
)
2219 && (data
->low_sclk_interrupt_threshold
!= 0)) {
2220 low_sclk_interrupt_threshold
=
2221 data
->low_sclk_interrupt_threshold
;
2223 CONVERT_FROM_HOST_TO_SMC_UL(low_sclk_interrupt_threshold
);
2225 result
= ci_copy_bytes_to_smc(
2227 smu_data
->dpm_table_start
+
2228 offsetof(SMU7_Discrete_DpmTable
,
2230 (uint8_t *)&low_sclk_interrupt_threshold
,
2235 result
= ci_update_and_upload_mc_reg_table(hwmgr
);
2237 PP_ASSERT_WITH_CODE((0 == result
), "Failed to upload MC reg table!", return result
);
2239 result
= ci_program_mem_timing_parameters(hwmgr
);
2240 PP_ASSERT_WITH_CODE((result
== 0),
2241 "Failed to program memory timing parameters!",
2247 static uint32_t ci_get_offsetof(uint32_t type
, uint32_t member
)
2250 case SMU_SoftRegisters
:
2252 case HandshakeDisables
:
2253 return offsetof(SMU7_SoftRegisters
, HandshakeDisables
);
2254 case VoltageChangeTimeout
:
2255 return offsetof(SMU7_SoftRegisters
, VoltageChangeTimeout
);
2256 case AverageGraphicsActivity
:
2257 return offsetof(SMU7_SoftRegisters
, AverageGraphicsA
);
2258 case AverageMemoryActivity
:
2259 return offsetof(SMU7_SoftRegisters
, AverageMemoryA
);
2261 return offsetof(SMU7_SoftRegisters
, PreVBlankGap
);
2263 return offsetof(SMU7_SoftRegisters
, VBlankTimeout
);
2264 case DRAM_LOG_ADDR_H
:
2265 return offsetof(SMU7_SoftRegisters
, DRAM_LOG_ADDR_H
);
2266 case DRAM_LOG_ADDR_L
:
2267 return offsetof(SMU7_SoftRegisters
, DRAM_LOG_ADDR_L
);
2268 case DRAM_LOG_PHY_ADDR_H
:
2269 return offsetof(SMU7_SoftRegisters
, DRAM_LOG_PHY_ADDR_H
);
2270 case DRAM_LOG_PHY_ADDR_L
:
2271 return offsetof(SMU7_SoftRegisters
, DRAM_LOG_PHY_ADDR_L
);
2272 case DRAM_LOG_BUFF_SIZE
:
2273 return offsetof(SMU7_SoftRegisters
, DRAM_LOG_BUFF_SIZE
);
2276 case SMU_Discrete_DpmTable
:
2278 case LowSclkInterruptThreshold
:
2279 return offsetof(SMU7_Discrete_DpmTable
, LowSclkInterruptT
);
2283 pr_debug("can't get the offset of type %x member %x\n", type
, member
);
2287 static uint32_t ci_get_mac_definition(uint32_t value
)
2290 case SMU_MAX_LEVELS_GRAPHICS
:
2291 return SMU7_MAX_LEVELS_GRAPHICS
;
2292 case SMU_MAX_LEVELS_MEMORY
:
2293 return SMU7_MAX_LEVELS_MEMORY
;
2294 case SMU_MAX_LEVELS_LINK
:
2295 return SMU7_MAX_LEVELS_LINK
;
2296 case SMU_MAX_ENTRIES_SMIO
:
2297 return SMU7_MAX_ENTRIES_SMIO
;
2298 case SMU_MAX_LEVELS_VDDC
:
2299 return SMU7_MAX_LEVELS_VDDC
;
2300 case SMU_MAX_LEVELS_VDDCI
:
2301 return SMU7_MAX_LEVELS_VDDCI
;
2302 case SMU_MAX_LEVELS_MVDD
:
2303 return SMU7_MAX_LEVELS_MVDD
;
2306 pr_debug("can't get the mac of %x\n", value
);
2310 static int ci_load_smc_ucode(struct pp_hwmgr
*hwmgr
)
2312 uint32_t byte_count
, start_addr
;
2316 struct cgs_firmware_info info
= {0};
2318 cgs_get_firmware_info(hwmgr
->device
, CGS_UCODE_ID_SMU
, &info
);
2320 hwmgr
->is_kicker
= info
.is_kicker
;
2321 hwmgr
->smu_version
= info
.version
;
2322 byte_count
= info
.image_size
;
2323 src
= (uint8_t *)info
.kptr
;
2324 start_addr
= info
.ucode_start_address
;
2326 if (byte_count
> SMC_RAM_END
) {
2327 pr_err("SMC address is beyond the SMC RAM area.\n");
2331 cgs_write_register(hwmgr
->device
, mmSMC_IND_INDEX_0
, start_addr
);
2332 PHM_WRITE_FIELD(hwmgr
->device
, SMC_IND_ACCESS_CNTL
, AUTO_INCREMENT_IND_0
, 1);
2334 for (; byte_count
>= 4; byte_count
-= 4) {
2335 data
= (src
[0] << 24) | (src
[1] << 16) | (src
[2] << 8) | src
[3];
2336 cgs_write_register(hwmgr
->device
, mmSMC_IND_DATA_0
, data
);
2339 PHM_WRITE_FIELD(hwmgr
->device
, SMC_IND_ACCESS_CNTL
, AUTO_INCREMENT_IND_0
, 0);
2341 if (0 != byte_count
) {
2342 pr_err("SMC size must be divisible by 4\n");
2349 static int ci_upload_firmware(struct pp_hwmgr
*hwmgr
)
2351 if (ci_is_smc_ram_running(hwmgr
)) {
2352 pr_info("smc is running, no need to load smc firmware\n");
2355 PHM_WAIT_INDIRECT_FIELD(hwmgr
, SMC_IND
, RCU_UC_EVENTS
,
2357 PHM_WRITE_INDIRECT_FIELD(hwmgr
->device
, CGS_IND_REG__SMC
, SMC_SYSCON_MISC_CNTL
,
2360 PHM_WRITE_INDIRECT_FIELD(hwmgr
->device
, CGS_IND_REG__SMC
, SMC_SYSCON_CLOCK_CNTL_0
, ck_disable
, 1);
2361 PHM_WRITE_INDIRECT_FIELD(hwmgr
->device
, CGS_IND_REG__SMC
, SMC_SYSCON_RESET_CNTL
, rst_reg
, 1);
2362 return ci_load_smc_ucode(hwmgr
);
2365 static int ci_process_firmware_header(struct pp_hwmgr
*hwmgr
)
2367 struct smu7_hwmgr
*data
= (struct smu7_hwmgr
*)(hwmgr
->backend
);
2368 struct ci_smumgr
*ci_data
= (struct ci_smumgr
*)(hwmgr
->smu_backend
);
2374 if (ci_upload_firmware(hwmgr
))
2377 result
= ci_read_smc_sram_dword(hwmgr
,
2378 SMU7_FIRMWARE_HEADER_LOCATION
+
2379 offsetof(SMU7_Firmware_Header
, DpmTable
),
2383 ci_data
->dpm_table_start
= tmp
;
2385 error
|= (0 != result
);
2387 result
= ci_read_smc_sram_dword(hwmgr
,
2388 SMU7_FIRMWARE_HEADER_LOCATION
+
2389 offsetof(SMU7_Firmware_Header
, SoftRegisters
),
2393 data
->soft_regs_start
= tmp
;
2394 ci_data
->soft_regs_start
= tmp
;
2397 error
|= (0 != result
);
2399 result
= ci_read_smc_sram_dword(hwmgr
,
2400 SMU7_FIRMWARE_HEADER_LOCATION
+
2401 offsetof(SMU7_Firmware_Header
, mcRegisterTable
),
2405 ci_data
->mc_reg_table_start
= tmp
;
2407 result
= ci_read_smc_sram_dword(hwmgr
,
2408 SMU7_FIRMWARE_HEADER_LOCATION
+
2409 offsetof(SMU7_Firmware_Header
, FanTable
),
2413 ci_data
->fan_table_start
= tmp
;
2415 error
|= (0 != result
);
2417 result
= ci_read_smc_sram_dword(hwmgr
,
2418 SMU7_FIRMWARE_HEADER_LOCATION
+
2419 offsetof(SMU7_Firmware_Header
, mcArbDramTimingTable
),
2423 ci_data
->arb_table_start
= tmp
;
2425 error
|= (0 != result
);
2427 result
= ci_read_smc_sram_dword(hwmgr
,
2428 SMU7_FIRMWARE_HEADER_LOCATION
+
2429 offsetof(SMU7_Firmware_Header
, Version
),
2433 hwmgr
->microcode_version_info
.SMC
= tmp
;
2435 error
|= (0 != result
);
2437 return error
? 1 : 0;
2440 static uint8_t ci_get_memory_modile_index(struct pp_hwmgr
*hwmgr
)
2442 return (uint8_t) (0xFF & (cgs_read_register(hwmgr
->device
, mmBIOS_SCRATCH_4
) >> 16));
2445 static bool ci_check_s0_mc_reg_index(uint16_t in_reg
, uint16_t *out_reg
)
2450 case mmMC_SEQ_RAS_TIMING
:
2451 *out_reg
= mmMC_SEQ_RAS_TIMING_LP
;
2454 case mmMC_SEQ_DLL_STBY
:
2455 *out_reg
= mmMC_SEQ_DLL_STBY_LP
;
2458 case mmMC_SEQ_G5PDX_CMD0
:
2459 *out_reg
= mmMC_SEQ_G5PDX_CMD0_LP
;
2462 case mmMC_SEQ_G5PDX_CMD1
:
2463 *out_reg
= mmMC_SEQ_G5PDX_CMD1_LP
;
2466 case mmMC_SEQ_G5PDX_CTRL
:
2467 *out_reg
= mmMC_SEQ_G5PDX_CTRL_LP
;
2470 case mmMC_SEQ_CAS_TIMING
:
2471 *out_reg
= mmMC_SEQ_CAS_TIMING_LP
;
2474 case mmMC_SEQ_MISC_TIMING
:
2475 *out_reg
= mmMC_SEQ_MISC_TIMING_LP
;
2478 case mmMC_SEQ_MISC_TIMING2
:
2479 *out_reg
= mmMC_SEQ_MISC_TIMING2_LP
;
2482 case mmMC_SEQ_PMG_DVS_CMD
:
2483 *out_reg
= mmMC_SEQ_PMG_DVS_CMD_LP
;
2486 case mmMC_SEQ_PMG_DVS_CTL
:
2487 *out_reg
= mmMC_SEQ_PMG_DVS_CTL_LP
;
2490 case mmMC_SEQ_RD_CTL_D0
:
2491 *out_reg
= mmMC_SEQ_RD_CTL_D0_LP
;
2494 case mmMC_SEQ_RD_CTL_D1
:
2495 *out_reg
= mmMC_SEQ_RD_CTL_D1_LP
;
2498 case mmMC_SEQ_WR_CTL_D0
:
2499 *out_reg
= mmMC_SEQ_WR_CTL_D0_LP
;
2502 case mmMC_SEQ_WR_CTL_D1
:
2503 *out_reg
= mmMC_SEQ_WR_CTL_D1_LP
;
2506 case mmMC_PMG_CMD_EMRS
:
2507 *out_reg
= mmMC_SEQ_PMG_CMD_EMRS_LP
;
2510 case mmMC_PMG_CMD_MRS
:
2511 *out_reg
= mmMC_SEQ_PMG_CMD_MRS_LP
;
2514 case mmMC_PMG_CMD_MRS1
:
2515 *out_reg
= mmMC_SEQ_PMG_CMD_MRS1_LP
;
2518 case mmMC_SEQ_PMG_TIMING
:
2519 *out_reg
= mmMC_SEQ_PMG_TIMING_LP
;
2522 case mmMC_PMG_CMD_MRS2
:
2523 *out_reg
= mmMC_SEQ_PMG_CMD_MRS2_LP
;
2526 case mmMC_SEQ_WR_CTL_2
:
2527 *out_reg
= mmMC_SEQ_WR_CTL_2_LP
;
2538 static int ci_set_s0_mc_reg_index(struct ci_mc_reg_table
*table
)
2543 for (i
= 0; i
< table
->last
; i
++) {
2544 table
->mc_reg_address
[i
].s0
=
2545 ci_check_s0_mc_reg_index(table
->mc_reg_address
[i
].s1
, &address
)
2546 ? address
: table
->mc_reg_address
[i
].s1
;
2551 static int ci_copy_vbios_smc_reg_table(const pp_atomctrl_mc_reg_table
*table
,
2552 struct ci_mc_reg_table
*ni_table
)
2556 PP_ASSERT_WITH_CODE((table
->last
<= SMU7_DISCRETE_MC_REGISTER_ARRAY_SIZE
),
2557 "Invalid VramInfo table.", return -EINVAL
);
2558 PP_ASSERT_WITH_CODE((table
->num_entries
<= MAX_AC_TIMING_ENTRIES
),
2559 "Invalid VramInfo table.", return -EINVAL
);
2561 for (i
= 0; i
< table
->last
; i
++)
2562 ni_table
->mc_reg_address
[i
].s1
= table
->mc_reg_address
[i
].s1
;
2564 ni_table
->last
= table
->last
;
2566 for (i
= 0; i
< table
->num_entries
; i
++) {
2567 ni_table
->mc_reg_table_entry
[i
].mclk_max
=
2568 table
->mc_reg_table_entry
[i
].mclk_max
;
2569 for (j
= 0; j
< table
->last
; j
++) {
2570 ni_table
->mc_reg_table_entry
[i
].mc_data
[j
] =
2571 table
->mc_reg_table_entry
[i
].mc_data
[j
];
2575 ni_table
->num_entries
= table
->num_entries
;
2580 static int ci_set_mc_special_registers(struct pp_hwmgr
*hwmgr
,
2581 struct ci_mc_reg_table
*table
)
2585 struct smu7_hwmgr
*data
= (struct smu7_hwmgr
*)(hwmgr
->backend
);
2587 for (i
= 0, j
= table
->last
; i
< table
->last
; i
++) {
2588 PP_ASSERT_WITH_CODE((j
< SMU7_DISCRETE_MC_REGISTER_ARRAY_SIZE
),
2589 "Invalid VramInfo table.", return -EINVAL
);
2591 switch (table
->mc_reg_address
[i
].s1
) {
2593 case mmMC_SEQ_MISC1
:
2594 temp_reg
= cgs_read_register(hwmgr
->device
, mmMC_PMG_CMD_EMRS
);
2595 table
->mc_reg_address
[j
].s1
= mmMC_PMG_CMD_EMRS
;
2596 table
->mc_reg_address
[j
].s0
= mmMC_SEQ_PMG_CMD_EMRS_LP
;
2597 for (k
= 0; k
< table
->num_entries
; k
++) {
2598 table
->mc_reg_table_entry
[k
].mc_data
[j
] =
2599 ((temp_reg
& 0xffff0000)) |
2600 ((table
->mc_reg_table_entry
[k
].mc_data
[i
] & 0xffff0000) >> 16);
2604 PP_ASSERT_WITH_CODE((j
< SMU7_DISCRETE_MC_REGISTER_ARRAY_SIZE
),
2605 "Invalid VramInfo table.", return -EINVAL
);
2606 temp_reg
= cgs_read_register(hwmgr
->device
, mmMC_PMG_CMD_MRS
);
2607 table
->mc_reg_address
[j
].s1
= mmMC_PMG_CMD_MRS
;
2608 table
->mc_reg_address
[j
].s0
= mmMC_SEQ_PMG_CMD_MRS_LP
;
2609 for (k
= 0; k
< table
->num_entries
; k
++) {
2610 table
->mc_reg_table_entry
[k
].mc_data
[j
] =
2611 (temp_reg
& 0xffff0000) |
2612 (table
->mc_reg_table_entry
[k
].mc_data
[i
] & 0x0000ffff);
2614 if (!data
->is_memory_gddr5
)
2615 table
->mc_reg_table_entry
[k
].mc_data
[j
] |= 0x100;
2619 if (!data
->is_memory_gddr5
) {
2620 PP_ASSERT_WITH_CODE((j
< SMU7_DISCRETE_MC_REGISTER_ARRAY_SIZE
),
2621 "Invalid VramInfo table.", return -EINVAL
);
2622 table
->mc_reg_address
[j
].s1
= mmMC_PMG_AUTO_CMD
;
2623 table
->mc_reg_address
[j
].s0
= mmMC_PMG_AUTO_CMD
;
2624 for (k
= 0; k
< table
->num_entries
; k
++) {
2625 table
->mc_reg_table_entry
[k
].mc_data
[j
] =
2626 (table
->mc_reg_table_entry
[k
].mc_data
[i
] & 0xffff0000) >> 16;
2633 case mmMC_SEQ_RESERVE_M
:
2634 temp_reg
= cgs_read_register(hwmgr
->device
, mmMC_PMG_CMD_MRS1
);
2635 table
->mc_reg_address
[j
].s1
= mmMC_PMG_CMD_MRS1
;
2636 table
->mc_reg_address
[j
].s0
= mmMC_SEQ_PMG_CMD_MRS1_LP
;
2637 for (k
= 0; k
< table
->num_entries
; k
++) {
2638 table
->mc_reg_table_entry
[k
].mc_data
[j
] =
2639 (temp_reg
& 0xffff0000) |
2640 (table
->mc_reg_table_entry
[k
].mc_data
[i
] & 0x0000ffff);
2656 static int ci_set_valid_flag(struct ci_mc_reg_table
*table
)
2660 for (i
= 0; i
< table
->last
; i
++) {
2661 for (j
= 1; j
< table
->num_entries
; j
++) {
2662 if (table
->mc_reg_table_entry
[j
-1].mc_data
[i
] !=
2663 table
->mc_reg_table_entry
[j
].mc_data
[i
]) {
2664 table
->validflag
|= (1 << i
);
2673 static int ci_initialize_mc_reg_table(struct pp_hwmgr
*hwmgr
)
2676 struct ci_smumgr
*smu_data
= (struct ci_smumgr
*)(hwmgr
->smu_backend
);
2677 pp_atomctrl_mc_reg_table
*table
;
2678 struct ci_mc_reg_table
*ni_table
= &smu_data
->mc_reg_table
;
2679 uint8_t module_index
= ci_get_memory_modile_index(hwmgr
);
2681 table
= kzalloc(sizeof(pp_atomctrl_mc_reg_table
), GFP_KERNEL
);
2686 /* Program additional LP registers that are no longer programmed by VBIOS */
2687 cgs_write_register(hwmgr
->device
, mmMC_SEQ_RAS_TIMING_LP
, cgs_read_register(hwmgr
->device
, mmMC_SEQ_RAS_TIMING
));
2688 cgs_write_register(hwmgr
->device
, mmMC_SEQ_CAS_TIMING_LP
, cgs_read_register(hwmgr
->device
, mmMC_SEQ_CAS_TIMING
));
2689 cgs_write_register(hwmgr
->device
, mmMC_SEQ_DLL_STBY_LP
, cgs_read_register(hwmgr
->device
, mmMC_SEQ_DLL_STBY
));
2690 cgs_write_register(hwmgr
->device
, mmMC_SEQ_G5PDX_CMD0_LP
, cgs_read_register(hwmgr
->device
, mmMC_SEQ_G5PDX_CMD0
));
2691 cgs_write_register(hwmgr
->device
, mmMC_SEQ_G5PDX_CMD1_LP
, cgs_read_register(hwmgr
->device
, mmMC_SEQ_G5PDX_CMD1
));
2692 cgs_write_register(hwmgr
->device
, mmMC_SEQ_G5PDX_CTRL_LP
, cgs_read_register(hwmgr
->device
, mmMC_SEQ_G5PDX_CTRL
));
2693 cgs_write_register(hwmgr
->device
, mmMC_SEQ_PMG_DVS_CMD_LP
, cgs_read_register(hwmgr
->device
, mmMC_SEQ_PMG_DVS_CMD
));
2694 cgs_write_register(hwmgr
->device
, mmMC_SEQ_PMG_DVS_CTL_LP
, cgs_read_register(hwmgr
->device
, mmMC_SEQ_PMG_DVS_CTL
));
2695 cgs_write_register(hwmgr
->device
, mmMC_SEQ_MISC_TIMING_LP
, cgs_read_register(hwmgr
->device
, mmMC_SEQ_MISC_TIMING
));
2696 cgs_write_register(hwmgr
->device
, mmMC_SEQ_MISC_TIMING2_LP
, cgs_read_register(hwmgr
->device
, mmMC_SEQ_MISC_TIMING2
));
2697 cgs_write_register(hwmgr
->device
, mmMC_SEQ_PMG_CMD_EMRS_LP
, cgs_read_register(hwmgr
->device
, mmMC_PMG_CMD_EMRS
));
2698 cgs_write_register(hwmgr
->device
, mmMC_SEQ_PMG_CMD_MRS_LP
, cgs_read_register(hwmgr
->device
, mmMC_PMG_CMD_MRS
));
2699 cgs_write_register(hwmgr
->device
, mmMC_SEQ_PMG_CMD_MRS1_LP
, cgs_read_register(hwmgr
->device
, mmMC_PMG_CMD_MRS1
));
2700 cgs_write_register(hwmgr
->device
, mmMC_SEQ_WR_CTL_D0_LP
, cgs_read_register(hwmgr
->device
, mmMC_SEQ_WR_CTL_D0
));
2701 cgs_write_register(hwmgr
->device
, mmMC_SEQ_WR_CTL_D1_LP
, cgs_read_register(hwmgr
->device
, mmMC_SEQ_WR_CTL_D1
));
2702 cgs_write_register(hwmgr
->device
, mmMC_SEQ_RD_CTL_D0_LP
, cgs_read_register(hwmgr
->device
, mmMC_SEQ_RD_CTL_D0
));
2703 cgs_write_register(hwmgr
->device
, mmMC_SEQ_RD_CTL_D1_LP
, cgs_read_register(hwmgr
->device
, mmMC_SEQ_RD_CTL_D1
));
2704 cgs_write_register(hwmgr
->device
, mmMC_SEQ_PMG_TIMING_LP
, cgs_read_register(hwmgr
->device
, mmMC_SEQ_PMG_TIMING
));
2705 cgs_write_register(hwmgr
->device
, mmMC_SEQ_PMG_CMD_MRS2_LP
, cgs_read_register(hwmgr
->device
, mmMC_PMG_CMD_MRS2
));
2706 cgs_write_register(hwmgr
->device
, mmMC_SEQ_WR_CTL_2_LP
, cgs_read_register(hwmgr
->device
, mmMC_SEQ_WR_CTL_2
));
2708 result
= atomctrl_initialize_mc_reg_table(hwmgr
, module_index
, table
);
2711 result
= ci_copy_vbios_smc_reg_table(table
, ni_table
);
2714 ci_set_s0_mc_reg_index(ni_table
);
2715 result
= ci_set_mc_special_registers(hwmgr
, ni_table
);
2719 ci_set_valid_flag(ni_table
);
2726 static bool ci_is_dpm_running(struct pp_hwmgr
*hwmgr
)
2728 return ci_is_smc_ram_running(hwmgr
);
2731 static int ci_smu_init(struct pp_hwmgr
*hwmgr
)
2733 struct ci_smumgr
*ci_priv
= NULL
;
2735 ci_priv
= kzalloc(sizeof(struct ci_smumgr
), GFP_KERNEL
);
2737 if (ci_priv
== NULL
)
2740 hwmgr
->smu_backend
= ci_priv
;
2745 static int ci_smu_fini(struct pp_hwmgr
*hwmgr
)
2747 kfree(hwmgr
->smu_backend
);
2748 hwmgr
->smu_backend
= NULL
;
2752 static int ci_start_smu(struct pp_hwmgr
*hwmgr
)
2757 static int ci_update_dpm_settings(struct pp_hwmgr
*hwmgr
,
2758 void *profile_setting
)
2760 struct smu7_hwmgr
*data
= (struct smu7_hwmgr
*)(hwmgr
->backend
);
2761 struct ci_smumgr
*smu_data
= (struct ci_smumgr
*)
2762 (hwmgr
->smu_backend
);
2763 struct profile_mode_setting
*setting
;
2764 struct SMU7_Discrete_GraphicsLevel
*levels
=
2765 smu_data
->smc_state_table
.GraphicsLevel
;
2766 uint32_t array
= smu_data
->dpm_table_start
+
2767 offsetof(SMU7_Discrete_DpmTable
, GraphicsLevel
);
2769 uint32_t mclk_array
= smu_data
->dpm_table_start
+
2770 offsetof(SMU7_Discrete_DpmTable
, MemoryLevel
);
2771 struct SMU7_Discrete_MemoryLevel
*mclk_levels
=
2772 smu_data
->smc_state_table
.MemoryLevel
;
2774 uint32_t offset
, up_hyst_offset
, down_hyst_offset
, clk_activity_offset
, tmp
;
2776 if (profile_setting
== NULL
)
2779 setting
= (struct profile_mode_setting
*)profile_setting
;
2781 if (setting
->bupdate_sclk
) {
2782 if (!data
->sclk_dpm_key_disabled
)
2783 smum_send_msg_to_smc(hwmgr
, PPSMC_MSG_SCLKDPM_FreezeLevel
);
2784 for (i
= 0; i
< smu_data
->smc_state_table
.GraphicsDpmLevelCount
; i
++) {
2785 if (levels
[i
].ActivityLevel
!=
2786 cpu_to_be16(setting
->sclk_activity
)) {
2787 levels
[i
].ActivityLevel
= cpu_to_be16(setting
->sclk_activity
);
2789 clk_activity_offset
= array
+ (sizeof(SMU7_Discrete_GraphicsLevel
) * i
)
2790 + offsetof(SMU7_Discrete_GraphicsLevel
, ActivityLevel
);
2791 offset
= clk_activity_offset
& ~0x3;
2792 tmp
= PP_HOST_TO_SMC_UL(cgs_read_ind_register(hwmgr
->device
, CGS_IND_REG__SMC
, offset
));
2793 tmp
= phm_set_field_to_u32(clk_activity_offset
, tmp
, levels
[i
].ActivityLevel
, sizeof(uint16_t));
2794 cgs_write_ind_register(hwmgr
->device
, CGS_IND_REG__SMC
, offset
, PP_HOST_TO_SMC_UL(tmp
));
2797 if (levels
[i
].UpH
!= setting
->sclk_up_hyst
||
2798 levels
[i
].DownH
!= setting
->sclk_down_hyst
) {
2799 levels
[i
].UpH
= setting
->sclk_up_hyst
;
2800 levels
[i
].DownH
= setting
->sclk_down_hyst
;
2801 up_hyst_offset
= array
+ (sizeof(SMU7_Discrete_GraphicsLevel
) * i
)
2802 + offsetof(SMU7_Discrete_GraphicsLevel
, UpH
);
2803 down_hyst_offset
= array
+ (sizeof(SMU7_Discrete_GraphicsLevel
) * i
)
2804 + offsetof(SMU7_Discrete_GraphicsLevel
, DownH
);
2805 offset
= up_hyst_offset
& ~0x3;
2806 tmp
= PP_HOST_TO_SMC_UL(cgs_read_ind_register(hwmgr
->device
, CGS_IND_REG__SMC
, offset
));
2807 tmp
= phm_set_field_to_u32(up_hyst_offset
, tmp
, levels
[i
].UpH
, sizeof(uint8_t));
2808 tmp
= phm_set_field_to_u32(down_hyst_offset
, tmp
, levels
[i
].DownH
, sizeof(uint8_t));
2809 cgs_write_ind_register(hwmgr
->device
, CGS_IND_REG__SMC
, offset
, PP_HOST_TO_SMC_UL(tmp
));
2812 if (!data
->sclk_dpm_key_disabled
)
2813 smum_send_msg_to_smc(hwmgr
, PPSMC_MSG_SCLKDPM_UnfreezeLevel
);
2816 if (setting
->bupdate_mclk
) {
2817 if (!data
->mclk_dpm_key_disabled
)
2818 smum_send_msg_to_smc(hwmgr
, PPSMC_MSG_MCLKDPM_FreezeLevel
);
2819 for (i
= 0; i
< smu_data
->smc_state_table
.MemoryDpmLevelCount
; i
++) {
2820 if (mclk_levels
[i
].ActivityLevel
!=
2821 cpu_to_be16(setting
->mclk_activity
)) {
2822 mclk_levels
[i
].ActivityLevel
= cpu_to_be16(setting
->mclk_activity
);
2824 clk_activity_offset
= mclk_array
+ (sizeof(SMU7_Discrete_MemoryLevel
) * i
)
2825 + offsetof(SMU7_Discrete_MemoryLevel
, ActivityLevel
);
2826 offset
= clk_activity_offset
& ~0x3;
2827 tmp
= PP_HOST_TO_SMC_UL(cgs_read_ind_register(hwmgr
->device
, CGS_IND_REG__SMC
, offset
));
2828 tmp
= phm_set_field_to_u32(clk_activity_offset
, tmp
, mclk_levels
[i
].ActivityLevel
, sizeof(uint16_t));
2829 cgs_write_ind_register(hwmgr
->device
, CGS_IND_REG__SMC
, offset
, PP_HOST_TO_SMC_UL(tmp
));
2832 if (mclk_levels
[i
].UpH
!= setting
->mclk_up_hyst
||
2833 mclk_levels
[i
].DownH
!= setting
->mclk_down_hyst
) {
2834 mclk_levels
[i
].UpH
= setting
->mclk_up_hyst
;
2835 mclk_levels
[i
].DownH
= setting
->mclk_down_hyst
;
2836 up_hyst_offset
= mclk_array
+ (sizeof(SMU7_Discrete_MemoryLevel
) * i
)
2837 + offsetof(SMU7_Discrete_MemoryLevel
, UpH
);
2838 down_hyst_offset
= mclk_array
+ (sizeof(SMU7_Discrete_MemoryLevel
) * i
)
2839 + offsetof(SMU7_Discrete_MemoryLevel
, DownH
);
2840 offset
= up_hyst_offset
& ~0x3;
2841 tmp
= PP_HOST_TO_SMC_UL(cgs_read_ind_register(hwmgr
->device
, CGS_IND_REG__SMC
, offset
));
2842 tmp
= phm_set_field_to_u32(up_hyst_offset
, tmp
, mclk_levels
[i
].UpH
, sizeof(uint8_t));
2843 tmp
= phm_set_field_to_u32(down_hyst_offset
, tmp
, mclk_levels
[i
].DownH
, sizeof(uint8_t));
2844 cgs_write_ind_register(hwmgr
->device
, CGS_IND_REG__SMC
, offset
, PP_HOST_TO_SMC_UL(tmp
));
2847 if (!data
->mclk_dpm_key_disabled
)
2848 smum_send_msg_to_smc(hwmgr
, PPSMC_MSG_MCLKDPM_UnfreezeLevel
);
2853 static int ci_update_uvd_smc_table(struct pp_hwmgr
*hwmgr
)
2855 struct amdgpu_device
*adev
= hwmgr
->adev
;
2856 struct smu7_hwmgr
*data
= hwmgr
->backend
;
2857 struct ci_smumgr
*smu_data
= hwmgr
->smu_backend
;
2858 struct phm_uvd_clock_voltage_dependency_table
*uvd_table
=
2859 hwmgr
->dyn_state
.uvd_clock_voltage_dependency_table
;
2860 uint32_t profile_mode_mask
= AMD_DPM_FORCED_LEVEL_PROFILE_STANDARD
|
2861 AMD_DPM_FORCED_LEVEL_PROFILE_MIN_SCLK
|
2862 AMD_DPM_FORCED_LEVEL_PROFILE_MIN_MCLK
|
2863 AMD_DPM_FORCED_LEVEL_PROFILE_PEAK
;
2864 uint32_t max_vddc
= adev
->pm
.ac_power
? hwmgr
->dyn_state
.max_clock_voltage_on_ac
.vddc
:
2865 hwmgr
->dyn_state
.max_clock_voltage_on_dc
.vddc
;
2868 if (PP_CAP(PHM_PlatformCaps_UVDDPM
) || uvd_table
->count
<= 0)
2869 smu_data
->smc_state_table
.UvdBootLevel
= 0;
2871 smu_data
->smc_state_table
.UvdBootLevel
= uvd_table
->count
- 1;
2873 PHM_WRITE_INDIRECT_FIELD(hwmgr
->device
, CGS_IND_REG__SMC
, DPM_TABLE_475
,
2874 UvdBootLevel
, smu_data
->smc_state_table
.UvdBootLevel
);
2876 data
->dpm_level_enable_mask
.uvd_dpm_enable_mask
= 0;
2878 for (i
= uvd_table
->count
- 1; i
>= 0; i
--) {
2879 if (uvd_table
->entries
[i
].v
<= max_vddc
)
2880 data
->dpm_level_enable_mask
.uvd_dpm_enable_mask
|= 1 << i
;
2881 if (hwmgr
->dpm_level
& profile_mode_mask
|| !PP_CAP(PHM_PlatformCaps_UVDDPM
))
2884 ci_send_msg_to_smc_with_parameter(hwmgr
, PPSMC_MSG_UVDDPM_SetEnabledMask
,
2885 data
->dpm_level_enable_mask
.uvd_dpm_enable_mask
);
2890 static int ci_update_vce_smc_table(struct pp_hwmgr
*hwmgr
)
2892 struct amdgpu_device
*adev
= hwmgr
->adev
;
2893 struct smu7_hwmgr
*data
= hwmgr
->backend
;
2894 struct phm_vce_clock_voltage_dependency_table
*vce_table
=
2895 hwmgr
->dyn_state
.vce_clock_voltage_dependency_table
;
2896 uint32_t profile_mode_mask
= AMD_DPM_FORCED_LEVEL_PROFILE_STANDARD
|
2897 AMD_DPM_FORCED_LEVEL_PROFILE_MIN_SCLK
|
2898 AMD_DPM_FORCED_LEVEL_PROFILE_MIN_MCLK
|
2899 AMD_DPM_FORCED_LEVEL_PROFILE_PEAK
;
2900 uint32_t max_vddc
= adev
->pm
.ac_power
? hwmgr
->dyn_state
.max_clock_voltage_on_ac
.vddc
:
2901 hwmgr
->dyn_state
.max_clock_voltage_on_dc
.vddc
;
2904 PHM_WRITE_INDIRECT_FIELD(hwmgr
->device
, CGS_IND_REG__SMC
, DPM_TABLE_475
,
2905 VceBootLevel
, 0); /* temp hard code to level 0, vce can set min evclk*/
2907 data
->dpm_level_enable_mask
.vce_dpm_enable_mask
= 0;
2909 for (i
= vce_table
->count
- 1; i
>= 0; i
--) {
2910 if (vce_table
->entries
[i
].v
<= max_vddc
)
2911 data
->dpm_level_enable_mask
.vce_dpm_enable_mask
|= 1 << i
;
2912 if (hwmgr
->dpm_level
& profile_mode_mask
|| !PP_CAP(PHM_PlatformCaps_VCEDPM
))
2915 ci_send_msg_to_smc_with_parameter(hwmgr
, PPSMC_MSG_VCEDPM_SetEnabledMask
,
2916 data
->dpm_level_enable_mask
.vce_dpm_enable_mask
);
2921 static int ci_update_smc_table(struct pp_hwmgr
*hwmgr
, uint32_t type
)
2925 ci_update_uvd_smc_table(hwmgr
);
2928 ci_update_vce_smc_table(hwmgr
);
2936 const struct pp_smumgr_func ci_smu_funcs
= {
2938 .smu_init
= ci_smu_init
,
2939 .smu_fini
= ci_smu_fini
,
2940 .start_smu
= ci_start_smu
,
2941 .check_fw_load_finish
= NULL
,
2942 .request_smu_load_fw
= NULL
,
2943 .request_smu_load_specific_fw
= NULL
,
2944 .send_msg_to_smc
= ci_send_msg_to_smc
,
2945 .send_msg_to_smc_with_parameter
= ci_send_msg_to_smc_with_parameter
,
2946 .download_pptable_settings
= NULL
,
2947 .upload_pptable_settings
= NULL
,
2948 .get_offsetof
= ci_get_offsetof
,
2949 .process_firmware_header
= ci_process_firmware_header
,
2950 .init_smc_table
= ci_init_smc_table
,
2951 .update_sclk_threshold
= ci_update_sclk_threshold
,
2952 .thermal_setup_fan_table
= ci_thermal_setup_fan_table
,
2953 .populate_all_graphic_levels
= ci_populate_all_graphic_levels
,
2954 .populate_all_memory_levels
= ci_populate_all_memory_levels
,
2955 .get_mac_definition
= ci_get_mac_definition
,
2956 .initialize_mc_reg_table
= ci_initialize_mc_reg_table
,
2957 .is_dpm_running
= ci_is_dpm_running
,
2958 .update_dpm_settings
= ci_update_dpm_settings
,
2959 .update_smc_table
= ci_update_smc_table
,