treewide: remove redundant IS_ERR() before error code check
[linux/fpc-iii.git] / drivers / gpu / drm / amd / powerplay / smumgr / iceland_smumgr.c
blob732005c03a82d89f7528ee067ea93c3f259d7195
1 /*
2 * Copyright 2016 Advanced Micro Devices, Inc.
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
11 * The above copyright notice and this permission notice shall be included in
12 * all copies or substantial portions of the Software.
14 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
17 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20 * OTHER DEALINGS IN THE SOFTWARE.
22 * Author: Huang Rui <ray.huang@amd.com>
25 #include "pp_debug.h"
26 #include <linux/types.h>
27 #include <linux/kernel.h>
28 #include <linux/pci.h>
29 #include <linux/slab.h>
30 #include <linux/gfp.h>
32 #include "smumgr.h"
33 #include "iceland_smumgr.h"
35 #include "ppsmc.h"
37 #include "cgs_common.h"
39 #include "smu7_dyn_defaults.h"
40 #include "smu7_hwmgr.h"
41 #include "hardwaremanager.h"
42 #include "ppatomctrl.h"
43 #include "atombios.h"
44 #include "pppcielanes.h"
45 #include "pp_endian.h"
46 #include "processpptables.h"
49 #include "smu/smu_7_1_1_d.h"
50 #include "smu/smu_7_1_1_sh_mask.h"
51 #include "smu71_discrete.h"
53 #include "smu_ucode_xfer_vi.h"
54 #include "gmc/gmc_8_1_d.h"
55 #include "gmc/gmc_8_1_sh_mask.h"
56 #include "bif/bif_5_0_d.h"
57 #include "bif/bif_5_0_sh_mask.h"
58 #include "dce/dce_10_0_d.h"
59 #include "dce/dce_10_0_sh_mask.h"
62 #define ICELAND_SMC_SIZE 0x20000
64 #define POWERTUNE_DEFAULT_SET_MAX 1
65 #define MC_CG_ARB_FREQ_F1 0x0b
66 #define VDDC_VDDCI_DELTA 200
68 #define DEVICE_ID_VI_ICELAND_M_6900 0x6900
69 #define DEVICE_ID_VI_ICELAND_M_6901 0x6901
70 #define DEVICE_ID_VI_ICELAND_M_6902 0x6902
71 #define DEVICE_ID_VI_ICELAND_M_6903 0x6903
73 static const struct iceland_pt_defaults defaults_iceland = {
75 * sviLoadLIneEn, SviLoadLineVddC, TDC_VDDC_ThrottleReleaseLimitPerc,
76 * TDC_MAWt, TdcWaterfallCtl, DTEAmbientTempBase, DisplayCac, BAPM_TEMP_GRADIENT
78 1, 0xF, 0xFD, 0x19, 5, 45, 0, 0xB0000,
79 { 0x79, 0x253, 0x25D, 0xAE, 0x72, 0x80, 0x83, 0x86, 0x6F, 0xC8, 0xC9, 0xC9, 0x2F, 0x4D, 0x61 },
80 { 0x17C, 0x172, 0x180, 0x1BC, 0x1B3, 0x1BD, 0x206, 0x200, 0x203, 0x25D, 0x25A, 0x255, 0x2C3, 0x2C5, 0x2B4 }
83 /* 35W - XT, XTL */
84 static const struct iceland_pt_defaults defaults_icelandxt = {
86 * sviLoadLIneEn, SviLoadLineVddC,
87 * TDC_VDDC_ThrottleReleaseLimitPerc, TDC_MAWt,
88 * TdcWaterfallCtl, DTEAmbientTempBase, DisplayCac,
89 * BAPM_TEMP_GRADIENT
91 1, 0xF, 0xFD, 0x19, 5, 45, 0, 0x0,
92 { 0xA7, 0x0, 0x0, 0xB5, 0x0, 0x0, 0x9F, 0x0, 0x0, 0xD6, 0x0, 0x0, 0xD7, 0x0, 0x0},
93 { 0x1EA, 0x0, 0x0, 0x224, 0x0, 0x0, 0x25E, 0x0, 0x0, 0x28E, 0x0, 0x0, 0x2AB, 0x0, 0x0}
96 /* 25W - PRO, LE */
97 static const struct iceland_pt_defaults defaults_icelandpro = {
99 * sviLoadLIneEn, SviLoadLineVddC,
100 * TDC_VDDC_ThrottleReleaseLimitPerc, TDC_MAWt,
101 * TdcWaterfallCtl, DTEAmbientTempBase, DisplayCac,
102 * BAPM_TEMP_GRADIENT
104 1, 0xF, 0xFD, 0x19, 5, 45, 0, 0x0,
105 { 0xB7, 0x0, 0x0, 0xC3, 0x0, 0x0, 0xB5, 0x0, 0x0, 0xEA, 0x0, 0x0, 0xE6, 0x0, 0x0},
106 { 0x1EA, 0x0, 0x0, 0x224, 0x0, 0x0, 0x25E, 0x0, 0x0, 0x28E, 0x0, 0x0, 0x2AB, 0x0, 0x0}
109 static int iceland_start_smc(struct pp_hwmgr *hwmgr)
111 PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,
112 SMC_SYSCON_RESET_CNTL, rst_reg, 0);
114 return 0;
117 static void iceland_reset_smc(struct pp_hwmgr *hwmgr)
119 PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,
120 SMC_SYSCON_RESET_CNTL,
121 rst_reg, 1);
125 static void iceland_stop_smc_clock(struct pp_hwmgr *hwmgr)
127 PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,
128 SMC_SYSCON_CLOCK_CNTL_0,
129 ck_disable, 1);
132 static void iceland_start_smc_clock(struct pp_hwmgr *hwmgr)
134 PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,
135 SMC_SYSCON_CLOCK_CNTL_0,
136 ck_disable, 0);
139 static int iceland_smu_start_smc(struct pp_hwmgr *hwmgr)
141 /* set smc instruct start point at 0x0 */
142 smu7_program_jump_on_start(hwmgr);
144 /* enable smc clock */
145 iceland_start_smc_clock(hwmgr);
147 /* de-assert reset */
148 iceland_start_smc(hwmgr);
150 PHM_WAIT_INDIRECT_FIELD(hwmgr, SMC_IND, FIRMWARE_FLAGS,
151 INTERRUPTS_ENABLED, 1);
153 return 0;
157 static int iceland_upload_smc_firmware_data(struct pp_hwmgr *hwmgr,
158 uint32_t length, const uint8_t *src,
159 uint32_t limit, uint32_t start_addr)
161 uint32_t byte_count = length;
162 uint32_t data;
164 PP_ASSERT_WITH_CODE((limit >= byte_count), "SMC address is beyond the SMC RAM area.", return -EINVAL);
166 cgs_write_register(hwmgr->device, mmSMC_IND_INDEX_0, start_addr);
167 PHM_WRITE_FIELD(hwmgr->device, SMC_IND_ACCESS_CNTL, AUTO_INCREMENT_IND_0, 1);
169 while (byte_count >= 4) {
170 data = src[0] * 0x1000000 + src[1] * 0x10000 + src[2] * 0x100 + src[3];
171 cgs_write_register(hwmgr->device, mmSMC_IND_DATA_0, data);
172 src += 4;
173 byte_count -= 4;
176 PHM_WRITE_FIELD(hwmgr->device, SMC_IND_ACCESS_CNTL, AUTO_INCREMENT_IND_0, 0);
178 PP_ASSERT_WITH_CODE((0 == byte_count), "SMC size must be divisible by 4.", return -EINVAL);
180 return 0;
184 static int iceland_smu_upload_firmware_image(struct pp_hwmgr *hwmgr)
186 uint32_t val;
187 struct cgs_firmware_info info = {0};
189 if (hwmgr == NULL || hwmgr->device == NULL)
190 return -EINVAL;
192 /* load SMC firmware */
193 cgs_get_firmware_info(hwmgr->device,
194 smu7_convert_fw_type_to_cgs(UCODE_ID_SMU), &info);
196 if (info.image_size & 3) {
197 pr_err("[ powerplay ] SMC ucode is not 4 bytes aligned\n");
198 return -EINVAL;
201 if (info.image_size > ICELAND_SMC_SIZE) {
202 pr_err("[ powerplay ] SMC address is beyond the SMC RAM area\n");
203 return -EINVAL;
205 hwmgr->smu_version = info.version;
206 /* wait for smc boot up */
207 PHM_WAIT_INDIRECT_FIELD_UNEQUAL(hwmgr, SMC_IND,
208 RCU_UC_EVENTS, boot_seq_done, 0);
210 /* clear firmware interrupt enable flag */
211 val = cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC,
212 ixSMC_SYSCON_MISC_CNTL);
213 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
214 ixSMC_SYSCON_MISC_CNTL, val | 1);
216 /* stop smc clock */
217 iceland_stop_smc_clock(hwmgr);
219 /* reset smc */
220 iceland_reset_smc(hwmgr);
221 iceland_upload_smc_firmware_data(hwmgr, info.image_size,
222 (uint8_t *)info.kptr, ICELAND_SMC_SIZE,
223 info.ucode_start_address);
225 return 0;
228 static int iceland_request_smu_load_specific_fw(struct pp_hwmgr *hwmgr,
229 uint32_t firmwareType)
231 return 0;
234 static int iceland_start_smu(struct pp_hwmgr *hwmgr)
236 struct iceland_smumgr *priv = hwmgr->smu_backend;
237 int result;
239 if (!smu7_is_smc_ram_running(hwmgr)) {
240 result = iceland_smu_upload_firmware_image(hwmgr);
241 if (result)
242 return result;
244 iceland_smu_start_smc(hwmgr);
247 /* Setup SoftRegsStart here to visit the register UcodeLoadStatus
248 * to check fw loading state
250 smu7_read_smc_sram_dword(hwmgr,
251 SMU71_FIRMWARE_HEADER_LOCATION +
252 offsetof(SMU71_Firmware_Header, SoftRegisters),
253 &(priv->smu7_data.soft_regs_start), 0x40000);
255 result = smu7_request_smu_load_fw(hwmgr);
257 return result;
260 static int iceland_smu_init(struct pp_hwmgr *hwmgr)
262 struct iceland_smumgr *iceland_priv = NULL;
264 iceland_priv = kzalloc(sizeof(struct iceland_smumgr), GFP_KERNEL);
266 if (iceland_priv == NULL)
267 return -ENOMEM;
269 hwmgr->smu_backend = iceland_priv;
271 if (smu7_init(hwmgr)) {
272 kfree(iceland_priv);
273 return -EINVAL;
276 return 0;
280 static void iceland_initialize_power_tune_defaults(struct pp_hwmgr *hwmgr)
282 struct iceland_smumgr *smu_data = (struct iceland_smumgr *)(hwmgr->smu_backend);
283 struct amdgpu_device *adev = hwmgr->adev;
284 uint32_t dev_id;
286 dev_id = adev->pdev->device;
288 switch (dev_id) {
289 case DEVICE_ID_VI_ICELAND_M_6900:
290 case DEVICE_ID_VI_ICELAND_M_6903:
291 smu_data->power_tune_defaults = &defaults_icelandxt;
292 break;
294 case DEVICE_ID_VI_ICELAND_M_6901:
295 case DEVICE_ID_VI_ICELAND_M_6902:
296 smu_data->power_tune_defaults = &defaults_icelandpro;
297 break;
298 default:
299 smu_data->power_tune_defaults = &defaults_iceland;
300 pr_warn("Unknown V.I. Device ID.\n");
301 break;
303 return;
306 static int iceland_populate_svi_load_line(struct pp_hwmgr *hwmgr)
308 struct iceland_smumgr *smu_data = (struct iceland_smumgr *)(hwmgr->smu_backend);
309 const struct iceland_pt_defaults *defaults = smu_data->power_tune_defaults;
311 smu_data->power_tune_table.SviLoadLineEn = defaults->svi_load_line_en;
312 smu_data->power_tune_table.SviLoadLineVddC = defaults->svi_load_line_vddc;
313 smu_data->power_tune_table.SviLoadLineTrimVddC = 3;
314 smu_data->power_tune_table.SviLoadLineOffsetVddC = 0;
316 return 0;
319 static int iceland_populate_tdc_limit(struct pp_hwmgr *hwmgr)
321 uint16_t tdc_limit;
322 struct iceland_smumgr *smu_data = (struct iceland_smumgr *)(hwmgr->smu_backend);
323 const struct iceland_pt_defaults *defaults = smu_data->power_tune_defaults;
325 tdc_limit = (uint16_t)(hwmgr->dyn_state.cac_dtp_table->usTDC * 256);
326 smu_data->power_tune_table.TDC_VDDC_PkgLimit =
327 CONVERT_FROM_HOST_TO_SMC_US(tdc_limit);
328 smu_data->power_tune_table.TDC_VDDC_ThrottleReleaseLimitPerc =
329 defaults->tdc_vddc_throttle_release_limit_perc;
330 smu_data->power_tune_table.TDC_MAWt = defaults->tdc_mawt;
332 return 0;
335 static int iceland_populate_dw8(struct pp_hwmgr *hwmgr, uint32_t fuse_table_offset)
337 struct iceland_smumgr *smu_data = (struct iceland_smumgr *)(hwmgr->smu_backend);
338 const struct iceland_pt_defaults *defaults = smu_data->power_tune_defaults;
339 uint32_t temp;
341 if (smu7_read_smc_sram_dword(hwmgr,
342 fuse_table_offset +
343 offsetof(SMU71_Discrete_PmFuses, TdcWaterfallCtl),
344 (uint32_t *)&temp, SMC_RAM_END))
345 PP_ASSERT_WITH_CODE(false,
346 "Attempt to read PmFuses.DW6 (SviLoadLineEn) from SMC Failed!",
347 return -EINVAL);
348 else
349 smu_data->power_tune_table.TdcWaterfallCtl = defaults->tdc_waterfall_ctl;
351 return 0;
354 static int iceland_populate_temperature_scaler(struct pp_hwmgr *hwmgr)
356 return 0;
359 static int iceland_populate_gnb_lpml(struct pp_hwmgr *hwmgr)
361 int i;
362 struct iceland_smumgr *smu_data = (struct iceland_smumgr *)(hwmgr->smu_backend);
364 /* Currently not used. Set all to zero. */
365 for (i = 0; i < 8; i++)
366 smu_data->power_tune_table.GnbLPML[i] = 0;
368 return 0;
371 static int iceland_populate_bapm_vddc_base_leakage_sidd(struct pp_hwmgr *hwmgr)
373 struct iceland_smumgr *smu_data = (struct iceland_smumgr *)(hwmgr->smu_backend);
374 uint16_t HiSidd = smu_data->power_tune_table.BapmVddCBaseLeakageHiSidd;
375 uint16_t LoSidd = smu_data->power_tune_table.BapmVddCBaseLeakageLoSidd;
376 struct phm_cac_tdp_table *cac_table = hwmgr->dyn_state.cac_dtp_table;
378 HiSidd = (uint16_t)(cac_table->usHighCACLeakage / 100 * 256);
379 LoSidd = (uint16_t)(cac_table->usLowCACLeakage / 100 * 256);
381 smu_data->power_tune_table.BapmVddCBaseLeakageHiSidd =
382 CONVERT_FROM_HOST_TO_SMC_US(HiSidd);
383 smu_data->power_tune_table.BapmVddCBaseLeakageLoSidd =
384 CONVERT_FROM_HOST_TO_SMC_US(LoSidd);
386 return 0;
389 static int iceland_populate_bapm_vddc_vid_sidd(struct pp_hwmgr *hwmgr)
391 int i;
392 struct iceland_smumgr *smu_data = (struct iceland_smumgr *)(hwmgr->smu_backend);
393 uint8_t *hi_vid = smu_data->power_tune_table.BapmVddCVidHiSidd;
394 uint8_t *lo_vid = smu_data->power_tune_table.BapmVddCVidLoSidd;
396 PP_ASSERT_WITH_CODE(NULL != hwmgr->dyn_state.cac_leakage_table,
397 "The CAC Leakage table does not exist!", return -EINVAL);
398 PP_ASSERT_WITH_CODE(hwmgr->dyn_state.cac_leakage_table->count <= 8,
399 "There should never be more than 8 entries for BapmVddcVid!!!", return -EINVAL);
400 PP_ASSERT_WITH_CODE(hwmgr->dyn_state.cac_leakage_table->count == hwmgr->dyn_state.vddc_dependency_on_sclk->count,
401 "CACLeakageTable->count and VddcDependencyOnSCLk->count not equal", return -EINVAL);
403 if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_EVV)) {
404 for (i = 0; (uint32_t) i < hwmgr->dyn_state.cac_leakage_table->count; i++) {
405 lo_vid[i] = convert_to_vid(hwmgr->dyn_state.cac_leakage_table->entries[i].Vddc1);
406 hi_vid[i] = convert_to_vid(hwmgr->dyn_state.cac_leakage_table->entries[i].Vddc2);
408 } else {
409 PP_ASSERT_WITH_CODE(false, "Iceland should always support EVV", return -EINVAL);
412 return 0;
415 static int iceland_populate_vddc_vid(struct pp_hwmgr *hwmgr)
417 int i;
418 struct iceland_smumgr *smu_data = (struct iceland_smumgr *)(hwmgr->smu_backend);
419 uint8_t *vid = smu_data->power_tune_table.VddCVid;
420 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
422 PP_ASSERT_WITH_CODE(data->vddc_voltage_table.count <= 8,
423 "There should never be more than 8 entries for VddcVid!!!",
424 return -EINVAL);
426 for (i = 0; i < (int)data->vddc_voltage_table.count; i++) {
427 vid[i] = convert_to_vid(data->vddc_voltage_table.entries[i].value);
430 return 0;
435 static int iceland_populate_pm_fuses(struct pp_hwmgr *hwmgr)
437 struct iceland_smumgr *smu_data = (struct iceland_smumgr *)(hwmgr->smu_backend);
438 uint32_t pm_fuse_table_offset;
440 if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
441 PHM_PlatformCaps_PowerContainment)) {
442 if (smu7_read_smc_sram_dword(hwmgr,
443 SMU71_FIRMWARE_HEADER_LOCATION +
444 offsetof(SMU71_Firmware_Header, PmFuseTable),
445 &pm_fuse_table_offset, SMC_RAM_END))
446 PP_ASSERT_WITH_CODE(false,
447 "Attempt to get pm_fuse_table_offset Failed!",
448 return -EINVAL);
450 /* DW0 - DW3 */
451 if (iceland_populate_bapm_vddc_vid_sidd(hwmgr))
452 PP_ASSERT_WITH_CODE(false,
453 "Attempt to populate bapm vddc vid Failed!",
454 return -EINVAL);
456 /* DW4 - DW5 */
457 if (iceland_populate_vddc_vid(hwmgr))
458 PP_ASSERT_WITH_CODE(false,
459 "Attempt to populate vddc vid Failed!",
460 return -EINVAL);
462 /* DW6 */
463 if (iceland_populate_svi_load_line(hwmgr))
464 PP_ASSERT_WITH_CODE(false,
465 "Attempt to populate SviLoadLine Failed!",
466 return -EINVAL);
467 /* DW7 */
468 if (iceland_populate_tdc_limit(hwmgr))
469 PP_ASSERT_WITH_CODE(false,
470 "Attempt to populate TDCLimit Failed!", return -EINVAL);
471 /* DW8 */
472 if (iceland_populate_dw8(hwmgr, pm_fuse_table_offset))
473 PP_ASSERT_WITH_CODE(false,
474 "Attempt to populate TdcWaterfallCtl, "
475 "LPMLTemperature Min and Max Failed!",
476 return -EINVAL);
478 /* DW9-DW12 */
479 if (0 != iceland_populate_temperature_scaler(hwmgr))
480 PP_ASSERT_WITH_CODE(false,
481 "Attempt to populate LPMLTemperatureScaler Failed!",
482 return -EINVAL);
484 /* DW13-DW16 */
485 if (iceland_populate_gnb_lpml(hwmgr))
486 PP_ASSERT_WITH_CODE(false,
487 "Attempt to populate GnbLPML Failed!",
488 return -EINVAL);
490 /* DW18 */
491 if (iceland_populate_bapm_vddc_base_leakage_sidd(hwmgr))
492 PP_ASSERT_WITH_CODE(false,
493 "Attempt to populate BapmVddCBaseLeakage Hi and Lo Sidd Failed!",
494 return -EINVAL);
496 if (smu7_copy_bytes_to_smc(hwmgr, pm_fuse_table_offset,
497 (uint8_t *)&smu_data->power_tune_table,
498 sizeof(struct SMU71_Discrete_PmFuses), SMC_RAM_END))
499 PP_ASSERT_WITH_CODE(false,
500 "Attempt to download PmFuseTable Failed!",
501 return -EINVAL);
503 return 0;
506 static int iceland_get_dependency_volt_by_clk(struct pp_hwmgr *hwmgr,
507 struct phm_clock_voltage_dependency_table *allowed_clock_voltage_table,
508 uint32_t clock, uint32_t *vol)
510 uint32_t i = 0;
512 /* clock - voltage dependency table is empty table */
513 if (allowed_clock_voltage_table->count == 0)
514 return -EINVAL;
516 for (i = 0; i < allowed_clock_voltage_table->count; i++) {
517 /* find first sclk bigger than request */
518 if (allowed_clock_voltage_table->entries[i].clk >= clock) {
519 *vol = allowed_clock_voltage_table->entries[i].v;
520 return 0;
524 /* sclk is bigger than max sclk in the dependence table */
525 *vol = allowed_clock_voltage_table->entries[i - 1].v;
527 return 0;
530 static int iceland_get_std_voltage_value_sidd(struct pp_hwmgr *hwmgr,
531 pp_atomctrl_voltage_table_entry *tab, uint16_t *hi,
532 uint16_t *lo)
534 uint16_t v_index;
535 bool vol_found = false;
536 *hi = tab->value * VOLTAGE_SCALE;
537 *lo = tab->value * VOLTAGE_SCALE;
539 /* SCLK/VDDC Dependency Table has to exist. */
540 PP_ASSERT_WITH_CODE(NULL != hwmgr->dyn_state.vddc_dependency_on_sclk,
541 "The SCLK/VDDC Dependency Table does not exist.",
542 return -EINVAL);
544 if (NULL == hwmgr->dyn_state.cac_leakage_table) {
545 pr_warn("CAC Leakage Table does not exist, using vddc.\n");
546 return 0;
550 * Since voltage in the sclk/vddc dependency table is not
551 * necessarily in ascending order because of ELB voltage
552 * patching, loop through entire list to find exact voltage.
554 for (v_index = 0; (uint32_t)v_index < hwmgr->dyn_state.vddc_dependency_on_sclk->count; v_index++) {
555 if (tab->value == hwmgr->dyn_state.vddc_dependency_on_sclk->entries[v_index].v) {
556 vol_found = true;
557 if ((uint32_t)v_index < hwmgr->dyn_state.cac_leakage_table->count) {
558 *lo = hwmgr->dyn_state.cac_leakage_table->entries[v_index].Vddc * VOLTAGE_SCALE;
559 *hi = (uint16_t)(hwmgr->dyn_state.cac_leakage_table->entries[v_index].Leakage * VOLTAGE_SCALE);
560 } else {
561 pr_warn("Index from SCLK/VDDC Dependency Table exceeds the CAC Leakage Table index, using maximum index from CAC table.\n");
562 *lo = hwmgr->dyn_state.cac_leakage_table->entries[hwmgr->dyn_state.cac_leakage_table->count - 1].Vddc * VOLTAGE_SCALE;
563 *hi = (uint16_t)(hwmgr->dyn_state.cac_leakage_table->entries[hwmgr->dyn_state.cac_leakage_table->count - 1].Leakage * VOLTAGE_SCALE);
565 break;
570 * If voltage is not found in the first pass, loop again to
571 * find the best match, equal or higher value.
573 if (!vol_found) {
574 for (v_index = 0; (uint32_t)v_index < hwmgr->dyn_state.vddc_dependency_on_sclk->count; v_index++) {
575 if (tab->value <= hwmgr->dyn_state.vddc_dependency_on_sclk->entries[v_index].v) {
576 vol_found = true;
577 if ((uint32_t)v_index < hwmgr->dyn_state.cac_leakage_table->count) {
578 *lo = hwmgr->dyn_state.cac_leakage_table->entries[v_index].Vddc * VOLTAGE_SCALE;
579 *hi = (uint16_t)(hwmgr->dyn_state.cac_leakage_table->entries[v_index].Leakage) * VOLTAGE_SCALE;
580 } else {
581 pr_warn("Index from SCLK/VDDC Dependency Table exceeds the CAC Leakage Table index in second look up, using maximum index from CAC table.");
582 *lo = hwmgr->dyn_state.cac_leakage_table->entries[hwmgr->dyn_state.cac_leakage_table->count - 1].Vddc * VOLTAGE_SCALE;
583 *hi = (uint16_t)(hwmgr->dyn_state.cac_leakage_table->entries[hwmgr->dyn_state.cac_leakage_table->count - 1].Leakage * VOLTAGE_SCALE);
585 break;
589 if (!vol_found)
590 pr_warn("Unable to get std_vddc from SCLK/VDDC Dependency Table, using vddc.\n");
593 return 0;
596 static int iceland_populate_smc_voltage_table(struct pp_hwmgr *hwmgr,
597 pp_atomctrl_voltage_table_entry *tab,
598 SMU71_Discrete_VoltageLevel *smc_voltage_tab)
600 int result;
602 result = iceland_get_std_voltage_value_sidd(hwmgr, tab,
603 &smc_voltage_tab->StdVoltageHiSidd,
604 &smc_voltage_tab->StdVoltageLoSidd);
605 if (0 != result) {
606 smc_voltage_tab->StdVoltageHiSidd = tab->value * VOLTAGE_SCALE;
607 smc_voltage_tab->StdVoltageLoSidd = tab->value * VOLTAGE_SCALE;
610 smc_voltage_tab->Voltage = PP_HOST_TO_SMC_US(tab->value * VOLTAGE_SCALE);
611 CONVERT_FROM_HOST_TO_SMC_US(smc_voltage_tab->StdVoltageHiSidd);
612 CONVERT_FROM_HOST_TO_SMC_US(smc_voltage_tab->StdVoltageHiSidd);
614 return 0;
617 static int iceland_populate_smc_vddc_table(struct pp_hwmgr *hwmgr,
618 SMU71_Discrete_DpmTable *table)
620 unsigned int count;
621 int result;
622 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
624 table->VddcLevelCount = data->vddc_voltage_table.count;
625 for (count = 0; count < table->VddcLevelCount; count++) {
626 result = iceland_populate_smc_voltage_table(hwmgr,
627 &(data->vddc_voltage_table.entries[count]),
628 &(table->VddcLevel[count]));
629 PP_ASSERT_WITH_CODE(0 == result, "do not populate SMC VDDC voltage table", return -EINVAL);
631 /* GPIO voltage control */
632 if (SMU7_VOLTAGE_CONTROL_BY_GPIO == data->voltage_control)
633 table->VddcLevel[count].Smio |= data->vddc_voltage_table.entries[count].smio_low;
634 else if (SMU7_VOLTAGE_CONTROL_BY_SVID2 == data->voltage_control)
635 table->VddcLevel[count].Smio = 0;
638 CONVERT_FROM_HOST_TO_SMC_UL(table->VddcLevelCount);
640 return 0;
643 static int iceland_populate_smc_vdd_ci_table(struct pp_hwmgr *hwmgr,
644 SMU71_Discrete_DpmTable *table)
646 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
647 uint32_t count;
648 int result;
650 table->VddciLevelCount = data->vddci_voltage_table.count;
652 for (count = 0; count < table->VddciLevelCount; count++) {
653 result = iceland_populate_smc_voltage_table(hwmgr,
654 &(data->vddci_voltage_table.entries[count]),
655 &(table->VddciLevel[count]));
656 PP_ASSERT_WITH_CODE(result == 0, "do not populate SMC VDDCI voltage table", return -EINVAL);
657 if (SMU7_VOLTAGE_CONTROL_BY_GPIO == data->vddci_control)
658 table->VddciLevel[count].Smio |= data->vddci_voltage_table.entries[count].smio_low;
659 else
660 table->VddciLevel[count].Smio |= 0;
663 CONVERT_FROM_HOST_TO_SMC_UL(table->VddciLevelCount);
665 return 0;
668 static int iceland_populate_smc_mvdd_table(struct pp_hwmgr *hwmgr,
669 SMU71_Discrete_DpmTable *table)
671 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
672 uint32_t count;
673 int result;
675 table->MvddLevelCount = data->mvdd_voltage_table.count;
677 for (count = 0; count < table->VddciLevelCount; count++) {
678 result = iceland_populate_smc_voltage_table(hwmgr,
679 &(data->mvdd_voltage_table.entries[count]),
680 &table->MvddLevel[count]);
681 PP_ASSERT_WITH_CODE(result == 0, "do not populate SMC mvdd voltage table", return -EINVAL);
682 if (SMU7_VOLTAGE_CONTROL_BY_GPIO == data->mvdd_control)
683 table->MvddLevel[count].Smio |= data->mvdd_voltage_table.entries[count].smio_low;
684 else
685 table->MvddLevel[count].Smio |= 0;
688 CONVERT_FROM_HOST_TO_SMC_UL(table->MvddLevelCount);
690 return 0;
694 static int iceland_populate_smc_voltage_tables(struct pp_hwmgr *hwmgr,
695 SMU71_Discrete_DpmTable *table)
697 int result;
699 result = iceland_populate_smc_vddc_table(hwmgr, table);
700 PP_ASSERT_WITH_CODE(0 == result,
701 "can not populate VDDC voltage table to SMC", return -EINVAL);
703 result = iceland_populate_smc_vdd_ci_table(hwmgr, table);
704 PP_ASSERT_WITH_CODE(0 == result,
705 "can not populate VDDCI voltage table to SMC", return -EINVAL);
707 result = iceland_populate_smc_mvdd_table(hwmgr, table);
708 PP_ASSERT_WITH_CODE(0 == result,
709 "can not populate MVDD voltage table to SMC", return -EINVAL);
711 return 0;
714 static int iceland_populate_ulv_level(struct pp_hwmgr *hwmgr,
715 struct SMU71_Discrete_Ulv *state)
717 uint32_t voltage_response_time, ulv_voltage;
718 int result;
719 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
721 state->CcPwrDynRm = 0;
722 state->CcPwrDynRm1 = 0;
724 result = pp_tables_get_response_times(hwmgr, &voltage_response_time, &ulv_voltage);
725 PP_ASSERT_WITH_CODE((0 == result), "can not get ULV voltage value", return result;);
727 if (ulv_voltage == 0) {
728 data->ulv_supported = false;
729 return 0;
732 if (data->voltage_control != SMU7_VOLTAGE_CONTROL_BY_SVID2) {
733 /* use minimum voltage if ulv voltage in pptable is bigger than minimum voltage */
734 if (ulv_voltage > hwmgr->dyn_state.vddc_dependency_on_sclk->entries[0].v)
735 state->VddcOffset = 0;
736 else
737 /* used in SMIO Mode. not implemented for now. this is backup only for CI. */
738 state->VddcOffset = (uint16_t)(hwmgr->dyn_state.vddc_dependency_on_sclk->entries[0].v - ulv_voltage);
739 } else {
740 /* use minimum voltage if ulv voltage in pptable is bigger than minimum voltage */
741 if (ulv_voltage > hwmgr->dyn_state.vddc_dependency_on_sclk->entries[0].v)
742 state->VddcOffsetVid = 0;
743 else /* used in SVI2 Mode */
744 state->VddcOffsetVid = (uint8_t)(
745 (hwmgr->dyn_state.vddc_dependency_on_sclk->entries[0].v - ulv_voltage)
746 * VOLTAGE_VID_OFFSET_SCALE2
747 / VOLTAGE_VID_OFFSET_SCALE1);
749 state->VddcPhase = 1;
751 CONVERT_FROM_HOST_TO_SMC_UL(state->CcPwrDynRm);
752 CONVERT_FROM_HOST_TO_SMC_UL(state->CcPwrDynRm1);
753 CONVERT_FROM_HOST_TO_SMC_US(state->VddcOffset);
755 return 0;
758 static int iceland_populate_ulv_state(struct pp_hwmgr *hwmgr,
759 SMU71_Discrete_Ulv *ulv_level)
761 return iceland_populate_ulv_level(hwmgr, ulv_level);
764 static int iceland_populate_smc_link_level(struct pp_hwmgr *hwmgr, SMU71_Discrete_DpmTable *table)
766 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
767 struct smu7_dpm_table *dpm_table = &data->dpm_table;
768 struct iceland_smumgr *smu_data = (struct iceland_smumgr *)(hwmgr->smu_backend);
769 uint32_t i;
771 /* Index (dpm_table->pcie_speed_table.count) is reserved for PCIE boot level. */
772 for (i = 0; i <= dpm_table->pcie_speed_table.count; i++) {
773 table->LinkLevel[i].PcieGenSpeed =
774 (uint8_t)dpm_table->pcie_speed_table.dpm_levels[i].value;
775 table->LinkLevel[i].PcieLaneCount =
776 (uint8_t)encode_pcie_lane_width(dpm_table->pcie_speed_table.dpm_levels[i].param1);
777 table->LinkLevel[i].EnabledForActivity =
779 table->LinkLevel[i].SPC =
780 (uint8_t)(data->pcie_spc_cap & 0xff);
781 table->LinkLevel[i].DownThreshold =
782 PP_HOST_TO_SMC_UL(5);
783 table->LinkLevel[i].UpThreshold =
784 PP_HOST_TO_SMC_UL(30);
787 smu_data->smc_state_table.LinkLevelCount =
788 (uint8_t)dpm_table->pcie_speed_table.count;
789 data->dpm_level_enable_mask.pcie_dpm_enable_mask =
790 phm_get_dpm_level_enable_mask_value(&dpm_table->pcie_speed_table);
792 return 0;
795 static int iceland_calculate_sclk_params(struct pp_hwmgr *hwmgr,
796 uint32_t engine_clock, SMU71_Discrete_GraphicsLevel *sclk)
798 const struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
799 pp_atomctrl_clock_dividers_vi dividers;
800 uint32_t spll_func_cntl = data->clock_registers.vCG_SPLL_FUNC_CNTL;
801 uint32_t spll_func_cntl_3 = data->clock_registers.vCG_SPLL_FUNC_CNTL_3;
802 uint32_t spll_func_cntl_4 = data->clock_registers.vCG_SPLL_FUNC_CNTL_4;
803 uint32_t cg_spll_spread_spectrum = data->clock_registers.vCG_SPLL_SPREAD_SPECTRUM;
804 uint32_t cg_spll_spread_spectrum_2 = data->clock_registers.vCG_SPLL_SPREAD_SPECTRUM_2;
805 uint32_t reference_clock;
806 uint32_t reference_divider;
807 uint32_t fbdiv;
808 int result;
810 /* get the engine clock dividers for this clock value*/
811 result = atomctrl_get_engine_pll_dividers_vi(hwmgr, engine_clock, &dividers);
813 PP_ASSERT_WITH_CODE(result == 0,
814 "Error retrieving Engine Clock dividers from VBIOS.", return result);
816 /* To get FBDIV we need to multiply this by 16384 and divide it by Fref.*/
817 reference_clock = atomctrl_get_reference_clock(hwmgr);
819 reference_divider = 1 + dividers.uc_pll_ref_div;
821 /* low 14 bits is fraction and high 12 bits is divider*/
822 fbdiv = dividers.ul_fb_div.ul_fb_divider & 0x3FFFFFF;
824 /* SPLL_FUNC_CNTL setup*/
825 spll_func_cntl = PHM_SET_FIELD(spll_func_cntl,
826 CG_SPLL_FUNC_CNTL, SPLL_REF_DIV, dividers.uc_pll_ref_div);
827 spll_func_cntl = PHM_SET_FIELD(spll_func_cntl,
828 CG_SPLL_FUNC_CNTL, SPLL_PDIV_A, dividers.uc_pll_post_div);
830 /* SPLL_FUNC_CNTL_3 setup*/
831 spll_func_cntl_3 = PHM_SET_FIELD(spll_func_cntl_3,
832 CG_SPLL_FUNC_CNTL_3, SPLL_FB_DIV, fbdiv);
834 /* set to use fractional accumulation*/
835 spll_func_cntl_3 = PHM_SET_FIELD(spll_func_cntl_3,
836 CG_SPLL_FUNC_CNTL_3, SPLL_DITHEN, 1);
838 if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
839 PHM_PlatformCaps_EngineSpreadSpectrumSupport)) {
840 pp_atomctrl_internal_ss_info ss_info;
842 uint32_t vcoFreq = engine_clock * dividers.uc_pll_post_div;
843 if (0 == atomctrl_get_engine_clock_spread_spectrum(hwmgr, vcoFreq, &ss_info)) {
845 * ss_info.speed_spectrum_percentage -- in unit of 0.01%
846 * ss_info.speed_spectrum_rate -- in unit of khz
848 /* clks = reference_clock * 10 / (REFDIV + 1) / speed_spectrum_rate / 2 */
849 uint32_t clkS = reference_clock * 5 / (reference_divider * ss_info.speed_spectrum_rate);
851 /* clkv = 2 * D * fbdiv / NS */
852 uint32_t clkV = 4 * ss_info.speed_spectrum_percentage * fbdiv / (clkS * 10000);
854 cg_spll_spread_spectrum =
855 PHM_SET_FIELD(cg_spll_spread_spectrum, CG_SPLL_SPREAD_SPECTRUM, CLKS, clkS);
856 cg_spll_spread_spectrum =
857 PHM_SET_FIELD(cg_spll_spread_spectrum, CG_SPLL_SPREAD_SPECTRUM, SSEN, 1);
858 cg_spll_spread_spectrum_2 =
859 PHM_SET_FIELD(cg_spll_spread_spectrum_2, CG_SPLL_SPREAD_SPECTRUM_2, CLKV, clkV);
863 sclk->SclkFrequency = engine_clock;
864 sclk->CgSpllFuncCntl3 = spll_func_cntl_3;
865 sclk->CgSpllFuncCntl4 = spll_func_cntl_4;
866 sclk->SpllSpreadSpectrum = cg_spll_spread_spectrum;
867 sclk->SpllSpreadSpectrum2 = cg_spll_spread_spectrum_2;
868 sclk->SclkDid = (uint8_t)dividers.pll_post_divider;
870 return 0;
873 static int iceland_populate_phase_value_based_on_sclk(struct pp_hwmgr *hwmgr,
874 const struct phm_phase_shedding_limits_table *pl,
875 uint32_t sclk, uint32_t *p_shed)
877 unsigned int i;
879 /* use the minimum phase shedding */
880 *p_shed = 1;
882 for (i = 0; i < pl->count; i++) {
883 if (sclk < pl->entries[i].Sclk) {
884 *p_shed = i;
885 break;
888 return 0;
891 static int iceland_populate_single_graphic_level(struct pp_hwmgr *hwmgr,
892 uint32_t engine_clock,
893 SMU71_Discrete_GraphicsLevel *graphic_level)
895 int result;
896 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
898 result = iceland_calculate_sclk_params(hwmgr, engine_clock, graphic_level);
900 /* populate graphics levels*/
901 result = iceland_get_dependency_volt_by_clk(hwmgr,
902 hwmgr->dyn_state.vddc_dependency_on_sclk, engine_clock,
903 &graphic_level->MinVddc);
904 PP_ASSERT_WITH_CODE((0 == result),
905 "can not find VDDC voltage value for VDDC engine clock dependency table", return result);
907 /* SCLK frequency in units of 10KHz*/
908 graphic_level->SclkFrequency = engine_clock;
909 graphic_level->MinVddcPhases = 1;
911 if (data->vddc_phase_shed_control)
912 iceland_populate_phase_value_based_on_sclk(hwmgr,
913 hwmgr->dyn_state.vddc_phase_shed_limits_table,
914 engine_clock,
915 &graphic_level->MinVddcPhases);
917 /* Indicates maximum activity level for this performance level. 50% for now*/
918 graphic_level->ActivityLevel = data->current_profile_setting.sclk_activity;
920 graphic_level->CcPwrDynRm = 0;
921 graphic_level->CcPwrDynRm1 = 0;
922 /* this level can be used if activity is high enough.*/
923 graphic_level->EnabledForActivity = 0;
924 /* this level can be used for throttling.*/
925 graphic_level->EnabledForThrottle = 1;
926 graphic_level->UpHyst = data->current_profile_setting.sclk_up_hyst;
927 graphic_level->DownHyst = data->current_profile_setting.sclk_down_hyst;
928 graphic_level->VoltageDownHyst = 0;
929 graphic_level->PowerThrottle = 0;
931 data->display_timing.min_clock_in_sr =
932 hwmgr->display_config->min_core_set_clock_in_sr;
934 if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
935 PHM_PlatformCaps_SclkDeepSleep))
936 graphic_level->DeepSleepDivId =
937 smu7_get_sleep_divider_id_from_clock(engine_clock,
938 data->display_timing.min_clock_in_sr);
940 /* Default to slow, highest DPM level will be set to PPSMC_DISPLAY_WATERMARK_LOW later.*/
941 graphic_level->DisplayWatermark = PPSMC_DISPLAY_WATERMARK_LOW;
943 if (0 == result) {
944 graphic_level->MinVddc = PP_HOST_TO_SMC_UL(graphic_level->MinVddc * VOLTAGE_SCALE);
945 CONVERT_FROM_HOST_TO_SMC_UL(graphic_level->MinVddcPhases);
946 CONVERT_FROM_HOST_TO_SMC_UL(graphic_level->SclkFrequency);
947 CONVERT_FROM_HOST_TO_SMC_US(graphic_level->ActivityLevel);
948 CONVERT_FROM_HOST_TO_SMC_UL(graphic_level->CgSpllFuncCntl3);
949 CONVERT_FROM_HOST_TO_SMC_UL(graphic_level->CgSpllFuncCntl4);
950 CONVERT_FROM_HOST_TO_SMC_UL(graphic_level->SpllSpreadSpectrum);
951 CONVERT_FROM_HOST_TO_SMC_UL(graphic_level->SpllSpreadSpectrum2);
952 CONVERT_FROM_HOST_TO_SMC_UL(graphic_level->CcPwrDynRm);
953 CONVERT_FROM_HOST_TO_SMC_UL(graphic_level->CcPwrDynRm1);
956 return result;
959 static int iceland_populate_all_graphic_levels(struct pp_hwmgr *hwmgr)
961 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
962 struct iceland_smumgr *smu_data = (struct iceland_smumgr *)(hwmgr->smu_backend);
963 struct smu7_dpm_table *dpm_table = &data->dpm_table;
964 uint32_t level_array_adress = smu_data->smu7_data.dpm_table_start +
965 offsetof(SMU71_Discrete_DpmTable, GraphicsLevel);
967 uint32_t level_array_size = sizeof(SMU71_Discrete_GraphicsLevel) *
968 SMU71_MAX_LEVELS_GRAPHICS;
970 SMU71_Discrete_GraphicsLevel *levels = smu_data->smc_state_table.GraphicsLevel;
972 uint32_t i;
973 uint8_t highest_pcie_level_enabled = 0;
974 uint8_t lowest_pcie_level_enabled = 0, mid_pcie_level_enabled = 0;
975 uint8_t count = 0;
976 int result = 0;
978 memset(levels, 0x00, level_array_size);
980 for (i = 0; i < dpm_table->sclk_table.count; i++) {
981 result = iceland_populate_single_graphic_level(hwmgr,
982 dpm_table->sclk_table.dpm_levels[i].value,
983 &(smu_data->smc_state_table.GraphicsLevel[i]));
984 if (result != 0)
985 return result;
987 /* Making sure only DPM level 0-1 have Deep Sleep Div ID populated. */
988 if (i > 1)
989 smu_data->smc_state_table.GraphicsLevel[i].DeepSleepDivId = 0;
992 /* Only enable level 0 for now. */
993 smu_data->smc_state_table.GraphicsLevel[0].EnabledForActivity = 1;
995 /* set highest level watermark to high */
996 if (dpm_table->sclk_table.count > 1)
997 smu_data->smc_state_table.GraphicsLevel[dpm_table->sclk_table.count-1].DisplayWatermark =
998 PPSMC_DISPLAY_WATERMARK_HIGH;
1000 smu_data->smc_state_table.GraphicsDpmLevelCount =
1001 (uint8_t)dpm_table->sclk_table.count;
1002 data->dpm_level_enable_mask.sclk_dpm_enable_mask =
1003 phm_get_dpm_level_enable_mask_value(&dpm_table->sclk_table);
1005 while ((data->dpm_level_enable_mask.pcie_dpm_enable_mask &
1006 (1 << (highest_pcie_level_enabled + 1))) != 0) {
1007 highest_pcie_level_enabled++;
1010 while ((data->dpm_level_enable_mask.pcie_dpm_enable_mask &
1011 (1 << lowest_pcie_level_enabled)) == 0) {
1012 lowest_pcie_level_enabled++;
1015 while ((count < highest_pcie_level_enabled) &&
1016 ((data->dpm_level_enable_mask.pcie_dpm_enable_mask &
1017 (1 << (lowest_pcie_level_enabled + 1 + count))) == 0)) {
1018 count++;
1021 mid_pcie_level_enabled = (lowest_pcie_level_enabled+1+count) < highest_pcie_level_enabled ?
1022 (lowest_pcie_level_enabled+1+count) : highest_pcie_level_enabled;
1025 /* set pcieDpmLevel to highest_pcie_level_enabled*/
1026 for (i = 2; i < dpm_table->sclk_table.count; i++) {
1027 smu_data->smc_state_table.GraphicsLevel[i].pcieDpmLevel = highest_pcie_level_enabled;
1030 /* set pcieDpmLevel to lowest_pcie_level_enabled*/
1031 smu_data->smc_state_table.GraphicsLevel[0].pcieDpmLevel = lowest_pcie_level_enabled;
1033 /* set pcieDpmLevel to mid_pcie_level_enabled*/
1034 smu_data->smc_state_table.GraphicsLevel[1].pcieDpmLevel = mid_pcie_level_enabled;
1036 /* level count will send to smc once at init smc table and never change*/
1037 result = smu7_copy_bytes_to_smc(hwmgr, level_array_adress,
1038 (uint8_t *)levels, (uint32_t)level_array_size,
1039 SMC_RAM_END);
1041 return result;
1044 static int iceland_calculate_mclk_params(
1045 struct pp_hwmgr *hwmgr,
1046 uint32_t memory_clock,
1047 SMU71_Discrete_MemoryLevel *mclk,
1048 bool strobe_mode,
1049 bool dllStateOn
1052 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
1054 uint32_t dll_cntl = data->clock_registers.vDLL_CNTL;
1055 uint32_t mclk_pwrmgt_cntl = data->clock_registers.vMCLK_PWRMGT_CNTL;
1056 uint32_t mpll_ad_func_cntl = data->clock_registers.vMPLL_AD_FUNC_CNTL;
1057 uint32_t mpll_dq_func_cntl = data->clock_registers.vMPLL_DQ_FUNC_CNTL;
1058 uint32_t mpll_func_cntl = data->clock_registers.vMPLL_FUNC_CNTL;
1059 uint32_t mpll_func_cntl_1 = data->clock_registers.vMPLL_FUNC_CNTL_1;
1060 uint32_t mpll_func_cntl_2 = data->clock_registers.vMPLL_FUNC_CNTL_2;
1061 uint32_t mpll_ss1 = data->clock_registers.vMPLL_SS1;
1062 uint32_t mpll_ss2 = data->clock_registers.vMPLL_SS2;
1064 pp_atomctrl_memory_clock_param mpll_param;
1065 int result;
1067 result = atomctrl_get_memory_pll_dividers_si(hwmgr,
1068 memory_clock, &mpll_param, strobe_mode);
1069 PP_ASSERT_WITH_CODE(0 == result,
1070 "Error retrieving Memory Clock Parameters from VBIOS.", return result);
1072 /* MPLL_FUNC_CNTL setup*/
1073 mpll_func_cntl = PHM_SET_FIELD(mpll_func_cntl, MPLL_FUNC_CNTL, BWCTRL, mpll_param.bw_ctrl);
1075 /* MPLL_FUNC_CNTL_1 setup*/
1076 mpll_func_cntl_1 = PHM_SET_FIELD(mpll_func_cntl_1,
1077 MPLL_FUNC_CNTL_1, CLKF, mpll_param.mpll_fb_divider.cl_kf);
1078 mpll_func_cntl_1 = PHM_SET_FIELD(mpll_func_cntl_1,
1079 MPLL_FUNC_CNTL_1, CLKFRAC, mpll_param.mpll_fb_divider.clk_frac);
1080 mpll_func_cntl_1 = PHM_SET_FIELD(mpll_func_cntl_1,
1081 MPLL_FUNC_CNTL_1, VCO_MODE, mpll_param.vco_mode);
1083 /* MPLL_AD_FUNC_CNTL setup*/
1084 mpll_ad_func_cntl = PHM_SET_FIELD(mpll_ad_func_cntl,
1085 MPLL_AD_FUNC_CNTL, YCLK_POST_DIV, mpll_param.mpll_post_divider);
1087 if (data->is_memory_gddr5) {
1088 /* MPLL_DQ_FUNC_CNTL setup*/
1089 mpll_dq_func_cntl = PHM_SET_FIELD(mpll_dq_func_cntl,
1090 MPLL_DQ_FUNC_CNTL, YCLK_SEL, mpll_param.yclk_sel);
1091 mpll_dq_func_cntl = PHM_SET_FIELD(mpll_dq_func_cntl,
1092 MPLL_DQ_FUNC_CNTL, YCLK_POST_DIV, mpll_param.mpll_post_divider);
1095 if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
1096 PHM_PlatformCaps_MemorySpreadSpectrumSupport)) {
1098 ************************************
1099 Fref = Reference Frequency
1100 NF = Feedback divider ratio
1101 NR = Reference divider ratio
1102 Fnom = Nominal VCO output frequency = Fref * NF / NR
1103 Fs = Spreading Rate
1104 D = Percentage down-spread / 2
1105 Fint = Reference input frequency to PFD = Fref / NR
1106 NS = Spreading rate divider ratio = int(Fint / (2 * Fs))
1107 CLKS = NS - 1 = ISS_STEP_NUM[11:0]
1108 NV = D * Fs / Fnom * 4 * ((Fnom/Fref * NR) ^ 2)
1109 CLKV = 65536 * NV = ISS_STEP_SIZE[25:0]
1110 *************************************
1112 pp_atomctrl_internal_ss_info ss_info;
1113 uint32_t freq_nom;
1114 uint32_t tmp;
1115 uint32_t reference_clock = atomctrl_get_mpll_reference_clock(hwmgr);
1117 /* for GDDR5 for all modes and DDR3 */
1118 if (1 == mpll_param.qdr)
1119 freq_nom = memory_clock * 4 * (1 << mpll_param.mpll_post_divider);
1120 else
1121 freq_nom = memory_clock * 2 * (1 << mpll_param.mpll_post_divider);
1123 /* tmp = (freq_nom / reference_clock * reference_divider) ^ 2 Note: S.I. reference_divider = 1*/
1124 tmp = (freq_nom / reference_clock);
1125 tmp = tmp * tmp;
1127 if (0 == atomctrl_get_memory_clock_spread_spectrum(hwmgr, freq_nom, &ss_info)) {
1128 /* ss_info.speed_spectrum_percentage -- in unit of 0.01% */
1129 /* ss.Info.speed_spectrum_rate -- in unit of khz */
1130 /* CLKS = reference_clock / (2 * speed_spectrum_rate * reference_divider) * 10 */
1131 /* = reference_clock * 5 / speed_spectrum_rate */
1132 uint32_t clks = reference_clock * 5 / ss_info.speed_spectrum_rate;
1134 /* CLKV = 65536 * speed_spectrum_percentage / 2 * spreadSpecrumRate / freq_nom * 4 / 100000 * ((freq_nom / reference_clock) ^ 2) */
1135 /* = 131 * speed_spectrum_percentage * speed_spectrum_rate / 100 * ((freq_nom / reference_clock) ^ 2) / freq_nom */
1136 uint32_t clkv =
1137 (uint32_t)((((131 * ss_info.speed_spectrum_percentage *
1138 ss_info.speed_spectrum_rate) / 100) * tmp) / freq_nom);
1140 mpll_ss1 = PHM_SET_FIELD(mpll_ss1, MPLL_SS1, CLKV, clkv);
1141 mpll_ss2 = PHM_SET_FIELD(mpll_ss2, MPLL_SS2, CLKS, clks);
1145 /* MCLK_PWRMGT_CNTL setup */
1146 mclk_pwrmgt_cntl = PHM_SET_FIELD(mclk_pwrmgt_cntl,
1147 MCLK_PWRMGT_CNTL, DLL_SPEED, mpll_param.dll_speed);
1148 mclk_pwrmgt_cntl = PHM_SET_FIELD(mclk_pwrmgt_cntl,
1149 MCLK_PWRMGT_CNTL, MRDCK0_PDNB, dllStateOn);
1150 mclk_pwrmgt_cntl = PHM_SET_FIELD(mclk_pwrmgt_cntl,
1151 MCLK_PWRMGT_CNTL, MRDCK1_PDNB, dllStateOn);
1154 /* Save the result data to outpupt memory level structure */
1155 mclk->MclkFrequency = memory_clock;
1156 mclk->MpllFuncCntl = mpll_func_cntl;
1157 mclk->MpllFuncCntl_1 = mpll_func_cntl_1;
1158 mclk->MpllFuncCntl_2 = mpll_func_cntl_2;
1159 mclk->MpllAdFuncCntl = mpll_ad_func_cntl;
1160 mclk->MpllDqFuncCntl = mpll_dq_func_cntl;
1161 mclk->MclkPwrmgtCntl = mclk_pwrmgt_cntl;
1162 mclk->DllCntl = dll_cntl;
1163 mclk->MpllSs1 = mpll_ss1;
1164 mclk->MpllSs2 = mpll_ss2;
1166 return 0;
1169 static uint8_t iceland_get_mclk_frequency_ratio(uint32_t memory_clock,
1170 bool strobe_mode)
1172 uint8_t mc_para_index;
1174 if (strobe_mode) {
1175 if (memory_clock < 12500) {
1176 mc_para_index = 0x00;
1177 } else if (memory_clock > 47500) {
1178 mc_para_index = 0x0f;
1179 } else {
1180 mc_para_index = (uint8_t)((memory_clock - 10000) / 2500);
1182 } else {
1183 if (memory_clock < 65000) {
1184 mc_para_index = 0x00;
1185 } else if (memory_clock > 135000) {
1186 mc_para_index = 0x0f;
1187 } else {
1188 mc_para_index = (uint8_t)((memory_clock - 60000) / 5000);
1192 return mc_para_index;
1195 static uint8_t iceland_get_ddr3_mclk_frequency_ratio(uint32_t memory_clock)
1197 uint8_t mc_para_index;
1199 if (memory_clock < 10000) {
1200 mc_para_index = 0;
1201 } else if (memory_clock >= 80000) {
1202 mc_para_index = 0x0f;
1203 } else {
1204 mc_para_index = (uint8_t)((memory_clock - 10000) / 5000 + 1);
1207 return mc_para_index;
1210 static int iceland_populate_phase_value_based_on_mclk(struct pp_hwmgr *hwmgr, const struct phm_phase_shedding_limits_table *pl,
1211 uint32_t memory_clock, uint32_t *p_shed)
1213 unsigned int i;
1215 *p_shed = 1;
1217 for (i = 0; i < pl->count; i++) {
1218 if (memory_clock < pl->entries[i].Mclk) {
1219 *p_shed = i;
1220 break;
1224 return 0;
1227 static int iceland_populate_single_memory_level(
1228 struct pp_hwmgr *hwmgr,
1229 uint32_t memory_clock,
1230 SMU71_Discrete_MemoryLevel *memory_level
1233 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
1234 int result = 0;
1235 bool dll_state_on;
1236 uint32_t mclk_edc_wr_enable_threshold = 40000;
1237 uint32_t mclk_edc_enable_threshold = 40000;
1238 uint32_t mclk_strobe_mode_threshold = 40000;
1240 if (hwmgr->dyn_state.vddc_dependency_on_mclk != NULL) {
1241 result = iceland_get_dependency_volt_by_clk(hwmgr,
1242 hwmgr->dyn_state.vddc_dependency_on_mclk, memory_clock, &memory_level->MinVddc);
1243 PP_ASSERT_WITH_CODE((0 == result),
1244 "can not find MinVddc voltage value from memory VDDC voltage dependency table", return result);
1247 if (data->vddci_control == SMU7_VOLTAGE_CONTROL_NONE) {
1248 memory_level->MinVddci = memory_level->MinVddc;
1249 } else if (NULL != hwmgr->dyn_state.vddci_dependency_on_mclk) {
1250 result = iceland_get_dependency_volt_by_clk(hwmgr,
1251 hwmgr->dyn_state.vddci_dependency_on_mclk,
1252 memory_clock,
1253 &memory_level->MinVddci);
1254 PP_ASSERT_WITH_CODE((0 == result),
1255 "can not find MinVddci voltage value from memory VDDCI voltage dependency table", return result);
1258 memory_level->MinVddcPhases = 1;
1260 if (data->vddc_phase_shed_control) {
1261 iceland_populate_phase_value_based_on_mclk(hwmgr, hwmgr->dyn_state.vddc_phase_shed_limits_table,
1262 memory_clock, &memory_level->MinVddcPhases);
1265 memory_level->EnabledForThrottle = 1;
1266 memory_level->EnabledForActivity = 0;
1267 memory_level->UpHyst = data->current_profile_setting.mclk_up_hyst;
1268 memory_level->DownHyst = data->current_profile_setting.mclk_down_hyst;
1269 memory_level->VoltageDownHyst = 0;
1271 /* Indicates maximum activity level for this performance level.*/
1272 memory_level->ActivityLevel = data->current_profile_setting.mclk_activity;
1273 memory_level->StutterEnable = 0;
1274 memory_level->StrobeEnable = 0;
1275 memory_level->EdcReadEnable = 0;
1276 memory_level->EdcWriteEnable = 0;
1277 memory_level->RttEnable = 0;
1279 /* default set to low watermark. Highest level will be set to high later.*/
1280 memory_level->DisplayWatermark = PPSMC_DISPLAY_WATERMARK_LOW;
1282 data->display_timing.num_existing_displays = hwmgr->display_config->num_display;
1283 data->display_timing.vrefresh = hwmgr->display_config->vrefresh;
1285 /* stutter mode not support on iceland */
1287 /* decide strobe mode*/
1288 memory_level->StrobeEnable = (mclk_strobe_mode_threshold != 0) &&
1289 (memory_clock <= mclk_strobe_mode_threshold);
1291 /* decide EDC mode and memory clock ratio*/
1292 if (data->is_memory_gddr5) {
1293 memory_level->StrobeRatio = iceland_get_mclk_frequency_ratio(memory_clock,
1294 memory_level->StrobeEnable);
1296 if ((mclk_edc_enable_threshold != 0) &&
1297 (memory_clock > mclk_edc_enable_threshold)) {
1298 memory_level->EdcReadEnable = 1;
1301 if ((mclk_edc_wr_enable_threshold != 0) &&
1302 (memory_clock > mclk_edc_wr_enable_threshold)) {
1303 memory_level->EdcWriteEnable = 1;
1306 if (memory_level->StrobeEnable) {
1307 if (iceland_get_mclk_frequency_ratio(memory_clock, 1) >=
1308 ((cgs_read_register(hwmgr->device, mmMC_SEQ_MISC7) >> 16) & 0xf))
1309 dll_state_on = ((cgs_read_register(hwmgr->device, mmMC_SEQ_MISC5) >> 1) & 0x1) ? 1 : 0;
1310 else
1311 dll_state_on = ((cgs_read_register(hwmgr->device, mmMC_SEQ_MISC6) >> 1) & 0x1) ? 1 : 0;
1312 } else
1313 dll_state_on = data->dll_default_on;
1314 } else {
1315 memory_level->StrobeRatio =
1316 iceland_get_ddr3_mclk_frequency_ratio(memory_clock);
1317 dll_state_on = ((cgs_read_register(hwmgr->device, mmMC_SEQ_MISC5) >> 1) & 0x1) ? 1 : 0;
1320 result = iceland_calculate_mclk_params(hwmgr,
1321 memory_clock, memory_level, memory_level->StrobeEnable, dll_state_on);
1323 if (0 == result) {
1324 memory_level->MinVddc = PP_HOST_TO_SMC_UL(memory_level->MinVddc * VOLTAGE_SCALE);
1325 CONVERT_FROM_HOST_TO_SMC_UL(memory_level->MinVddcPhases);
1326 memory_level->MinVddci = PP_HOST_TO_SMC_UL(memory_level->MinVddci * VOLTAGE_SCALE);
1327 memory_level->MinMvdd = PP_HOST_TO_SMC_UL(memory_level->MinMvdd * VOLTAGE_SCALE);
1328 /* MCLK frequency in units of 10KHz*/
1329 CONVERT_FROM_HOST_TO_SMC_UL(memory_level->MclkFrequency);
1330 /* Indicates maximum activity level for this performance level.*/
1331 CONVERT_FROM_HOST_TO_SMC_US(memory_level->ActivityLevel);
1332 CONVERT_FROM_HOST_TO_SMC_UL(memory_level->MpllFuncCntl);
1333 CONVERT_FROM_HOST_TO_SMC_UL(memory_level->MpllFuncCntl_1);
1334 CONVERT_FROM_HOST_TO_SMC_UL(memory_level->MpllFuncCntl_2);
1335 CONVERT_FROM_HOST_TO_SMC_UL(memory_level->MpllAdFuncCntl);
1336 CONVERT_FROM_HOST_TO_SMC_UL(memory_level->MpllDqFuncCntl);
1337 CONVERT_FROM_HOST_TO_SMC_UL(memory_level->MclkPwrmgtCntl);
1338 CONVERT_FROM_HOST_TO_SMC_UL(memory_level->DllCntl);
1339 CONVERT_FROM_HOST_TO_SMC_UL(memory_level->MpllSs1);
1340 CONVERT_FROM_HOST_TO_SMC_UL(memory_level->MpllSs2);
1343 return result;
1346 static int iceland_populate_all_memory_levels(struct pp_hwmgr *hwmgr)
1348 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
1349 struct iceland_smumgr *smu_data = (struct iceland_smumgr *)(hwmgr->smu_backend);
1350 struct smu7_dpm_table *dpm_table = &data->dpm_table;
1351 int result;
1353 /* populate MCLK dpm table to SMU7 */
1354 uint32_t level_array_adress = smu_data->smu7_data.dpm_table_start + offsetof(SMU71_Discrete_DpmTable, MemoryLevel);
1355 uint32_t level_array_size = sizeof(SMU71_Discrete_MemoryLevel) * SMU71_MAX_LEVELS_MEMORY;
1356 SMU71_Discrete_MemoryLevel *levels = smu_data->smc_state_table.MemoryLevel;
1357 uint32_t i;
1359 memset(levels, 0x00, level_array_size);
1361 for (i = 0; i < dpm_table->mclk_table.count; i++) {
1362 PP_ASSERT_WITH_CODE((0 != dpm_table->mclk_table.dpm_levels[i].value),
1363 "can not populate memory level as memory clock is zero", return -EINVAL);
1364 result = iceland_populate_single_memory_level(hwmgr, dpm_table->mclk_table.dpm_levels[i].value,
1365 &(smu_data->smc_state_table.MemoryLevel[i]));
1366 if (0 != result) {
1367 return result;
1371 /* Only enable level 0 for now.*/
1372 smu_data->smc_state_table.MemoryLevel[0].EnabledForActivity = 1;
1375 * in order to prevent MC activity from stutter mode to push DPM up.
1376 * the UVD change complements this by putting the MCLK in a higher state
1377 * by default such that we are not effected by up threshold or and MCLK DPM latency.
1379 smu_data->smc_state_table.MemoryLevel[0].ActivityLevel = 0x1F;
1380 CONVERT_FROM_HOST_TO_SMC_US(smu_data->smc_state_table.MemoryLevel[0].ActivityLevel);
1382 smu_data->smc_state_table.MemoryDpmLevelCount = (uint8_t)dpm_table->mclk_table.count;
1383 data->dpm_level_enable_mask.mclk_dpm_enable_mask = phm_get_dpm_level_enable_mask_value(&dpm_table->mclk_table);
1384 /* set highest level watermark to high*/
1385 smu_data->smc_state_table.MemoryLevel[dpm_table->mclk_table.count-1].DisplayWatermark = PPSMC_DISPLAY_WATERMARK_HIGH;
1387 /* level count will send to smc once at init smc table and never change*/
1388 result = smu7_copy_bytes_to_smc(hwmgr,
1389 level_array_adress, (uint8_t *)levels, (uint32_t)level_array_size,
1390 SMC_RAM_END);
1392 return result;
1395 static int iceland_populate_mvdd_value(struct pp_hwmgr *hwmgr, uint32_t mclk,
1396 SMU71_Discrete_VoltageLevel *voltage)
1398 const struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
1400 uint32_t i = 0;
1402 if (SMU7_VOLTAGE_CONTROL_NONE != data->mvdd_control) {
1403 /* find mvdd value which clock is more than request */
1404 for (i = 0; i < hwmgr->dyn_state.mvdd_dependency_on_mclk->count; i++) {
1405 if (mclk <= hwmgr->dyn_state.mvdd_dependency_on_mclk->entries[i].clk) {
1406 /* Always round to higher voltage. */
1407 voltage->Voltage = data->mvdd_voltage_table.entries[i].value;
1408 break;
1412 PP_ASSERT_WITH_CODE(i < hwmgr->dyn_state.mvdd_dependency_on_mclk->count,
1413 "MVDD Voltage is outside the supported range.", return -EINVAL);
1415 } else {
1416 return -EINVAL;
1419 return 0;
1422 static int iceland_populate_smc_acpi_level(struct pp_hwmgr *hwmgr,
1423 SMU71_Discrete_DpmTable *table)
1425 int result = 0;
1426 const struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
1427 struct pp_atomctrl_clock_dividers_vi dividers;
1428 uint32_t vddc_phase_shed_control = 0;
1430 SMU71_Discrete_VoltageLevel voltage_level;
1431 uint32_t spll_func_cntl = data->clock_registers.vCG_SPLL_FUNC_CNTL;
1432 uint32_t spll_func_cntl_2 = data->clock_registers.vCG_SPLL_FUNC_CNTL_2;
1433 uint32_t dll_cntl = data->clock_registers.vDLL_CNTL;
1434 uint32_t mclk_pwrmgt_cntl = data->clock_registers.vMCLK_PWRMGT_CNTL;
1437 /* The ACPI state should not do DPM on DC (or ever).*/
1438 table->ACPILevel.Flags &= ~PPSMC_SWSTATE_FLAG_DC;
1440 if (data->acpi_vddc)
1441 table->ACPILevel.MinVddc = PP_HOST_TO_SMC_UL(data->acpi_vddc * VOLTAGE_SCALE);
1442 else
1443 table->ACPILevel.MinVddc = PP_HOST_TO_SMC_UL(data->min_vddc_in_pptable * VOLTAGE_SCALE);
1445 table->ACPILevel.MinVddcPhases = vddc_phase_shed_control ? 0 : 1;
1446 /* assign zero for now*/
1447 table->ACPILevel.SclkFrequency = atomctrl_get_reference_clock(hwmgr);
1449 /* get the engine clock dividers for this clock value*/
1450 result = atomctrl_get_engine_pll_dividers_vi(hwmgr,
1451 table->ACPILevel.SclkFrequency, &dividers);
1453 PP_ASSERT_WITH_CODE(result == 0,
1454 "Error retrieving Engine Clock dividers from VBIOS.", return result);
1456 /* divider ID for required SCLK*/
1457 table->ACPILevel.SclkDid = (uint8_t)dividers.pll_post_divider;
1458 table->ACPILevel.DisplayWatermark = PPSMC_DISPLAY_WATERMARK_LOW;
1459 table->ACPILevel.DeepSleepDivId = 0;
1461 spll_func_cntl = PHM_SET_FIELD(spll_func_cntl,
1462 CG_SPLL_FUNC_CNTL, SPLL_PWRON, 0);
1463 spll_func_cntl = PHM_SET_FIELD(spll_func_cntl,
1464 CG_SPLL_FUNC_CNTL, SPLL_RESET, 1);
1465 spll_func_cntl_2 = PHM_SET_FIELD(spll_func_cntl_2,
1466 CG_SPLL_FUNC_CNTL_2, SCLK_MUX_SEL, 4);
1468 table->ACPILevel.CgSpllFuncCntl = spll_func_cntl;
1469 table->ACPILevel.CgSpllFuncCntl2 = spll_func_cntl_2;
1470 table->ACPILevel.CgSpllFuncCntl3 = data->clock_registers.vCG_SPLL_FUNC_CNTL_3;
1471 table->ACPILevel.CgSpllFuncCntl4 = data->clock_registers.vCG_SPLL_FUNC_CNTL_4;
1472 table->ACPILevel.SpllSpreadSpectrum = data->clock_registers.vCG_SPLL_SPREAD_SPECTRUM;
1473 table->ACPILevel.SpllSpreadSpectrum2 = data->clock_registers.vCG_SPLL_SPREAD_SPECTRUM_2;
1474 table->ACPILevel.CcPwrDynRm = 0;
1475 table->ACPILevel.CcPwrDynRm1 = 0;
1478 /* For various features to be enabled/disabled while this level is active.*/
1479 CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.Flags);
1480 /* SCLK frequency in units of 10KHz*/
1481 CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.SclkFrequency);
1482 CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.CgSpllFuncCntl);
1483 CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.CgSpllFuncCntl2);
1484 CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.CgSpllFuncCntl3);
1485 CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.CgSpllFuncCntl4);
1486 CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.SpllSpreadSpectrum);
1487 CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.SpllSpreadSpectrum2);
1488 CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.CcPwrDynRm);
1489 CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.CcPwrDynRm1);
1491 /* table->MemoryACPILevel.MinVddcPhases = table->ACPILevel.MinVddcPhases;*/
1492 table->MemoryACPILevel.MinVddc = table->ACPILevel.MinVddc;
1493 table->MemoryACPILevel.MinVddcPhases = table->ACPILevel.MinVddcPhases;
1495 if (SMU7_VOLTAGE_CONTROL_NONE == data->vddci_control)
1496 table->MemoryACPILevel.MinVddci = table->MemoryACPILevel.MinVddc;
1497 else {
1498 if (data->acpi_vddci != 0)
1499 table->MemoryACPILevel.MinVddci = PP_HOST_TO_SMC_UL(data->acpi_vddci * VOLTAGE_SCALE);
1500 else
1501 table->MemoryACPILevel.MinVddci = PP_HOST_TO_SMC_UL(data->min_vddci_in_pptable * VOLTAGE_SCALE);
1504 if (0 == iceland_populate_mvdd_value(hwmgr, 0, &voltage_level))
1505 table->MemoryACPILevel.MinMvdd =
1506 PP_HOST_TO_SMC_UL(voltage_level.Voltage * VOLTAGE_SCALE);
1507 else
1508 table->MemoryACPILevel.MinMvdd = 0;
1510 /* Force reset on DLL*/
1511 mclk_pwrmgt_cntl = PHM_SET_FIELD(mclk_pwrmgt_cntl,
1512 MCLK_PWRMGT_CNTL, MRDCK0_RESET, 0x1);
1513 mclk_pwrmgt_cntl = PHM_SET_FIELD(mclk_pwrmgt_cntl,
1514 MCLK_PWRMGT_CNTL, MRDCK1_RESET, 0x1);
1516 /* Disable DLL in ACPIState*/
1517 mclk_pwrmgt_cntl = PHM_SET_FIELD(mclk_pwrmgt_cntl,
1518 MCLK_PWRMGT_CNTL, MRDCK0_PDNB, 0);
1519 mclk_pwrmgt_cntl = PHM_SET_FIELD(mclk_pwrmgt_cntl,
1520 MCLK_PWRMGT_CNTL, MRDCK1_PDNB, 0);
1522 /* Enable DLL bypass signal*/
1523 dll_cntl = PHM_SET_FIELD(dll_cntl,
1524 DLL_CNTL, MRDCK0_BYPASS, 0);
1525 dll_cntl = PHM_SET_FIELD(dll_cntl,
1526 DLL_CNTL, MRDCK1_BYPASS, 0);
1528 table->MemoryACPILevel.DllCntl =
1529 PP_HOST_TO_SMC_UL(dll_cntl);
1530 table->MemoryACPILevel.MclkPwrmgtCntl =
1531 PP_HOST_TO_SMC_UL(mclk_pwrmgt_cntl);
1532 table->MemoryACPILevel.MpllAdFuncCntl =
1533 PP_HOST_TO_SMC_UL(data->clock_registers.vMPLL_AD_FUNC_CNTL);
1534 table->MemoryACPILevel.MpllDqFuncCntl =
1535 PP_HOST_TO_SMC_UL(data->clock_registers.vMPLL_DQ_FUNC_CNTL);
1536 table->MemoryACPILevel.MpllFuncCntl =
1537 PP_HOST_TO_SMC_UL(data->clock_registers.vMPLL_FUNC_CNTL);
1538 table->MemoryACPILevel.MpllFuncCntl_1 =
1539 PP_HOST_TO_SMC_UL(data->clock_registers.vMPLL_FUNC_CNTL_1);
1540 table->MemoryACPILevel.MpllFuncCntl_2 =
1541 PP_HOST_TO_SMC_UL(data->clock_registers.vMPLL_FUNC_CNTL_2);
1542 table->MemoryACPILevel.MpllSs1 =
1543 PP_HOST_TO_SMC_UL(data->clock_registers.vMPLL_SS1);
1544 table->MemoryACPILevel.MpllSs2 =
1545 PP_HOST_TO_SMC_UL(data->clock_registers.vMPLL_SS2);
1547 table->MemoryACPILevel.EnabledForThrottle = 0;
1548 table->MemoryACPILevel.EnabledForActivity = 0;
1549 table->MemoryACPILevel.UpHyst = 0;
1550 table->MemoryACPILevel.DownHyst = 100;
1551 table->MemoryACPILevel.VoltageDownHyst = 0;
1552 /* Indicates maximum activity level for this performance level.*/
1553 table->MemoryACPILevel.ActivityLevel = PP_HOST_TO_SMC_US(data->current_profile_setting.mclk_activity);
1555 table->MemoryACPILevel.StutterEnable = 0;
1556 table->MemoryACPILevel.StrobeEnable = 0;
1557 table->MemoryACPILevel.EdcReadEnable = 0;
1558 table->MemoryACPILevel.EdcWriteEnable = 0;
1559 table->MemoryACPILevel.RttEnable = 0;
1561 return result;
1564 static int iceland_populate_smc_uvd_level(struct pp_hwmgr *hwmgr,
1565 SMU71_Discrete_DpmTable *table)
1567 return 0;
1570 static int iceland_populate_smc_vce_level(struct pp_hwmgr *hwmgr,
1571 SMU71_Discrete_DpmTable *table)
1573 return 0;
1576 static int iceland_populate_smc_acp_level(struct pp_hwmgr *hwmgr,
1577 SMU71_Discrete_DpmTable *table)
1579 return 0;
1582 static int iceland_populate_memory_timing_parameters(
1583 struct pp_hwmgr *hwmgr,
1584 uint32_t engine_clock,
1585 uint32_t memory_clock,
1586 struct SMU71_Discrete_MCArbDramTimingTableEntry *arb_regs
1589 uint32_t dramTiming;
1590 uint32_t dramTiming2;
1591 uint32_t burstTime;
1592 int result;
1594 result = atomctrl_set_engine_dram_timings_rv770(hwmgr,
1595 engine_clock, memory_clock);
1597 PP_ASSERT_WITH_CODE(result == 0,
1598 "Error calling VBIOS to set DRAM_TIMING.", return result);
1600 dramTiming = cgs_read_register(hwmgr->device, mmMC_ARB_DRAM_TIMING);
1601 dramTiming2 = cgs_read_register(hwmgr->device, mmMC_ARB_DRAM_TIMING2);
1602 burstTime = PHM_READ_FIELD(hwmgr->device, MC_ARB_BURST_TIME, STATE0);
1604 arb_regs->McArbDramTiming = PP_HOST_TO_SMC_UL(dramTiming);
1605 arb_regs->McArbDramTiming2 = PP_HOST_TO_SMC_UL(dramTiming2);
1606 arb_regs->McArbBurstTime = (uint8_t)burstTime;
1608 return 0;
1611 static int iceland_program_memory_timing_parameters(struct pp_hwmgr *hwmgr)
1613 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
1614 struct iceland_smumgr *smu_data = (struct iceland_smumgr *)(hwmgr->smu_backend);
1615 int result = 0;
1616 SMU71_Discrete_MCArbDramTimingTable arb_regs;
1617 uint32_t i, j;
1619 memset(&arb_regs, 0x00, sizeof(SMU71_Discrete_MCArbDramTimingTable));
1621 for (i = 0; i < data->dpm_table.sclk_table.count; i++) {
1622 for (j = 0; j < data->dpm_table.mclk_table.count; j++) {
1623 result = iceland_populate_memory_timing_parameters
1624 (hwmgr, data->dpm_table.sclk_table.dpm_levels[i].value,
1625 data->dpm_table.mclk_table.dpm_levels[j].value,
1626 &arb_regs.entries[i][j]);
1628 if (0 != result) {
1629 break;
1634 if (0 == result) {
1635 result = smu7_copy_bytes_to_smc(
1636 hwmgr,
1637 smu_data->smu7_data.arb_table_start,
1638 (uint8_t *)&arb_regs,
1639 sizeof(SMU71_Discrete_MCArbDramTimingTable),
1640 SMC_RAM_END
1644 return result;
1647 static int iceland_populate_smc_boot_level(struct pp_hwmgr *hwmgr,
1648 SMU71_Discrete_DpmTable *table)
1650 int result = 0;
1651 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
1652 struct iceland_smumgr *smu_data = (struct iceland_smumgr *)(hwmgr->smu_backend);
1653 table->GraphicsBootLevel = 0;
1654 table->MemoryBootLevel = 0;
1656 /* find boot level from dpm table*/
1657 result = phm_find_boot_level(&(data->dpm_table.sclk_table),
1658 data->vbios_boot_state.sclk_bootup_value,
1659 (uint32_t *)&(smu_data->smc_state_table.GraphicsBootLevel));
1661 if (0 != result) {
1662 smu_data->smc_state_table.GraphicsBootLevel = 0;
1663 pr_err("VBIOS did not find boot engine clock value in dependency table. Using Graphics DPM level 0!\n");
1664 result = 0;
1667 result = phm_find_boot_level(&(data->dpm_table.mclk_table),
1668 data->vbios_boot_state.mclk_bootup_value,
1669 (uint32_t *)&(smu_data->smc_state_table.MemoryBootLevel));
1671 if (0 != result) {
1672 smu_data->smc_state_table.MemoryBootLevel = 0;
1673 pr_err("VBIOS did not find boot engine clock value in dependency table. Using Memory DPM level 0!\n");
1674 result = 0;
1677 table->BootVddc = data->vbios_boot_state.vddc_bootup_value;
1678 if (SMU7_VOLTAGE_CONTROL_NONE == data->vddci_control)
1679 table->BootVddci = table->BootVddc;
1680 else
1681 table->BootVddci = data->vbios_boot_state.vddci_bootup_value;
1683 table->BootMVdd = data->vbios_boot_state.mvdd_bootup_value;
1685 return result;
1688 static int iceland_populate_mc_reg_address(struct pp_hwmgr *hwmgr,
1689 SMU71_Discrete_MCRegisters *mc_reg_table)
1691 const struct iceland_smumgr *smu_data = (struct iceland_smumgr *)hwmgr->smu_backend;
1693 uint32_t i, j;
1695 for (i = 0, j = 0; j < smu_data->mc_reg_table.last; j++) {
1696 if (smu_data->mc_reg_table.validflag & 1<<j) {
1697 PP_ASSERT_WITH_CODE(i < SMU71_DISCRETE_MC_REGISTER_ARRAY_SIZE,
1698 "Index of mc_reg_table->address[] array out of boundary", return -EINVAL);
1699 mc_reg_table->address[i].s0 =
1700 PP_HOST_TO_SMC_US(smu_data->mc_reg_table.mc_reg_address[j].s0);
1701 mc_reg_table->address[i].s1 =
1702 PP_HOST_TO_SMC_US(smu_data->mc_reg_table.mc_reg_address[j].s1);
1703 i++;
1707 mc_reg_table->last = (uint8_t)i;
1709 return 0;
1712 /*convert register values from driver to SMC format */
1713 static void iceland_convert_mc_registers(
1714 const struct iceland_mc_reg_entry *entry,
1715 SMU71_Discrete_MCRegisterSet *data,
1716 uint32_t num_entries, uint32_t valid_flag)
1718 uint32_t i, j;
1720 for (i = 0, j = 0; j < num_entries; j++) {
1721 if (valid_flag & 1<<j) {
1722 data->value[i] = PP_HOST_TO_SMC_UL(entry->mc_data[j]);
1723 i++;
1728 static int iceland_convert_mc_reg_table_entry_to_smc(struct pp_hwmgr *hwmgr,
1729 const uint32_t memory_clock,
1730 SMU71_Discrete_MCRegisterSet *mc_reg_table_data
1733 struct iceland_smumgr *smu_data = (struct iceland_smumgr *)(hwmgr->smu_backend);
1734 uint32_t i = 0;
1736 for (i = 0; i < smu_data->mc_reg_table.num_entries; i++) {
1737 if (memory_clock <=
1738 smu_data->mc_reg_table.mc_reg_table_entry[i].mclk_max) {
1739 break;
1743 if ((i == smu_data->mc_reg_table.num_entries) && (i > 0))
1744 --i;
1746 iceland_convert_mc_registers(&smu_data->mc_reg_table.mc_reg_table_entry[i],
1747 mc_reg_table_data, smu_data->mc_reg_table.last,
1748 smu_data->mc_reg_table.validflag);
1750 return 0;
1753 static int iceland_convert_mc_reg_table_to_smc(struct pp_hwmgr *hwmgr,
1754 SMU71_Discrete_MCRegisters *mc_regs)
1756 int result = 0;
1757 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
1758 int res;
1759 uint32_t i;
1761 for (i = 0; i < data->dpm_table.mclk_table.count; i++) {
1762 res = iceland_convert_mc_reg_table_entry_to_smc(
1763 hwmgr,
1764 data->dpm_table.mclk_table.dpm_levels[i].value,
1765 &mc_regs->data[i]
1768 if (0 != res)
1769 result = res;
1772 return result;
1775 static int iceland_update_and_upload_mc_reg_table(struct pp_hwmgr *hwmgr)
1777 struct iceland_smumgr *smu_data = (struct iceland_smumgr *)(hwmgr->smu_backend);
1778 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
1779 uint32_t address;
1780 int32_t result;
1782 if (0 == (data->need_update_smu7_dpm_table & DPMTABLE_OD_UPDATE_MCLK))
1783 return 0;
1786 memset(&smu_data->mc_regs, 0, sizeof(SMU71_Discrete_MCRegisters));
1788 result = iceland_convert_mc_reg_table_to_smc(hwmgr, &(smu_data->mc_regs));
1790 if (result != 0)
1791 return result;
1794 address = smu_data->smu7_data.mc_reg_table_start + (uint32_t)offsetof(SMU71_Discrete_MCRegisters, data[0]);
1796 return smu7_copy_bytes_to_smc(hwmgr, address,
1797 (uint8_t *)&smu_data->mc_regs.data[0],
1798 sizeof(SMU71_Discrete_MCRegisterSet) * data->dpm_table.mclk_table.count,
1799 SMC_RAM_END);
1802 static int iceland_populate_initial_mc_reg_table(struct pp_hwmgr *hwmgr)
1804 int result;
1805 struct iceland_smumgr *smu_data = (struct iceland_smumgr *)(hwmgr->smu_backend);
1807 memset(&smu_data->mc_regs, 0x00, sizeof(SMU71_Discrete_MCRegisters));
1808 result = iceland_populate_mc_reg_address(hwmgr, &(smu_data->mc_regs));
1809 PP_ASSERT_WITH_CODE(0 == result,
1810 "Failed to initialize MCRegTable for the MC register addresses!", return result;);
1812 result = iceland_convert_mc_reg_table_to_smc(hwmgr, &smu_data->mc_regs);
1813 PP_ASSERT_WITH_CODE(0 == result,
1814 "Failed to initialize MCRegTable for driver state!", return result;);
1816 return smu7_copy_bytes_to_smc(hwmgr, smu_data->smu7_data.mc_reg_table_start,
1817 (uint8_t *)&smu_data->mc_regs, sizeof(SMU71_Discrete_MCRegisters), SMC_RAM_END);
1820 static int iceland_populate_smc_initial_state(struct pp_hwmgr *hwmgr)
1822 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
1823 struct iceland_smumgr *smu_data = (struct iceland_smumgr *)(hwmgr->smu_backend);
1824 uint8_t count, level;
1826 count = (uint8_t)(hwmgr->dyn_state.vddc_dependency_on_sclk->count);
1828 for (level = 0; level < count; level++) {
1829 if (hwmgr->dyn_state.vddc_dependency_on_sclk->entries[level].clk
1830 >= data->vbios_boot_state.sclk_bootup_value) {
1831 smu_data->smc_state_table.GraphicsBootLevel = level;
1832 break;
1836 count = (uint8_t)(hwmgr->dyn_state.vddc_dependency_on_mclk->count);
1838 for (level = 0; level < count; level++) {
1839 if (hwmgr->dyn_state.vddc_dependency_on_mclk->entries[level].clk
1840 >= data->vbios_boot_state.mclk_bootup_value) {
1841 smu_data->smc_state_table.MemoryBootLevel = level;
1842 break;
1846 return 0;
1849 static int iceland_populate_bapm_parameters_in_dpm_table(struct pp_hwmgr *hwmgr)
1851 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
1852 struct iceland_smumgr *smu_data = (struct iceland_smumgr *)(hwmgr->smu_backend);
1853 const struct iceland_pt_defaults *defaults = smu_data->power_tune_defaults;
1854 SMU71_Discrete_DpmTable *dpm_table = &(smu_data->smc_state_table);
1855 struct phm_cac_tdp_table *cac_dtp_table = hwmgr->dyn_state.cac_dtp_table;
1856 struct phm_ppm_table *ppm = hwmgr->dyn_state.ppm_parameter_table;
1857 const uint16_t *def1, *def2;
1858 int i, j, k;
1862 * TDP number of fraction bits are changed from 8 to 7 for Iceland
1863 * as requested by SMC team
1866 dpm_table->DefaultTdp = PP_HOST_TO_SMC_US((uint16_t)(cac_dtp_table->usTDP * 256));
1867 dpm_table->TargetTdp = PP_HOST_TO_SMC_US((uint16_t)(cac_dtp_table->usConfigurableTDP * 256));
1870 dpm_table->DTETjOffset = 0;
1872 dpm_table->GpuTjMax = (uint8_t)(data->thermal_temp_setting.temperature_high / PP_TEMPERATURE_UNITS_PER_CENTIGRADES);
1873 dpm_table->GpuTjHyst = 8;
1875 dpm_table->DTEAmbientTempBase = defaults->dte_ambient_temp_base;
1877 /* The following are for new Iceland Multi-input fan/thermal control */
1878 if (NULL != ppm) {
1879 dpm_table->PPM_PkgPwrLimit = (uint16_t)ppm->dgpu_tdp * 256 / 1000;
1880 dpm_table->PPM_TemperatureLimit = (uint16_t)ppm->tj_max * 256;
1881 } else {
1882 dpm_table->PPM_PkgPwrLimit = 0;
1883 dpm_table->PPM_TemperatureLimit = 0;
1886 CONVERT_FROM_HOST_TO_SMC_US(dpm_table->PPM_PkgPwrLimit);
1887 CONVERT_FROM_HOST_TO_SMC_US(dpm_table->PPM_TemperatureLimit);
1889 dpm_table->BAPM_TEMP_GRADIENT = PP_HOST_TO_SMC_UL(defaults->bapm_temp_gradient);
1890 def1 = defaults->bapmti_r;
1891 def2 = defaults->bapmti_rc;
1893 for (i = 0; i < SMU71_DTE_ITERATIONS; i++) {
1894 for (j = 0; j < SMU71_DTE_SOURCES; j++) {
1895 for (k = 0; k < SMU71_DTE_SINKS; k++) {
1896 dpm_table->BAPMTI_R[i][j][k] = PP_HOST_TO_SMC_US(*def1);
1897 dpm_table->BAPMTI_RC[i][j][k] = PP_HOST_TO_SMC_US(*def2);
1898 def1++;
1899 def2++;
1904 return 0;
1907 static int iceland_populate_smc_svi2_config(struct pp_hwmgr *hwmgr,
1908 SMU71_Discrete_DpmTable *tab)
1910 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
1912 if (SMU7_VOLTAGE_CONTROL_BY_SVID2 == data->voltage_control)
1913 tab->SVI2Enable |= VDDC_ON_SVI2;
1915 if (SMU7_VOLTAGE_CONTROL_BY_SVID2 == data->vddci_control)
1916 tab->SVI2Enable |= VDDCI_ON_SVI2;
1917 else
1918 tab->MergedVddci = 1;
1920 if (SMU7_VOLTAGE_CONTROL_BY_SVID2 == data->mvdd_control)
1921 tab->SVI2Enable |= MVDD_ON_SVI2;
1923 PP_ASSERT_WITH_CODE(tab->SVI2Enable != (VDDC_ON_SVI2 | VDDCI_ON_SVI2 | MVDD_ON_SVI2) &&
1924 (tab->SVI2Enable & VDDC_ON_SVI2), "SVI2 domain configuration is incorrect!", return -EINVAL);
1926 return 0;
1929 static int iceland_init_smc_table(struct pp_hwmgr *hwmgr)
1931 int result;
1932 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
1933 struct iceland_smumgr *smu_data = (struct iceland_smumgr *)(hwmgr->smu_backend);
1934 SMU71_Discrete_DpmTable *table = &(smu_data->smc_state_table);
1937 iceland_initialize_power_tune_defaults(hwmgr);
1938 memset(&(smu_data->smc_state_table), 0x00, sizeof(smu_data->smc_state_table));
1940 if (SMU7_VOLTAGE_CONTROL_NONE != data->voltage_control) {
1941 iceland_populate_smc_voltage_tables(hwmgr, table);
1944 if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
1945 PHM_PlatformCaps_AutomaticDCTransition))
1946 table->SystemFlags |= PPSMC_SYSTEMFLAG_GPIO_DC;
1949 if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
1950 PHM_PlatformCaps_StepVddc))
1951 table->SystemFlags |= PPSMC_SYSTEMFLAG_STEPVDDC;
1953 if (data->is_memory_gddr5)
1954 table->SystemFlags |= PPSMC_SYSTEMFLAG_GDDR5;
1957 if (data->ulv_supported) {
1958 result = iceland_populate_ulv_state(hwmgr, &(smu_data->ulv_setting));
1959 PP_ASSERT_WITH_CODE(0 == result,
1960 "Failed to initialize ULV state!", return result;);
1962 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
1963 ixCG_ULV_PARAMETER, 0x40035);
1966 result = iceland_populate_smc_link_level(hwmgr, table);
1967 PP_ASSERT_WITH_CODE(0 == result,
1968 "Failed to initialize Link Level!", return result;);
1970 result = iceland_populate_all_graphic_levels(hwmgr);
1971 PP_ASSERT_WITH_CODE(0 == result,
1972 "Failed to initialize Graphics Level!", return result;);
1974 result = iceland_populate_all_memory_levels(hwmgr);
1975 PP_ASSERT_WITH_CODE(0 == result,
1976 "Failed to initialize Memory Level!", return result;);
1978 result = iceland_populate_smc_acpi_level(hwmgr, table);
1979 PP_ASSERT_WITH_CODE(0 == result,
1980 "Failed to initialize ACPI Level!", return result;);
1982 result = iceland_populate_smc_vce_level(hwmgr, table);
1983 PP_ASSERT_WITH_CODE(0 == result,
1984 "Failed to initialize VCE Level!", return result;);
1986 result = iceland_populate_smc_acp_level(hwmgr, table);
1987 PP_ASSERT_WITH_CODE(0 == result,
1988 "Failed to initialize ACP Level!", return result;);
1990 /* Since only the initial state is completely set up at this point (the other states are just copies of the boot state) we only */
1991 /* need to populate the ARB settings for the initial state. */
1992 result = iceland_program_memory_timing_parameters(hwmgr);
1993 PP_ASSERT_WITH_CODE(0 == result,
1994 "Failed to Write ARB settings for the initial state.", return result;);
1996 result = iceland_populate_smc_uvd_level(hwmgr, table);
1997 PP_ASSERT_WITH_CODE(0 == result,
1998 "Failed to initialize UVD Level!", return result;);
2000 table->GraphicsBootLevel = 0;
2001 table->MemoryBootLevel = 0;
2003 result = iceland_populate_smc_boot_level(hwmgr, table);
2004 PP_ASSERT_WITH_CODE(0 == result,
2005 "Failed to initialize Boot Level!", return result;);
2007 result = iceland_populate_smc_initial_state(hwmgr);
2008 PP_ASSERT_WITH_CODE(0 == result, "Failed to initialize Boot State!", return result);
2010 result = iceland_populate_bapm_parameters_in_dpm_table(hwmgr);
2011 PP_ASSERT_WITH_CODE(0 == result, "Failed to populate BAPM Parameters!", return result);
2013 table->GraphicsVoltageChangeEnable = 1;
2014 table->GraphicsThermThrottleEnable = 1;
2015 table->GraphicsInterval = 1;
2016 table->VoltageInterval = 1;
2017 table->ThermalInterval = 1;
2019 table->TemperatureLimitHigh =
2020 (data->thermal_temp_setting.temperature_high *
2021 SMU7_Q88_FORMAT_CONVERSION_UNIT) / PP_TEMPERATURE_UNITS_PER_CENTIGRADES;
2022 table->TemperatureLimitLow =
2023 (data->thermal_temp_setting.temperature_low *
2024 SMU7_Q88_FORMAT_CONVERSION_UNIT) / PP_TEMPERATURE_UNITS_PER_CENTIGRADES;
2026 table->MemoryVoltageChangeEnable = 1;
2027 table->MemoryInterval = 1;
2028 table->VoltageResponseTime = 0;
2029 table->PhaseResponseTime = 0;
2030 table->MemoryThermThrottleEnable = 1;
2031 table->PCIeBootLinkLevel = 0;
2032 table->PCIeGenInterval = 1;
2034 result = iceland_populate_smc_svi2_config(hwmgr, table);
2035 PP_ASSERT_WITH_CODE(0 == result,
2036 "Failed to populate SVI2 setting!", return result);
2038 table->ThermGpio = 17;
2039 table->SclkStepSize = 0x4000;
2041 CONVERT_FROM_HOST_TO_SMC_UL(table->SystemFlags);
2042 CONVERT_FROM_HOST_TO_SMC_UL(table->SmioMaskVddcVid);
2043 CONVERT_FROM_HOST_TO_SMC_UL(table->SmioMaskVddcPhase);
2044 CONVERT_FROM_HOST_TO_SMC_UL(table->SmioMaskVddciVid);
2045 CONVERT_FROM_HOST_TO_SMC_UL(table->SmioMaskMvddVid);
2046 CONVERT_FROM_HOST_TO_SMC_UL(table->SclkStepSize);
2047 CONVERT_FROM_HOST_TO_SMC_US(table->TemperatureLimitHigh);
2048 CONVERT_FROM_HOST_TO_SMC_US(table->TemperatureLimitLow);
2049 CONVERT_FROM_HOST_TO_SMC_US(table->VoltageResponseTime);
2050 CONVERT_FROM_HOST_TO_SMC_US(table->PhaseResponseTime);
2052 table->BootVddc = PP_HOST_TO_SMC_US(table->BootVddc * VOLTAGE_SCALE);
2053 table->BootVddci = PP_HOST_TO_SMC_US(table->BootVddci * VOLTAGE_SCALE);
2054 table->BootMVdd = PP_HOST_TO_SMC_US(table->BootMVdd * VOLTAGE_SCALE);
2056 /* Upload all dpm data to SMC memory.(dpm level, dpm level count etc) */
2057 result = smu7_copy_bytes_to_smc(hwmgr, smu_data->smu7_data.dpm_table_start +
2058 offsetof(SMU71_Discrete_DpmTable, SystemFlags),
2059 (uint8_t *)&(table->SystemFlags),
2060 sizeof(SMU71_Discrete_DpmTable)-3 * sizeof(SMU71_PIDController),
2061 SMC_RAM_END);
2063 PP_ASSERT_WITH_CODE(0 == result,
2064 "Failed to upload dpm data to SMC memory!", return result;);
2066 /* Upload all ulv setting to SMC memory.(dpm level, dpm level count etc) */
2067 result = smu7_copy_bytes_to_smc(hwmgr,
2068 smu_data->smu7_data.ulv_setting_starts,
2069 (uint8_t *)&(smu_data->ulv_setting),
2070 sizeof(SMU71_Discrete_Ulv),
2071 SMC_RAM_END);
2074 result = iceland_populate_initial_mc_reg_table(hwmgr);
2075 PP_ASSERT_WITH_CODE((0 == result),
2076 "Failed to populate initialize MC Reg table!", return result);
2078 result = iceland_populate_pm_fuses(hwmgr);
2079 PP_ASSERT_WITH_CODE(0 == result,
2080 "Failed to populate PM fuses to SMC memory!", return result);
2082 return 0;
2085 int iceland_thermal_setup_fan_table(struct pp_hwmgr *hwmgr)
2087 struct smu7_smumgr *smu7_data = (struct smu7_smumgr *)(hwmgr->smu_backend);
2088 SMU71_Discrete_FanTable fan_table = { FDO_MODE_HARDWARE };
2089 uint32_t duty100;
2090 uint32_t t_diff1, t_diff2, pwm_diff1, pwm_diff2;
2091 uint16_t fdo_min, slope1, slope2;
2092 uint32_t reference_clock;
2093 int res;
2094 uint64_t tmp64;
2096 if (!phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_MicrocodeFanControl))
2097 return 0;
2099 if (hwmgr->thermal_controller.fanInfo.bNoFan) {
2100 phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
2101 PHM_PlatformCaps_MicrocodeFanControl);
2102 return 0;
2105 if (0 == smu7_data->fan_table_start) {
2106 phm_cap_unset(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_MicrocodeFanControl);
2107 return 0;
2110 duty100 = PHM_READ_VFPF_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, CG_FDO_CTRL1, FMAX_DUTY100);
2112 if (0 == duty100) {
2113 phm_cap_unset(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_MicrocodeFanControl);
2114 return 0;
2117 tmp64 = hwmgr->thermal_controller.advanceFanControlParameters.usPWMMin * duty100;
2118 do_div(tmp64, 10000);
2119 fdo_min = (uint16_t)tmp64;
2121 t_diff1 = hwmgr->thermal_controller.advanceFanControlParameters.usTMed - hwmgr->thermal_controller.advanceFanControlParameters.usTMin;
2122 t_diff2 = hwmgr->thermal_controller.advanceFanControlParameters.usTHigh - hwmgr->thermal_controller.advanceFanControlParameters.usTMed;
2124 pwm_diff1 = hwmgr->thermal_controller.advanceFanControlParameters.usPWMMed - hwmgr->thermal_controller.advanceFanControlParameters.usPWMMin;
2125 pwm_diff2 = hwmgr->thermal_controller.advanceFanControlParameters.usPWMHigh - hwmgr->thermal_controller.advanceFanControlParameters.usPWMMed;
2127 slope1 = (uint16_t)((50 + ((16 * duty100 * pwm_diff1) / t_diff1)) / 100);
2128 slope2 = (uint16_t)((50 + ((16 * duty100 * pwm_diff2) / t_diff2)) / 100);
2130 fan_table.TempMin = cpu_to_be16((50 + hwmgr->thermal_controller.advanceFanControlParameters.usTMin) / 100);
2131 fan_table.TempMed = cpu_to_be16((50 + hwmgr->thermal_controller.advanceFanControlParameters.usTMed) / 100);
2132 fan_table.TempMax = cpu_to_be16((50 + hwmgr->thermal_controller.advanceFanControlParameters.usTMax) / 100);
2134 fan_table.Slope1 = cpu_to_be16(slope1);
2135 fan_table.Slope2 = cpu_to_be16(slope2);
2137 fan_table.FdoMin = cpu_to_be16(fdo_min);
2139 fan_table.HystDown = cpu_to_be16(hwmgr->thermal_controller.advanceFanControlParameters.ucTHyst);
2141 fan_table.HystUp = cpu_to_be16(1);
2143 fan_table.HystSlope = cpu_to_be16(1);
2145 fan_table.TempRespLim = cpu_to_be16(5);
2147 reference_clock = amdgpu_asic_get_xclk((struct amdgpu_device *)hwmgr->adev);
2149 fan_table.RefreshPeriod = cpu_to_be32((hwmgr->thermal_controller.advanceFanControlParameters.ulCycleDelay * reference_clock) / 1600);
2151 fan_table.FdoMax = cpu_to_be16((uint16_t)duty100);
2153 fan_table.TempSrc = (uint8_t)PHM_READ_VFPF_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, CG_MULT_THERMAL_CTRL, TEMP_SEL);
2155 /* fan_table.FanControl_GL_Flag = 1; */
2157 res = smu7_copy_bytes_to_smc(hwmgr, smu7_data->fan_table_start, (uint8_t *)&fan_table, (uint32_t)sizeof(fan_table), SMC_RAM_END);
2159 return 0;
2163 static int iceland_program_mem_timing_parameters(struct pp_hwmgr *hwmgr)
2165 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
2167 if (data->need_update_smu7_dpm_table &
2168 (DPMTABLE_OD_UPDATE_SCLK + DPMTABLE_OD_UPDATE_MCLK))
2169 return iceland_program_memory_timing_parameters(hwmgr);
2171 return 0;
2174 static int iceland_update_sclk_threshold(struct pp_hwmgr *hwmgr)
2176 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
2177 struct iceland_smumgr *smu_data = (struct iceland_smumgr *)(hwmgr->smu_backend);
2179 int result = 0;
2180 uint32_t low_sclk_interrupt_threshold = 0;
2182 if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
2183 PHM_PlatformCaps_SclkThrottleLowNotification)
2184 && (data->low_sclk_interrupt_threshold != 0)) {
2185 low_sclk_interrupt_threshold =
2186 data->low_sclk_interrupt_threshold;
2188 CONVERT_FROM_HOST_TO_SMC_UL(low_sclk_interrupt_threshold);
2190 result = smu7_copy_bytes_to_smc(
2191 hwmgr,
2192 smu_data->smu7_data.dpm_table_start +
2193 offsetof(SMU71_Discrete_DpmTable,
2194 LowSclkInterruptThreshold),
2195 (uint8_t *)&low_sclk_interrupt_threshold,
2196 sizeof(uint32_t),
2197 SMC_RAM_END);
2200 result = iceland_update_and_upload_mc_reg_table(hwmgr);
2202 PP_ASSERT_WITH_CODE((0 == result), "Failed to upload MC reg table!", return result);
2204 result = iceland_program_mem_timing_parameters(hwmgr);
2205 PP_ASSERT_WITH_CODE((result == 0),
2206 "Failed to program memory timing parameters!",
2209 return result;
2212 static uint32_t iceland_get_offsetof(uint32_t type, uint32_t member)
2214 switch (type) {
2215 case SMU_SoftRegisters:
2216 switch (member) {
2217 case HandshakeDisables:
2218 return offsetof(SMU71_SoftRegisters, HandshakeDisables);
2219 case VoltageChangeTimeout:
2220 return offsetof(SMU71_SoftRegisters, VoltageChangeTimeout);
2221 case AverageGraphicsActivity:
2222 return offsetof(SMU71_SoftRegisters, AverageGraphicsActivity);
2223 case AverageMemoryActivity:
2224 return offsetof(SMU71_SoftRegisters, AverageMemoryActivity);
2225 case PreVBlankGap:
2226 return offsetof(SMU71_SoftRegisters, PreVBlankGap);
2227 case VBlankTimeout:
2228 return offsetof(SMU71_SoftRegisters, VBlankTimeout);
2229 case UcodeLoadStatus:
2230 return offsetof(SMU71_SoftRegisters, UcodeLoadStatus);
2231 case DRAM_LOG_ADDR_H:
2232 return offsetof(SMU71_SoftRegisters, DRAM_LOG_ADDR_H);
2233 case DRAM_LOG_ADDR_L:
2234 return offsetof(SMU71_SoftRegisters, DRAM_LOG_ADDR_L);
2235 case DRAM_LOG_PHY_ADDR_H:
2236 return offsetof(SMU71_SoftRegisters, DRAM_LOG_PHY_ADDR_H);
2237 case DRAM_LOG_PHY_ADDR_L:
2238 return offsetof(SMU71_SoftRegisters, DRAM_LOG_PHY_ADDR_L);
2239 case DRAM_LOG_BUFF_SIZE:
2240 return offsetof(SMU71_SoftRegisters, DRAM_LOG_BUFF_SIZE);
2242 break;
2243 case SMU_Discrete_DpmTable:
2244 switch (member) {
2245 case LowSclkInterruptThreshold:
2246 return offsetof(SMU71_Discrete_DpmTable, LowSclkInterruptThreshold);
2248 break;
2250 pr_warn("can't get the offset of type %x member %x\n", type, member);
2251 return 0;
2254 static uint32_t iceland_get_mac_definition(uint32_t value)
2256 switch (value) {
2257 case SMU_MAX_LEVELS_GRAPHICS:
2258 return SMU71_MAX_LEVELS_GRAPHICS;
2259 case SMU_MAX_LEVELS_MEMORY:
2260 return SMU71_MAX_LEVELS_MEMORY;
2261 case SMU_MAX_LEVELS_LINK:
2262 return SMU71_MAX_LEVELS_LINK;
2263 case SMU_MAX_ENTRIES_SMIO:
2264 return SMU71_MAX_ENTRIES_SMIO;
2265 case SMU_MAX_LEVELS_VDDC:
2266 return SMU71_MAX_LEVELS_VDDC;
2267 case SMU_MAX_LEVELS_VDDCI:
2268 return SMU71_MAX_LEVELS_VDDCI;
2269 case SMU_MAX_LEVELS_MVDD:
2270 return SMU71_MAX_LEVELS_MVDD;
2273 pr_warn("can't get the mac of %x\n", value);
2274 return 0;
2277 static int iceland_process_firmware_header(struct pp_hwmgr *hwmgr)
2279 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
2280 struct smu7_smumgr *smu7_data = (struct smu7_smumgr *)(hwmgr->smu_backend);
2282 uint32_t tmp;
2283 int result;
2284 bool error = false;
2286 result = smu7_read_smc_sram_dword(hwmgr,
2287 SMU71_FIRMWARE_HEADER_LOCATION +
2288 offsetof(SMU71_Firmware_Header, DpmTable),
2289 &tmp, SMC_RAM_END);
2291 if (0 == result) {
2292 smu7_data->dpm_table_start = tmp;
2295 error |= (0 != result);
2297 result = smu7_read_smc_sram_dword(hwmgr,
2298 SMU71_FIRMWARE_HEADER_LOCATION +
2299 offsetof(SMU71_Firmware_Header, SoftRegisters),
2300 &tmp, SMC_RAM_END);
2302 if (0 == result) {
2303 data->soft_regs_start = tmp;
2304 smu7_data->soft_regs_start = tmp;
2307 error |= (0 != result);
2310 result = smu7_read_smc_sram_dword(hwmgr,
2311 SMU71_FIRMWARE_HEADER_LOCATION +
2312 offsetof(SMU71_Firmware_Header, mcRegisterTable),
2313 &tmp, SMC_RAM_END);
2315 if (0 == result) {
2316 smu7_data->mc_reg_table_start = tmp;
2319 result = smu7_read_smc_sram_dword(hwmgr,
2320 SMU71_FIRMWARE_HEADER_LOCATION +
2321 offsetof(SMU71_Firmware_Header, FanTable),
2322 &tmp, SMC_RAM_END);
2324 if (0 == result) {
2325 smu7_data->fan_table_start = tmp;
2328 error |= (0 != result);
2330 result = smu7_read_smc_sram_dword(hwmgr,
2331 SMU71_FIRMWARE_HEADER_LOCATION +
2332 offsetof(SMU71_Firmware_Header, mcArbDramTimingTable),
2333 &tmp, SMC_RAM_END);
2335 if (0 == result) {
2336 smu7_data->arb_table_start = tmp;
2339 error |= (0 != result);
2342 result = smu7_read_smc_sram_dword(hwmgr,
2343 SMU71_FIRMWARE_HEADER_LOCATION +
2344 offsetof(SMU71_Firmware_Header, Version),
2345 &tmp, SMC_RAM_END);
2347 if (0 == result) {
2348 hwmgr->microcode_version_info.SMC = tmp;
2351 error |= (0 != result);
2353 result = smu7_read_smc_sram_dword(hwmgr,
2354 SMU71_FIRMWARE_HEADER_LOCATION +
2355 offsetof(SMU71_Firmware_Header, UlvSettings),
2356 &tmp, SMC_RAM_END);
2358 if (0 == result) {
2359 smu7_data->ulv_setting_starts = tmp;
2362 error |= (0 != result);
2364 return error ? 1 : 0;
2367 /*---------------------------MC----------------------------*/
2369 static uint8_t iceland_get_memory_modile_index(struct pp_hwmgr *hwmgr)
2371 return (uint8_t) (0xFF & (cgs_read_register(hwmgr->device, mmBIOS_SCRATCH_4) >> 16));
2374 static bool iceland_check_s0_mc_reg_index(uint16_t in_reg, uint16_t *out_reg)
2376 bool result = true;
2378 switch (in_reg) {
2379 case mmMC_SEQ_RAS_TIMING:
2380 *out_reg = mmMC_SEQ_RAS_TIMING_LP;
2381 break;
2383 case mmMC_SEQ_DLL_STBY:
2384 *out_reg = mmMC_SEQ_DLL_STBY_LP;
2385 break;
2387 case mmMC_SEQ_G5PDX_CMD0:
2388 *out_reg = mmMC_SEQ_G5PDX_CMD0_LP;
2389 break;
2391 case mmMC_SEQ_G5PDX_CMD1:
2392 *out_reg = mmMC_SEQ_G5PDX_CMD1_LP;
2393 break;
2395 case mmMC_SEQ_G5PDX_CTRL:
2396 *out_reg = mmMC_SEQ_G5PDX_CTRL_LP;
2397 break;
2399 case mmMC_SEQ_CAS_TIMING:
2400 *out_reg = mmMC_SEQ_CAS_TIMING_LP;
2401 break;
2403 case mmMC_SEQ_MISC_TIMING:
2404 *out_reg = mmMC_SEQ_MISC_TIMING_LP;
2405 break;
2407 case mmMC_SEQ_MISC_TIMING2:
2408 *out_reg = mmMC_SEQ_MISC_TIMING2_LP;
2409 break;
2411 case mmMC_SEQ_PMG_DVS_CMD:
2412 *out_reg = mmMC_SEQ_PMG_DVS_CMD_LP;
2413 break;
2415 case mmMC_SEQ_PMG_DVS_CTL:
2416 *out_reg = mmMC_SEQ_PMG_DVS_CTL_LP;
2417 break;
2419 case mmMC_SEQ_RD_CTL_D0:
2420 *out_reg = mmMC_SEQ_RD_CTL_D0_LP;
2421 break;
2423 case mmMC_SEQ_RD_CTL_D1:
2424 *out_reg = mmMC_SEQ_RD_CTL_D1_LP;
2425 break;
2427 case mmMC_SEQ_WR_CTL_D0:
2428 *out_reg = mmMC_SEQ_WR_CTL_D0_LP;
2429 break;
2431 case mmMC_SEQ_WR_CTL_D1:
2432 *out_reg = mmMC_SEQ_WR_CTL_D1_LP;
2433 break;
2435 case mmMC_PMG_CMD_EMRS:
2436 *out_reg = mmMC_SEQ_PMG_CMD_EMRS_LP;
2437 break;
2439 case mmMC_PMG_CMD_MRS:
2440 *out_reg = mmMC_SEQ_PMG_CMD_MRS_LP;
2441 break;
2443 case mmMC_PMG_CMD_MRS1:
2444 *out_reg = mmMC_SEQ_PMG_CMD_MRS1_LP;
2445 break;
2447 case mmMC_SEQ_PMG_TIMING:
2448 *out_reg = mmMC_SEQ_PMG_TIMING_LP;
2449 break;
2451 case mmMC_PMG_CMD_MRS2:
2452 *out_reg = mmMC_SEQ_PMG_CMD_MRS2_LP;
2453 break;
2455 case mmMC_SEQ_WR_CTL_2:
2456 *out_reg = mmMC_SEQ_WR_CTL_2_LP;
2457 break;
2459 default:
2460 result = false;
2461 break;
2464 return result;
2467 static int iceland_set_s0_mc_reg_index(struct iceland_mc_reg_table *table)
2469 uint32_t i;
2470 uint16_t address;
2472 for (i = 0; i < table->last; i++) {
2473 table->mc_reg_address[i].s0 =
2474 iceland_check_s0_mc_reg_index(table->mc_reg_address[i].s1, &address)
2475 ? address : table->mc_reg_address[i].s1;
2477 return 0;
2480 static int iceland_copy_vbios_smc_reg_table(const pp_atomctrl_mc_reg_table *table,
2481 struct iceland_mc_reg_table *ni_table)
2483 uint8_t i, j;
2485 PP_ASSERT_WITH_CODE((table->last <= SMU71_DISCRETE_MC_REGISTER_ARRAY_SIZE),
2486 "Invalid VramInfo table.", return -EINVAL);
2487 PP_ASSERT_WITH_CODE((table->num_entries <= MAX_AC_TIMING_ENTRIES),
2488 "Invalid VramInfo table.", return -EINVAL);
2490 for (i = 0; i < table->last; i++) {
2491 ni_table->mc_reg_address[i].s1 = table->mc_reg_address[i].s1;
2493 ni_table->last = table->last;
2495 for (i = 0; i < table->num_entries; i++) {
2496 ni_table->mc_reg_table_entry[i].mclk_max =
2497 table->mc_reg_table_entry[i].mclk_max;
2498 for (j = 0; j < table->last; j++) {
2499 ni_table->mc_reg_table_entry[i].mc_data[j] =
2500 table->mc_reg_table_entry[i].mc_data[j];
2504 ni_table->num_entries = table->num_entries;
2506 return 0;
2509 static int iceland_set_mc_special_registers(struct pp_hwmgr *hwmgr,
2510 struct iceland_mc_reg_table *table)
2512 uint8_t i, j, k;
2513 uint32_t temp_reg;
2514 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
2516 for (i = 0, j = table->last; i < table->last; i++) {
2517 PP_ASSERT_WITH_CODE((j < SMU71_DISCRETE_MC_REGISTER_ARRAY_SIZE),
2518 "Invalid VramInfo table.", return -EINVAL);
2520 switch (table->mc_reg_address[i].s1) {
2522 case mmMC_SEQ_MISC1:
2523 temp_reg = cgs_read_register(hwmgr->device, mmMC_PMG_CMD_EMRS);
2524 table->mc_reg_address[j].s1 = mmMC_PMG_CMD_EMRS;
2525 table->mc_reg_address[j].s0 = mmMC_SEQ_PMG_CMD_EMRS_LP;
2526 for (k = 0; k < table->num_entries; k++) {
2527 table->mc_reg_table_entry[k].mc_data[j] =
2528 ((temp_reg & 0xffff0000)) |
2529 ((table->mc_reg_table_entry[k].mc_data[i] & 0xffff0000) >> 16);
2531 j++;
2533 PP_ASSERT_WITH_CODE((j < SMU71_DISCRETE_MC_REGISTER_ARRAY_SIZE),
2534 "Invalid VramInfo table.", return -EINVAL);
2535 temp_reg = cgs_read_register(hwmgr->device, mmMC_PMG_CMD_MRS);
2536 table->mc_reg_address[j].s1 = mmMC_PMG_CMD_MRS;
2537 table->mc_reg_address[j].s0 = mmMC_SEQ_PMG_CMD_MRS_LP;
2538 for (k = 0; k < table->num_entries; k++) {
2539 table->mc_reg_table_entry[k].mc_data[j] =
2540 (temp_reg & 0xffff0000) |
2541 (table->mc_reg_table_entry[k].mc_data[i] & 0x0000ffff);
2543 if (!data->is_memory_gddr5) {
2544 table->mc_reg_table_entry[k].mc_data[j] |= 0x100;
2547 j++;
2549 if (!data->is_memory_gddr5) {
2550 PP_ASSERT_WITH_CODE((j < SMU71_DISCRETE_MC_REGISTER_ARRAY_SIZE),
2551 "Invalid VramInfo table.", return -EINVAL);
2552 table->mc_reg_address[j].s1 = mmMC_PMG_AUTO_CMD;
2553 table->mc_reg_address[j].s0 = mmMC_PMG_AUTO_CMD;
2554 for (k = 0; k < table->num_entries; k++) {
2555 table->mc_reg_table_entry[k].mc_data[j] =
2556 (table->mc_reg_table_entry[k].mc_data[i] & 0xffff0000) >> 16;
2558 j++;
2561 break;
2563 case mmMC_SEQ_RESERVE_M:
2564 temp_reg = cgs_read_register(hwmgr->device, mmMC_PMG_CMD_MRS1);
2565 table->mc_reg_address[j].s1 = mmMC_PMG_CMD_MRS1;
2566 table->mc_reg_address[j].s0 = mmMC_SEQ_PMG_CMD_MRS1_LP;
2567 for (k = 0; k < table->num_entries; k++) {
2568 table->mc_reg_table_entry[k].mc_data[j] =
2569 (temp_reg & 0xffff0000) |
2570 (table->mc_reg_table_entry[k].mc_data[i] & 0x0000ffff);
2572 j++;
2573 break;
2575 default:
2576 break;
2581 table->last = j;
2583 return 0;
2586 static int iceland_set_valid_flag(struct iceland_mc_reg_table *table)
2588 uint8_t i, j;
2589 for (i = 0; i < table->last; i++) {
2590 for (j = 1; j < table->num_entries; j++) {
2591 if (table->mc_reg_table_entry[j-1].mc_data[i] !=
2592 table->mc_reg_table_entry[j].mc_data[i]) {
2593 table->validflag |= (1<<i);
2594 break;
2599 return 0;
2602 static int iceland_initialize_mc_reg_table(struct pp_hwmgr *hwmgr)
2604 int result;
2605 struct iceland_smumgr *smu_data = (struct iceland_smumgr *)(hwmgr->smu_backend);
2606 pp_atomctrl_mc_reg_table *table;
2607 struct iceland_mc_reg_table *ni_table = &smu_data->mc_reg_table;
2608 uint8_t module_index = iceland_get_memory_modile_index(hwmgr);
2610 table = kzalloc(sizeof(pp_atomctrl_mc_reg_table), GFP_KERNEL);
2612 if (NULL == table)
2613 return -ENOMEM;
2615 /* Program additional LP registers that are no longer programmed by VBIOS */
2616 cgs_write_register(hwmgr->device, mmMC_SEQ_RAS_TIMING_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_RAS_TIMING));
2617 cgs_write_register(hwmgr->device, mmMC_SEQ_CAS_TIMING_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_CAS_TIMING));
2618 cgs_write_register(hwmgr->device, mmMC_SEQ_DLL_STBY_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_DLL_STBY));
2619 cgs_write_register(hwmgr->device, mmMC_SEQ_G5PDX_CMD0_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_G5PDX_CMD0));
2620 cgs_write_register(hwmgr->device, mmMC_SEQ_G5PDX_CMD1_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_G5PDX_CMD1));
2621 cgs_write_register(hwmgr->device, mmMC_SEQ_G5PDX_CTRL_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_G5PDX_CTRL));
2622 cgs_write_register(hwmgr->device, mmMC_SEQ_PMG_DVS_CMD_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_PMG_DVS_CMD));
2623 cgs_write_register(hwmgr->device, mmMC_SEQ_PMG_DVS_CTL_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_PMG_DVS_CTL));
2624 cgs_write_register(hwmgr->device, mmMC_SEQ_MISC_TIMING_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_MISC_TIMING));
2625 cgs_write_register(hwmgr->device, mmMC_SEQ_MISC_TIMING2_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_MISC_TIMING2));
2626 cgs_write_register(hwmgr->device, mmMC_SEQ_PMG_CMD_EMRS_LP, cgs_read_register(hwmgr->device, mmMC_PMG_CMD_EMRS));
2627 cgs_write_register(hwmgr->device, mmMC_SEQ_PMG_CMD_MRS_LP, cgs_read_register(hwmgr->device, mmMC_PMG_CMD_MRS));
2628 cgs_write_register(hwmgr->device, mmMC_SEQ_PMG_CMD_MRS1_LP, cgs_read_register(hwmgr->device, mmMC_PMG_CMD_MRS1));
2629 cgs_write_register(hwmgr->device, mmMC_SEQ_WR_CTL_D0_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_WR_CTL_D0));
2630 cgs_write_register(hwmgr->device, mmMC_SEQ_WR_CTL_D1_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_WR_CTL_D1));
2631 cgs_write_register(hwmgr->device, mmMC_SEQ_RD_CTL_D0_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_RD_CTL_D0));
2632 cgs_write_register(hwmgr->device, mmMC_SEQ_RD_CTL_D1_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_RD_CTL_D1));
2633 cgs_write_register(hwmgr->device, mmMC_SEQ_PMG_TIMING_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_PMG_TIMING));
2634 cgs_write_register(hwmgr->device, mmMC_SEQ_PMG_CMD_MRS2_LP, cgs_read_register(hwmgr->device, mmMC_PMG_CMD_MRS2));
2635 cgs_write_register(hwmgr->device, mmMC_SEQ_WR_CTL_2_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_WR_CTL_2));
2637 result = atomctrl_initialize_mc_reg_table(hwmgr, module_index, table);
2639 if (0 == result)
2640 result = iceland_copy_vbios_smc_reg_table(table, ni_table);
2642 if (0 == result) {
2643 iceland_set_s0_mc_reg_index(ni_table);
2644 result = iceland_set_mc_special_registers(hwmgr, ni_table);
2647 if (0 == result)
2648 iceland_set_valid_flag(ni_table);
2650 kfree(table);
2652 return result;
2655 static bool iceland_is_dpm_running(struct pp_hwmgr *hwmgr)
2657 return (1 == PHM_READ_INDIRECT_FIELD(hwmgr->device,
2658 CGS_IND_REG__SMC, FEATURE_STATUS, VOLTAGE_CONTROLLER_ON))
2659 ? true : false;
2662 const struct pp_smumgr_func iceland_smu_funcs = {
2663 .name = "iceland_smu",
2664 .smu_init = &iceland_smu_init,
2665 .smu_fini = &smu7_smu_fini,
2666 .start_smu = &iceland_start_smu,
2667 .check_fw_load_finish = &smu7_check_fw_load_finish,
2668 .request_smu_load_fw = &smu7_request_smu_load_fw,
2669 .request_smu_load_specific_fw = &iceland_request_smu_load_specific_fw,
2670 .send_msg_to_smc = &smu7_send_msg_to_smc,
2671 .send_msg_to_smc_with_parameter = &smu7_send_msg_to_smc_with_parameter,
2672 .download_pptable_settings = NULL,
2673 .upload_pptable_settings = NULL,
2674 .get_offsetof = iceland_get_offsetof,
2675 .process_firmware_header = iceland_process_firmware_header,
2676 .init_smc_table = iceland_init_smc_table,
2677 .update_sclk_threshold = iceland_update_sclk_threshold,
2678 .thermal_setup_fan_table = iceland_thermal_setup_fan_table,
2679 .populate_all_graphic_levels = iceland_populate_all_graphic_levels,
2680 .populate_all_memory_levels = iceland_populate_all_memory_levels,
2681 .get_mac_definition = iceland_get_mac_definition,
2682 .initialize_mc_reg_table = iceland_initialize_mc_reg_table,
2683 .is_dpm_running = iceland_is_dpm_running,