treewide: remove redundant IS_ERR() before error code check
[linux/fpc-iii.git] / drivers / gpu / drm / amd / powerplay / smumgr / vegam_smumgr.c
blobb0e0d67cd54b3e72987f37604326e6f0f48e9085
1 /*
2 * Copyright 2017 Advanced Micro Devices, Inc.
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
11 * The above copyright notice and this permission notice shall be included in
12 * all copies or substantial portions of the Software.
14 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
17 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20 * OTHER DEALINGS IN THE SOFTWARE.
23 #include "pp_debug.h"
24 #include "smumgr.h"
25 #include "smu_ucode_xfer_vi.h"
26 #include "vegam_smumgr.h"
27 #include "smu/smu_7_1_3_d.h"
28 #include "smu/smu_7_1_3_sh_mask.h"
29 #include "gmc/gmc_8_1_d.h"
30 #include "gmc/gmc_8_1_sh_mask.h"
31 #include "oss/oss_3_0_d.h"
32 #include "gca/gfx_8_0_d.h"
33 #include "bif/bif_5_0_d.h"
34 #include "bif/bif_5_0_sh_mask.h"
35 #include "ppatomctrl.h"
36 #include "cgs_common.h"
37 #include "smu7_ppsmc.h"
39 #include "smu7_dyn_defaults.h"
41 #include "smu7_hwmgr.h"
42 #include "hardwaremanager.h"
43 #include "atombios.h"
44 #include "pppcielanes.h"
46 #include "dce/dce_11_2_d.h"
47 #include "dce/dce_11_2_sh_mask.h"
49 #define PPVEGAM_TARGETACTIVITY_DFLT 50
51 #define VOLTAGE_VID_OFFSET_SCALE1 625
52 #define VOLTAGE_VID_OFFSET_SCALE2 100
53 #define POWERTUNE_DEFAULT_SET_MAX 1
54 #define VDDC_VDDCI_DELTA 200
55 #define MC_CG_ARB_FREQ_F1 0x0b
57 #define STRAP_ASIC_RO_LSB 2168
58 #define STRAP_ASIC_RO_MSB 2175
60 #define PPSMC_MSG_ApplyAvfsCksOffVoltage ((uint16_t) 0x415)
61 #define PPSMC_MSG_EnableModeSwitchRLCNotification ((uint16_t) 0x305)
63 static const struct vegam_pt_defaults
64 vegam_power_tune_data_set_array[POWERTUNE_DEFAULT_SET_MAX] = {
65 /* sviLoadLIneEn, SviLoadLineVddC, TDC_VDDC_ThrottleReleaseLimitPerc, TDC_MAWt,
66 * TdcWaterfallCtl, DTEAmbientTempBase, DisplayCac, BAPM_TEMP_GRADIENT */
67 { 1, 0xF, 0xFD, 0x19, 5, 45, 0, 0xB0000,
68 { 0x79, 0x253, 0x25D, 0xAE, 0x72, 0x80, 0x83, 0x86, 0x6F, 0xC8, 0xC9, 0xC9, 0x2F, 0x4D, 0x61},
69 { 0x17C, 0x172, 0x180, 0x1BC, 0x1B3, 0x1BD, 0x206, 0x200, 0x203, 0x25D, 0x25A, 0x255, 0x2C3, 0x2C5, 0x2B4 } },
72 static const sclkFcwRange_t Range_Table[NUM_SCLK_RANGE] = {
73 {VCO_2_4, POSTDIV_DIV_BY_16, 75, 160, 112},
74 {VCO_3_6, POSTDIV_DIV_BY_16, 112, 224, 160},
75 {VCO_2_4, POSTDIV_DIV_BY_8, 75, 160, 112},
76 {VCO_3_6, POSTDIV_DIV_BY_8, 112, 224, 160},
77 {VCO_2_4, POSTDIV_DIV_BY_4, 75, 160, 112},
78 {VCO_3_6, POSTDIV_DIV_BY_4, 112, 216, 160},
79 {VCO_2_4, POSTDIV_DIV_BY_2, 75, 160, 108},
80 {VCO_3_6, POSTDIV_DIV_BY_2, 112, 216, 160} };
82 static int vegam_smu_init(struct pp_hwmgr *hwmgr)
84 struct vegam_smumgr *smu_data;
86 smu_data = kzalloc(sizeof(struct vegam_smumgr), GFP_KERNEL);
87 if (smu_data == NULL)
88 return -ENOMEM;
90 hwmgr->smu_backend = smu_data;
92 if (smu7_init(hwmgr)) {
93 kfree(smu_data);
94 return -EINVAL;
97 return 0;
100 static int vegam_start_smu_in_protection_mode(struct pp_hwmgr *hwmgr)
102 int result = 0;
104 /* Wait for smc boot up */
105 /* PHM_WAIT_VFPF_INDIRECT_FIELD_UNEQUAL(smumgr, SMC_IND, RCU_UC_EVENTS, boot_seq_done, 0) */
107 /* Assert reset */
108 PHM_WRITE_VFPF_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,
109 SMC_SYSCON_RESET_CNTL, rst_reg, 1);
111 result = smu7_upload_smu_firmware_image(hwmgr);
112 if (result != 0)
113 return result;
115 /* Clear status */
116 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixSMU_STATUS, 0);
118 PHM_WRITE_VFPF_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,
119 SMC_SYSCON_CLOCK_CNTL_0, ck_disable, 0);
121 /* De-assert reset */
122 PHM_WRITE_VFPF_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,
123 SMC_SYSCON_RESET_CNTL, rst_reg, 0);
126 PHM_WAIT_VFPF_INDIRECT_FIELD(hwmgr, SMC_IND, RCU_UC_EVENTS, INTERRUPTS_ENABLED, 1);
129 /* Call Test SMU message with 0x20000 offset to trigger SMU start */
130 smu7_send_msg_to_smc_offset(hwmgr);
132 /* Wait done bit to be set */
133 /* Check pass/failed indicator */
135 PHM_WAIT_VFPF_INDIRECT_FIELD_UNEQUAL(hwmgr, SMC_IND, SMU_STATUS, SMU_DONE, 0);
137 if (1 != PHM_READ_VFPF_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,
138 SMU_STATUS, SMU_PASS))
139 PP_ASSERT_WITH_CODE(false, "SMU Firmware start failed!", return -1);
141 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixFIRMWARE_FLAGS, 0);
143 PHM_WRITE_VFPF_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,
144 SMC_SYSCON_RESET_CNTL, rst_reg, 1);
146 PHM_WRITE_VFPF_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,
147 SMC_SYSCON_RESET_CNTL, rst_reg, 0);
149 /* Wait for firmware to initialize */
150 PHM_WAIT_VFPF_INDIRECT_FIELD(hwmgr, SMC_IND, FIRMWARE_FLAGS, INTERRUPTS_ENABLED, 1);
152 return result;
155 static int vegam_start_smu_in_non_protection_mode(struct pp_hwmgr *hwmgr)
157 int result = 0;
159 /* wait for smc boot up */
160 PHM_WAIT_VFPF_INDIRECT_FIELD_UNEQUAL(hwmgr, SMC_IND, RCU_UC_EVENTS, boot_seq_done, 0);
162 /* Clear firmware interrupt enable flag */
163 /* PHM_WRITE_VFPF_INDIRECT_FIELD(pSmuMgr, SMC_IND, SMC_SYSCON_MISC_CNTL, pre_fetcher_en, 1); */
164 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
165 ixFIRMWARE_FLAGS, 0);
167 PHM_WRITE_VFPF_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,
168 SMC_SYSCON_RESET_CNTL,
169 rst_reg, 1);
171 result = smu7_upload_smu_firmware_image(hwmgr);
172 if (result != 0)
173 return result;
175 /* Set smc instruct start point at 0x0 */
176 smu7_program_jump_on_start(hwmgr);
178 PHM_WRITE_VFPF_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,
179 SMC_SYSCON_CLOCK_CNTL_0, ck_disable, 0);
181 PHM_WRITE_VFPF_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,
182 SMC_SYSCON_RESET_CNTL, rst_reg, 0);
184 /* Wait for firmware to initialize */
186 PHM_WAIT_VFPF_INDIRECT_FIELD(hwmgr, SMC_IND,
187 FIRMWARE_FLAGS, INTERRUPTS_ENABLED, 1);
189 return result;
192 static int vegam_start_smu(struct pp_hwmgr *hwmgr)
194 int result = 0;
195 struct vegam_smumgr *smu_data = (struct vegam_smumgr *)(hwmgr->smu_backend);
197 /* Only start SMC if SMC RAM is not running */
198 if (!smu7_is_smc_ram_running(hwmgr) && hwmgr->not_vf) {
199 smu_data->protected_mode = (uint8_t)(PHM_READ_VFPF_INDIRECT_FIELD(hwmgr->device,
200 CGS_IND_REG__SMC, SMU_FIRMWARE, SMU_MODE));
201 smu_data->smu7_data.security_hard_key = (uint8_t)(PHM_READ_VFPF_INDIRECT_FIELD(
202 hwmgr->device, CGS_IND_REG__SMC, SMU_FIRMWARE, SMU_SEL));
204 /* Check if SMU is running in protected mode */
205 if (smu_data->protected_mode == 0)
206 result = vegam_start_smu_in_non_protection_mode(hwmgr);
207 else
208 result = vegam_start_smu_in_protection_mode(hwmgr);
210 if (result != 0)
211 PP_ASSERT_WITH_CODE(0, "Failed to load SMU ucode.", return result);
214 /* Setup SoftRegsStart here for register lookup in case DummyBackEnd is used and ProcessFirmwareHeader is not executed */
215 smu7_read_smc_sram_dword(hwmgr,
216 SMU7_FIRMWARE_HEADER_LOCATION + offsetof(SMU75_Firmware_Header, SoftRegisters),
217 &(smu_data->smu7_data.soft_regs_start),
218 0x40000);
220 result = smu7_request_smu_load_fw(hwmgr);
222 return result;
225 static int vegam_process_firmware_header(struct pp_hwmgr *hwmgr)
227 struct vegam_smumgr *smu_data = (struct vegam_smumgr *)(hwmgr->smu_backend);
228 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
229 uint32_t tmp;
230 int result;
231 bool error = false;
233 result = smu7_read_smc_sram_dword(hwmgr,
234 SMU7_FIRMWARE_HEADER_LOCATION +
235 offsetof(SMU75_Firmware_Header, DpmTable),
236 &tmp, SMC_RAM_END);
238 if (0 == result)
239 smu_data->smu7_data.dpm_table_start = tmp;
241 error |= (0 != result);
243 result = smu7_read_smc_sram_dword(hwmgr,
244 SMU7_FIRMWARE_HEADER_LOCATION +
245 offsetof(SMU75_Firmware_Header, SoftRegisters),
246 &tmp, SMC_RAM_END);
248 if (!result) {
249 data->soft_regs_start = tmp;
250 smu_data->smu7_data.soft_regs_start = tmp;
253 error |= (0 != result);
255 result = smu7_read_smc_sram_dword(hwmgr,
256 SMU7_FIRMWARE_HEADER_LOCATION +
257 offsetof(SMU75_Firmware_Header, mcRegisterTable),
258 &tmp, SMC_RAM_END);
260 if (!result)
261 smu_data->smu7_data.mc_reg_table_start = tmp;
263 result = smu7_read_smc_sram_dword(hwmgr,
264 SMU7_FIRMWARE_HEADER_LOCATION +
265 offsetof(SMU75_Firmware_Header, FanTable),
266 &tmp, SMC_RAM_END);
268 if (!result)
269 smu_data->smu7_data.fan_table_start = tmp;
271 error |= (0 != result);
273 result = smu7_read_smc_sram_dword(hwmgr,
274 SMU7_FIRMWARE_HEADER_LOCATION +
275 offsetof(SMU75_Firmware_Header, mcArbDramTimingTable),
276 &tmp, SMC_RAM_END);
278 if (!result)
279 smu_data->smu7_data.arb_table_start = tmp;
281 error |= (0 != result);
283 result = smu7_read_smc_sram_dword(hwmgr,
284 SMU7_FIRMWARE_HEADER_LOCATION +
285 offsetof(SMU75_Firmware_Header, Version),
286 &tmp, SMC_RAM_END);
288 if (!result)
289 hwmgr->microcode_version_info.SMC = tmp;
291 error |= (0 != result);
293 return error ? -1 : 0;
296 static bool vegam_is_dpm_running(struct pp_hwmgr *hwmgr)
298 return (1 == PHM_READ_INDIRECT_FIELD(hwmgr->device,
299 CGS_IND_REG__SMC, FEATURE_STATUS, VOLTAGE_CONTROLLER_ON))
300 ? true : false;
303 static uint32_t vegam_get_mac_definition(uint32_t value)
305 switch (value) {
306 case SMU_MAX_LEVELS_GRAPHICS:
307 return SMU75_MAX_LEVELS_GRAPHICS;
308 case SMU_MAX_LEVELS_MEMORY:
309 return SMU75_MAX_LEVELS_MEMORY;
310 case SMU_MAX_LEVELS_LINK:
311 return SMU75_MAX_LEVELS_LINK;
312 case SMU_MAX_ENTRIES_SMIO:
313 return SMU75_MAX_ENTRIES_SMIO;
314 case SMU_MAX_LEVELS_VDDC:
315 return SMU75_MAX_LEVELS_VDDC;
316 case SMU_MAX_LEVELS_VDDGFX:
317 return SMU75_MAX_LEVELS_VDDGFX;
318 case SMU_MAX_LEVELS_VDDCI:
319 return SMU75_MAX_LEVELS_VDDCI;
320 case SMU_MAX_LEVELS_MVDD:
321 return SMU75_MAX_LEVELS_MVDD;
322 case SMU_UVD_MCLK_HANDSHAKE_DISABLE:
323 return SMU7_UVD_MCLK_HANDSHAKE_DISABLE |
324 SMU7_VCE_MCLK_HANDSHAKE_DISABLE;
327 pr_warn("can't get the mac of %x\n", value);
328 return 0;
331 static int vegam_update_uvd_smc_table(struct pp_hwmgr *hwmgr)
333 struct vegam_smumgr *smu_data = (struct vegam_smumgr *)(hwmgr->smu_backend);
334 uint32_t mm_boot_level_offset, mm_boot_level_value;
335 struct phm_ppt_v1_information *table_info =
336 (struct phm_ppt_v1_information *)(hwmgr->pptable);
338 smu_data->smc_state_table.UvdBootLevel = 0;
339 if (table_info->mm_dep_table->count > 0)
340 smu_data->smc_state_table.UvdBootLevel =
341 (uint8_t) (table_info->mm_dep_table->count - 1);
342 mm_boot_level_offset = smu_data->smu7_data.dpm_table_start + offsetof(SMU75_Discrete_DpmTable,
343 UvdBootLevel);
344 mm_boot_level_offset /= 4;
345 mm_boot_level_offset *= 4;
346 mm_boot_level_value = cgs_read_ind_register(hwmgr->device,
347 CGS_IND_REG__SMC, mm_boot_level_offset);
348 mm_boot_level_value &= 0x00FFFFFF;
349 mm_boot_level_value |= smu_data->smc_state_table.UvdBootLevel << 24;
350 cgs_write_ind_register(hwmgr->device,
351 CGS_IND_REG__SMC, mm_boot_level_offset, mm_boot_level_value);
353 if (!phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
354 PHM_PlatformCaps_UVDDPM) ||
355 phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
356 PHM_PlatformCaps_StablePState))
357 smum_send_msg_to_smc_with_parameter(hwmgr,
358 PPSMC_MSG_UVDDPM_SetEnabledMask,
359 (uint32_t)(1 << smu_data->smc_state_table.UvdBootLevel));
360 return 0;
363 static int vegam_update_vce_smc_table(struct pp_hwmgr *hwmgr)
365 struct vegam_smumgr *smu_data = (struct vegam_smumgr *)(hwmgr->smu_backend);
366 uint32_t mm_boot_level_offset, mm_boot_level_value;
367 struct phm_ppt_v1_information *table_info =
368 (struct phm_ppt_v1_information *)(hwmgr->pptable);
370 if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
371 PHM_PlatformCaps_StablePState))
372 smu_data->smc_state_table.VceBootLevel =
373 (uint8_t) (table_info->mm_dep_table->count - 1);
374 else
375 smu_data->smc_state_table.VceBootLevel = 0;
377 mm_boot_level_offset = smu_data->smu7_data.dpm_table_start +
378 offsetof(SMU75_Discrete_DpmTable, VceBootLevel);
379 mm_boot_level_offset /= 4;
380 mm_boot_level_offset *= 4;
381 mm_boot_level_value = cgs_read_ind_register(hwmgr->device,
382 CGS_IND_REG__SMC, mm_boot_level_offset);
383 mm_boot_level_value &= 0xFF00FFFF;
384 mm_boot_level_value |= smu_data->smc_state_table.VceBootLevel << 16;
385 cgs_write_ind_register(hwmgr->device,
386 CGS_IND_REG__SMC, mm_boot_level_offset, mm_boot_level_value);
388 if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_StablePState))
389 smum_send_msg_to_smc_with_parameter(hwmgr,
390 PPSMC_MSG_VCEDPM_SetEnabledMask,
391 (uint32_t)1 << smu_data->smc_state_table.VceBootLevel);
392 return 0;
395 static int vegam_update_bif_smc_table(struct pp_hwmgr *hwmgr)
397 struct vegam_smumgr *smu_data = (struct vegam_smumgr *)(hwmgr->smu_backend);
398 struct phm_ppt_v1_information *table_info =
399 (struct phm_ppt_v1_information *)(hwmgr->pptable);
400 struct phm_ppt_v1_pcie_table *pcie_table = table_info->pcie_table;
401 int max_entry, i;
403 max_entry = (SMU75_MAX_LEVELS_LINK < pcie_table->count) ?
404 SMU75_MAX_LEVELS_LINK :
405 pcie_table->count;
406 /* Setup BIF_SCLK levels */
407 for (i = 0; i < max_entry; i++)
408 smu_data->bif_sclk_table[i] = pcie_table->entries[i].pcie_sclk;
409 return 0;
412 static int vegam_update_smc_table(struct pp_hwmgr *hwmgr, uint32_t type)
414 switch (type) {
415 case SMU_UVD_TABLE:
416 vegam_update_uvd_smc_table(hwmgr);
417 break;
418 case SMU_VCE_TABLE:
419 vegam_update_vce_smc_table(hwmgr);
420 break;
421 case SMU_BIF_TABLE:
422 vegam_update_bif_smc_table(hwmgr);
423 break;
424 default:
425 break;
427 return 0;
430 static void vegam_initialize_power_tune_defaults(struct pp_hwmgr *hwmgr)
432 struct vegam_smumgr *smu_data = (struct vegam_smumgr *)(hwmgr->smu_backend);
433 struct phm_ppt_v1_information *table_info =
434 (struct phm_ppt_v1_information *)(hwmgr->pptable);
436 if (table_info &&
437 table_info->cac_dtp_table->usPowerTuneDataSetID <= POWERTUNE_DEFAULT_SET_MAX &&
438 table_info->cac_dtp_table->usPowerTuneDataSetID)
439 smu_data->power_tune_defaults =
440 &vegam_power_tune_data_set_array
441 [table_info->cac_dtp_table->usPowerTuneDataSetID - 1];
442 else
443 smu_data->power_tune_defaults = &vegam_power_tune_data_set_array[0];
447 static int vegam_populate_smc_mvdd_table(struct pp_hwmgr *hwmgr,
448 SMU75_Discrete_DpmTable *table)
450 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
451 uint32_t count, level;
453 if (SMU7_VOLTAGE_CONTROL_BY_GPIO == data->mvdd_control) {
454 count = data->mvdd_voltage_table.count;
455 if (count > SMU_MAX_SMIO_LEVELS)
456 count = SMU_MAX_SMIO_LEVELS;
457 for (level = 0; level < count; level++) {
458 table->SmioTable2.Pattern[level].Voltage = PP_HOST_TO_SMC_US(
459 data->mvdd_voltage_table.entries[level].value * VOLTAGE_SCALE);
460 /* Index into DpmTable.Smio. Drive bits from Smio entry to get this voltage level.*/
461 table->SmioTable2.Pattern[level].Smio =
462 (uint8_t) level;
463 table->Smio[level] |=
464 data->mvdd_voltage_table.entries[level].smio_low;
466 table->SmioMask2 = data->mvdd_voltage_table.mask_low;
468 table->MvddLevelCount = (uint32_t) PP_HOST_TO_SMC_UL(count);
471 return 0;
474 static int vegam_populate_smc_vddci_table(struct pp_hwmgr *hwmgr,
475 struct SMU75_Discrete_DpmTable *table)
477 uint32_t count, level;
478 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
480 count = data->vddci_voltage_table.count;
482 if (SMU7_VOLTAGE_CONTROL_BY_GPIO == data->vddci_control) {
483 if (count > SMU_MAX_SMIO_LEVELS)
484 count = SMU_MAX_SMIO_LEVELS;
485 for (level = 0; level < count; ++level) {
486 table->SmioTable1.Pattern[level].Voltage = PP_HOST_TO_SMC_US(
487 data->vddci_voltage_table.entries[level].value * VOLTAGE_SCALE);
488 table->SmioTable1.Pattern[level].Smio = (uint8_t) level;
490 table->Smio[level] |= data->vddci_voltage_table.entries[level].smio_low;
494 table->SmioMask1 = data->vddci_voltage_table.mask_low;
496 return 0;
499 static int vegam_populate_cac_table(struct pp_hwmgr *hwmgr,
500 struct SMU75_Discrete_DpmTable *table)
502 uint32_t count;
503 uint8_t index;
504 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
505 struct phm_ppt_v1_information *table_info =
506 (struct phm_ppt_v1_information *)(hwmgr->pptable);
507 struct phm_ppt_v1_voltage_lookup_table *lookup_table =
508 table_info->vddc_lookup_table;
509 /* tables is already swapped, so in order to use the value from it,
510 * we need to swap it back.
511 * We are populating vddc CAC data to BapmVddc table
512 * in split and merged mode
514 for (count = 0; count < lookup_table->count; count++) {
515 index = phm_get_voltage_index(lookup_table,
516 data->vddc_voltage_table.entries[count].value);
517 table->BapmVddcVidLoSidd[count] =
518 convert_to_vid(lookup_table->entries[index].us_cac_low);
519 table->BapmVddcVidHiSidd[count] =
520 convert_to_vid(lookup_table->entries[index].us_cac_mid);
521 table->BapmVddcVidHiSidd2[count] =
522 convert_to_vid(lookup_table->entries[index].us_cac_high);
525 return 0;
528 static int vegam_populate_smc_voltage_tables(struct pp_hwmgr *hwmgr,
529 struct SMU75_Discrete_DpmTable *table)
531 vegam_populate_smc_vddci_table(hwmgr, table);
532 vegam_populate_smc_mvdd_table(hwmgr, table);
533 vegam_populate_cac_table(hwmgr, table);
535 return 0;
538 static int vegam_populate_ulv_level(struct pp_hwmgr *hwmgr,
539 struct SMU75_Discrete_Ulv *state)
541 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
542 struct phm_ppt_v1_information *table_info =
543 (struct phm_ppt_v1_information *)(hwmgr->pptable);
545 state->CcPwrDynRm = 0;
546 state->CcPwrDynRm1 = 0;
548 state->VddcOffset = (uint16_t) table_info->us_ulv_voltage_offset;
549 state->VddcOffsetVid = (uint8_t)(table_info->us_ulv_voltage_offset *
550 VOLTAGE_VID_OFFSET_SCALE2 / VOLTAGE_VID_OFFSET_SCALE1);
552 state->VddcPhase = data->vddc_phase_shed_control ^ 0x3;
554 CONVERT_FROM_HOST_TO_SMC_UL(state->CcPwrDynRm);
555 CONVERT_FROM_HOST_TO_SMC_UL(state->CcPwrDynRm1);
556 CONVERT_FROM_HOST_TO_SMC_US(state->VddcOffset);
558 return 0;
561 static int vegam_populate_ulv_state(struct pp_hwmgr *hwmgr,
562 struct SMU75_Discrete_DpmTable *table)
564 return vegam_populate_ulv_level(hwmgr, &table->Ulv);
567 static int vegam_populate_smc_link_level(struct pp_hwmgr *hwmgr,
568 struct SMU75_Discrete_DpmTable *table)
570 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
571 struct vegam_smumgr *smu_data =
572 (struct vegam_smumgr *)(hwmgr->smu_backend);
573 struct smu7_dpm_table *dpm_table = &data->dpm_table;
574 int i;
576 /* Index (dpm_table->pcie_speed_table.count)
577 * is reserved for PCIE boot level. */
578 for (i = 0; i <= dpm_table->pcie_speed_table.count; i++) {
579 table->LinkLevel[i].PcieGenSpeed =
580 (uint8_t)dpm_table->pcie_speed_table.dpm_levels[i].value;
581 table->LinkLevel[i].PcieLaneCount = (uint8_t)encode_pcie_lane_width(
582 dpm_table->pcie_speed_table.dpm_levels[i].param1);
583 table->LinkLevel[i].EnabledForActivity = 1;
584 table->LinkLevel[i].SPC = (uint8_t)(data->pcie_spc_cap & 0xff);
585 table->LinkLevel[i].DownThreshold = PP_HOST_TO_SMC_UL(5);
586 table->LinkLevel[i].UpThreshold = PP_HOST_TO_SMC_UL(30);
589 smu_data->smc_state_table.LinkLevelCount =
590 (uint8_t)dpm_table->pcie_speed_table.count;
592 /* To Do move to hwmgr */
593 data->dpm_level_enable_mask.pcie_dpm_enable_mask =
594 phm_get_dpm_level_enable_mask_value(&dpm_table->pcie_speed_table);
596 return 0;
599 static int vegam_get_dependency_volt_by_clk(struct pp_hwmgr *hwmgr,
600 struct phm_ppt_v1_clock_voltage_dependency_table *dep_table,
601 uint32_t clock, SMU_VoltageLevel *voltage, uint32_t *mvdd)
603 uint32_t i;
604 uint16_t vddci;
605 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
607 *voltage = *mvdd = 0;
609 /* clock - voltage dependency table is empty table */
610 if (dep_table->count == 0)
611 return -EINVAL;
613 for (i = 0; i < dep_table->count; i++) {
614 /* find first sclk bigger than request */
615 if (dep_table->entries[i].clk >= clock) {
616 *voltage |= (dep_table->entries[i].vddc *
617 VOLTAGE_SCALE) << VDDC_SHIFT;
618 if (SMU7_VOLTAGE_CONTROL_NONE == data->vddci_control)
619 *voltage |= (data->vbios_boot_state.vddci_bootup_value *
620 VOLTAGE_SCALE) << VDDCI_SHIFT;
621 else if (dep_table->entries[i].vddci)
622 *voltage |= (dep_table->entries[i].vddci *
623 VOLTAGE_SCALE) << VDDCI_SHIFT;
624 else {
625 vddci = phm_find_closest_vddci(&(data->vddci_voltage_table),
626 (dep_table->entries[i].vddc -
627 (uint16_t)VDDC_VDDCI_DELTA));
628 *voltage |= (vddci * VOLTAGE_SCALE) << VDDCI_SHIFT;
631 if (SMU7_VOLTAGE_CONTROL_NONE == data->mvdd_control)
632 *mvdd = data->vbios_boot_state.mvdd_bootup_value *
633 VOLTAGE_SCALE;
634 else if (dep_table->entries[i].mvdd)
635 *mvdd = (uint32_t) dep_table->entries[i].mvdd *
636 VOLTAGE_SCALE;
638 *voltage |= 1 << PHASES_SHIFT;
639 return 0;
643 /* sclk is bigger than max sclk in the dependence table */
644 *voltage |= (dep_table->entries[i - 1].vddc * VOLTAGE_SCALE) << VDDC_SHIFT;
645 vddci = phm_find_closest_vddci(&(data->vddci_voltage_table),
646 (dep_table->entries[i - 1].vddc -
647 (uint16_t)VDDC_VDDCI_DELTA));
649 if (SMU7_VOLTAGE_CONTROL_NONE == data->vddci_control)
650 *voltage |= (data->vbios_boot_state.vddci_bootup_value *
651 VOLTAGE_SCALE) << VDDCI_SHIFT;
652 else if (dep_table->entries[i - 1].vddci)
653 *voltage |= (dep_table->entries[i - 1].vddci *
654 VOLTAGE_SCALE) << VDDC_SHIFT;
655 else
656 *voltage |= (vddci * VOLTAGE_SCALE) << VDDCI_SHIFT;
658 if (SMU7_VOLTAGE_CONTROL_NONE == data->mvdd_control)
659 *mvdd = data->vbios_boot_state.mvdd_bootup_value * VOLTAGE_SCALE;
660 else if (dep_table->entries[i].mvdd)
661 *mvdd = (uint32_t) dep_table->entries[i - 1].mvdd * VOLTAGE_SCALE;
663 return 0;
666 static void vegam_get_sclk_range_table(struct pp_hwmgr *hwmgr,
667 SMU75_Discrete_DpmTable *table)
669 struct vegam_smumgr *smu_data = (struct vegam_smumgr *)(hwmgr->smu_backend);
670 uint32_t i, ref_clk;
672 struct pp_atom_ctrl_sclk_range_table range_table_from_vbios = { { {0} } };
674 ref_clk = amdgpu_asic_get_xclk((struct amdgpu_device *)hwmgr->adev);
676 if (0 == atomctrl_get_smc_sclk_range_table(hwmgr, &range_table_from_vbios)) {
677 for (i = 0; i < NUM_SCLK_RANGE; i++) {
678 table->SclkFcwRangeTable[i].vco_setting =
679 range_table_from_vbios.entry[i].ucVco_setting;
680 table->SclkFcwRangeTable[i].postdiv =
681 range_table_from_vbios.entry[i].ucPostdiv;
682 table->SclkFcwRangeTable[i].fcw_pcc =
683 range_table_from_vbios.entry[i].usFcw_pcc;
685 table->SclkFcwRangeTable[i].fcw_trans_upper =
686 range_table_from_vbios.entry[i].usFcw_trans_upper;
687 table->SclkFcwRangeTable[i].fcw_trans_lower =
688 range_table_from_vbios.entry[i].usRcw_trans_lower;
690 CONVERT_FROM_HOST_TO_SMC_US(table->SclkFcwRangeTable[i].fcw_pcc);
691 CONVERT_FROM_HOST_TO_SMC_US(table->SclkFcwRangeTable[i].fcw_trans_upper);
692 CONVERT_FROM_HOST_TO_SMC_US(table->SclkFcwRangeTable[i].fcw_trans_lower);
694 return;
697 for (i = 0; i < NUM_SCLK_RANGE; i++) {
698 smu_data->range_table[i].trans_lower_frequency =
699 (ref_clk * Range_Table[i].fcw_trans_lower) >> Range_Table[i].postdiv;
700 smu_data->range_table[i].trans_upper_frequency =
701 (ref_clk * Range_Table[i].fcw_trans_upper) >> Range_Table[i].postdiv;
703 table->SclkFcwRangeTable[i].vco_setting = Range_Table[i].vco_setting;
704 table->SclkFcwRangeTable[i].postdiv = Range_Table[i].postdiv;
705 table->SclkFcwRangeTable[i].fcw_pcc = Range_Table[i].fcw_pcc;
707 table->SclkFcwRangeTable[i].fcw_trans_upper = Range_Table[i].fcw_trans_upper;
708 table->SclkFcwRangeTable[i].fcw_trans_lower = Range_Table[i].fcw_trans_lower;
710 CONVERT_FROM_HOST_TO_SMC_US(table->SclkFcwRangeTable[i].fcw_pcc);
711 CONVERT_FROM_HOST_TO_SMC_US(table->SclkFcwRangeTable[i].fcw_trans_upper);
712 CONVERT_FROM_HOST_TO_SMC_US(table->SclkFcwRangeTable[i].fcw_trans_lower);
716 static int vegam_calculate_sclk_params(struct pp_hwmgr *hwmgr,
717 uint32_t clock, SMU_SclkSetting *sclk_setting)
719 struct vegam_smumgr *smu_data = (struct vegam_smumgr *)(hwmgr->smu_backend);
720 const SMU75_Discrete_DpmTable *table = &(smu_data->smc_state_table);
721 struct pp_atomctrl_clock_dividers_ai dividers;
722 uint32_t ref_clock;
723 uint32_t pcc_target_percent, pcc_target_freq, ss_target_percent, ss_target_freq;
724 uint8_t i;
725 int result;
726 uint64_t temp;
728 sclk_setting->SclkFrequency = clock;
729 /* get the engine clock dividers for this clock value */
730 result = atomctrl_get_engine_pll_dividers_ai(hwmgr, clock, &dividers);
731 if (result == 0) {
732 sclk_setting->Fcw_int = dividers.usSclk_fcw_int;
733 sclk_setting->Fcw_frac = dividers.usSclk_fcw_frac;
734 sclk_setting->Pcc_fcw_int = dividers.usPcc_fcw_int;
735 sclk_setting->PllRange = dividers.ucSclkPllRange;
736 sclk_setting->Sclk_slew_rate = 0x400;
737 sclk_setting->Pcc_up_slew_rate = dividers.usPcc_fcw_slew_frac;
738 sclk_setting->Pcc_down_slew_rate = 0xffff;
739 sclk_setting->SSc_En = dividers.ucSscEnable;
740 sclk_setting->Fcw1_int = dividers.usSsc_fcw1_int;
741 sclk_setting->Fcw1_frac = dividers.usSsc_fcw1_frac;
742 sclk_setting->Sclk_ss_slew_rate = dividers.usSsc_fcw_slew_frac;
743 return result;
746 ref_clock = amdgpu_asic_get_xclk((struct amdgpu_device *)hwmgr->adev);
748 for (i = 0; i < NUM_SCLK_RANGE; i++) {
749 if (clock > smu_data->range_table[i].trans_lower_frequency
750 && clock <= smu_data->range_table[i].trans_upper_frequency) {
751 sclk_setting->PllRange = i;
752 break;
756 sclk_setting->Fcw_int = (uint16_t)
757 ((clock << table->SclkFcwRangeTable[sclk_setting->PllRange].postdiv) /
758 ref_clock);
759 temp = clock << table->SclkFcwRangeTable[sclk_setting->PllRange].postdiv;
760 temp <<= 0x10;
761 do_div(temp, ref_clock);
762 sclk_setting->Fcw_frac = temp & 0xffff;
764 pcc_target_percent = 10; /* Hardcode 10% for now. */
765 pcc_target_freq = clock - (clock * pcc_target_percent / 100);
766 sclk_setting->Pcc_fcw_int = (uint16_t)
767 ((pcc_target_freq << table->SclkFcwRangeTable[sclk_setting->PllRange].postdiv) /
768 ref_clock);
770 ss_target_percent = 2; /* Hardcode 2% for now. */
771 sclk_setting->SSc_En = 0;
772 if (ss_target_percent) {
773 sclk_setting->SSc_En = 1;
774 ss_target_freq = clock - (clock * ss_target_percent / 100);
775 sclk_setting->Fcw1_int = (uint16_t)
776 ((ss_target_freq << table->SclkFcwRangeTable[sclk_setting->PllRange].postdiv) /
777 ref_clock);
778 temp = ss_target_freq << table->SclkFcwRangeTable[sclk_setting->PllRange].postdiv;
779 temp <<= 0x10;
780 do_div(temp, ref_clock);
781 sclk_setting->Fcw1_frac = temp & 0xffff;
784 return 0;
787 static uint8_t vegam_get_sleep_divider_id_from_clock(uint32_t clock,
788 uint32_t clock_insr)
790 uint8_t i;
791 uint32_t temp;
792 uint32_t min = max(clock_insr, (uint32_t)SMU7_MINIMUM_ENGINE_CLOCK);
794 PP_ASSERT_WITH_CODE((clock >= min),
795 "Engine clock can't satisfy stutter requirement!",
796 return 0);
797 for (i = 31; ; i--) {
798 temp = clock / (i + 1);
800 if (temp >= min || i == 0)
801 break;
803 return i;
806 static int vegam_populate_single_graphic_level(struct pp_hwmgr *hwmgr,
807 uint32_t clock, struct SMU75_Discrete_GraphicsLevel *level)
809 int result;
810 /* PP_Clocks minClocks; */
811 uint32_t mvdd;
812 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
813 struct phm_ppt_v1_information *table_info =
814 (struct phm_ppt_v1_information *)(hwmgr->pptable);
815 SMU_SclkSetting curr_sclk_setting = { 0 };
817 result = vegam_calculate_sclk_params(hwmgr, clock, &curr_sclk_setting);
819 /* populate graphics levels */
820 result = vegam_get_dependency_volt_by_clk(hwmgr,
821 table_info->vdd_dep_on_sclk, clock,
822 &level->MinVoltage, &mvdd);
824 PP_ASSERT_WITH_CODE((0 == result),
825 "can not find VDDC voltage value for "
826 "VDDC engine clock dependency table",
827 return result);
828 level->ActivityLevel = (uint16_t)(SclkDPMTuning_VEGAM >> DPMTuning_Activity_Shift);
830 level->CcPwrDynRm = 0;
831 level->CcPwrDynRm1 = 0;
832 level->EnabledForActivity = 0;
833 level->EnabledForThrottle = 1;
834 level->VoltageDownHyst = 0;
835 level->PowerThrottle = 0;
836 data->display_timing.min_clock_in_sr = hwmgr->display_config->min_core_set_clock_in_sr;
838 if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_SclkDeepSleep))
839 level->DeepSleepDivId = vegam_get_sleep_divider_id_from_clock(clock,
840 hwmgr->display_config->min_core_set_clock_in_sr);
842 level->SclkSetting = curr_sclk_setting;
844 CONVERT_FROM_HOST_TO_SMC_UL(level->MinVoltage);
845 CONVERT_FROM_HOST_TO_SMC_UL(level->CcPwrDynRm);
846 CONVERT_FROM_HOST_TO_SMC_UL(level->CcPwrDynRm1);
847 CONVERT_FROM_HOST_TO_SMC_US(level->ActivityLevel);
848 CONVERT_FROM_HOST_TO_SMC_UL(level->SclkSetting.SclkFrequency);
849 CONVERT_FROM_HOST_TO_SMC_US(level->SclkSetting.Fcw_int);
850 CONVERT_FROM_HOST_TO_SMC_US(level->SclkSetting.Fcw_frac);
851 CONVERT_FROM_HOST_TO_SMC_US(level->SclkSetting.Pcc_fcw_int);
852 CONVERT_FROM_HOST_TO_SMC_US(level->SclkSetting.Sclk_slew_rate);
853 CONVERT_FROM_HOST_TO_SMC_US(level->SclkSetting.Pcc_up_slew_rate);
854 CONVERT_FROM_HOST_TO_SMC_US(level->SclkSetting.Pcc_down_slew_rate);
855 CONVERT_FROM_HOST_TO_SMC_US(level->SclkSetting.Fcw1_int);
856 CONVERT_FROM_HOST_TO_SMC_US(level->SclkSetting.Fcw1_frac);
857 CONVERT_FROM_HOST_TO_SMC_US(level->SclkSetting.Sclk_ss_slew_rate);
858 return 0;
861 static int vegam_populate_all_graphic_levels(struct pp_hwmgr *hwmgr)
863 struct smu7_hwmgr *hw_data = (struct smu7_hwmgr *)(hwmgr->backend);
864 struct vegam_smumgr *smu_data = (struct vegam_smumgr *)(hwmgr->smu_backend);
865 struct smu7_dpm_table *dpm_table = &hw_data->dpm_table;
866 struct phm_ppt_v1_information *table_info =
867 (struct phm_ppt_v1_information *)(hwmgr->pptable);
868 struct phm_ppt_v1_pcie_table *pcie_table = table_info->pcie_table;
869 uint8_t pcie_entry_cnt = (uint8_t) hw_data->dpm_table.pcie_speed_table.count;
870 int result = 0;
871 uint32_t array = smu_data->smu7_data.dpm_table_start +
872 offsetof(SMU75_Discrete_DpmTable, GraphicsLevel);
873 uint32_t array_size = sizeof(struct SMU75_Discrete_GraphicsLevel) *
874 SMU75_MAX_LEVELS_GRAPHICS;
875 struct SMU75_Discrete_GraphicsLevel *levels =
876 smu_data->smc_state_table.GraphicsLevel;
877 uint32_t i, max_entry;
878 uint8_t hightest_pcie_level_enabled = 0,
879 lowest_pcie_level_enabled = 0,
880 mid_pcie_level_enabled = 0,
881 count = 0;
883 vegam_get_sclk_range_table(hwmgr, &(smu_data->smc_state_table));
885 for (i = 0; i < dpm_table->sclk_table.count; i++) {
887 result = vegam_populate_single_graphic_level(hwmgr,
888 dpm_table->sclk_table.dpm_levels[i].value,
889 &(smu_data->smc_state_table.GraphicsLevel[i]));
890 if (result)
891 return result;
893 levels[i].UpHyst = (uint8_t)
894 (SclkDPMTuning_VEGAM >> DPMTuning_Uphyst_Shift);
895 levels[i].DownHyst = (uint8_t)
896 (SclkDPMTuning_VEGAM >> DPMTuning_Downhyst_Shift);
897 /* Making sure only DPM level 0-1 have Deep Sleep Div ID populated. */
898 if (i > 1)
899 levels[i].DeepSleepDivId = 0;
901 if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
902 PHM_PlatformCaps_SPLLShutdownSupport))
903 smu_data->smc_state_table.GraphicsLevel[0].SclkSetting.SSc_En = 0;
905 smu_data->smc_state_table.GraphicsDpmLevelCount =
906 (uint8_t)dpm_table->sclk_table.count;
907 hw_data->dpm_level_enable_mask.sclk_dpm_enable_mask =
908 phm_get_dpm_level_enable_mask_value(&dpm_table->sclk_table);
910 for (i = 0; i < dpm_table->sclk_table.count; i++)
911 levels[i].EnabledForActivity =
912 (hw_data->dpm_level_enable_mask.sclk_dpm_enable_mask >> i) & 0x1;
914 if (pcie_table != NULL) {
915 PP_ASSERT_WITH_CODE((1 <= pcie_entry_cnt),
916 "There must be 1 or more PCIE levels defined in PPTable.",
917 return -EINVAL);
918 max_entry = pcie_entry_cnt - 1;
919 for (i = 0; i < dpm_table->sclk_table.count; i++)
920 levels[i].pcieDpmLevel =
921 (uint8_t) ((i < max_entry) ? i : max_entry);
922 } else {
923 while (hw_data->dpm_level_enable_mask.pcie_dpm_enable_mask &&
924 ((hw_data->dpm_level_enable_mask.pcie_dpm_enable_mask &
925 (1 << (hightest_pcie_level_enabled + 1))) != 0))
926 hightest_pcie_level_enabled++;
928 while (hw_data->dpm_level_enable_mask.pcie_dpm_enable_mask &&
929 ((hw_data->dpm_level_enable_mask.pcie_dpm_enable_mask &
930 (1 << lowest_pcie_level_enabled)) == 0))
931 lowest_pcie_level_enabled++;
933 while ((count < hightest_pcie_level_enabled) &&
934 ((hw_data->dpm_level_enable_mask.pcie_dpm_enable_mask &
935 (1 << (lowest_pcie_level_enabled + 1 + count))) == 0))
936 count++;
938 mid_pcie_level_enabled = (lowest_pcie_level_enabled + 1 + count) <
939 hightest_pcie_level_enabled ?
940 (lowest_pcie_level_enabled + 1 + count) :
941 hightest_pcie_level_enabled;
943 /* set pcieDpmLevel to hightest_pcie_level_enabled */
944 for (i = 2; i < dpm_table->sclk_table.count; i++)
945 levels[i].pcieDpmLevel = hightest_pcie_level_enabled;
947 /* set pcieDpmLevel to lowest_pcie_level_enabled */
948 levels[0].pcieDpmLevel = lowest_pcie_level_enabled;
950 /* set pcieDpmLevel to mid_pcie_level_enabled */
951 levels[1].pcieDpmLevel = mid_pcie_level_enabled;
953 /* level count will send to smc once at init smc table and never change */
954 result = smu7_copy_bytes_to_smc(hwmgr, array, (uint8_t *)levels,
955 (uint32_t)array_size, SMC_RAM_END);
957 return result;
960 static int vegam_calculate_mclk_params(struct pp_hwmgr *hwmgr,
961 uint32_t clock, struct SMU75_Discrete_MemoryLevel *mem_level)
963 struct pp_atomctrl_memory_clock_param_ai mpll_param;
965 PP_ASSERT_WITH_CODE(!atomctrl_get_memory_pll_dividers_ai(hwmgr,
966 clock, &mpll_param),
967 "Failed to retrieve memory pll parameter.",
968 return -EINVAL);
970 mem_level->MclkFrequency = (uint32_t)mpll_param.ulClock;
971 mem_level->Fcw_int = (uint16_t)mpll_param.ulMclk_fcw_int;
972 mem_level->Fcw_frac = (uint16_t)mpll_param.ulMclk_fcw_frac;
973 mem_level->Postdiv = (uint8_t)mpll_param.ulPostDiv;
975 return 0;
978 static int vegam_populate_single_memory_level(struct pp_hwmgr *hwmgr,
979 uint32_t clock, struct SMU75_Discrete_MemoryLevel *mem_level)
981 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
982 struct phm_ppt_v1_information *table_info =
983 (struct phm_ppt_v1_information *)(hwmgr->pptable);
984 int result = 0;
985 uint32_t mclk_stutter_mode_threshold = 60000;
988 if (table_info->vdd_dep_on_mclk) {
989 result = vegam_get_dependency_volt_by_clk(hwmgr,
990 table_info->vdd_dep_on_mclk, clock,
991 &mem_level->MinVoltage, &mem_level->MinMvdd);
992 PP_ASSERT_WITH_CODE(!result,
993 "can not find MinVddc voltage value from memory "
994 "VDDC voltage dependency table", return result);
997 result = vegam_calculate_mclk_params(hwmgr, clock, mem_level);
998 PP_ASSERT_WITH_CODE(!result,
999 "Failed to calculate mclk params.",
1000 return -EINVAL);
1002 mem_level->EnabledForThrottle = 1;
1003 mem_level->EnabledForActivity = 0;
1004 mem_level->VoltageDownHyst = 0;
1005 mem_level->ActivityLevel = (uint16_t)
1006 (MemoryDPMTuning_VEGAM >> DPMTuning_Activity_Shift);
1007 mem_level->StutterEnable = false;
1008 mem_level->DisplayWatermark = PPSMC_DISPLAY_WATERMARK_LOW;
1010 data->display_timing.num_existing_displays = hwmgr->display_config->num_display;
1011 data->display_timing.vrefresh = hwmgr->display_config->vrefresh;
1013 if (mclk_stutter_mode_threshold &&
1014 (clock <= mclk_stutter_mode_threshold) &&
1015 (PHM_READ_FIELD(hwmgr->device, DPG_PIPE_STUTTER_CONTROL,
1016 STUTTER_ENABLE) & 0x1))
1017 mem_level->StutterEnable = true;
1019 if (!result) {
1020 CONVERT_FROM_HOST_TO_SMC_UL(mem_level->MinMvdd);
1021 CONVERT_FROM_HOST_TO_SMC_UL(mem_level->MclkFrequency);
1022 CONVERT_FROM_HOST_TO_SMC_US(mem_level->Fcw_int);
1023 CONVERT_FROM_HOST_TO_SMC_US(mem_level->Fcw_frac);
1024 CONVERT_FROM_HOST_TO_SMC_US(mem_level->ActivityLevel);
1025 CONVERT_FROM_HOST_TO_SMC_UL(mem_level->MinVoltage);
1028 return result;
1031 static int vegam_populate_all_memory_levels(struct pp_hwmgr *hwmgr)
1033 struct smu7_hwmgr *hw_data = (struct smu7_hwmgr *)(hwmgr->backend);
1034 struct vegam_smumgr *smu_data = (struct vegam_smumgr *)(hwmgr->smu_backend);
1035 struct smu7_dpm_table *dpm_table = &hw_data->dpm_table;
1036 int result;
1037 /* populate MCLK dpm table to SMU7 */
1038 uint32_t array = smu_data->smu7_data.dpm_table_start +
1039 offsetof(SMU75_Discrete_DpmTable, MemoryLevel);
1040 uint32_t array_size = sizeof(SMU75_Discrete_MemoryLevel) *
1041 SMU75_MAX_LEVELS_MEMORY;
1042 struct SMU75_Discrete_MemoryLevel *levels =
1043 smu_data->smc_state_table.MemoryLevel;
1044 uint32_t i;
1046 for (i = 0; i < dpm_table->mclk_table.count; i++) {
1047 PP_ASSERT_WITH_CODE((0 != dpm_table->mclk_table.dpm_levels[i].value),
1048 "can not populate memory level as memory clock is zero",
1049 return -EINVAL);
1050 result = vegam_populate_single_memory_level(hwmgr,
1051 dpm_table->mclk_table.dpm_levels[i].value,
1052 &levels[i]);
1054 if (result)
1055 return result;
1057 levels[i].UpHyst = (uint8_t)
1058 (MemoryDPMTuning_VEGAM >> DPMTuning_Uphyst_Shift);
1059 levels[i].DownHyst = (uint8_t)
1060 (MemoryDPMTuning_VEGAM >> DPMTuning_Downhyst_Shift);
1063 smu_data->smc_state_table.MemoryDpmLevelCount =
1064 (uint8_t)dpm_table->mclk_table.count;
1065 hw_data->dpm_level_enable_mask.mclk_dpm_enable_mask =
1066 phm_get_dpm_level_enable_mask_value(&dpm_table->mclk_table);
1068 for (i = 0; i < dpm_table->mclk_table.count; i++)
1069 levels[i].EnabledForActivity =
1070 (hw_data->dpm_level_enable_mask.mclk_dpm_enable_mask >> i) & 0x1;
1072 levels[dpm_table->mclk_table.count - 1].DisplayWatermark =
1073 PPSMC_DISPLAY_WATERMARK_HIGH;
1075 /* level count will send to smc once at init smc table and never change */
1076 result = smu7_copy_bytes_to_smc(hwmgr, array, (uint8_t *)levels,
1077 (uint32_t)array_size, SMC_RAM_END);
1079 return result;
1082 static int vegam_populate_mvdd_value(struct pp_hwmgr *hwmgr,
1083 uint32_t mclk, SMIO_Pattern *smio_pat)
1085 const struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
1086 struct phm_ppt_v1_information *table_info =
1087 (struct phm_ppt_v1_information *)(hwmgr->pptable);
1088 uint32_t i = 0;
1090 if (SMU7_VOLTAGE_CONTROL_NONE != data->mvdd_control) {
1091 /* find mvdd value which clock is more than request */
1092 for (i = 0; i < table_info->vdd_dep_on_mclk->count; i++) {
1093 if (mclk <= table_info->vdd_dep_on_mclk->entries[i].clk) {
1094 smio_pat->Voltage = data->mvdd_voltage_table.entries[i].value;
1095 break;
1098 PP_ASSERT_WITH_CODE(i < table_info->vdd_dep_on_mclk->count,
1099 "MVDD Voltage is outside the supported range.",
1100 return -EINVAL);
1101 } else
1102 return -EINVAL;
1104 return 0;
1107 static int vegam_populate_smc_acpi_level(struct pp_hwmgr *hwmgr,
1108 SMU75_Discrete_DpmTable *table)
1110 int result = 0;
1111 uint32_t sclk_frequency;
1112 const struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
1113 struct phm_ppt_v1_information *table_info =
1114 (struct phm_ppt_v1_information *)(hwmgr->pptable);
1115 SMIO_Pattern vol_level;
1116 uint32_t mvdd;
1118 table->ACPILevel.Flags &= ~PPSMC_SWSTATE_FLAG_DC;
1120 /* Get MinVoltage and Frequency from DPM0,
1121 * already converted to SMC_UL */
1122 sclk_frequency = data->vbios_boot_state.sclk_bootup_value;
1123 result = vegam_get_dependency_volt_by_clk(hwmgr,
1124 table_info->vdd_dep_on_sclk,
1125 sclk_frequency,
1126 &table->ACPILevel.MinVoltage, &mvdd);
1127 PP_ASSERT_WITH_CODE(!result,
1128 "Cannot find ACPI VDDC voltage value "
1129 "in Clock Dependency Table",
1132 result = vegam_calculate_sclk_params(hwmgr, sclk_frequency,
1133 &(table->ACPILevel.SclkSetting));
1134 PP_ASSERT_WITH_CODE(!result,
1135 "Error retrieving Engine Clock dividers from VBIOS.",
1136 return result);
1138 table->ACPILevel.DeepSleepDivId = 0;
1139 table->ACPILevel.CcPwrDynRm = 0;
1140 table->ACPILevel.CcPwrDynRm1 = 0;
1142 CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.Flags);
1143 CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.MinVoltage);
1144 CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.CcPwrDynRm);
1145 CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.CcPwrDynRm1);
1147 CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.SclkSetting.SclkFrequency);
1148 CONVERT_FROM_HOST_TO_SMC_US(table->ACPILevel.SclkSetting.Fcw_int);
1149 CONVERT_FROM_HOST_TO_SMC_US(table->ACPILevel.SclkSetting.Fcw_frac);
1150 CONVERT_FROM_HOST_TO_SMC_US(table->ACPILevel.SclkSetting.Pcc_fcw_int);
1151 CONVERT_FROM_HOST_TO_SMC_US(table->ACPILevel.SclkSetting.Sclk_slew_rate);
1152 CONVERT_FROM_HOST_TO_SMC_US(table->ACPILevel.SclkSetting.Pcc_up_slew_rate);
1153 CONVERT_FROM_HOST_TO_SMC_US(table->ACPILevel.SclkSetting.Pcc_down_slew_rate);
1154 CONVERT_FROM_HOST_TO_SMC_US(table->ACPILevel.SclkSetting.Fcw1_int);
1155 CONVERT_FROM_HOST_TO_SMC_US(table->ACPILevel.SclkSetting.Fcw1_frac);
1156 CONVERT_FROM_HOST_TO_SMC_US(table->ACPILevel.SclkSetting.Sclk_ss_slew_rate);
1159 /* Get MinVoltage and Frequency from DPM0, already converted to SMC_UL */
1160 table->MemoryACPILevel.MclkFrequency = data->vbios_boot_state.mclk_bootup_value;
1161 result = vegam_get_dependency_volt_by_clk(hwmgr,
1162 table_info->vdd_dep_on_mclk,
1163 table->MemoryACPILevel.MclkFrequency,
1164 &table->MemoryACPILevel.MinVoltage, &mvdd);
1165 PP_ASSERT_WITH_CODE((0 == result),
1166 "Cannot find ACPI VDDCI voltage value "
1167 "in Clock Dependency Table",
1170 if (!vegam_populate_mvdd_value(hwmgr, 0, &vol_level))
1171 table->MemoryACPILevel.MinMvdd = PP_HOST_TO_SMC_UL(vol_level.Voltage);
1172 else
1173 table->MemoryACPILevel.MinMvdd = 0;
1175 table->MemoryACPILevel.StutterEnable = false;
1177 table->MemoryACPILevel.EnabledForThrottle = 0;
1178 table->MemoryACPILevel.EnabledForActivity = 0;
1179 table->MemoryACPILevel.UpHyst = 0;
1180 table->MemoryACPILevel.DownHyst = 100;
1181 table->MemoryACPILevel.VoltageDownHyst = 0;
1182 table->MemoryACPILevel.ActivityLevel =
1183 PP_HOST_TO_SMC_US(data->current_profile_setting.mclk_activity);
1185 CONVERT_FROM_HOST_TO_SMC_UL(table->MemoryACPILevel.MclkFrequency);
1186 CONVERT_FROM_HOST_TO_SMC_UL(table->MemoryACPILevel.MinVoltage);
1188 return result;
1191 static int vegam_populate_smc_vce_level(struct pp_hwmgr *hwmgr,
1192 SMU75_Discrete_DpmTable *table)
1194 int result = -EINVAL;
1195 uint8_t count;
1196 struct pp_atomctrl_clock_dividers_vi dividers;
1197 struct phm_ppt_v1_information *table_info =
1198 (struct phm_ppt_v1_information *)(hwmgr->pptable);
1199 struct phm_ppt_v1_mm_clock_voltage_dependency_table *mm_table =
1200 table_info->mm_dep_table;
1201 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
1202 uint32_t vddci;
1204 table->VceLevelCount = (uint8_t)(mm_table->count);
1205 table->VceBootLevel = 0;
1207 for (count = 0; count < table->VceLevelCount; count++) {
1208 table->VceLevel[count].Frequency = mm_table->entries[count].eclk;
1209 table->VceLevel[count].MinVoltage = 0;
1210 table->VceLevel[count].MinVoltage |=
1211 (mm_table->entries[count].vddc * VOLTAGE_SCALE) << VDDC_SHIFT;
1213 if (SMU7_VOLTAGE_CONTROL_BY_GPIO == data->vddci_control)
1214 vddci = (uint32_t)phm_find_closest_vddci(&(data->vddci_voltage_table),
1215 mm_table->entries[count].vddc - VDDC_VDDCI_DELTA);
1216 else if (SMU7_VOLTAGE_CONTROL_BY_SVID2 == data->vddci_control)
1217 vddci = mm_table->entries[count].vddc - VDDC_VDDCI_DELTA;
1218 else
1219 vddci = (data->vbios_boot_state.vddci_bootup_value * VOLTAGE_SCALE) << VDDCI_SHIFT;
1222 table->VceLevel[count].MinVoltage |=
1223 (vddci * VOLTAGE_SCALE) << VDDCI_SHIFT;
1224 table->VceLevel[count].MinVoltage |= 1 << PHASES_SHIFT;
1226 /*retrieve divider value for VBIOS */
1227 result = atomctrl_get_dfs_pll_dividers_vi(hwmgr,
1228 table->VceLevel[count].Frequency, &dividers);
1229 PP_ASSERT_WITH_CODE((0 == result),
1230 "can not find divide id for VCE engine clock",
1231 return result);
1233 table->VceLevel[count].Divider = (uint8_t)dividers.pll_post_divider;
1235 CONVERT_FROM_HOST_TO_SMC_UL(table->VceLevel[count].Frequency);
1236 CONVERT_FROM_HOST_TO_SMC_UL(table->VceLevel[count].MinVoltage);
1238 return result;
1241 static int vegam_populate_memory_timing_parameters(struct pp_hwmgr *hwmgr,
1242 int32_t eng_clock, int32_t mem_clock,
1243 SMU75_Discrete_MCArbDramTimingTableEntry *arb_regs)
1245 uint32_t dram_timing;
1246 uint32_t dram_timing2;
1247 uint32_t burst_time;
1248 uint32_t rfsh_rate;
1249 uint32_t misc3;
1251 int result;
1253 result = atomctrl_set_engine_dram_timings_rv770(hwmgr,
1254 eng_clock, mem_clock);
1255 PP_ASSERT_WITH_CODE(result == 0,
1256 "Error calling VBIOS to set DRAM_TIMING.",
1257 return result);
1259 dram_timing = cgs_read_register(hwmgr->device, mmMC_ARB_DRAM_TIMING);
1260 dram_timing2 = cgs_read_register(hwmgr->device, mmMC_ARB_DRAM_TIMING2);
1261 burst_time = cgs_read_register(hwmgr->device, mmMC_ARB_BURST_TIME);
1262 rfsh_rate = cgs_read_register(hwmgr->device, mmMC_ARB_RFSH_RATE);
1263 misc3 = cgs_read_register(hwmgr->device, mmMC_ARB_MISC3);
1265 arb_regs->McArbDramTiming = PP_HOST_TO_SMC_UL(dram_timing);
1266 arb_regs->McArbDramTiming2 = PP_HOST_TO_SMC_UL(dram_timing2);
1267 arb_regs->McArbBurstTime = PP_HOST_TO_SMC_UL(burst_time);
1268 arb_regs->McArbRfshRate = PP_HOST_TO_SMC_UL(rfsh_rate);
1269 arb_regs->McArbMisc3 = PP_HOST_TO_SMC_UL(misc3);
1271 return 0;
1274 static int vegam_program_memory_timing_parameters(struct pp_hwmgr *hwmgr)
1276 struct smu7_hwmgr *hw_data = (struct smu7_hwmgr *)(hwmgr->backend);
1277 struct vegam_smumgr *smu_data = (struct vegam_smumgr *)(hwmgr->smu_backend);
1278 struct SMU75_Discrete_MCArbDramTimingTable arb_regs;
1279 uint32_t i, j;
1280 int result = 0;
1282 memset(&arb_regs, 0, sizeof(SMU75_Discrete_MCArbDramTimingTable));
1284 for (i = 0; i < hw_data->dpm_table.sclk_table.count; i++) {
1285 for (j = 0; j < hw_data->dpm_table.mclk_table.count; j++) {
1286 result = vegam_populate_memory_timing_parameters(hwmgr,
1287 hw_data->dpm_table.sclk_table.dpm_levels[i].value,
1288 hw_data->dpm_table.mclk_table.dpm_levels[j].value,
1289 &arb_regs.entries[i][j]);
1290 if (result)
1291 return result;
1295 result = smu7_copy_bytes_to_smc(
1296 hwmgr,
1297 smu_data->smu7_data.arb_table_start,
1298 (uint8_t *)&arb_regs,
1299 sizeof(SMU75_Discrete_MCArbDramTimingTable),
1300 SMC_RAM_END);
1301 return result;
1304 static int vegam_populate_smc_uvd_level(struct pp_hwmgr *hwmgr,
1305 struct SMU75_Discrete_DpmTable *table)
1307 int result = -EINVAL;
1308 uint8_t count;
1309 struct pp_atomctrl_clock_dividers_vi dividers;
1310 struct phm_ppt_v1_information *table_info =
1311 (struct phm_ppt_v1_information *)(hwmgr->pptable);
1312 struct phm_ppt_v1_mm_clock_voltage_dependency_table *mm_table =
1313 table_info->mm_dep_table;
1314 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
1315 uint32_t vddci;
1317 table->UvdLevelCount = (uint8_t)(mm_table->count);
1318 table->UvdBootLevel = 0;
1320 for (count = 0; count < table->UvdLevelCount; count++) {
1321 table->UvdLevel[count].MinVoltage = 0;
1322 table->UvdLevel[count].VclkFrequency = mm_table->entries[count].vclk;
1323 table->UvdLevel[count].DclkFrequency = mm_table->entries[count].dclk;
1324 table->UvdLevel[count].MinVoltage |=
1325 (mm_table->entries[count].vddc * VOLTAGE_SCALE) << VDDC_SHIFT;
1327 if (SMU7_VOLTAGE_CONTROL_BY_GPIO == data->vddci_control)
1328 vddci = (uint32_t)phm_find_closest_vddci(&(data->vddci_voltage_table),
1329 mm_table->entries[count].vddc - VDDC_VDDCI_DELTA);
1330 else if (SMU7_VOLTAGE_CONTROL_BY_SVID2 == data->vddci_control)
1331 vddci = mm_table->entries[count].vddc - VDDC_VDDCI_DELTA;
1332 else
1333 vddci = (data->vbios_boot_state.vddci_bootup_value * VOLTAGE_SCALE) << VDDCI_SHIFT;
1335 table->UvdLevel[count].MinVoltage |= (vddci * VOLTAGE_SCALE) << VDDCI_SHIFT;
1336 table->UvdLevel[count].MinVoltage |= 1 << PHASES_SHIFT;
1338 /* retrieve divider value for VBIOS */
1339 result = atomctrl_get_dfs_pll_dividers_vi(hwmgr,
1340 table->UvdLevel[count].VclkFrequency, &dividers);
1341 PP_ASSERT_WITH_CODE((0 == result),
1342 "can not find divide id for Vclk clock", return result);
1344 table->UvdLevel[count].VclkDivider = (uint8_t)dividers.pll_post_divider;
1346 result = atomctrl_get_dfs_pll_dividers_vi(hwmgr,
1347 table->UvdLevel[count].DclkFrequency, &dividers);
1348 PP_ASSERT_WITH_CODE((0 == result),
1349 "can not find divide id for Dclk clock", return result);
1351 table->UvdLevel[count].DclkDivider = (uint8_t)dividers.pll_post_divider;
1353 CONVERT_FROM_HOST_TO_SMC_UL(table->UvdLevel[count].VclkFrequency);
1354 CONVERT_FROM_HOST_TO_SMC_UL(table->UvdLevel[count].DclkFrequency);
1355 CONVERT_FROM_HOST_TO_SMC_UL(table->UvdLevel[count].MinVoltage);
1358 return result;
1361 static int vegam_populate_smc_boot_level(struct pp_hwmgr *hwmgr,
1362 struct SMU75_Discrete_DpmTable *table)
1364 int result = 0;
1365 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
1367 table->GraphicsBootLevel = 0;
1368 table->MemoryBootLevel = 0;
1370 /* find boot level from dpm table */
1371 result = phm_find_boot_level(&(data->dpm_table.sclk_table),
1372 data->vbios_boot_state.sclk_bootup_value,
1373 (uint32_t *)&(table->GraphicsBootLevel));
1374 if (result)
1375 return result;
1377 result = phm_find_boot_level(&(data->dpm_table.mclk_table),
1378 data->vbios_boot_state.mclk_bootup_value,
1379 (uint32_t *)&(table->MemoryBootLevel));
1381 if (result)
1382 return result;
1384 table->BootVddc = data->vbios_boot_state.vddc_bootup_value *
1385 VOLTAGE_SCALE;
1386 table->BootVddci = data->vbios_boot_state.vddci_bootup_value *
1387 VOLTAGE_SCALE;
1388 table->BootMVdd = data->vbios_boot_state.mvdd_bootup_value *
1389 VOLTAGE_SCALE;
1391 CONVERT_FROM_HOST_TO_SMC_US(table->BootVddc);
1392 CONVERT_FROM_HOST_TO_SMC_US(table->BootVddci);
1393 CONVERT_FROM_HOST_TO_SMC_US(table->BootMVdd);
1395 return 0;
1398 static int vegam_populate_smc_initial_state(struct pp_hwmgr *hwmgr)
1400 struct smu7_hwmgr *hw_data = (struct smu7_hwmgr *)(hwmgr->backend);
1401 struct vegam_smumgr *smu_data = (struct vegam_smumgr *)(hwmgr->smu_backend);
1402 struct phm_ppt_v1_information *table_info =
1403 (struct phm_ppt_v1_information *)(hwmgr->pptable);
1404 uint8_t count, level;
1406 count = (uint8_t)(table_info->vdd_dep_on_sclk->count);
1408 for (level = 0; level < count; level++) {
1409 if (table_info->vdd_dep_on_sclk->entries[level].clk >=
1410 hw_data->vbios_boot_state.sclk_bootup_value) {
1411 smu_data->smc_state_table.GraphicsBootLevel = level;
1412 break;
1416 count = (uint8_t)(table_info->vdd_dep_on_mclk->count);
1417 for (level = 0; level < count; level++) {
1418 if (table_info->vdd_dep_on_mclk->entries[level].clk >=
1419 hw_data->vbios_boot_state.mclk_bootup_value) {
1420 smu_data->smc_state_table.MemoryBootLevel = level;
1421 break;
1425 return 0;
1428 static uint16_t scale_fan_gain_settings(uint16_t raw_setting)
1430 uint32_t tmp;
1431 tmp = raw_setting * 4096 / 100;
1432 return (uint16_t)tmp;
1435 static int vegam_populate_bapm_parameters_in_dpm_table(struct pp_hwmgr *hwmgr)
1437 struct vegam_smumgr *smu_data = (struct vegam_smumgr *)(hwmgr->smu_backend);
1439 const struct vegam_pt_defaults *defaults = smu_data->power_tune_defaults;
1440 SMU75_Discrete_DpmTable *table = &(smu_data->smc_state_table);
1441 struct phm_ppt_v1_information *table_info =
1442 (struct phm_ppt_v1_information *)(hwmgr->pptable);
1443 struct phm_cac_tdp_table *cac_dtp_table = table_info->cac_dtp_table;
1444 struct pp_advance_fan_control_parameters *fan_table =
1445 &hwmgr->thermal_controller.advanceFanControlParameters;
1446 int i, j, k;
1447 const uint16_t *pdef1;
1448 const uint16_t *pdef2;
1450 table->DefaultTdp = PP_HOST_TO_SMC_US((uint16_t)(cac_dtp_table->usTDP * 128));
1451 table->TargetTdp = PP_HOST_TO_SMC_US((uint16_t)(cac_dtp_table->usTDP * 128));
1453 PP_ASSERT_WITH_CODE(cac_dtp_table->usTargetOperatingTemp <= 255,
1454 "Target Operating Temp is out of Range!",
1457 table->TemperatureLimitEdge = PP_HOST_TO_SMC_US(
1458 cac_dtp_table->usTargetOperatingTemp * 256);
1459 table->TemperatureLimitHotspot = PP_HOST_TO_SMC_US(
1460 cac_dtp_table->usTemperatureLimitHotspot * 256);
1461 table->FanGainEdge = PP_HOST_TO_SMC_US(
1462 scale_fan_gain_settings(fan_table->usFanGainEdge));
1463 table->FanGainHotspot = PP_HOST_TO_SMC_US(
1464 scale_fan_gain_settings(fan_table->usFanGainHotspot));
1466 pdef1 = defaults->BAPMTI_R;
1467 pdef2 = defaults->BAPMTI_RC;
1469 for (i = 0; i < SMU75_DTE_ITERATIONS; i++) {
1470 for (j = 0; j < SMU75_DTE_SOURCES; j++) {
1471 for (k = 0; k < SMU75_DTE_SINKS; k++) {
1472 table->BAPMTI_R[i][j][k] = PP_HOST_TO_SMC_US(*pdef1);
1473 table->BAPMTI_RC[i][j][k] = PP_HOST_TO_SMC_US(*pdef2);
1474 pdef1++;
1475 pdef2++;
1480 return 0;
1483 static int vegam_populate_clock_stretcher_data_table(struct pp_hwmgr *hwmgr)
1485 uint32_t ro, efuse, volt_without_cks, volt_with_cks, value, max, min;
1486 struct vegam_smumgr *smu_data =
1487 (struct vegam_smumgr *)(hwmgr->smu_backend);
1489 uint8_t i, stretch_amount, volt_offset = 0;
1490 struct phm_ppt_v1_information *table_info =
1491 (struct phm_ppt_v1_information *)(hwmgr->pptable);
1492 struct phm_ppt_v1_clock_voltage_dependency_table *sclk_table =
1493 table_info->vdd_dep_on_sclk;
1494 uint32_t mask = (1 << ((STRAP_ASIC_RO_MSB - STRAP_ASIC_RO_LSB) + 1)) - 1;
1496 stretch_amount = (uint8_t)table_info->cac_dtp_table->usClockStretchAmount;
1498 atomctrl_read_efuse(hwmgr, STRAP_ASIC_RO_LSB, STRAP_ASIC_RO_MSB,
1499 mask, &efuse);
1501 min = 1200;
1502 max = 2500;
1504 ro = efuse * (max - min) / 255 + min;
1506 /* Populate Sclk_CKS_masterEn0_7 and Sclk_voltageOffset */
1507 for (i = 0; i < sclk_table->count; i++) {
1508 smu_data->smc_state_table.Sclk_CKS_masterEn0_7 |=
1509 sclk_table->entries[i].cks_enable << i;
1510 volt_without_cks = (uint32_t)((2753594000U + (sclk_table->entries[i].clk/100) *
1511 136418 - (ro - 70) * 1000000) /
1512 (2424180 - (sclk_table->entries[i].clk/100) * 1132925/1000));
1513 volt_with_cks = (uint32_t)((2797202000U + sclk_table->entries[i].clk/100 *
1514 3232 - (ro - 65) * 1000000) /
1515 (2522480 - sclk_table->entries[i].clk/100 * 115764/100));
1517 if (volt_without_cks >= volt_with_cks)
1518 volt_offset = (uint8_t)(((volt_without_cks - volt_with_cks +
1519 sclk_table->entries[i].cks_voffset) * 100 + 624) / 625);
1521 smu_data->smc_state_table.Sclk_voltageOffset[i] = volt_offset;
1524 smu_data->smc_state_table.LdoRefSel =
1525 (table_info->cac_dtp_table->ucCKS_LDO_REFSEL != 0) ?
1526 table_info->cac_dtp_table->ucCKS_LDO_REFSEL : 5;
1527 /* Populate CKS Lookup Table */
1528 if (!(stretch_amount == 1 || stretch_amount == 2 ||
1529 stretch_amount == 5 || stretch_amount == 3 ||
1530 stretch_amount == 4)) {
1531 phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
1532 PHM_PlatformCaps_ClockStretcher);
1533 PP_ASSERT_WITH_CODE(false,
1534 "Stretch Amount in PPTable not supported\n",
1535 return -EINVAL);
1538 value = cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixPWR_CKS_CNTL);
1539 value &= 0xFFFFFFFE;
1540 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixPWR_CKS_CNTL, value);
1542 return 0;
1545 static bool vegam_is_hw_avfs_present(struct pp_hwmgr *hwmgr)
1547 uint32_t efuse;
1549 efuse = cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC,
1550 ixSMU_EFUSE_0 + (49 * 4));
1551 efuse &= 0x00000001;
1553 if (efuse)
1554 return true;
1556 return false;
1559 static int vegam_populate_avfs_parameters(struct pp_hwmgr *hwmgr)
1561 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
1562 struct vegam_smumgr *smu_data = (struct vegam_smumgr *)(hwmgr->smu_backend);
1564 SMU75_Discrete_DpmTable *table = &(smu_data->smc_state_table);
1565 int result = 0;
1566 struct pp_atom_ctrl__avfs_parameters avfs_params = {0};
1567 AVFS_meanNsigma_t AVFS_meanNsigma = { {0} };
1568 AVFS_Sclk_Offset_t AVFS_SclkOffset = { {0} };
1569 uint32_t tmp, i;
1571 struct phm_ppt_v1_information *table_info =
1572 (struct phm_ppt_v1_information *)hwmgr->pptable;
1573 struct phm_ppt_v1_clock_voltage_dependency_table *sclk_table =
1574 table_info->vdd_dep_on_sclk;
1576 if (!hwmgr->avfs_supported)
1577 return 0;
1579 result = atomctrl_get_avfs_information(hwmgr, &avfs_params);
1581 if (0 == result) {
1582 table->BTCGB_VDROOP_TABLE[0].a0 =
1583 PP_HOST_TO_SMC_UL(avfs_params.ulGB_VDROOP_TABLE_CKSON_a0);
1584 table->BTCGB_VDROOP_TABLE[0].a1 =
1585 PP_HOST_TO_SMC_UL(avfs_params.ulGB_VDROOP_TABLE_CKSON_a1);
1586 table->BTCGB_VDROOP_TABLE[0].a2 =
1587 PP_HOST_TO_SMC_UL(avfs_params.ulGB_VDROOP_TABLE_CKSON_a2);
1588 table->BTCGB_VDROOP_TABLE[1].a0 =
1589 PP_HOST_TO_SMC_UL(avfs_params.ulGB_VDROOP_TABLE_CKSOFF_a0);
1590 table->BTCGB_VDROOP_TABLE[1].a1 =
1591 PP_HOST_TO_SMC_UL(avfs_params.ulGB_VDROOP_TABLE_CKSOFF_a1);
1592 table->BTCGB_VDROOP_TABLE[1].a2 =
1593 PP_HOST_TO_SMC_UL(avfs_params.ulGB_VDROOP_TABLE_CKSOFF_a2);
1594 table->AVFSGB_FUSE_TABLE[0].m1 =
1595 PP_HOST_TO_SMC_UL(avfs_params.ulAVFSGB_FUSE_TABLE_CKSON_m1);
1596 table->AVFSGB_FUSE_TABLE[0].m2 =
1597 PP_HOST_TO_SMC_US(avfs_params.usAVFSGB_FUSE_TABLE_CKSON_m2);
1598 table->AVFSGB_FUSE_TABLE[0].b =
1599 PP_HOST_TO_SMC_UL(avfs_params.ulAVFSGB_FUSE_TABLE_CKSON_b);
1600 table->AVFSGB_FUSE_TABLE[0].m1_shift = 24;
1601 table->AVFSGB_FUSE_TABLE[0].m2_shift = 12;
1602 table->AVFSGB_FUSE_TABLE[1].m1 =
1603 PP_HOST_TO_SMC_UL(avfs_params.ulAVFSGB_FUSE_TABLE_CKSOFF_m1);
1604 table->AVFSGB_FUSE_TABLE[1].m2 =
1605 PP_HOST_TO_SMC_US(avfs_params.usAVFSGB_FUSE_TABLE_CKSOFF_m2);
1606 table->AVFSGB_FUSE_TABLE[1].b =
1607 PP_HOST_TO_SMC_UL(avfs_params.ulAVFSGB_FUSE_TABLE_CKSOFF_b);
1608 table->AVFSGB_FUSE_TABLE[1].m1_shift = 24;
1609 table->AVFSGB_FUSE_TABLE[1].m2_shift = 12;
1610 table->MaxVoltage = PP_HOST_TO_SMC_US(avfs_params.usMaxVoltage_0_25mv);
1611 AVFS_meanNsigma.Aconstant[0] =
1612 PP_HOST_TO_SMC_UL(avfs_params.ulAVFS_meanNsigma_Acontant0);
1613 AVFS_meanNsigma.Aconstant[1] =
1614 PP_HOST_TO_SMC_UL(avfs_params.ulAVFS_meanNsigma_Acontant1);
1615 AVFS_meanNsigma.Aconstant[2] =
1616 PP_HOST_TO_SMC_UL(avfs_params.ulAVFS_meanNsigma_Acontant2);
1617 AVFS_meanNsigma.DC_tol_sigma =
1618 PP_HOST_TO_SMC_US(avfs_params.usAVFS_meanNsigma_DC_tol_sigma);
1619 AVFS_meanNsigma.Platform_mean =
1620 PP_HOST_TO_SMC_US(avfs_params.usAVFS_meanNsigma_Platform_mean);
1621 AVFS_meanNsigma.PSM_Age_CompFactor =
1622 PP_HOST_TO_SMC_US(avfs_params.usPSM_Age_ComFactor);
1623 AVFS_meanNsigma.Platform_sigma =
1624 PP_HOST_TO_SMC_US(avfs_params.usAVFS_meanNsigma_Platform_sigma);
1626 for (i = 0; i < sclk_table->count; i++) {
1627 AVFS_meanNsigma.Static_Voltage_Offset[i] =
1628 (uint8_t)(sclk_table->entries[i].cks_voffset * 100 / 625);
1629 AVFS_SclkOffset.Sclk_Offset[i] =
1630 PP_HOST_TO_SMC_US((uint16_t)
1631 (sclk_table->entries[i].sclk_offset) / 100);
1634 result = smu7_read_smc_sram_dword(hwmgr,
1635 SMU7_FIRMWARE_HEADER_LOCATION +
1636 offsetof(SMU75_Firmware_Header, AvfsMeanNSigma),
1637 &tmp, SMC_RAM_END);
1638 smu7_copy_bytes_to_smc(hwmgr,
1639 tmp,
1640 (uint8_t *)&AVFS_meanNsigma,
1641 sizeof(AVFS_meanNsigma_t),
1642 SMC_RAM_END);
1644 result = smu7_read_smc_sram_dword(hwmgr,
1645 SMU7_FIRMWARE_HEADER_LOCATION +
1646 offsetof(SMU75_Firmware_Header, AvfsSclkOffsetTable),
1647 &tmp, SMC_RAM_END);
1648 smu7_copy_bytes_to_smc(hwmgr,
1649 tmp,
1650 (uint8_t *)&AVFS_SclkOffset,
1651 sizeof(AVFS_Sclk_Offset_t),
1652 SMC_RAM_END);
1654 data->avfs_vdroop_override_setting =
1655 (avfs_params.ucEnableGB_VDROOP_TABLE_CKSON << BTCGB0_Vdroop_Enable_SHIFT) |
1656 (avfs_params.ucEnableGB_VDROOP_TABLE_CKSOFF << BTCGB1_Vdroop_Enable_SHIFT) |
1657 (avfs_params.ucEnableGB_FUSE_TABLE_CKSON << AVFSGB0_Vdroop_Enable_SHIFT) |
1658 (avfs_params.ucEnableGB_FUSE_TABLE_CKSOFF << AVFSGB1_Vdroop_Enable_SHIFT);
1659 data->apply_avfs_cks_off_voltage =
1660 (avfs_params.ucEnableApplyAVFS_CKS_OFF_Voltage == 1) ? true : false;
1662 return result;
1665 static int vegam_populate_vr_config(struct pp_hwmgr *hwmgr,
1666 struct SMU75_Discrete_DpmTable *table)
1668 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
1669 struct vegam_smumgr *smu_data =
1670 (struct vegam_smumgr *)(hwmgr->smu_backend);
1671 uint16_t config;
1673 config = VR_MERGED_WITH_VDDC;
1674 table->VRConfig |= (config << VRCONF_VDDGFX_SHIFT);
1676 /* Set Vddc Voltage Controller */
1677 if (SMU7_VOLTAGE_CONTROL_BY_SVID2 == data->voltage_control) {
1678 config = VR_SVI2_PLANE_1;
1679 table->VRConfig |= config;
1680 } else {
1681 PP_ASSERT_WITH_CODE(false,
1682 "VDDC should be on SVI2 control in merged mode!",
1685 /* Set Vddci Voltage Controller */
1686 if (SMU7_VOLTAGE_CONTROL_BY_SVID2 == data->vddci_control) {
1687 config = VR_SVI2_PLANE_2; /* only in merged mode */
1688 table->VRConfig |= (config << VRCONF_VDDCI_SHIFT);
1689 } else if (SMU7_VOLTAGE_CONTROL_BY_GPIO == data->vddci_control) {
1690 config = VR_SMIO_PATTERN_1;
1691 table->VRConfig |= (config << VRCONF_VDDCI_SHIFT);
1692 } else {
1693 config = VR_STATIC_VOLTAGE;
1694 table->VRConfig |= (config << VRCONF_VDDCI_SHIFT);
1696 /* Set Mvdd Voltage Controller */
1697 if (SMU7_VOLTAGE_CONTROL_BY_SVID2 == data->mvdd_control) {
1698 if (config != VR_SVI2_PLANE_2) {
1699 config = VR_SVI2_PLANE_2;
1700 table->VRConfig |= (config << VRCONF_MVDD_SHIFT);
1701 cgs_write_ind_register(hwmgr->device,
1702 CGS_IND_REG__SMC,
1703 smu_data->smu7_data.soft_regs_start +
1704 offsetof(SMU75_SoftRegisters, AllowMvddSwitch),
1705 0x1);
1706 } else {
1707 PP_ASSERT_WITH_CODE(false,
1708 "SVI2 Plane 2 is already taken, set MVDD as Static",);
1709 config = VR_STATIC_VOLTAGE;
1710 table->VRConfig = (config << VRCONF_MVDD_SHIFT);
1712 } else if (SMU7_VOLTAGE_CONTROL_BY_GPIO == data->mvdd_control) {
1713 config = VR_SMIO_PATTERN_2;
1714 table->VRConfig = (config << VRCONF_MVDD_SHIFT);
1715 cgs_write_ind_register(hwmgr->device,
1716 CGS_IND_REG__SMC,
1717 smu_data->smu7_data.soft_regs_start +
1718 offsetof(SMU75_SoftRegisters, AllowMvddSwitch),
1719 0x1);
1720 } else {
1721 config = VR_STATIC_VOLTAGE;
1722 table->VRConfig |= (config << VRCONF_MVDD_SHIFT);
1725 return 0;
1728 static int vegam_populate_svi_load_line(struct pp_hwmgr *hwmgr)
1730 struct vegam_smumgr *smu_data = (struct vegam_smumgr *)(hwmgr->smu_backend);
1731 const struct vegam_pt_defaults *defaults = smu_data->power_tune_defaults;
1733 smu_data->power_tune_table.SviLoadLineEn = defaults->SviLoadLineEn;
1734 smu_data->power_tune_table.SviLoadLineVddC = defaults->SviLoadLineVddC;
1735 smu_data->power_tune_table.SviLoadLineTrimVddC = 3;
1736 smu_data->power_tune_table.SviLoadLineOffsetVddC = 0;
1738 return 0;
1741 static int vegam_populate_tdc_limit(struct pp_hwmgr *hwmgr)
1743 uint16_t tdc_limit;
1744 struct vegam_smumgr *smu_data = (struct vegam_smumgr *)(hwmgr->smu_backend);
1745 struct phm_ppt_v1_information *table_info =
1746 (struct phm_ppt_v1_information *)(hwmgr->pptable);
1747 const struct vegam_pt_defaults *defaults = smu_data->power_tune_defaults;
1749 tdc_limit = (uint16_t)(table_info->cac_dtp_table->usTDC * 128);
1750 smu_data->power_tune_table.TDC_VDDC_PkgLimit =
1751 CONVERT_FROM_HOST_TO_SMC_US(tdc_limit);
1752 smu_data->power_tune_table.TDC_VDDC_ThrottleReleaseLimitPerc =
1753 defaults->TDC_VDDC_ThrottleReleaseLimitPerc;
1754 smu_data->power_tune_table.TDC_MAWt = defaults->TDC_MAWt;
1756 return 0;
1759 static int vegam_populate_dw8(struct pp_hwmgr *hwmgr, uint32_t fuse_table_offset)
1761 struct vegam_smumgr *smu_data = (struct vegam_smumgr *)(hwmgr->smu_backend);
1762 const struct vegam_pt_defaults *defaults = smu_data->power_tune_defaults;
1763 uint32_t temp;
1765 if (smu7_read_smc_sram_dword(hwmgr,
1766 fuse_table_offset +
1767 offsetof(SMU75_Discrete_PmFuses, TdcWaterfallCtl),
1768 (uint32_t *)&temp, SMC_RAM_END))
1769 PP_ASSERT_WITH_CODE(false,
1770 "Attempt to read PmFuses.DW6 (SviLoadLineEn) from SMC Failed!",
1771 return -EINVAL);
1772 else {
1773 smu_data->power_tune_table.TdcWaterfallCtl = defaults->TdcWaterfallCtl;
1774 smu_data->power_tune_table.LPMLTemperatureMin =
1775 (uint8_t)((temp >> 16) & 0xff);
1776 smu_data->power_tune_table.LPMLTemperatureMax =
1777 (uint8_t)((temp >> 8) & 0xff);
1778 smu_data->power_tune_table.Reserved = (uint8_t)(temp & 0xff);
1780 return 0;
1783 static int vegam_populate_temperature_scaler(struct pp_hwmgr *hwmgr)
1785 int i;
1786 struct vegam_smumgr *smu_data = (struct vegam_smumgr *)(hwmgr->smu_backend);
1788 /* Currently not used. Set all to zero. */
1789 for (i = 0; i < 16; i++)
1790 smu_data->power_tune_table.LPMLTemperatureScaler[i] = 0;
1792 return 0;
1795 static int vegam_populate_fuzzy_fan(struct pp_hwmgr *hwmgr)
1797 struct vegam_smumgr *smu_data = (struct vegam_smumgr *)(hwmgr->smu_backend);
1799 /* TO DO move to hwmgr */
1800 if ((hwmgr->thermal_controller.advanceFanControlParameters.usFanOutputSensitivity & (1 << 15))
1801 || 0 == hwmgr->thermal_controller.advanceFanControlParameters.usFanOutputSensitivity)
1802 hwmgr->thermal_controller.advanceFanControlParameters.usFanOutputSensitivity =
1803 hwmgr->thermal_controller.advanceFanControlParameters.usDefaultFanOutputSensitivity;
1805 smu_data->power_tune_table.FuzzyFan_PwmSetDelta = PP_HOST_TO_SMC_US(
1806 hwmgr->thermal_controller.advanceFanControlParameters.usFanOutputSensitivity);
1807 return 0;
1810 static int vegam_populate_gnb_lpml(struct pp_hwmgr *hwmgr)
1812 int i;
1813 struct vegam_smumgr *smu_data = (struct vegam_smumgr *)(hwmgr->smu_backend);
1815 /* Currently not used. Set all to zero. */
1816 for (i = 0; i < 16; i++)
1817 smu_data->power_tune_table.GnbLPML[i] = 0;
1819 return 0;
1822 static int vegam_populate_bapm_vddc_base_leakage_sidd(struct pp_hwmgr *hwmgr)
1824 struct vegam_smumgr *smu_data = (struct vegam_smumgr *)(hwmgr->smu_backend);
1825 struct phm_ppt_v1_information *table_info =
1826 (struct phm_ppt_v1_information *)(hwmgr->pptable);
1827 uint16_t hi_sidd = smu_data->power_tune_table.BapmVddCBaseLeakageHiSidd;
1828 uint16_t lo_sidd = smu_data->power_tune_table.BapmVddCBaseLeakageLoSidd;
1829 struct phm_cac_tdp_table *cac_table = table_info->cac_dtp_table;
1831 hi_sidd = (uint16_t)(cac_table->usHighCACLeakage / 100 * 256);
1832 lo_sidd = (uint16_t)(cac_table->usLowCACLeakage / 100 * 256);
1834 smu_data->power_tune_table.BapmVddCBaseLeakageHiSidd =
1835 CONVERT_FROM_HOST_TO_SMC_US(hi_sidd);
1836 smu_data->power_tune_table.BapmVddCBaseLeakageLoSidd =
1837 CONVERT_FROM_HOST_TO_SMC_US(lo_sidd);
1839 return 0;
1842 static int vegam_populate_pm_fuses(struct pp_hwmgr *hwmgr)
1844 struct vegam_smumgr *smu_data = (struct vegam_smumgr *)(hwmgr->smu_backend);
1845 uint32_t pm_fuse_table_offset;
1847 if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
1848 PHM_PlatformCaps_PowerContainment)) {
1849 if (smu7_read_smc_sram_dword(hwmgr,
1850 SMU7_FIRMWARE_HEADER_LOCATION +
1851 offsetof(SMU75_Firmware_Header, PmFuseTable),
1852 &pm_fuse_table_offset, SMC_RAM_END))
1853 PP_ASSERT_WITH_CODE(false,
1854 "Attempt to get pm_fuse_table_offset Failed!",
1855 return -EINVAL);
1857 if (vegam_populate_svi_load_line(hwmgr))
1858 PP_ASSERT_WITH_CODE(false,
1859 "Attempt to populate SviLoadLine Failed!",
1860 return -EINVAL);
1862 if (vegam_populate_tdc_limit(hwmgr))
1863 PP_ASSERT_WITH_CODE(false,
1864 "Attempt to populate TDCLimit Failed!", return -EINVAL);
1866 if (vegam_populate_dw8(hwmgr, pm_fuse_table_offset))
1867 PP_ASSERT_WITH_CODE(false,
1868 "Attempt to populate TdcWaterfallCtl, "
1869 "LPMLTemperature Min and Max Failed!",
1870 return -EINVAL);
1872 if (0 != vegam_populate_temperature_scaler(hwmgr))
1873 PP_ASSERT_WITH_CODE(false,
1874 "Attempt to populate LPMLTemperatureScaler Failed!",
1875 return -EINVAL);
1877 if (vegam_populate_fuzzy_fan(hwmgr))
1878 PP_ASSERT_WITH_CODE(false,
1879 "Attempt to populate Fuzzy Fan Control parameters Failed!",
1880 return -EINVAL);
1882 if (vegam_populate_gnb_lpml(hwmgr))
1883 PP_ASSERT_WITH_CODE(false,
1884 "Attempt to populate GnbLPML Failed!",
1885 return -EINVAL);
1887 if (vegam_populate_bapm_vddc_base_leakage_sidd(hwmgr))
1888 PP_ASSERT_WITH_CODE(false,
1889 "Attempt to populate BapmVddCBaseLeakage Hi and Lo "
1890 "Sidd Failed!", return -EINVAL);
1892 if (smu7_copy_bytes_to_smc(hwmgr, pm_fuse_table_offset,
1893 (uint8_t *)&smu_data->power_tune_table,
1894 (sizeof(struct SMU75_Discrete_PmFuses) - PMFUSES_AVFSSIZE),
1895 SMC_RAM_END))
1896 PP_ASSERT_WITH_CODE(false,
1897 "Attempt to download PmFuseTable Failed!",
1898 return -EINVAL);
1900 return 0;
1903 static int vegam_enable_reconfig_cus(struct pp_hwmgr *hwmgr)
1905 struct amdgpu_device *adev = hwmgr->adev;
1907 smum_send_msg_to_smc_with_parameter(hwmgr,
1908 PPSMC_MSG_EnableModeSwitchRLCNotification,
1909 adev->gfx.cu_info.number);
1911 return 0;
1914 static int vegam_init_smc_table(struct pp_hwmgr *hwmgr)
1916 int result;
1917 struct smu7_hwmgr *hw_data = (struct smu7_hwmgr *)(hwmgr->backend);
1918 struct vegam_smumgr *smu_data = (struct vegam_smumgr *)(hwmgr->smu_backend);
1920 struct phm_ppt_v1_information *table_info =
1921 (struct phm_ppt_v1_information *)(hwmgr->pptable);
1922 struct SMU75_Discrete_DpmTable *table = &(smu_data->smc_state_table);
1923 uint8_t i;
1924 struct pp_atomctrl_gpio_pin_assignment gpio_pin;
1925 struct phm_ppt_v1_gpio_table *gpio_table =
1926 (struct phm_ppt_v1_gpio_table *)table_info->gpio_table;
1927 pp_atomctrl_clock_dividers_vi dividers;
1929 phm_cap_set(hwmgr->platform_descriptor.platformCaps,
1930 PHM_PlatformCaps_AutomaticDCTransition);
1932 vegam_initialize_power_tune_defaults(hwmgr);
1934 if (SMU7_VOLTAGE_CONTROL_NONE != hw_data->voltage_control)
1935 vegam_populate_smc_voltage_tables(hwmgr, table);
1937 table->SystemFlags = 0;
1938 if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
1939 PHM_PlatformCaps_AutomaticDCTransition))
1940 table->SystemFlags |= PPSMC_SYSTEMFLAG_GPIO_DC;
1942 if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
1943 PHM_PlatformCaps_StepVddc))
1944 table->SystemFlags |= PPSMC_SYSTEMFLAG_STEPVDDC;
1946 if (hw_data->is_memory_gddr5)
1947 table->SystemFlags |= PPSMC_SYSTEMFLAG_GDDR5;
1949 if (hw_data->ulv_supported && table_info->us_ulv_voltage_offset) {
1950 result = vegam_populate_ulv_state(hwmgr, table);
1951 PP_ASSERT_WITH_CODE(!result,
1952 "Failed to initialize ULV state!", return result);
1953 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
1954 ixCG_ULV_PARAMETER, SMU7_CGULVPARAMETER_DFLT);
1957 result = vegam_populate_smc_link_level(hwmgr, table);
1958 PP_ASSERT_WITH_CODE(!result,
1959 "Failed to initialize Link Level!", return result);
1961 result = vegam_populate_all_graphic_levels(hwmgr);
1962 PP_ASSERT_WITH_CODE(!result,
1963 "Failed to initialize Graphics Level!", return result);
1965 result = vegam_populate_all_memory_levels(hwmgr);
1966 PP_ASSERT_WITH_CODE(!result,
1967 "Failed to initialize Memory Level!", return result);
1969 result = vegam_populate_smc_acpi_level(hwmgr, table);
1970 PP_ASSERT_WITH_CODE(!result,
1971 "Failed to initialize ACPI Level!", return result);
1973 result = vegam_populate_smc_vce_level(hwmgr, table);
1974 PP_ASSERT_WITH_CODE(!result,
1975 "Failed to initialize VCE Level!", return result);
1977 /* Since only the initial state is completely set up at this point
1978 * (the other states are just copies of the boot state) we only
1979 * need to populate the ARB settings for the initial state.
1981 result = vegam_program_memory_timing_parameters(hwmgr);
1982 PP_ASSERT_WITH_CODE(!result,
1983 "Failed to Write ARB settings for the initial state.", return result);
1985 result = vegam_populate_smc_uvd_level(hwmgr, table);
1986 PP_ASSERT_WITH_CODE(!result,
1987 "Failed to initialize UVD Level!", return result);
1989 result = vegam_populate_smc_boot_level(hwmgr, table);
1990 PP_ASSERT_WITH_CODE(!result,
1991 "Failed to initialize Boot Level!", return result);
1993 result = vegam_populate_smc_initial_state(hwmgr);
1994 PP_ASSERT_WITH_CODE(!result,
1995 "Failed to initialize Boot State!", return result);
1997 result = vegam_populate_bapm_parameters_in_dpm_table(hwmgr);
1998 PP_ASSERT_WITH_CODE(!result,
1999 "Failed to populate BAPM Parameters!", return result);
2001 if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
2002 PHM_PlatformCaps_ClockStretcher)) {
2003 result = vegam_populate_clock_stretcher_data_table(hwmgr);
2004 PP_ASSERT_WITH_CODE(!result,
2005 "Failed to populate Clock Stretcher Data Table!",
2006 return result);
2009 result = vegam_populate_avfs_parameters(hwmgr);
2010 PP_ASSERT_WITH_CODE(!result,
2011 "Failed to populate AVFS Parameters!", return result;);
2013 table->CurrSclkPllRange = 0xff;
2014 table->GraphicsVoltageChangeEnable = 1;
2015 table->GraphicsThermThrottleEnable = 1;
2016 table->GraphicsInterval = 1;
2017 table->VoltageInterval = 1;
2018 table->ThermalInterval = 1;
2019 table->TemperatureLimitHigh =
2020 table_info->cac_dtp_table->usTargetOperatingTemp *
2021 SMU7_Q88_FORMAT_CONVERSION_UNIT;
2022 table->TemperatureLimitLow =
2023 (table_info->cac_dtp_table->usTargetOperatingTemp - 1) *
2024 SMU7_Q88_FORMAT_CONVERSION_UNIT;
2025 table->MemoryVoltageChangeEnable = 1;
2026 table->MemoryInterval = 1;
2027 table->VoltageResponseTime = 0;
2028 table->PhaseResponseTime = 0;
2029 table->MemoryThermThrottleEnable = 1;
2031 PP_ASSERT_WITH_CODE(hw_data->dpm_table.pcie_speed_table.count >= 1,
2032 "There must be 1 or more PCIE levels defined in PPTable.",
2033 return -EINVAL);
2034 table->PCIeBootLinkLevel =
2035 hw_data->dpm_table.pcie_speed_table.count;
2036 table->PCIeGenInterval = 1;
2037 table->VRConfig = 0;
2039 result = vegam_populate_vr_config(hwmgr, table);
2040 PP_ASSERT_WITH_CODE(!result,
2041 "Failed to populate VRConfig setting!", return result);
2043 table->ThermGpio = 17;
2044 table->SclkStepSize = 0x4000;
2046 if (atomctrl_get_pp_assign_pin(hwmgr,
2047 VDDC_VRHOT_GPIO_PINID, &gpio_pin)) {
2048 table->VRHotGpio = gpio_pin.uc_gpio_pin_bit_shift;
2049 if (gpio_table)
2050 table->VRHotLevel =
2051 table_info->gpio_table->vrhot_triggered_sclk_dpm_index;
2052 } else {
2053 table->VRHotGpio = SMU7_UNUSED_GPIO_PIN;
2054 phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
2055 PHM_PlatformCaps_RegulatorHot);
2058 if (atomctrl_get_pp_assign_pin(hwmgr,
2059 PP_AC_DC_SWITCH_GPIO_PINID, &gpio_pin)) {
2060 table->AcDcGpio = gpio_pin.uc_gpio_pin_bit_shift;
2061 if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
2062 PHM_PlatformCaps_AutomaticDCTransition) &&
2063 !smum_send_msg_to_smc(hwmgr, PPSMC_MSG_UseNewGPIOScheme))
2064 phm_cap_set(hwmgr->platform_descriptor.platformCaps,
2065 PHM_PlatformCaps_SMCtoPPLIBAcdcGpioScheme);
2066 } else {
2067 table->AcDcGpio = SMU7_UNUSED_GPIO_PIN;
2068 phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
2069 PHM_PlatformCaps_AutomaticDCTransition);
2072 /* Thermal Output GPIO */
2073 if (atomctrl_get_pp_assign_pin(hwmgr,
2074 THERMAL_INT_OUTPUT_GPIO_PINID, &gpio_pin)) {
2075 table->ThermOutGpio = gpio_pin.uc_gpio_pin_bit_shift;
2077 /* For porlarity read GPIOPAD_A with assigned Gpio pin
2078 * since VBIOS will program this register to set 'inactive state',
2079 * driver can then determine 'active state' from this and
2080 * program SMU with correct polarity
2082 table->ThermOutPolarity =
2083 (0 == (cgs_read_register(hwmgr->device, mmGPIOPAD_A) &
2084 (1 << gpio_pin.uc_gpio_pin_bit_shift))) ? 1:0;
2085 table->ThermOutMode = SMU7_THERM_OUT_MODE_THERM_ONLY;
2087 /* if required, combine VRHot/PCC with thermal out GPIO */
2088 if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
2089 PHM_PlatformCaps_RegulatorHot) &&
2090 phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
2091 PHM_PlatformCaps_CombinePCCWithThermalSignal))
2092 table->ThermOutMode = SMU7_THERM_OUT_MODE_THERM_VRHOT;
2093 } else {
2094 table->ThermOutGpio = 17;
2095 table->ThermOutPolarity = 1;
2096 table->ThermOutMode = SMU7_THERM_OUT_MODE_DISABLE;
2099 /* Populate BIF_SCLK levels into SMC DPM table */
2100 for (i = 0; i <= hw_data->dpm_table.pcie_speed_table.count; i++) {
2101 result = atomctrl_get_dfs_pll_dividers_vi(hwmgr,
2102 smu_data->bif_sclk_table[i], &dividers);
2103 PP_ASSERT_WITH_CODE(!result,
2104 "Can not find DFS divide id for Sclk",
2105 return result);
2107 if (i == 0)
2108 table->Ulv.BifSclkDfs =
2109 PP_HOST_TO_SMC_US((uint16_t)(dividers.pll_post_divider));
2110 else
2111 table->LinkLevel[i - 1].BifSclkDfs =
2112 PP_HOST_TO_SMC_US((uint16_t)(dividers.pll_post_divider));
2115 for (i = 0; i < SMU75_MAX_ENTRIES_SMIO; i++)
2116 table->Smio[i] = PP_HOST_TO_SMC_UL(table->Smio[i]);
2118 CONVERT_FROM_HOST_TO_SMC_UL(table->SystemFlags);
2119 CONVERT_FROM_HOST_TO_SMC_UL(table->VRConfig);
2120 CONVERT_FROM_HOST_TO_SMC_UL(table->SmioMask1);
2121 CONVERT_FROM_HOST_TO_SMC_UL(table->SmioMask2);
2122 CONVERT_FROM_HOST_TO_SMC_UL(table->SclkStepSize);
2123 CONVERT_FROM_HOST_TO_SMC_UL(table->CurrSclkPllRange);
2124 CONVERT_FROM_HOST_TO_SMC_US(table->TemperatureLimitHigh);
2125 CONVERT_FROM_HOST_TO_SMC_US(table->TemperatureLimitLow);
2126 CONVERT_FROM_HOST_TO_SMC_US(table->VoltageResponseTime);
2127 CONVERT_FROM_HOST_TO_SMC_US(table->PhaseResponseTime);
2129 /* Upload all dpm data to SMC memory.(dpm level, dpm level count etc) */
2130 result = smu7_copy_bytes_to_smc(hwmgr,
2131 smu_data->smu7_data.dpm_table_start +
2132 offsetof(SMU75_Discrete_DpmTable, SystemFlags),
2133 (uint8_t *)&(table->SystemFlags),
2134 sizeof(SMU75_Discrete_DpmTable) - 3 * sizeof(SMU75_PIDController),
2135 SMC_RAM_END);
2136 PP_ASSERT_WITH_CODE(!result,
2137 "Failed to upload dpm data to SMC memory!", return result);
2139 result = vegam_populate_pm_fuses(hwmgr);
2140 PP_ASSERT_WITH_CODE(!result,
2141 "Failed to populate PM fuses to SMC memory!", return result);
2143 result = vegam_enable_reconfig_cus(hwmgr);
2144 PP_ASSERT_WITH_CODE(!result,
2145 "Failed to enable reconfigurable CUs!", return result);
2147 return 0;
2150 static uint32_t vegam_get_offsetof(uint32_t type, uint32_t member)
2152 switch (type) {
2153 case SMU_SoftRegisters:
2154 switch (member) {
2155 case HandshakeDisables:
2156 return offsetof(SMU75_SoftRegisters, HandshakeDisables);
2157 case VoltageChangeTimeout:
2158 return offsetof(SMU75_SoftRegisters, VoltageChangeTimeout);
2159 case AverageGraphicsActivity:
2160 return offsetof(SMU75_SoftRegisters, AverageGraphicsActivity);
2161 case AverageMemoryActivity:
2162 return offsetof(SMU75_SoftRegisters, AverageMemoryActivity);
2163 case PreVBlankGap:
2164 return offsetof(SMU75_SoftRegisters, PreVBlankGap);
2165 case VBlankTimeout:
2166 return offsetof(SMU75_SoftRegisters, VBlankTimeout);
2167 case UcodeLoadStatus:
2168 return offsetof(SMU75_SoftRegisters, UcodeLoadStatus);
2169 case DRAM_LOG_ADDR_H:
2170 return offsetof(SMU75_SoftRegisters, DRAM_LOG_ADDR_H);
2171 case DRAM_LOG_ADDR_L:
2172 return offsetof(SMU75_SoftRegisters, DRAM_LOG_ADDR_L);
2173 case DRAM_LOG_PHY_ADDR_H:
2174 return offsetof(SMU75_SoftRegisters, DRAM_LOG_PHY_ADDR_H);
2175 case DRAM_LOG_PHY_ADDR_L:
2176 return offsetof(SMU75_SoftRegisters, DRAM_LOG_PHY_ADDR_L);
2177 case DRAM_LOG_BUFF_SIZE:
2178 return offsetof(SMU75_SoftRegisters, DRAM_LOG_BUFF_SIZE);
2180 break;
2181 case SMU_Discrete_DpmTable:
2182 switch (member) {
2183 case UvdBootLevel:
2184 return offsetof(SMU75_Discrete_DpmTable, UvdBootLevel);
2185 case VceBootLevel:
2186 return offsetof(SMU75_Discrete_DpmTable, VceBootLevel);
2187 case LowSclkInterruptThreshold:
2188 return offsetof(SMU75_Discrete_DpmTable, LowSclkInterruptThreshold);
2190 break;
2192 pr_warn("can't get the offset of type %x member %x\n", type, member);
2193 return 0;
2196 static int vegam_program_mem_timing_parameters(struct pp_hwmgr *hwmgr)
2198 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
2200 if (data->need_update_smu7_dpm_table &
2201 (DPMTABLE_OD_UPDATE_SCLK +
2202 DPMTABLE_UPDATE_SCLK +
2203 DPMTABLE_UPDATE_MCLK))
2204 return vegam_program_memory_timing_parameters(hwmgr);
2206 return 0;
2209 static int vegam_update_sclk_threshold(struct pp_hwmgr *hwmgr)
2211 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
2212 struct vegam_smumgr *smu_data =
2213 (struct vegam_smumgr *)(hwmgr->smu_backend);
2214 int result = 0;
2215 uint32_t low_sclk_interrupt_threshold = 0;
2217 if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
2218 PHM_PlatformCaps_SclkThrottleLowNotification)
2219 && (data->low_sclk_interrupt_threshold != 0)) {
2220 low_sclk_interrupt_threshold =
2221 data->low_sclk_interrupt_threshold;
2223 CONVERT_FROM_HOST_TO_SMC_UL(low_sclk_interrupt_threshold);
2225 result = smu7_copy_bytes_to_smc(
2226 hwmgr,
2227 smu_data->smu7_data.dpm_table_start +
2228 offsetof(SMU75_Discrete_DpmTable,
2229 LowSclkInterruptThreshold),
2230 (uint8_t *)&low_sclk_interrupt_threshold,
2231 sizeof(uint32_t),
2232 SMC_RAM_END);
2234 PP_ASSERT_WITH_CODE((result == 0),
2235 "Failed to update SCLK threshold!", return result);
2237 result = vegam_program_mem_timing_parameters(hwmgr);
2238 PP_ASSERT_WITH_CODE((result == 0),
2239 "Failed to program memory timing parameters!",
2242 return result;
2245 int vegam_thermal_avfs_enable(struct pp_hwmgr *hwmgr)
2247 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
2248 int ret;
2250 if (!hwmgr->avfs_supported)
2251 return 0;
2253 ret = smum_send_msg_to_smc(hwmgr, PPSMC_MSG_EnableAvfs);
2254 if (!ret) {
2255 if (data->apply_avfs_cks_off_voltage)
2256 ret = smum_send_msg_to_smc(hwmgr, PPSMC_MSG_ApplyAvfsCksOffVoltage);
2259 return ret;
2262 static int vegam_thermal_setup_fan_table(struct pp_hwmgr *hwmgr)
2264 PP_ASSERT_WITH_CODE(hwmgr->thermal_controller.fanInfo.bNoFan,
2265 "VBIOS fan info is not correct!",
2267 phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
2268 PHM_PlatformCaps_MicrocodeFanControl);
2269 return 0;
2272 const struct pp_smumgr_func vegam_smu_funcs = {
2273 .name = "vegam_smu",
2274 .smu_init = vegam_smu_init,
2275 .smu_fini = smu7_smu_fini,
2276 .start_smu = vegam_start_smu,
2277 .check_fw_load_finish = smu7_check_fw_load_finish,
2278 .request_smu_load_fw = smu7_reload_firmware,
2279 .request_smu_load_specific_fw = NULL,
2280 .send_msg_to_smc = smu7_send_msg_to_smc,
2281 .send_msg_to_smc_with_parameter = smu7_send_msg_to_smc_with_parameter,
2282 .process_firmware_header = vegam_process_firmware_header,
2283 .is_dpm_running = vegam_is_dpm_running,
2284 .get_mac_definition = vegam_get_mac_definition,
2285 .update_smc_table = vegam_update_smc_table,
2286 .init_smc_table = vegam_init_smc_table,
2287 .get_offsetof = vegam_get_offsetof,
2288 .populate_all_graphic_levels = vegam_populate_all_graphic_levels,
2289 .populate_all_memory_levels = vegam_populate_all_memory_levels,
2290 .update_sclk_threshold = vegam_update_sclk_threshold,
2291 .is_hw_avfs_present = vegam_is_hw_avfs_present,
2292 .thermal_avfs_enable = vegam_thermal_avfs_enable,
2293 .thermal_setup_fan_table = vegam_thermal_setup_fan_table,